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The radiative decay of the axial-vector resonances into a pseudoscalar meson and a photon is studied

using the vector meson Lagrangian obtained from the hidden gauge symmetry (HGS) formalism. The

formalism is well suited to study this problem since it deals with pseudoscalar and vector mesons in a

unified way, respecting chiral invariance. We show explicitly the gauge invariance of the set of diagrams

that appear in the approach and evaluate the radiative decay width of the a1ð1260Þ and b1ð1235Þ axial-
vector meson resonances into ��. We also include the contribution of loops involving anomalous

couplings and compare the results to those obtained previously within another formalism.
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I. INTRODUCTION

The radiative decay of mesons has been traditionally
advocated as one of the observables most suited to learn
about their nature on which there is a permanent debate
[1,2]. Radiative decay of vector mesons has been addressed
from different points of views [3–7]. The radiative decay of
scalar mesons has had comparatively larger attention. The
radiative decay of the light scalars, f0ð980Þ, a0ð980Þ has
been studied in [1,7–11] and the particular case of the
charmed scalar meson Ds0ð2317Þ has been thoroughly
studied in [12–14]. The axial-vector mesons have also
been the subject of study in [15–19] from the perspective
that they are dynamically generated states from the vector-
pseudoscalar interaction [20,21], or in other words mo-
lecular states.

The idea that the low lying axial-vector mesons, like the
a1ð1260Þ and b1ð1235Þ, are actually composite particles of
a vector and a pseudoscalar in coupled channels has non-
trivial repercussions since one can now evaluate properties
of these resonances as well as determine production cross
sections and partial decay widths. It has also led to surpris-
ing results, since it was found in [21] that the formalism
produces two K1ð1270Þ states instead of just one, as com-
monly assumed, for which strong experimental support has
been found in [22] (see also the PDG [23] in this respect).
The evaluation of the radiative decay of the axial-vector
meson resonances into �-pseudoscalar meson is a natural
test of the theory and this is the idea behind the work done
in [15–19]. There are some differences between these
works. In [15,18] a formalism involving the vector repre-
sentation for the vector mesons is employed, and approx-
imations used in [20,21] are also invoked which render
finite the results in the calculation of the loop functions
involved. In [16,17] the finiteness of the results is guaran-
teed by the use of spatial wave functions for the molecules.
In [19] a novelty is introduced using a tensor representation
for the vector mesons, as a consequence of which the loops

involved develop quadratic divergences. These are as-
sumed to be exactly canceled by some tadpole terms which
are not explicitly evaluated. The tensor formalism for
vector mesons was also used in [24] in the radiative decay
of vector mesons, where the diagrams were found conver-
gent assuming vector meson dominance, and logarithmi-
cally divergent removing this requirement.
The implementation of a consistent scheme that leads to

finite results without making strong assumptions is most
desirable. In that sense, the formalism of hidden gauge for
the vector mesons [25,26] looks like an ideal tool, since it
deals simultaneously with vector mesons and pseudosca-
lars, implements naturally chiral symmetry, leads to the
same lowest order chiral Lagrangian of [27] for the pseu-
doscalar mesons, and allows a consistent simultaneous
treatment of vector mesons, pseudoscalars, and photon.
This latter point is the main issue in the problem of
radiative axial-vector meson decays. It is emphasized that
a consistent treatment of chiral symmetry in the presence
of the vector mesons is important when we discuss com-
posite structure of the axial-vector mesons, which is the
main objective of the present work. The axial-vector me-
son is also introduced as an elementary particle in the
Lagrangian in the hidden gauge symmetry (HGS) formal-
ism [26,28,29]. In this paper, however, for the case of the
a1 that we study in detail we consider a dynamically
generated one from the interaction of the � and � mesons.
We shall come back to this point later on.
Another appealing feature of the hidden gauge formal-

ism is that it was proved in [30,31] that this formalism is
equivalent to using the tensor formalism for the vector
mesons, and one can benefit from the simplicity of the
vector formalism, most welcome when dealing with com-
plicated problems. The hidden gauge formalism also offers
the interaction of vector mesons with pseudoscalars and,
most importantly, of vector mesons with themselves for
which no Lagrangians are available in the formalism of
[31].
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Since the axial-vector meson resonances are considered
here as composite particles of a vector and a pseudoscalar,
the coupling of a photon is made to the components, and
proceeds through loop diagrams involving the correspond-
ing vector and pseudoscalar mesons of each channel. This
is the main framework and provides the largest contribu-
tion. Yet, in some cases where particular large cancella-
tions appear, it was found in [32] that contributions of
terms involving anomalous couplings and extra vectors in
the loops may be relevant. We shall also take this into
account. We shall prove that the formalism we use, involv-
ing one vector and one pseudoscalar in the loops, provides
finite results for the radiative decay width. The terms
involving the anomalous couplings have logarithmic diver-
gences which can be cured with a natural cutoff or other-
wise be related to the analogous loops appearing in the
scattering problem of a vector meson with a pseudoscalar,
leading to similar results in both cases. The approach
presented here leads to a systematic and reliable way to
evaluate radiative decay widths of axial-vector mesons. We
shall compare the formalism and the results with those of
the former formalism used in [15,18], where couplings of
photons to pseudoscalar and vector mesons are imple-
mented using minimal coupling.

II. THE HIDDEN GAUGE FORMALISM

The HGS formalism to deal with vector mesons [25,26]
is a useful and internally consistent scheme which pre-
serves chiral symmetry. In this formalism the vector meson
fields are gauge bosons of a hidden local symmetry trans-
forming inhomogeneously. After taking the unitary gauge,
the vector meson fields transform exactly in the manner as
in the nonlinear realization of chiral symmetry [33]. An
advantage of the HGS is that empirically successful rela-
tions for the � meson can be naturally reproduced, includ-
ing the universality, Kawarabayashi-Suzuki-Fayyazuddin-
Riazuddin (KSFR) relation, vector meson dominance, and
the Weinberg-Tomozawa theorem for the �-� scattering
[25,26]. In fact, the last point is the most important ingre-
dient of the present work, and will be discussed in the next
section in some detail. In Ref. [30] this formalism is found
equivalent to the use of the tensor formalism of [31], where
the vectors transform homogeneously under a nonlinear
realization of chiral symmetry, with the use of couplings
implied in the vector meson dominance formalism (VMD)
of [34]. (For a review on the different ways to implement
vector mesons into effective chiral Lagrangians, see
Ref. [35]).

Following Ref. [30] the Lagrangian involving pseudo-
scalar mesons, photons, and vector mesons can be written
as

L ¼ Lð2Þ þLIII (1)

with

L ð2Þ ¼ 1
4f

2hD�UD�Uy þ �Uy þ �yUi (2)

L III ¼ � 1

4
hV��V

��i þ 1

2
M2

V

��
V� � i

g
��

�
2
�
; (3)

where h� � �i represents a trace over SUð3Þ matrices. The
covariant derivative is defined by

D�U ¼ @�U� ieQA�Uþ ieUQA�; (4)

with Q ¼ diagð2;�1;�1Þ=3, e ¼ �jej the electron
charge, and A� the photon field. The chiral matrix U is

given by

U ¼ ei
ffiffi
2

p
�=f (5)

with f the pion decay constant (f ¼ 93 MeV). The � and
V� matrices are the usual SUð3Þ matrices containing the

pseudoscalar mesons and vector mesons, respectively,

� �

1ffiffi
2

p �0 þ 1ffiffi
6

p �8 �þ Kþ

�� � 1ffiffi
2

p �0 þ 1ffiffi
6

p �8 K0

K� �K0 � 2ffiffi
6

p �8

0
BBBB@

1
CCCCA;

V� �
1ffiffi
2

p �0 þ 1ffiffi
2

p ! �þ K�þ

�� � 1ffiffi
2

p �0 þ 1ffiffi
2

p ! K�0

K�� �K�0 �

0
BBB@

1
CCCA

�

: (6)

The terms with � in Lð2Þ provide the mass term for the

pseudoscalars. For four pseudoscalar meson fields theLð2Þ
Lagrangian provides the well-known chiral Lagrangian at
lowest order,

~L ð2Þ ¼ 1

12f2
h½�; @���2 þM�4i; (7)

with M ¼ diagðm2
�;m

2
�; 2m

2
K �m2

�Þ. For the coupling be-
tween two pseudoscalars and one photon the Lagrangian

Lð2Þ provides

L �PP ¼ �ieA�hQ½�; @���i; (8)

which in this formalism will get canceled with an extra
term coming from LIII, such that ultimately the photon
couples to the pseudoscalars via vector meson exchange,
the basic feature of VMD.
In LIII, V�� is defined as

V�� ¼ @�V� � @�V� � ig½V�; V�� (9)

and

�� ¼ 1
2½uyð@� � ieQA�Þuþ uð@� � ieQA�Þuy� (10)

with u2 ¼ U. The hidden gauge coupling constant g is
related to f and the vector meson mass (MV) through

g ¼ MV

2f
; (11)
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which is one of the forms of the KSFR relation [36]. Other
properties of g inherent to the VMD formalism, relating to
the tensor formalism of [30], are

FV

MV

¼ 1ffiffiffi
2

p
g
;

GV

MV

¼ 1

2
ffiffiffi
2

p
g
;

FV ¼ ffiffiffi
2

p
f; GV ¼ fffiffiffi

2
p :

(12)

Upon expansion of ½V� � i
g���2 up to two pseudoscalar

fields, we find�
V� � i

g
��

�
2 ¼

�
V� � e

g
QA� � 1

g

1

2f2
�eQA��

þ 1

g

1

4f2
�2eQA� þ 1

g

1

4f2
eQA��

2

� i

g

1

4f2
½�; @���

�
2
; (13)

from where we obtain the following interaction
Lagrangians among pseudoscalars (P), photons (�), and
vector mesons (V):

L V� ¼ �M2
V

e

g
A�hV�Qi (14)

L V�PP ¼ e
M2

V

4gf2
A�hV�ðQ�2 þ�2Q� 2�Q�Þi (15)

L VPP ¼ �i
M2

V

4gf2
hV�½�; @���i (16)

L �PP ¼ ieA�hQ½�; @���i (17)

~L PPPP ¼ � 1

8f2
h½�; @���2i: (18)

The term in Eq. (17) cancels exactly the term in Eq. (8), as
mentioned above. On the other hand, the term of Eq. (18)
has the same structure as the derivative term of Eq. (7) and

it is a most unpleasant term, since added to ~Lð2Þ of Eq. (7)
would break the chiral symmetry of the chiral Lagrangian.
However, this term is canceled by the exchange of vector
mesons between the pseudoscalars that result from the
Lagrangian of Eq. (16), LVPP, in the limit of q2=M2

V !
0, where q is the momentum carried by the exchanged
vector meson. This was already noticed in Ref. [33].

Furthermore, from the hV��V
��i term of LIII [see

Eq. (3)], we obtain the coupling of three vector mesons
which is also essential in the present work:

L VVV ¼ ighð@�V� � @�V�ÞV�V�i: (19)

We shall explain the formalism in detail for the ��
component of the aþ1 decay. For this purpose we show in

the Appendix the relevant couplings that allow us to con-
struct the amplitudes for the radiative decay of the aþ1 .

III. THE VP ! VP INTERACTION

In the construction of the interaction kernel for the
vector-pseudoscalar meson interaction, which is used in
Refs. [20,21] to generate dynamically the axial-vector
resonances, the following chiral Lagrangian is utilized:

L ¼ � 1

4f2
h½V�; @�V��½�; @���i; (20)

which, for the �þ�0 ! �0�þ, gives

L �þ�0!�0�þ ¼ 1

2f2
ð2P� q� kÞ � ðkþ qÞ	 � 	0 (21)

with the assignment of momenta given in Fig. 1(a).
The HGS formalism leads to the diagram of Fig. 1(b),

which can be readily evaluated and approximated using the
Feynman rules of the Appendix:

LHGS
�þ�0!�0�þ ’ 1

2f2
½ðkþ qÞ � ð2P� k� qÞ	 � 	0

� ð2k� qÞ � 	ð2P� k� qÞ � 	0
� ð2q� kÞ � 	0ð2P� k� qÞ � 	�; (22)

where the intermediate � propagator ½ðq� kÞ2 �M2
V��1

has been approximated by �M�2
V . As we can see, the first

term of Eq. (22) coincides with the result of the chiral
Lagrangian of Eq. (21). The second and third terms of
Eq. (22) are small for small kinetic energies of the particles
since the zeroth component of the polarization vectors
tends to zero as the three-momentum of the vector meson
goes to zero to satisfy the Lorenz condition 	 � q ¼ 0.
Under these conditions, the HGS formalism and the chiral
Lagrangian of Eq. (20) provide the same vector-
pseudoscalar meson interaction.
The kernel to be used in the Bethe-Salpeter equation is

defined as

~V 0
�þ�0!�0�þ	 � 	0 ¼ �L�þ�0!�0�þ (23)

which upon projection in isospin I ¼ 1, for the case of the
aþ1 resonance, leads to

FIG. 1. (a) Contact interaction from the Lagrangian of Eq. (20)
for the �þ�0 ! �0�þ. (b) Corresponding diagram provided by
the HGS formalism.
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~V ðI¼1Þ
��!��	 � 	0 ¼ � ~V 0

�þ�0!�0�þ	 � 	0

’ 1

2f2
ðkþ qÞ � ð2P� k� qÞ	 � 	0: (24)

The chiral counting scheme here, unlike the one of
Ref. [29], is to regard the pion as a light particle but the
� meson as a heavy particle. This is consistent with the
S-wave Weinberg-Tomozawa interaction (24) of order p
(small pion momentum), which is derived by including the
� meson exchange potential in the limit of the large mass
of the � meson. As shown below, the chiral unitary ampli-
tude implements the sum of the s-channel loop diagrams to
all orders to recover unitarity. The resulting chiral expan-
sion is then consistent with the low energy theorem at
OðpÞ.

In Ref. [21] the spatial part ~	 � ~	0 of the I ¼ 1 potential
in s wave was iterated in the Bethe-Salpeter equation,
summing the diagrams of Fig. 2. The sum is done in
Ref. [21] where the following scattering matrix is obtained:

T ’ � ~V

1þ ~VG
~	 � ~	0 (25)

neglecting terms of � momenta over the mass squared
which are very small, where G is the loop function of a
� and a � conveniently regularized [21] corresponding to

GðPÞ ¼
Z id4q

ð2�Þ4
1

q2 �m2
l þ i	

1

ðP� qÞ2 �M2
l þ i	

:

(26)

The poles of the T matrix, corresponding to the aþ1
resonance, require 1þ ~VG ¼ 0 in the second Riemann
sheet of the complex energy plane. In the real axis for
the energy of the resonance we will have

~VG��1 ) G�� ~V�1: (27)

This result is approximate because we go from the complex
pole position to the real axis and also because in Ref. [21]
the poles are searched solving the Bethe-Salpeter equations
in coupled channels. However, since the coupling of aþ1 to
�� is by far the largest [21], the result of Eq. (27) is a rough
approximation which will be used later on only for illus-
trative purposes.

IV. TEST OF GAUGE INVARIANCE

Amplitudes which involve a photon must be computed
in a way consistent with the gauge invariance. As a matter
of fact, if all necessary diagrams are properly taken into

account the gauge symmetry is satisfied. In some cases,
however, its proof is not a trivial matter, especially when
higher order loops are included or approximations are
used. This happens in the present calculation, and there-
fore, we would like to discuss it in some detail.
Let us start with a brief look at a simple process of

physical decay, � ! ���. This will be used later on to
prove the gauge invariance of the diagrams involved in the
axial-vector meson radiative decay. By using the Feynman
rules of the Appendix, it is immediate to prove the gauge
invariance of the set of diagrams shown in Fig. 4, upon

summing the three diagrams and substituting 	ð�Þ ! k.
This will be used later on to prove the gauge invariance
of the diagrams involved in the axial-vector meson radia-
tive decay. Independently, the set of diagrams of Fig. 3 is
also gauge invariant.
The test of gauge invariance of the two sets succeeds

when all the external particles are on shell. More con-
cretely, in diagram (c) of Fig. 4 the intermediate � propa-
gator is

1

ðq� kÞ2 �M2
V

¼ 1

q2 �M2
V � 2qk

! 1

�2qk
: (28)

In diagram (c) of Fig. 3 the same occurs with the inter-
mediate pion propagator. We must keep this in mind since,
when the �þ in Fig. 4(c) or the initial �þ in Fig. 3(c) are
put inside a loop, as will be the case in the radiative decay,
some extra diagram will be demanded to fulfill gauge
invariance.
We shall continue considering the �� channel, the most

important of the a1, for illustrative purposes, although in
the final calculations we will consider the contribution of
all the VP coupled channels. Following Ref. [15] the
radiative decay of the axial-vector mesons is obtained by

FIG. 2. Diagrammatic series of the Bethe-Salpeter equation for
the �� interaction.

FIG. 4. Set of Feynman diagrams which is gauge invariant for
�þ ! �þ�0�.

FIG. 3. Set of Feynman diagrams which is gauge invariant for
�0 ! �þ���.
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coupling the photon to its meson components, which re-
quires the knowledge of the coupling of the resonance to
the different vector-pseudoscalar components. This cou-
pling is of the type

Vaþ1 �
þ�0 ¼ gaþ1 �

þ�0	A � 	 (29)

with 	A, 	, the polarization vectors of the axial and the
vector mesons. The couplings gi are obtained in Ref. [21]
from the residues at the pole positions of the scattering
amplitudes. The set of diagrams needed for the calculation
is given in Figs. 5 and 6.

The connection of this formalism to details of the dy-
namical generation of the axial-vector mesons is discussed
in Ref. [15] and in the analogous case of dynamically
generated baryons in Ref. [37]. The gauge invariance of
the set of diagrams in Figs. 3 and 4 would imply the gauge
invariance of the set of diagrams (b), (c), and (d) in Figs. 5
and 6 if the q lines were on the mass shell. Since this is
obviously not the case because they belong to a loop, the
diagrams (a) of Figs. 5 and 6 are demanded in order to still
fulfill gauge invariance [14] because they cancel the effect
of the off shellness of the q line in diagrams 5(b) and 6(b).

Indeed the pion propagator with momentum q� k in
Fig. 5(b) is

1

ðq� kÞ2 �m2
�

¼ 1

q2 �m2
� � 2kq

¼ 1

�2kq
þ

�
1

q2 �m2
� � 2kq

� 1

�2kq

�

¼ 1

�2kq
þ 1

2kq

q2 �m2
�

ðq� kÞ2 �m2
�

: (30)

The first term in Eq. (30) corresponds to the propagator of
Eq. (28) assuming q2 ¼ m2

� (on shell pion) and guarantees
the cancellation of the last three diagrams of Fig. 5. The
remnant term in Eq. (30) kills the propagator with momen-

tum q, leaving a loop with just two propagators with
momentum q� k (pion) and P� q (vector), which has
then the same topology as the diagram of Fig. 5(a). It is
direct to see that with the following coupling of the photon
to the axial-vector with positive charge in Fig. 5(a),

� itAþAþ� ¼ �ieðPþ P� kÞ�	ð�Þ�	A � 	0A; (31)

the cancellation of Fig. 5(a) with the off-shell part of
Fig. 5(b), taking the second term of the pion propagator
of Eq. (30), is exact and one has a gauge invariant set of
diagrams. A similar reasoning can be made to show the
gauge invariance of the set of Fig. 6. The Lagrangian of
Eq. (31) could be obtained via minimum coupling neglect-
ing terms of the same order as those neglected to convert
the VP ! VP interaction of the HGS in the one from the
effective Lagrangian in Sec. III. Its use is demanded for
consistency with the vertex chosen for the VP ! VP
interaction.

V. THE RADIATIVE DECAY OF THE aþ
1 IN THE

HIDDEN GAUGE FORMALISM

Although the diagrams (a) and (d) of Figs. 5 and 6 are
needed for the gauge invariance test, they give null con-
tribution to the radiative decay amplitude for different
reasons:
(i) diagram (a): because of the requirement that the

longitudinal component of the axial-vector propaga-
tor does not develop a pole of the pseudoscalar,
which demands that the loop of Figs. 5(a) and 6(a),
vanishes for the external pion on shell as is the case
here [15,38].

(ii) diagram (d): because of the Lorenz condition of the
axial-vector meson P � 	A ¼ 0 [14,39].

Therefore, one can perform the computation of the
remaining diagrams (b) and (c) explicitly, but it is more
rewarding to use a well-known procedure which makes use

FIG. 6. Another set of gauge invariant diagrams for the radiative decay of the axial-vector meson.

FIG. 5. Gauge invariant set of diagrams for the radiative decay of the axial-vector meson.
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of the gauge invariance of the set and automatically ac-
counts for large cancellations which occur between these
diagrams. Following [15] we write for the amplitude a1 !
��,

T ¼ 	A�	
ð�Þ
� T��; (32)

where T�� can be written, by Lorentz covariance, as

T�� ¼ ag�� þ bP�P� þ cP�k� þ dk�P� þ ek�k�;

(33)

where the coefficients a; . . . ; e are Lorentz scalar functions
of P and k. Note that, due to the Lorenz condition,

	A�P
� ¼ 0, 	ð�Þ� k� ¼ 0, all the terms in Eq. (32) vanish

except for the a and d terms. On the other hand, gauge
invariance implies that T��k� ¼ 0, from where one gets

a ¼ �dP � k: (34)

This is obviously valid in any reference frame, however,
in the axial-vector meson rest frame and taking the
Coulomb gauge for the photon, only the a term survives

in Eq. (32) since ~P ¼ 0 and 	0 ¼ 0. This means that, in the
end, we will only need the a coefficient for the evaluation
of the process. However, the a coefficient can be evaluated
from the d term thanks to Eq. (34). The advantage of doing
this is that there are few mechanisms contributing to the d
term and by dimensional reasons the number of powers of
the loop momentum in the numerator will be reduced, as
will be clearly manifest from the discussion below.

In the present case it is easy to see that the diagrams (c)
of Figs. 5 and 6 do not contribute to the d coefficient and
hence one only has to evaluate the diagrams (b) of Figs. 5
and 6. The details on how to evaluate the d coefficient
using the Feynman parametrization of the amplitudes are
given in Ref. [15]. The only difference from the previous
case is in the diagram Fig. 6(b) where the effective �VV
vertex mediated by the vector meson propagator through
the vector meson dominance has extra terms (see Sec. VII
for more details). It turns out that the presence of the extra
terms which come from the self-interaction vertex of a non-
Abelian gauge theory plays a crucial role to make the d
coefficient extracted from Fig. 6(b) finite.

The total amplitude for the radiative decay is obtained as
a sum over the diagrams of Figs. 5 and 6,

T ¼ Tð5Þ þ Tð6Þ: (35)

For illustrative purposes we will consider in the present
paper the same decays as in Ref. [15], which are aþ1 !
�þ� and bþ1 ! �þ�. For these decays the K�K channels
are also needed. The general expression for the amplitude
for the kind of mechanisms shown in Figs. 5 and 6 are

Tð5Þ ¼ g0AVPQcVPP
MVGVffiffiffi
2

p
f2

P � k	A � 	ð�Þ
Z 1

0
dx

Z x

0
dy

1

8�2

� 1

sþ i"

�
ð1� xÞð2� yÞ � yð1� xÞm

2
�þ �m2

P

M2
V

�
;

(36)

where

s ¼ ð1� xÞðxM2
A �M2

V � 2yP � kÞ � xm2
P; (37)

withmP andMV the masses of the pseudoscalar and vector
mesons in the loop, m�þ the mass of the final state pion,
and MA the mass of the axial-vector meson,

Tð6Þ ¼ �g0AVPQcVPP
MVGVffiffiffi
2

p
f2

P � k	A � 	ð�Þ
Z 1

0
dx

Z x

0
dy

1

16�2

� 1

s0 þ i"

�
5x� 2yþ xy� yð1� xÞm

2
�þ �m2

P

M2
V

�
;

(38)

where

s0 ¼ ð1� xÞðxM2
A �m2

P � 2yP � kÞ � xM2
V: (39)

In Eqs. (36) and (38), g0AVP are the AVP coupling constants

in the charge base. These coefficients are related to the
gAVP in the isospin base, obtained in Ref. [21], through the
transformation

g0AVP ¼ C� gAVP; (40)

where C are coefficients which depend on the different
AVP channels. We use the values of gAVP obtained in
Refs. [15,21] by evaluating the residua at the pole position
of the different VP ! VP scattering amplitudes. In the
previous equations, C, Q, and cVPP are coefficients1 given
in Tables I and II.

TABLE I. Coefficients for aþ1 ð1260Þ ! �þ� decay.

aþ1 ð1260Þ ! �þ� C Q cVPP

Type Fig. 5 �K�0Kþ 1=
ffiffiffi
2

p �e 1

�0�þ 1=
ffiffiffi
2

p �e � ffiffiffi
2

p

Type Fig. 6 K�þ �K0 �1=
ffiffiffi
2

p �e �1
�þ�0 �1=

ffiffiffi
2

p �e
ffiffiffi
2

p

TABLE II. Coefficients for bþ1 ð1235Þ ! �þ� decay.

bþ1 ð1235Þ ! �þ� C Q cVPP

Type Fig. 5 �K�0Kþ 1=
ffiffiffi
2

p �e 1

Type Fig. 6 K�þ �K0 1=
ffiffiffi
2

p �e �1

1Note the different sign in the definition of e with respect to
Refs. [15,18], since e is taken negative in the hidden gauge
formalism.
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VI. COMPARISON OF THE RESULTS WITH THE
TREE LEVEL

One is now asked to address the contribution of the tree
level diagram of Fig. 7. Using the Feynman rules of the
Appendix, one finds

Ttree ¼ ga1�0�þ
effiffiffi
2

p
g
	A � 	ð�Þ; ga1�0�þ ¼ �ga1�þ�0 :

(41)

However, this term should not be added in the hidden
gauge formalism since it would lead to doublecounting.
Indeed, we are going to prove that this term is identical to
the diagram of Fig. 6(b) and thus it has already been
counted. This observation was rightly stated in Ref. [19]
and it holds for the HGS formalism. It cannot be applied to
the model used in Ref. [15] where the diagram of Fig. 6(b)
is not introduced and instead a direct coupling of the
photon to the vector meson arising from minimal coupling
in the Proca equation was used. We shall come back to this
point later on.

Let us reinterpret the diagram of Fig. 6(b) in terms of the
tree level diagram of Fig. 7. The essential argument comes
by comparing the diagram of Fig. 6(b) with the diagrams
for the dynamical generation of the a1 as shown in Fig. 2.
The relation to the former can be achieved by taking the
limit mV ! large for the vector meson which emits the
pion of the final state, as shown in Fig. 8. Since the heavy
vector meson exchange has been used for the construction
of a1, the diagram of Fig. 8(c), omitting the photon, is
equivalent to the sum over diagrams of Fig. 2 excluding the
first tree diagram. Near the resonance pole of a1, however,
the first tree diagram can be neglected and hence the
diagram of Fig. 8(c), omitting the photon, becomes equiva-
lent to Fig. 2. This enables one to reinterpret the diagram of
Fig. 6(b) [or 8(d)] as equivalent to the tree diagram of
Fig. 7.

Let us see how this occurs analytically. For this purpose
we factorize the vertex of VP ! VP in terms of the

potential ~V 0 of Eq. (24). Then the diagram 6(b) now
acquires the topology of Fig. 8(d) and can be computed as

�iTð8dÞ ¼ �iga1�þ�0

Z d4q

ð2�Þ4 	A � 	 i

q2 �m2
�

� i

ðP� qÞ2 �M2
V

ð�iÞ ~V 0
�þ�0!�0�þ	 � 	ð�Þ i

M2
V

� ð�iÞ 1ffiffiffi
2

p M2
V

e

g
: (42)

Summing over the 	 polarization, neglecting the q�q�=M2
V

terms of the � propagator and considering Eq. (24) and the
second of the Eqs. (41), we have

Tð8dÞ ’ �ga1�þ�0

effiffiffi
2

p
g
~V 0
�þ�0!�0�þG	A � 	ð�Þ

¼ �ga1�0�þ
effiffiffi
2

p
g
~VðI¼1Þ
��!��G	A � 	ð�Þ; (43)

whereG is given by Eq. (26) and we regularize it as done in
Ref. [21]. Equation (43) coincides with Eq. (41) if
~VðI¼1Þ
��!��G ’ �1, which is the condition at the pole position

of the axial-vector meson, as discussed in Sec. III.

However, note that ~VðI¼1Þ
��!��G ’ �1 is only true at the

pole position and assuming one channel. Note also that
in reality the a1 resonance is very wide and hence it is far
from the real axis, and also the effect of the other channels
is not negligible. Furthermore, in the loop of Fig. 8(d), the

factorization of ~VðI¼1Þ
��!�� does not hold exactly (although

quite accurately). Nevertheless, an actual exercise tells us
that these two terms are of the same order of magnitude.
The former discussion offers the possibility to evaluate

the set of diagrams of Fig. 6 in a different way. We state
that diagram 6(b) is the tree level of Fig. 7 and then we
must add to it the diagram of Fig. 6(c). This diagram is also
evaluated with the same approximations done above and
we obtain

Tð6cÞ ¼ ga1�0�þM2
V

e

2
ffiffiffi
2

p
gf2

G	A � 	ð�Þ: (44)

The ratio of TðcÞ to the tree level is estimated as

Tð6cÞ

Ttree ¼ G
M2

V

2f2
’ � M2

V

2f2 ~VðI¼1Þ
��!��

’ � M2
�

2M2
a1 � 2m2

� � 2M2
�

’ �0:3: (45)

FIG. 7. Tree level diagram for aþ1 ! ��þ decay.

FIG. 8. Vector meson exchange in the limit MV ! large.
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This means that the whole set of diagrams of Fig. 6 can be
approximated in terms of the tree level by

Tð6Þ ’ 0:7Ttree: (46)

VII. COMPARISON WITH A PREVIOUS MODEL

In this section we compare the results obtained in the
hidden gauge formalism with those of the model of
Ref. [15]. The model of Ref. [15] obtains the couplings
via the Proca equation through minimal coupling. The
diagrams obtained from the Proca equation corresponding
to Fig. 5 are identical to those obtained in the pre-
vious sections. Those of Fig. 6 were the same except
diagram 6(b). This diagram was absent in the approach
of Ref. [15]. Instead one had the diagram of Fig. 9(a) since
minimal coupling on the Proca equation leads to a direct
photon coupling to the vector meson, Fig. 9(b). The dia-
gram of Fig. 9(b) gives rise in this case to the contribution

Tð9bÞ ¼ e½2	ð�Þ
 q
	0�	
� � 	ð�Þ
 	
	0�q

�

� 	ð�Þ
 	0
	�ðq� kÞ��; (47)

while

Tð9cÞ ¼ e½ð2q� kÞ
	ð�Þ
	�	0� � ðqþ kÞ�	0�	ð�Þ
 	


þ 	ð�Þ
 	0
	�ð2k� qÞ��: (48)

Note that these two operators are different. As a conse-
quence of this, the diagram of Fig. 9(a) cannot be identified
with the tree level diagram.

It is worth looking at the difference between these two
operators:

Tð9cÞ � Tð9bÞ ¼ e½k � 		ð�Þ � 	0 � k � 	0	ð�Þ � 	�: (49)

This difference is gauge invariant, which proves that if in
the HGS approach the set of diagrams taken is gauge
invariant, so was the set of diagrams taken in Ref. [15].
This was already stated there. Since, as we have shown, the
diagram of Fig. 9(a) is not equivalent to the tree level,
unlike the diagram of Fig. 6(b), the question of the tree
level diagram is reopen. Hence, in Ref. [15] the tree con-
tribution was considered, invoking the approach of
Refs. [31,40] where it appears with strength similar to
the one found here.

To continue with the comparison, let us quote further
that the sum over the set of diagrams of Figs. 6(a), 6(c),
6(d), and 9(a) was found to provide a very small contribu-
tion, negligible in practice [15,18]. As a consequence, for
this set of diagrams plus the tree level one obtains essen-
tially the tree level contribution, while the set of diagrams
of Fig. 6 in the HGS formalism has been found to lead to a
contribution about 0.7 times the tree level. The two formal-
isms hence lead to a difference of 30% of the tree level.
Since the decay width is proportional to the square ampli-
tude, its actual value in the HGS formalism is expected to
be about a half (0:72) of the decay width from the tree
amplitude. This rough estimation is indeed consistent with
the present result as shown in Tables V and VI.

VIII. NEWANOMALOUS MECHANISMS

Besides those mechanisms considered so far, other dia-
grams could provide a relevant contribution to the radiative
decay, like those shown in Fig. 10. The main peculiarity of
the diagram of Fig. 10 is that it contains two anomalous
VVP vertices, which in principle one could expect to be
small due to the higher order nature of the anomalous term
in the chiral expansion. The VVP interaction is anomalous
[41] and accounts for a process that does not conserve
intrinsic parity,2 and can be obtained from the gauged
Wess-Zumino term (see e.g. Refs. [42,43]). The expecta-
tion of small amplitudes was the reason why these double-
anomalous mechanisms were not considered in
Refs. [15,18]. However, later works on the radiative decays
of scalar mesons [10,32] showed the importance of these
mechanisms in radiative decay processes, which was also
suggested in Ref. [13]. The importance of the anomalous
process is also shown in another context of the kaon photo-
production [44]. In all these examples, as the relevant
energy becomes larger the role of the anomalous contribu-
tion becomes more relevant. Therefore we are going to
evaluate its contribution in the present work.
The VVP Lagrangian is [43,45,46]

L VVP ¼ G0ffiffiffi
2

p 	��
�h@�V�@
V�Pi; (50)

where G0 ¼ 3g02=ð4�2fÞ with g0 ¼ �GVM�=ð
ffiffiffi
2

p
f2Þ.

Since in the loops of Fig. 10 we have two vertices of the
type VVP, the amplitude is proportional to G02 or g04.
Hence, the contributions to the decay width of the loops
of Fig. 10 go like g08. Thus the decay width is very sensible
to the exact value of the VVP couplings. In order to fine-
tune the numerical value of the VVP coupling we proceed
in a similar way as in Ref. [32]: we normalize the
G0 coupling multiplying it by a factor Ni such that the

FIG. 9. (a) and (b) Diagram and vertex used in the work of
Ref. [15]. (c) Vertex used in the present work.

2The intrinsic parity of a particle is defined as follows: it isþ1
if the particle transforms as a true tensor of that rank, and�1 if it
transforms as a pseudotensor, e.g. �, �, � and a1 have intrinsic
parity �1, þ1, þ1 and �1 respectively.
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V ! P� decay widths agree with the experimental results
(see Ref. [32] for details and exact definition of Ni).

The amplitude of the diagram of Fig. 10 is logarithmi-
cally divergent. Following the procedure of [32], one can
isolate a divergent part having a loop structure with a pair
of the same two meson propagators as appearing in the
scattering problem (in the present case, a pseudoscalar and
a vector). This term is naturally associated with the VP
loop function, GVP, of Eq. (26). In Ref. [32], it was also
shown that the logarithmically divergent term can be regu-
larized with a cutoff of natural size (� 1 GeV), having
lead to very similar results. Thus we obtain

Tanom ¼ g0AP1V1
cAcB�V3

jejNANBG
02FV

2MV3

	A � 	ð�ÞP � k

�
�Z 1

0
dx

Z x

0
dy

1

16�2

1

sþ i"

�
ðP2=2� k � PÞ

� ð1� xÞ2 �m2
V2

2

�
þ 1

2
GVPðP0; mV1

; mP1
Þ
�
;

(51)

where s ¼ ðP2x� 2P � kyÞð1� xÞ �m2
V1

þ ðm2
V1

�

m2
P1
Þx� ðm2

V2
�m2

P1
Þy and �V is 1, 1=3, � ffiffiffi

2
p

=3 for V ¼
�, !, �, respectively. The coefficients cA and cB are
coming from the VV 0P vertex defined as ciVV

0P after
taking the trace in Eq. (50) and given in Tables III and IV.

IX. NUMERICAL RESULTS

With the amplitudes obtained above, the decay width for
the axial-vector mesons into one pseudoscalar meson and
one photon is given by

�ðMAÞ ¼ j ~kj
12�M2

A

jTj2; (52)

whereMA stands for the mass of the decaying axial-vector
meson and T is the sum of the amplitudes from the loop
mechanisms removing the 	A � 	 factor. The former ex-
pression is valid for narrow axial-vector resonances. In
order to take into account the finite width of the axial-
vector meson, we fold the previous expression with the
mass distribution:

�A!P� ¼ � 1

�

Z ðMAþ2�AÞ2

ðMA�2�AÞ2
dsA Im

�
1

sA �M2
A þ iMA�A

	

� �ð ffiffiffiffiffi
sA

p Þ�ð ffiffiffiffiffi
sA

p �
ffiffiffiffiffiffi
sthA

q
Þ; (53)

where � is the step function, �A is the total axial-vector
meson width, and sthA is the threshold for the dominant A
decay channels.
Similarly, since the � and K� mesons have relatively

large widths, we have also taken into account the mass
distribution of these states in the loop functions of Figs. 5
and 6. This is done by folding T (Fig. 5), T (Fig. 6), with
the spectral function of the � and K�:

Tð5;6Þ ! Tð5;6Þ ¼ � 1

�

Z ðMVþ2�V Þ2

ðMV�2�V Þ2
dsV

� Im

�
1

sV �M2
V þ iMV�V

	
Tð5;6Þð ffiffiffiffiffi

sV
p Þ:

(54)

The corrections from this source are small, they change the
radiative decay widths at the level of 2% or below.
In Tables V and VI we can see various contributions of

different kinds of loops to the radiative decays. The theo-
retical errors have been obtained by doing a Monte Carlo
sampling of the parameters of the model within their un-
certainties, as explained in Refs. [15,18]. Because of the
strong role played by the interferences between different
mechanisms, as will be explained below, and the approx-
imations involved in the relations between couplings, like
those in Eq. (12), we have multiplied the errors by two to
account safely for the theoretical uncertainties. We also
show in the tables the result for the tree level with the
model of Refs. [15,18] which must not be considered if
using the HGS formalism as explained in Sec. VI. In the
last row the experimental values provided by the PDG [23]

FIG. 10. Feynman diagram containing the anomalous vertices.

TABLE III. Coefficients for the anomalous term of the
aþ1 ð1260Þ ! �þ� decay.

aþ1 ð1260Þ ! �þ�

P1V1V2V3 C cA cB

�0�þ!�0 �1=
ffiffiffi
2

p ffiffiffi
2

p ffiffiffi
2

p
Kþ �K�0K�þ�0 1=

ffiffiffi
2

p
1=

ffiffiffi
2

p
1

�K0K�þ �K�0�0 �1=
ffiffiffi
2

p �1=
ffiffiffi
2

p
1

TABLE IV. Coefficients for the anomalous term of the
bþ1 ð1235Þ ! �þ� decay.

bþ1 ð1235Þ ! �þ�

P1V1V2V3 C cA cB

�þ!�þ! �1
ffiffiffi
2

p ffiffiffi
2

p
��þ!! �1 2=

ffiffiffi
3

p ffiffiffi
2

p
Kþ �K�0K�þ! 1=

ffiffiffi
2

p
1=

ffiffiffi
2

p
1

Kþ �K�0K�þ� 1=
ffiffiffi
2

p
1 1

�K0K�þ �K�0! 1=
ffiffiffi
2

p
1=

ffiffiffi
2

p
1

�K0K�þ �K�0� 1=
ffiffiffi
2

p
1 1
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are given, however these numbers refer to one single old
experiment for each decay. From the table, the theoretical
value of the total decay width for a1 seems underestimated
unlike the previous results [15], while for b1 the agreement
is good.

If we look at more details of the theoretical values, the
amplitudes of Figs. 5 and 6 are destructively added for the
a1 decay, and the sum of them is smaller than each con-
tribution. For the b1 case this interference is constructive.
In the present calculation, we have a new contribution from
the anomalous term which is relatively large as compared
to the normal contributions of Figs. 5 and 6 for the case of
the a1. It is also interesting to observe that the anomalous
contribution is dominated by the �� loop. It is therefore
important to consider the anomalous terms if they exist.
For the total theoretical amplitude for a1 decay, the anoma-
lous term has an opposite phase to the sum of contributions
from Figs. 5 and 6, and so the net amplitude and the
resulting decay width become small, 133 keVas compared
with 640� 246 keV of the experimental value. For the
case of b1 the normal contributions already agree well as
compared with experimental data, while the anomalous
contribution is very small. Therefore, the total decay width
agrees well with experimental data.
From the results in the tables it can be seen that the loops

from Fig. 6 contribute much more than in the formalism of
Ref. [15] where it was shown to be very small. This should
not be surprising since the loop of Fig. 6(b) is very different
from the one of Fig. 9(a), evaluated in Ref. [15]. The actual
value from the loop of Fig. 6 is consistent with the rough
estimation of Eq. (46); for the case of a1, they contribute
373 keV which is consistent with 0:72 � 647 keV. For the
case of the b1 the argument holds only qualitatively;
57 keV of the contribution of Fig. 6 which is compared
with the tree contribution of 67 keV.

X. CONCLUSIONS

We have developed the formalism to evaluate the radia-
tive decay of axial-vector mesons from the perspective that
these states are composite particles of pseudoscalar and
vector mesons, using the hidden gauge formalism for the
interaction of vector mesons and pseudoscalars among
themselves and with external sources. The formalism is
rather rewarding. It shows a clear path to proceed and
allows the interpretation of the tree level diagrams which
in other formalisms are more difficult to integrate within
the corresponding scheme. Also, one finds finite radiative
decay widths which we compare with present experimental
results considering theoretical and experimental uncertain-
ties. We found good results for the radiative decay of the
b1ð1235Þ resonance, while not so good for the a1ð1260Þ
resonance, where large cancellations occurred in the theo-
retical framework. Because of these large cancellations of
the main mechanism, extra corrections stemming from the
consideration of loops involving anomalous couplings and
extra vector mesons gave a non-negligible contribution to
the radiative decay width. The improvement is, however,
not remarkable. For the case of b1 the agreement of the
basic mechanism with data was already rather good, while
the anomalous contributions played only a minor role.

TABLE VI. Various contributions to the bþ1 ð1235Þ ! �þ�
decay width in units of keV.

bþ1 ð1235Þ ! �þ�

Tree level with model of Refs. [15,18] � 20

! 14

� � � �
Total 67

Loops type Fig. 5 K�K 26

Loops type Fig. 6 K�K 57

Total (Fig: 5þ Fig: 6) 159

Loops anomalous !� 2.2

�� 0.6
�K�0Kþð!Þ 6:3� 10�2

�K�0Kþð�Þ 0.1

K�þ �K0ð!Þ 6:3� 10�2

K�þ �K0ð�Þ 0.1

Total 4

Total (Fig: 5þ Fig: 6þ anomalous) 209� 90

Experimental value [23] 230� 60

TABLE V. Various contributions to the aþ1 ð1260Þ ! �þ� de-
cay width in units of keV.

aþ1 ð1260Þ ! �þ�

Tree level with model of Refs. [15,18] � � � �
! � � �
� 647

Total 647

Loops type Fig. 5 K�K 14

�� 119

Total 171

Loops type Fig. 6 K�K 30

�� 213

Total 373

Total (Fig: 5þ Fig: 6) 103

Loops anomalous �� 163
�K�0Kþ 1.4

K�þ �K0 1.4

Total 217

Total (Fig: 5þ Fig: 6þ anomalous) 133� 70

Experimental value [23] 640� 246
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At this point we might raise a question about the nature
of the a1 meson. In our model the a1 meson is dynamically
generated but there is another way to introduce the a1 as an
explicit field in the extended HGS Lagrangian [26,28,29].
In the present context, it would be useful first to differ-
entiate the dynamical and genuine components of the a1
meson. According to the method explained in Ref. [47], the
pole analysis of the a1 indicates a large contribution of the
dynamical component [21]. Furthermore, the dynamical
model has been successfully tested and contrasted with
experiments in Ref. [22], for the case of the two
K1ð1270Þ dynamically generated resonances. The role of
the present radiative decay to shed light into the relative
weight of the genuine component versus the molecular one
is more debatable. The phases of the AVP couplings are
nontrivial predictions of the model that generates dynami-
cally the axial-vector resonances [21] and they have a
crucial role in the present decay given the importance of
interferences between the different mechanism. Thus, the
final results reflect nontrivial genuine predictions subject to
the validity of our dynamical model. However, even if the
genuine component had a minor role in the building up of
the a1 resonance, it could have important effects in the
radiative decay provided the coupling to photons of this
genuine component was very large. This was indeed the
case in the important role played by the genuine compo-
nents in the radiative decay of the �ð1520Þ into �� [37]
despite the small contribution of the three-quark compo-
nent to the�ð1520Þ composition. It would be interesting to
look for the role of the genuine component of the axial-
vector resonances and its contribution to the radiative
decay in a future work.

The finite results obtained within the hidden gauge
formalism and the simplicity of the approach make the
use of this formalism practical and advisable in this kind of
problems. Even with the results for the a1 resonance, the
agreement with the data can be considered fair from the
perspective that differences for radiative decays between
models, and hence with data, are typically of the order of 1
or 2 orders of magnitude [1].

At the same time we have described the formalism with
sufficient detail to use many of the results for related
problems, like the interaction of vector mesons with pseu-
doscalars, linking the results to existing chiral
Lagrangians, the interaction of vector mesons with them-
selves, etc. These results should prove useful in future
work dealing with the interaction of vector mesons, which
so far has not received much attention, and where one
might expect that equally interesting results as found in
other areas are lying ahead.
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APPENDIX

Next we show the expressions for the vertices involving
�, �, and real photons (see Fig. 11). The 	 and 	0 represent
the polarization vectors for the � mesons and 	ð�Þ for the
photon:

� itð11aÞ ¼ �i
M2

V

2
ffiffiffi
2

p
gf2

ðq1 þ q2Þ � 	; (A1)

� itð11bÞ ¼ �i
M2

V

2
ffiffiffi
2

p
gf2

ðq1 þ q2Þ � 	; (A2)

� itð11cÞ ¼ �ie
M2

Vffiffiffi
2

p
g
	 � 	ð�Þ; (A3)

� itð11dÞ ¼ ieðqþ q� kÞ � 	ð�Þ; (A4)

FIG. 11. Feynman diagrams stemming from the hidden gauge
Lagrangian.
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�itð11eÞ ¼ �i
ffiffiffi
2

p
g½ðk�	ð0Þ� � k�	

ð0Þ
� Þ	�	0�

þ ð�q�	� þ q�	�Þ	0�	ð0Þ�
þ ððq� kÞ�	0� � ðq� kÞ�	0�Þ	ð0Þ�	��; (A5)

� itð11fÞ ¼ �ie
M2

V

2
ffiffiffi
2

p
gf2

	 � 	ð�Þ; (A6)

� itð11gÞ ¼ ie

ffiffiffi
2

p
M2

V

2gf2
	 � 	ð�Þ; (A7)

�itð11hÞ ¼ � i

2f2
½ð2k� qÞ � 	ð2P� k� qÞ � 	ð0Þ

� ðkþ qÞ � ð2P� k� qÞ	 � 	ð0Þ
þ ð2q� kÞ � 	ð0Þð2P� k� qÞ � 	�; (A8)

(neglecting ðq� kÞ2=M2
V)

�itð11iÞ ¼ �e
i

2
ffiffiffi
2

p
gf2

½ð2k� qÞ � 	ð2P� k� qÞ � 	ð�Þ

� ðkþ qÞ � ð2P� k� qÞ	 � 	ð�Þ
þ ð2q� kÞ � 	ð�Þð2P� k� qÞ � 	�; (A9)

(neglecting ðq� kÞ2=M2
V).
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