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Under two different scenarios for the light scalar mesons, we investigate the transition form factors of

BðBsÞ mesons decay into a scalar meson in the perturbative QCD approach. In the large recoiling region,

the form factors are dominated by the short-distance dynamics and can be calculated using perturbation

theory. We adopt the dipole parametrization to recast the q2 dependence of the form factors. Since the

decay constants defined by the scalar current are large, our predictions on the B ! S form factors are

much larger than the B ! P transitions, especially in the second scenario. Contributions from various

light-cone distribution amplitudes (LCDAs) are elaborated and we find that the twist-3 LCDAs provide

more than one-half of the contributions to the form factors. The two terms of the twist-2 LCDAs give

destructive contributions in the first scenario while they give constructive contributions in the second

scenario. With the form factors, we also predict the decay width and branching ratios of the semileptonic

B ! Sl �� and B ! Slþl� decays. The branching ratios of B ! Sl �� channels are found to have the order of

10�4 while those of B ! Slþl� have the order of 10�7. These predictions can be tested by the future

experiments.

DOI: 10.1103/PhysRevD.79.014013 PACS numbers: 13.25.Hw

I. INTRODUCTION

Although a number of scalar states have been discovered
long time ago, the underlying structure of scalar mesons
has not been well established (for a review, see [1–3]). In
order to uncover the inner structures, many different de-
scriptions have been proposed such as �qq, �q �qqq, meson-
meson bound states, or even supplemented with a scalar
glueball. It is very likely that they are not made of one
simple component but are the superpositions of these con-
tents. The different scenarios tend to give very different
predictions on the production and decay of the scalar
mesons which are helpful to determine the dominant com-
ponent. Although intensive study has been given to the
decay property of the scalar mesons, the production of
these mesons can provide a different unique insight to
the mysterious structure of these mesons, especially their
production in B decays.

In B meson decays, the energy release is much larger
and many channels involving a scalar meson in the final
state are open. Since the first observation of the scalar
meson f0ð980Þ in three-body B meson decays B� !
K�f0ð980Þ ! K�ð�þ��Þ [4], the two collaborations,
BABAR and Belle, have reported many studies on decays
involving a scalar meson in the final state: the branching
ratios and/or direct CP asymmetries are measured or set an
upper limit [5]. Since much more interesting channels are
still not observed at present, it is just the beginning of
scalar meson study in B factories. Meanwhile, it is also
necessary to provide more theoretical studies which are
useful for future experiments.

Theoretically, the studies on hadronic B decays are
usually polluted by the nonperturbative QCD effect and

predictions on the observables always suffer large uncer-
tainties. Since there is only one hadron in the final state in
semileptonic B ! S decays, they receive less theoretical
uncertainties. In these channels, the most challenging part
in the calculation is the matrix element of the BðsÞ to scalar
meson transition. In the region of small recoil, where q2 is
large, the form factors are dominated by the soft dynamics,
which is out of control of perturbative QCD. However, in
the large-recoil region where q2 ! 0, roughly 5 GeV of
energy is released. About half of this energy is taken by the
light scalar meson, which suggests that large momentum is
transferred in this process and the interaction is mainly
dominated by the short-distance dynamics. Therefore the
perturbative QCD approach (pQCD) [6] is expected to be
applicable to B to scalar meson transitions in the large-
recoil region. With the results obtained in the restricted
region, one can extrapolate these form factors to the whole
kinematic region by adopting some parametrization form
for the form factors.
This paper is organized as follows: The distribution

amplitudes and decay constants of the mesons are given
in Sec. II. In Sec. III we listed the formulas about the form
factors and semileptonic decays. Section IV is a discussion
of the numerical results. The Appendix lists the useful
functions for the pQCD approach.

II. CONVENTIONS AND INPUTS

We will work in the rest frame of the B meson and use
the light-cone coordinates. In the heavy quark limit the
mass difference of b quark and B meson is negligible:
mb ’ mB. The masses of scalar mesons are very small
compared with the b quark mass, we keep them up to the
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first order. Since the scalar meson in the final state moves
very fast in the large-recoil region, we define the momen-
tum of the scalar meson on the plus direction in the light-
cone coordinates. The momentum of the B meson and
scalar mesons can be denoted as

PB ¼ mBffiffiffi
2

p ð1; 1; 0?Þ; PS ¼ mBffiffiffi
2

p ð�; 0; 0?Þ: (1)

Then for momentum q ¼ PB � PS, there exists � ¼ 1�
q2=m2

B. The momentum of the light antiquark in B meson
and the quark in scalar mesons are denoted as k1 and k2
respectively (see Fig. 1):

k1 ¼
�
0;
mBffiffiffi
2

p x1;k1?
�
; k2 ¼

�
mBffiffiffi
2

p x2�; 0;k2?
�
: (2)

In the course of the pQCD calculations, the light-cone
wave functions of the mesons are required. The Bmeson is
a heavy-light system, and its light-cone matrix element can
be decomposed as [7]

Z 1

0

d4z

ð2�Þ4 e
ik1�zh0jb�ð0Þ �q�ðzÞj �BðsÞðPBðsÞ Þi

¼ iffiffiffiffiffiffiffiffiffi
2Nc

p
�
ðP6 BðsÞ þmBðsÞ Þ�5

�
�BðsÞ ðk1Þ

þ n6 � v6ffiffiffi
2

p ��BðsÞ ðk1Þ
��

��
; (3)

where n ¼ ð1; 0; 0TÞ and v ¼ ð0; 1; 0TÞ are lightlike unit
vectors. There are two Lorentz structures in Bmeson light-
cone distribution amplitudes, and they obey the normal-
ization conditions:

Z d4k1
ð2�Þ4 �BðsÞ ðk1Þ ¼

fBðsÞ

2
ffiffiffiffiffiffiffiffiffi
2Nc

p ;
Z d4k1

ð2�Þ4
��BðsÞ ðk1Þ ¼ 0;

(4)

with fBðsÞ as the decay constant of the BðsÞ meson. In

principle, both the �BðsÞ ðk1Þ and ��BðsÞ ðk1Þ contribute in B

meson transitions. However, the contribution of ��BðsÞ ðk1Þ is
usually neglected, because its contribution is numerically
small [8]. So we will only keep the term with �BðsÞ ðk1Þ in
Eq. (3). In the momentum space the light-cone matrix of B
meson can be expressed as

�BðsÞ ¼
iffiffiffi
6

p ðP6 BðsÞ þmBðsÞ Þ�5�BðsÞ ðk1Þ: (5)

Usually the hard part is independent of kþ or/and k�, so we
integrate one of them out from�BðsÞ ðkþ; k�;k?Þ. With b as

the conjugate space coordinate of k?, we can express
�BðsÞ ðx;k?Þ in b space by

�BðsÞ;��ðx; bÞ ¼
iffiffiffiffiffiffiffiffiffi
2Nc

p ½P6 BðsÞ�5 þmBðsÞ�5����BðsÞ ðx; bÞ;
(6)

where x is the momentum fraction of the light quark in the
Bmeson. In this paper, we use the following expression for
�BðsÞ ðx; bÞ:

�BðsÞ ðx; bÞ ¼ NBðsÞx
2ð1� xÞ2 exp

�
�m2

BðsÞx
2

2!2
b

� 1

2
ð!bbÞ2

�
;

(7)

with NBðsÞ is the normalization factor, which is determined

by Eq. (4). In recent years, a lot of studies for B� and B0
d

decays have been performed by the pQCD approach [6].
With the rich experimental data, the !b in (7) is fixed as
0.40 GeV. In our calculation, we adopt !b ¼ ð0:40�
0:05Þ GeV and fB ¼ ð0:19� 0:025 GeVÞ for B mesons.
For the Bs meson, taking the SU(3) breaking effects into
consideration, we adopt !bs ¼ ð0:50� 0:05Þ GeV and

fBs
¼ 0:23� 0:03 GeV [9].

In the spectroscopy study, many scalar states have been
discovered. Among them, the scalar mesons below 1 GeV,
including f0ð600Þð�Þ, f0ð980Þ, K�

0ð800Þð	Þ, and a0ð980Þ,
are usually viewed to form an SU(3) nonet; while scalar
mesons around 1.5 GeV, including f0ð1370Þ,
f0ð1500Þ=f0ð1700Þ, K�

0ð1430Þ, and a0ð1450Þ, form another

nonet. There are two different scenarios to describe these
mesons in the quark model. The first one (called scenario 1
in this paper) is the naive 2-quark model: the nonet mesons
below 1 GeVare treated as the lowest lying states, and the
ones near 1.5 GeV are the first excited state. In this sce-
nario, the flavor wave functions of the light scalar mesons
are

� ¼ 1ffiffiffi
2

p ðu �uþ d �dÞ; f0 ¼ s�s; aþ0 ¼ u �d;

a00 ¼
1ffiffiffi
2

p ðu �uþ d �dÞ; a�0 ¼ d �u; 	þ ¼ u�s;

	0 ¼ d�s; �	0 ¼ s �d; 	� ¼ s �u:

(8)

Here it is supposed that the � and f0ð980Þ have the ideal
mixing. However, the data of J=c decays does not favor
f0ð980Þ as a pure s�s state [10], and it seems that � and
f0ð980Þ have a mixing like

FIG. 1. Contributions to the form factors in the pQCD ap-
proach, where the cross denotes the weak vertex.
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jf0ð980Þi ¼ js�si cos
þ jn �ni sin
;
j�i ¼ �js�si sin
þ jn �ni cos
; (9)

with jn �ni ¼ 1ffiffi
2

p ðu �uþ d �dÞ and 
 as the mixing angle. The

above description has encountered several severe difficul-
ties. For example, if the �qq states have the quantum num-
bers JPC ¼ 0þþ, the corresponding masses are expected
larger than that of the vector mesons. Studies on the mixing
angle of � and f0ð980Þ [11] show that 
 tends to be not a
unique value, which indicates that � and f0ð980Þ may not
be purely q �q states. Based on these facts, the second
scenario is proposed, where the nonet mesons near
1.5 GeV are viewed as the lowest lying states, while the
mesons below 1 GeV may be viewed as four-quark bound
states. Because of the difficulty when dealing with four-
quark states, we only do the calculation about the heavier
nonet in this scenario.

The decay constants of scalar mesons are defined by [10]

hSðpÞj �q2��q1j0i ¼ fSp�; hSj �q2q1j0i ¼ mS
�fS: (10)

Because of the charge conjugate invariance, neutral scalar
mesons cannot be produced by the vector current and thus

f� ¼ ff0 ¼ fa0
0
¼ 0: (11)

For other scalar mesons, the vector decay constant fS and
scalar decay constant �fS (listed in Table I and II) is related
by equations of motion�sfS ¼ �fS, with�s ¼ mS

m2ð�Þ�m1ð�Þ .
mS is the mass of the scalar meson, and m1, m2 are the
running current quark masses. All the inputs of the scalar
mesons in our calculation, including the decay constants,
running quark masses and the Gegenbauer moments, are
quoted from [10].

The definition of twist-2 light-cone distribution ampli-
tude (LCDA) �SðxÞ and twist-3 LCDAs �s

SðxÞ and ��
S for

the scalar mesons can be combined into a single matrix
element [10]:

hSðPSÞjqð0Þj �qðzÞlj0i¼ �1ffiffiffiffiffiffiffiffiffi
2Nc

p
Z 1

0
dxeixp�z

�
P6 S�SðxÞ

þmS�
s
SðxÞþmS���P

�
S z

��
�
S ðxÞ
6

�
jl

¼ �1ffiffiffiffiffiffiffiffiffi
2Nc

p
Z 1

0
dxeixp�zfP6 S�SðxÞ

þmS�
s
SðxÞþmSðn6 v6 �1Þ�T

S ðxÞgjl;
(12)

with the normalization conditions

Z 1

0
dx�SðxÞ ¼ fS

2
ffiffiffiffiffiffiffiffiffi
2Nc

p ;

Z 1

0
dx�s

SðxÞ ¼
Z 1

0
dx��

S ðxÞ ¼
�fS

2
ffiffiffiffiffiffiffiffiffi
2Nc

p :

(13)

The LCDAs can be expanded in Gegenbauer polynomials
as the following form:

�SðxÞ ¼ fS
2

ffiffiffiffiffiffiffiffiffi
2Nc

p 6xð1� xÞ
�
1þ�s

X1
m¼1

Bmð�Þ

� C3=2
m ð2x� 1Þ

�

¼
�fS

2
ffiffiffiffiffiffiffiffiffi
2Nc

p 6xð1� xÞ
�
1

�s

þ X1
m¼1

Bmð�Þ

� C3=2
m ð2x� 1Þ

�
; (14)

�s
SðxÞ ¼

�fS
2

ffiffiffiffiffiffiffiffiffi
2Nc

p
�
1þ X1

m¼1

amð�ÞC1=2
m ð2x� 1Þ

�
; (15)

�T
S ðxÞ ¼

d

dx

��
S ðxÞ
6

¼
�fS

2
ffiffiffiffiffiffiffiffiffi
2Nc

p d

dx

�
xð1� xÞ

�
�
1þ X1

m¼1

bmð�ÞC3=2
m ð2x� 1Þ

��
; (16)

where Bmð�Þ, amð�Þ, and bmð�Þ are the Gegenbauer mo-

ments andCð3=2Þ
m andC1=2

m are the Gegenbauer polynomials.
The values of Bmð�Þ are listed in Tables I and II. And the
values of bm� and amð�Þ in scenario 2 are worked out in
[12], which is listed in Table III. However, in the calcu-

TABLE II. Decay constants �fS (in units of MeV) and
Gegenbauer moments at scale � ¼ 1 GeV in scenario 2.

�fS B1 B3

a0ð1450Þ 460� 50 �0:58� 0:12 �0:49� 0:15
f0ð1500Þ 490� 50 �0:48� 0:11 �0:37� 0:20
K�

0ð1430Þ 445� 50 �0:57� 0:13 �0:42� 0:22

TABLE I. Decay constants �fS (in units of MeV) and
Gegenbauer moments at scale � ¼ 1 GeV in scenario 1.

�fS B1 B3

a0ð980Þ 365� 20 �0:93� 0:10 0:14� 0:08
a0ð1450Þ �280� 30 0:89� 0:20 �1:38� 0:18
f0ð980Þ 370� 20 �0:78� 0:08 0:02� 0:07
f0ð1500Þ �255� 30 0:80� 0:40 �1:32� 0:14
	ð800Þ 340� 20 �0:92� 0:11 0:15� 0:09
K�

0ð1430Þ �300� 30 0:58� 0:07 �1:20� 0:08
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lation in scenario 1, the asymptotic form of twist-3 LCDAs
is used.

III. B ! S FORM FACTORS AND SEMILEPTONIC
DECAYS IN THE PQCD APPROACH

A. A brief review of pQCD approach

The basic idea of pQCD approach is including the
intrinsic transverse momenta of valence quarks in the
calculation of the hadronic matrix elements. The transition
matrix element (see Fig. 1) of B meson to a scalar meson
(q1 �q2 component is supposed) can be expressed as the
convolution of the wave functions �B, �S and the hard
scattering kernel TH, integrated over the longitudinal and
transverse momenta of the valence quarks:

M /
Z 1

0
dx1dx2

Z 1

�1
d2 ~k1?
ð2�Þ2

d2 ~k2?
ð2�Þ2 �Bðx1; ~k1?; pB; tÞ

� THðx1; x2; ~k1?; ~k2?; tÞ�Sðx2; ~k2?; p1; tÞ: (17)

It is convenient to calculate the transition amplitude in
coordinate space. Through the Fourier transformation,
the above equation becomes

M /
Z 1

0
dx1dx2

Z 1

�1
d2 ~b1d

2 ~b2�Bðx1; ~b1; pB; tÞ

� THðx1; x2; ~b1; ~b2; tÞ�Sðx2; ~b2; p1; tÞ: (18)

In principle, loop corrections to scattering kernel TH can be
taken into consideration, which usually bring two types of
infrared divergences in individual diagrams: soft and col-
linear. Soft divergence is generated when all the compo-
nents of a loop momentum l go to zero:

l� ¼ ðlþ; l�; ~lTÞ ¼ ð�;�; ~�Þ; (19)

with l� expressed in the light-cone coordinate. The col-
linear divergence arises from the region where the gluon
momentum is parallel to the massless quark momentum:

l� ¼ ðlþ; l�; ~lTÞ ¼ ðmB;�
2=mB; ~�Þ: (20)

In both cases, the loop integration corresponds toR
d4l=l4 � log�, thus logarithmic divergences are gener-

ated. In perturbation theory, it has been shown order by
order that these divergences can be separated from the hard
kernel and absorbed into meson wave functions using
eikonal approximation [13]. When the soft and collinear
momenta overlap, one also encounters double logarithm

divergences, which can be resummed into the Sudakov
factor and its expression is given in the Appendix.
The loop corrections to the weak decay vertex will

generate another type of double logarithm. For example,
the amplitude of the left diagram of Fig. 1 is proportional to
1=ðx22x1Þ. When x2 ! 0, additional collinear divergences
are associated with the internal quark. The integration of
the amplitude will produce double logarithm �sln

2x2, and
the resummation of this type of double logarithm gives rise
to Sudakov factor Stðx2Þ [14], which is usually called jet
function. The similar jet function Stðx1Þ is generated after
the resummation of the same type of double logarithm of
the right diagram in Fig. 1. The jet function decreases
faster than any power of x as x ! 0, thus it kills the
endpoint singularity effectively. The jet function has been
parametrized in a form which is independent of the decay
channels, twists, and flavors [15].
With the Sudakov factors included, the factorization

formula of the form factor matrix element in pQCD ap-
proach is given by

M /
Z 1

0
dx1dx2

Z 1

�1
d2 ~b1d

2 ~b2�Bðx1; ~b1; pB; tÞ

� THðx1; x2; ~b1; ~b2; tÞ�Sðx2; ~b2; p1; tÞ
� StðxiÞ exp½�SBðtÞ � S2ðtÞ�: (21)

B. Form factors in the pQCD approach

The form factors for BðsÞ ! S transition are defined by

	ShSðPSÞj �q���5bj �BðsÞðPBðsÞ Þi

¼ �i

��
ðPBðsÞ þ PSÞ� �m2

BðsÞ �m2
S

q2
q�

�
F1ðq2Þ

þm2
BðsÞ �m2

S

q2
q�F0ðq2Þ

�
; (22)

	ShSðPSÞj �q���bj �BðsÞðPBðsÞ Þi ¼ �i�����p
�
1 q

� 2FTðq2Þ
mBðsÞ þmS

;

(23)

	ShSðPSÞj �q����5bj �BðsÞðPBðsÞ Þi

¼ ½q�PS� � PS�q�� 2FTðq2Þ
mBðsÞ þmS

; (24)

with q ¼ PBðsÞ � PS. 	S is the flavor factor for the transi-

TABLE III. Gegenbauer moments for the twist-3 LCDAs of scalar mesons at the scale � ¼ 1 GeV in scenario 2 [12].

State a1ð�10�2Þ a2 a4 b1ð�10�2Þ b2 b4

a0ð1450Þ 0 �0:33��0:18 �0:11� 0:39 0 0� 0:058 0:070� 0:20
K�

0ð1430Þ 1:8� 4:2 �0:33��0:025 � � � 3:7� 5:5 0� 0:15 � � �
f0ð1500Þ 0 �0:33� 0:18 0:28� 0:79 0 �0:15��0:088 0:044� 0:16
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tion:
ffiffiffi
2

p
for the component of �uu in the �uu� �ddffiffi

2
p state, � ffiffiffi

2
p

for the component of �dd in the �uu� �ddffiffi
2

p state, 1 for the other

states. In the large-recoil region, a hard gluon is required to
kick the soft spectator antiquark to a fast-moving anti-
quark. Therefore, in this kinematics region, the form fac-

tors can be calculated perturbatively. The lowest order
diagrams for the BðsÞ ! S transition are shown in Fig. 1.

Carrying out the calculation under pQCD approach, we
obtain the analytic formulas of the form factors nearby the
q2 ¼ 0:

F0ð�Þ ¼ 8�CFm
2
B

Z 1

0
dx1dx2

Z 1

0
b1db1b2db2�Bðx1; b1Þf½�ðx2�� �� 1Þ�Sðx2Þ � r2�ð2x2 � 1Þ�T

S ðx2Þ
þ r2ð2x2�� 3�þ 2Þ�s

Sðx2Þ�heðx1; ð1� x2Þ�; b1; b2Þ�sðt1eÞ exp½�Sabðt1eÞ�Stðx2Þ
þ 2r2��

s
Sðx2Þheð1� x2; x1�; b2; b1Þ�sðt2eÞ exp½�Sabðt2eÞ�Stðx1Þg; (25)

F1ð�Þ ¼ 8�CFm
2
B

Z 1

0
dx1dx2

Z 1

0
b1db1b2db2�Bðx1; b1Þf½ðx2�� �� 1Þ�Sðx2Þ þ r2ð�2x2 þ 3� 2=�Þ�T

S ðx2Þ
� r2ð1� 2x2Þ�s

Sðx2Þ�heðx1; ð1� x2Þ�; b1; b2Þ�sðt1eÞ exp½�Sabðt1eÞ�Stðx2Þ
þ 2r2�

s
Sðx2Þheð1� x2; x1�; b2; b1Þ�sðt2eÞ exp½�Sabðt2eÞ�Stðx1Þg; (26)

FTð�Þ ¼ 8�CFm
2
Bð1þ r2Þ

Z 1

0
dx1dx2

Z 1

0
b1db1b2db2�Bðx1; b1Þf½r2ðx2 � 1Þ�s

Sðx2Þ ��Sðx2Þ
þ r2ðx2 � 1� 2=�Þ�T

S ðx2Þ�heðx1; ð1� x2Þ�; b1; b2Þ�sðt1eÞ exp½�Sabðt1eÞ�Stðx2Þ
þ 2r2�

s
Sðx2Þheð1� x2; x1�; b2; b1Þ�sðt2eÞ exp½�Sabðt2eÞ�Stðx1Þg: (27)

With these formulas we calculate the form factors nearby
q2 ¼ 0. Through fitting the results among the region 0<
q2 < 10 GeV2, we extrapolate them with the pole model
parametrization

Fiðq2Þ ¼ Fið0Þ
1� aðq2=m2

BÞ þ bðq2=m2
BÞ2

; (28)

where a, b are the constants to be determined from the
fitting procedure.

C. Semileptonic BðsÞ meson decays

The effective Hamiltonian for b ! ul ��l transition is

H effðb ! ul ��lÞ ¼ GFffiffiffi
2

p Vub �u��ð1� �5Þb�l��ð1� �5Þ�l:

(29)

With the Hamiltonian, the q2 dependant decay width d�
dq2

can be expressed as

d�

dq2
¼ G2

FjVubj2
192�3m3

B

q2 �m2
l

ðq2Þ2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq2 �m2

l Þ2
q2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

B �m2
S � q2Þ2

4q2
�m2

S

s

� ½ðm2
l þ 2q2Þðq2 � ðmB �mSÞ2Þ

� ðq2 � ðmB þmSÞ2ÞF2
1ðq2Þ

þ 3m2
l ðm2

B �m2
SÞ2F2

0ðq2Þ�; (30)

with ml as the mass of the lepton.
The calculation of b ! slþl� transition is a bit compli-

cated, because both the short-distance and long-distance
contribution should be taken into consideration. The weak
effective Hamiltonian is

H eff ¼ �GFffiffiffi
2

p VtbV
�
ts

X10
i¼1

Cið�ÞOið�Þ; (31)

with the doubly Cabibbo-Kobayashi-Maskawa suppressed
terms omitted. Cið�Þ are the Wilson coefficients and the
local operators Oið�Þ are given by [16]
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O1 ¼ ð �s�c�ÞV�Að �c�b�ÞV�A;

O2 ¼ ð �s�c�ÞV�Að �c�b�ÞV�A;

O3 ¼ ð �s�b�ÞV�A

X
q

ð �q�q�ÞV�A;

O4 ¼ ð �s�b�ÞV�A

X
q

ð �q�q�ÞV�A;

O5 ¼ ð �s�b�ÞV�A

X
q

ð �q�q�ÞVþA;

O6 ¼ ð �s�b�ÞV�A

X
q

ð �q�q�ÞVþA;

O7 ¼ emb

8�2
�s���ð1þ �5ÞbF��;

O9 ¼ �em

8�
ð�l��lÞð�s��ð1� �5ÞbÞ;

O10 ¼ �em

8�
ð�l���5lÞð�s��ð1� �5ÞbÞ;

(32)

where ð �q1q2ÞV�Að �q3q4ÞV�A � ð �q1��ð1� �5Þq2Þ�
ð �q3��ð1� �Þq4Þ, and ð �q1q2ÞV�Að �q3q4ÞVþA � ð �q1��ð1�
�5Þq2Þð �q3��ð1þ �Þq4Þ. In Eq. (32), the term suppressed

by ms in O7 is neglected.
The amplitude for b ! slþl� transition can be decom-

posed as

Aðb! slþl�Þ¼ GF

2
ffiffiffi
2

p �em

�
V�
tsVtb

�
Ceff
9 ð�Þ½�s��ð1��5Þb�

�½�l��l�þC10½�s��ð1��5Þb�½�l���5l�
�2mbC

eff
7 ð�Þ

�
�si���

q�

q2
ð1þ�5Þb½�l��l�

�
;

(33)

where ŝ ¼ q2=m2
B and m̂b ¼ mb=mB, with mb as the b

quark mass in the MS scheme. The long-distance and
short-distance contributions are absorbed into the Ceff

7 ð�Þ
and Ceff

9 ð�Þ, with

Ceff
7 ð�Þ ¼ C7ð�Þ þ C0

b!s�ð�Þ;
Ceff
9 ð�Þ ¼ C9ð�Þ þ YpertðŝÞ þ YLDðŝÞ:

(34)

Ypert represents the perturbative contributions, and YLD is

the long-distance part. The Ypert is given by [17]

YpertðŝÞ ¼ hðm̂c; ŝÞC0 � 1
2hð1; ŝÞð4C3 þ 4C4 þ 3C5 þ C6Þ

� 1
2hð0; ŝÞðC3 þ 3C4Þ

þ 2
9ð3C3 þ C4 þ 3C5 þ C6Þ; (35)

with C0 ¼ C1 þ 3C2 þ 3C3 þ C4 þ 3C5 þ C6. The
Wilson coefficients, listed in Table IV, are given in the
leading logarithmic accuracy. The long-distance part YLD,
involving the contributions of BðsÞ ! SVðc �cÞ resonances
where Vðc �cÞ are the charmonium states, is neglected in this
paper because of the lack of the experimental data. The
corrections of the nonfactorizable effects of the charm
quark loop to the b ! s� transition at q2 ¼ 0 are also
neglected. And the absorptive part of b ! s�with neglect-
ing the small contribution from VtbV

�
ts is represented by the

C0
b!s� part in Ceff

7 , which is given by [for a complete

expression of Ceff
7 ð�Þ, see [19] ]

C0
b!s�ð�Þ ¼ i�s½29�14=23ðGIðxtÞ � 0:1687Þ � 0:03C2ð�Þ�;

(36)

with GIðxtÞ ¼ xtðx2t�5xt�2Þ
8ðxt�1Þ3 þ 3x2t ln

2xt
4ðxt�1Þ4 , � ¼ �sðmWÞ=�sð�Þ

and xt ¼ m2
t =m

2
W .

The q2 dependant width of B ! Slþl� is given by

d�

dq2
¼ G2

F�
2
emjVtbj2jV�

tsj2
ffiffiffiffi


p
1024m3

B�
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � 4m2

l

q2

s �
4

3


��������C
eff
9

2
F1ðq2Þ þ C10

2
F1ðq2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � 4m2

l

q2

s
þ Ceff

7

mbFTðq2Þ
mB þmS

��������
2

þ 4

3


��������Ceff
9

2
F1ðq2Þ � C10

2
F1ðq2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � 4m2

l

q2

s
þ Ceff

7

mbFTðq2Þ
mB þmS

��������
2þ 4

3q2

��������Ceff
9 mlF1ðq2Þ þ Ceff

7

2m2
l mbFTðq2Þ
mB þmS

��������
2

þ 4jmlC10ðm2
B �m2

SÞF0ðq2Þj2
�
; (37)

with  ¼ ðm2
B � q2 �m2

SÞ2 � 4m2
Sq

2.

IV. NUMERICAL RESULTS AND DISCUSSION

A. Form factors

Our results of the B ! S form factors are listed in
Table V and VI. The errors for the form factors in those

two tables arise from the uncertainties of hadronic parame-
ters of BðsÞ meson (fB and !b), �QCD (0.20 GeV–

0.30 GeV), factorization scales [see Eqs. (A1)], and the
Gegenbauer moments of scalar mesons. A number of re-
marks will be given in order.
(i) Compared with transitions of B meson to pseudo-

scalar mesons, vector mesons, and axial-vector me-

TABLE IV. The values of Wilson coefficients CiðmbÞ in the
leading logarithmic approximation in the standard model, with
mW ¼ 80:4 GeV, mt ¼ 173:8 GeV, mb ¼ 4:8 GeV [18].

C1 C2 C3 C4 C5 C6 C7 C9 C10

1.119 �0:270 0.013 �0:027 0.009 �0:033 �0:322 4.344 �4:669
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sons [8,20], our predictions on B ! S form factors in
scenario 2 are obviously larger, which is caused
mainly by the large decay constants ( �fS) of the scalar
mesons. For example, the form factor F0ð0Þ of the B
meson to pion transition is about 0.23 [9] with
0.131 GeV as the decay constant of pion, while the
B meson to a0ð980Þ transition in scenario 1 has 0.39
as its corresponding form factor, whose decay con-
stant is more than 2 times larger than pion.

(ii) In Table V, the form factors of B ! � are smaller
than those of B ! a0ð980Þ. Because the same decay
constant and Gegenbauer moments for these two
particles are used in the calculation, the differences
are caused by the mass differences between a0ð980Þ
and � (0.98 GeV for a0ð980Þ and 0.513 GeV for �
[1]). In scenario 1, there are small differences be-
tween 	ð800Þ and f0ð600Þ in masses [0.672 GeV for
	ð800Þ], decay constants, and Gegenbauer moments.
Besides, the contribution from twist-2 LCDA of
	ð800Þ, which is proportional to fS, is too small to
give sizable differences. Thus the B ! � and B !
	ð800Þ have nearly the same form factors as shown
in Table V. Comparing the form factors of B !
	ð800Þ with �B0

s ! 	ð800Þ in Table V, one can find
that the differences between B and �B0

s mesons affect
little. Therefore, the large differences between the
form factors of �B0

s ! 	ð800Þ and those of B !
a0ð980Þ are mainly due to the large difference be-
tween the scalar meson masses.

(iii) The form factors of B to heavier nonet transition in
scenario 1 are negative, while the others are positive.
The reason is that the decay constants ( �fS) of the
heavier nonet in scenario 1 have opposite signs to the
others, which is clearly shown in Tables I and II.

(iv) As we can see from Tables Vand VI, the predictions
in scenario 2 are larger than the corresponding ones
in scenario 1 roughly by a factor of 2 in magnitude.
In order to show how these large differences are
generated, we take the form factor F0ð0Þ as an ex-
ample and list contributions from different terms in
LCDAs in Table VII. (Data is given with asymptotic
forms of twist-3 LCDAs are adopted in both scenario
1 and scenario 2, because the terms with Gegenbauer
moments bring so small effects, which is discussed
in the following, that they cannot change the argu-
ment.) The contributions from the two twist-3
LCDAs �s

S and �T
S are given in the first two col-

umns. The numbers in the column ‘‘B1’’ denotes the
contributions from the Gegenbauer moments B1 in
twist-2 LCDAs. It is also similar for the fourth B3

column. The last column collects the total contribu-
tions to the form factors. The different inputs be-
tween scenario 1 and in scenario 2 are the decay
constants and Gegenbauer moments. If only twist-3
LCDAs are taken into account, the form factors will
be proportional to the decay constant. Since the
decay constants �fS in S2 are (typically 60%) larger
than those in S1 in magnitude, the form factors are

TABLE V. Form factors for B ! S in scenario 1. The errors arise from the uncertainties of hadronic parameters of BðsÞ meson (fb
and !b), �QCD, scales (t

i
eÞ, and the Gegenbauer moments of scalar mesons.

F0ð0Þ ¼ F1ð0Þ FTð0Þ aðF0Þ bðF0Þ aðF1Þ bðF1Þ aðFTÞ bðFTÞ
B ! � 0:28þ0:07

�0:06 0:29þ0:07
�0:06 0:65þ0:01

�0:07 �0:11þ0:00
�0:13 1:61þ0:04

�0:06 0:56þ0:04
�0:10 1:67þ0:05

�0:05 0:62þ0:06
�0:06

B ! a0ð980Þ 0:39þ0:10
�0:08 0:45þ0:11

�0:10 0:72þ0:08
�0:03 �0:16þ0:12

�0:00 1:68þ0:03
�0:06 0:62þ0:01

�0:10 1:70þ0:06
�0:03 0:63þ0:11

�0:01

B ! 	ð800Þ 0:27þ0:07
�0:06 0:29þ0:07

�0:07 0:71þ0:04
�0:08 �0:12þ0:02

�0:12 1:65þ0:06
�0:04 0:59þ0:08

�0:04 1:69þ0:06
�0:05 0:65þ0:08

�0:06

B ! f0ð1370Þ �0:30þ0:08
�0:09 �0:39þ0:10

�0:11 0:70þ0:07
�0:02 �0:24þ0:15

�0:05 1:63þ0:09
�0:05 0:53þ0:14

�0:08 1:60þ0:06
�0:04 0:50þ0:08

�0:05

B ! a0ð1450Þ �0:31þ0:08
�0:09 �0:41þ0:10

�0:12 0:70þ0:13
�0:02 �0:26þ0:24

�0:00 1:63þ0:08
�0:04 0:53þ0:13

�0:06 1:62þ0:04
�0:07 0:54þ0:03

�0:13

B ! K�
0ð1430Þ �0:34þ0:07

�0:09 �0:44þ0:10
�0:11 0:72þ0:04

�0:04 �0:18þ0:04
�0:05 1:65þ0:04

�0:07 0:57þ0:08
�0:14 1:61þ0:04

�0:05 0:52þ0:05
�0:06

�B0
s ! f0ð980Þ 0:35þ0:09

�0:07 0:40þ0:10
�0:08 0:73þ0:04

�0:06 �0:13þ0:02
�0:09 1:66þ0:06

�0:05 0:60þ0:07
�0:05 1:70þ0:06

�0:04 0:66þ0:06
�0:05

�B0
s ! 	ð800Þ 0:29þ0:07

�0:06 0:31þ0:07
�0:06 0:66þ0:07

�0:03 �0:17þ0:11
�0:00 1:62þ0:03

�0:05 0:56þ0:00
�0:09 1:68þ0:05

�0:03 0:62þ0:10
�0:01

�B0
s ! f0ð1500Þ �0:26þ0:09

�0:08 �0:34þ0:10
�0:10 0:72þ0:14

�0:08 �0:20þ0:10
�0:10 1:61þ0:13

�0:03 0:48þ0:27
�0:02 1:60þ0:06

�0:04 0:48þ0:09
�0:04

�B0
s ! K�

0ð1430Þ �0:32þ0:06
�0:07 �0:41þ0:08

�0:09 0:69þ0:05
�0:03 �0:21þ0:11

�0:03 1:62þ0:06
�0:03 0:52þ0:14

�0:04 1:62þ0:01
�0:06 0:56þ0:00

�0:16

TABLE VI. Form factors for B ! S in scenario 2, with the same error sources as the data in Table V.

F0ð0Þ ¼ F1ð0Þ FTð0Þ aðF0Þ bðF0Þ aðF1Þ bðF1Þ aðFTÞ bðFTÞ
B ! f0ð1370Þ 0:63þ0:23

�0:14 0:76þ0:37
�0:17 0:70þ0:05

�0:11 �0:14þ0:02
�0:09 1:60þ0:15

�0:05 0:53þ0:18
�0:09 1:63þ0:07

�0:05 0:57þ0:07
�0:07

B ! a0ð1450Þ 0:68þ0:19
�0:15 0:92þ0:30

�0:21 0:62þ0:05
�0:08 �0:21þ0:06

�0:02 1:73þ0:12
�0:07 0:70þ0:16

�0:11 1:68þ0:06
�0:04 0:61þ0:10

�0:02

B ! K�
0ð1430Þ 0:60þ0:18

�0:15 0:78þ0:25
�0:19 0:68þ0:07

�0:05 �0:18þ0:06
�0:01 1:70þ0:09

�0:07 0:65þ0:10
�0:10 1:68þ0:07

�0:04 0:61þ0:11
�0:02

�B0
s ! f0ð1500Þ 0:60þ0:20

�0:12 0:82þ0:30
�0:16 0:65þ0:04

�0:10 �0:22þ0:07
�0:02 1:76þ0:13

�0:08 0:71þ0:20
�0:08 1:71þ0:04

�0:07 0:66þ0:06
�0:10

�B0
s ! K�

0ð1430Þ 0:56þ0:16
�0:13 0:72þ0:22

�0:17 0:67þ0:06
�0:07 �0:17þ0:01

�0:07 1:69þ0:08
�0:07 0:63þ0:09

�0:10 1:68þ0:06
�0:06 0:63þ0:07

�0:08

B ! S TRANSITION FORM FACTORS IN THE . . . PHYSICAL REVIEW D 79, 014013 (2009)

014013-7



accordingly larger. The �s
S term give much larger

contributions than the �T
S term. Contributions from

the Gegenbauer moments of the twist-2 LCDAs
sizably enhance the form factors in S2 but not too
much in S1. For B to scalar meson transitions in
scenario 1, the B1 terms provide contributions with
the same sign with the twist-3 terms, while the terms
with B3 have the opposite sign. Thus, the two terms
of the twist-2 LCDAs give destructive contributions
to the total form factors in S1. The situation is differ-
ent in S2; although the two Gegenbauer moments are
small in magnitude, they give constructive contribu-
tions and induce much larger form factors.

(v) We also investigate the contributions from terms
with Gegenbauer moments in twist-3 LCDAs, and
find that the effects brought by these moments are
not large. Taking B ! f0ð1370Þ transition as an
example, a comparison between the cases with and
without these contributions is given in Table VIII.
We can see that most of the results are changed by
less than 10%.

(vi) Compared with our previous study on B ! f0,
K�

0ð1430Þ transitions [21,22], the predictions for

the form factors given in the present work are a bit
smaller. The main reason is that different values for
the threshold resummation parameters c have been
used. Moreover, the form factors in this paper are

larger than those obtained in other approaches or
models [23–26]. As a result, the branching ratios
of the semileptonic decays are larger, which is dis-
cussed in the following.

As we have mentioned in the Introduction section, the
experimentalists have already provided many investiga-
tions on nonleptonic B decays involving a scalar meson
in the final state. Among these decays, the so-called color-
allowed tree-dominated processes can be directly utilized
to estimate the B ! S form factors, under the hypothesis of
factorization. For example, the �B0 ! aþ0 �

� decay ampli-

tude in the factorization scheme is expressed as

Að �B0 ! aþ0 �
�Þ ¼ GFffiffiffi

2
p m2

Bf�F
B!a0
0 fVubV

�
ud½a1 þ a4

þ a10 � r�ða6 þ a8Þ�
þ VcbV

�
cd½a4 þ a10 � r�ða6 þ a8Þ�g;

(38)

where ai is the combination of Wilson coefficient

a1 ¼ C2 þ C1=3; a2 ¼ C1 þ C2=3;

ai ¼ Ci þ Ciþ1=Nc ði ¼ 3; 5; 7; 9Þ;
ai ¼ Ci þ Ci�1=Nc ði ¼ 4; 6; 8; 10Þ:

(39)

a1 � 1, and it has small uncertainties. Although there are
large uncertainties for a3–a10, the combination of Wilson
coefficients satisfies:

a1 	 max½a3–10�: (40)

If only the branching ratios are concerned, contributions
from the penguin operators (a3–10 terms) can be safely
neglected and thus

A ð �B0 ! aþ0 �
�Þ ¼ GFffiffiffi

2
p m2

Bf�F
B!a0
0 VubV

�
uda1: (41)

If the partial decay widths are well determined experimen-
tally, these results will directly constrain the B to scalar
meson transition form factors. The upper bounds for B !
a0� are given as (in units of 10�6)

BRðB ! a�0 ð980Þ�
Þ< 3:1;

BRðB ! a�0 ð1450Þ�
Þ< 2:3;
(42)

where the daughter branching fraction has taken to be
100%. Since the scalar mesons a0ð980Þ and a0ð1450Þ
have vanishing decay constants in the isospin limit, the

TABLE VIII. Form factors for B ! f0ð1370Þ. The first line and the second line are the results with and without contributions from
the terms with Gegenbauer moments in twist-3 LCDAs, respectively.

F0ð0Þ ¼ F1ð0Þ FTð0Þ aðF0Þ bðF0Þ aðF1Þ bðF1Þ aðFTÞ bðFTÞ
0:63þ0:23

�0:14 0:76þ0:37
�0:17 0:70þ0:05

�0:11 �0:14þ0:02
�0:09 1:60þ0:15

�0:05 0:53þ0:18
�0:09 1:63þ0:07

�0:05 0:57þ0:07
�0:07

0:67þ0:17
�0:14 0:83þ0:21

�0:18 0:71þ0:02
�0:07 �0:12þ0:00

�0:11 1:64þ0:04
�0:05 0:57þ0:04

�0:07 1:65þ0:05
�0:04 0:59þ0:07

�0:03

TABLE VII. Contributions from different LCDAs to the B !
S form factor F0 in scenario 1 (S1) or scenario 2 (S2). The
contributions from the two twist-3 LCDAs �s

S and �T
S are given

in the first two columns. The numbers in the column ‘‘B1’’
denote the contributions from the Gegenbauer moments B1 in
twist-2 LCDAs. It is also similar for the fourth column. The last
column collects the total contributions to the form factors (data
is given with asymptotic forms of twist-3 LCDAs adopted in
both scenario 1 and scenario 2).

�s
S �T

S B1 B3 Total

B ! a0ð1450Þ S1: �0:21 �0:05 0.14 �0:19 �0:31
S2: 0.35 0.08 0.15 0.11 0.69

B ! K�
0ð1430Þ S1: �0:22 �0:05 0.10 �0:18 �0:34

S2: 0.33 0.07 0.14 0.09 0.62

�B0
s ! f0ð1500Þ S1: �0:17 �0:04 0.11 �0:16 �0:26

S2: 0.32 0.08 0.13 0.09 0.61

�B0
s ! K�

0ð1430Þ S1: �0:19 �0:05 0.09 �0:17 �0:32
S2: 0.27 0.07 0.14 0.09 0.58
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branching ratios of �B0 ! a�0 �
þ are very small and one

expects the relation: BRðB ! a�0 �

Þ ¼ BRð �B0 !

aþ0 �
�Þ. Compared with the branching ratio of �B0 !

�þ�� (in units of 10�6),

BRðB ! �þ��Þ ¼ 5:16� 0:22; (43)

results provide the upper bound for the B ! a0 form

factors:

F0ðB ! a0ð980ÞÞ< 0:78F0ðB ! �Þ ¼ 0:18;

F0ðB ! a0ð1450ÞÞ< 0:67F0ðB ! �Þ ¼ 0:15;
(44)

where as a rough estimation, we have taken F0ðB ! �Þ ¼
0:23 [9]. Compared with our results in Tables Vand VI, one

FIG. 2. Partial decay widths of the semileptonic B ! Sl �� decays as functions of q2. Diagrams a–d denote the B� !
ð�; aþ0 ð980Þ; f0ð1370Þ; aþ0 ð1450ÞÞl� ��l in scenario 1, respectively; diagrams e–f denote the B� ! ðf0ð1370Þ; aþ0 ð1450ÞÞl� ��l in

scenario 2, respectively; diagram g: �Bs ! 	þð800Þl� ��l in scenario 1; diagram h: �Bs ! K�þ
0 ð1430Þl� ��l in scenario 1; diagram

i: �Bs ! K�þ
0 ð1430Þl� ��l in scenario 2.
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can see our results have exceeded the present experimental
upper bound. Despite that, it does not mean our predictions
are ruled out by the data, as the daughter decay is not taken
into account in the derivation for the experimental bound.
Our predictions will be confronted with the real bound in
the future, whenever the daughter decay of a0 is well
studied.

B. Decay widths and branching fractions

With the form factors at hand, one can directly obtain the
partial decay width through Eqs. (30) and (37). Since
masses of electrons and muons are very small compared
with q2 in the most kinematic region of the semileptonic
decays, they will not produce large effects and are ne-

FIG. 3. Partial decay widths of the semileptonic B ! S� �� decays as functions of q2. Diagram a: B� ! ��� ��l in scenario 1; diagram
b: �B0 ! aþ0 ð980Þ�� ��l in scenario 1; diagram c: B� ! f0ð1370Þ�� ��l in scenario 1; diagram d: �B0 ! aþ0 ð1450Þ�� ��l in scenario 1;

diagram e: B� ! f0ð1370Þ�� ��l in scenario 2; diagram f: �B0 ! aþ0 ð1450Þ�� ��l in scenario 2; diagram g: �Bs ! 	þð800Þ�� ��l in

scenario 1; diagram h: �Bs ! K�þ
0 ð1430Þ�� ��l in scenario 1; diagram i: �Bs ! K�þ

0 ð1430Þ�� ��l in scenario 2.
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FIG. 4. Partial decay widths of
the semileptonic B ! Slþl�ðl ¼
e; �Þ decays as functions of q2.
Diagram a: B� ! 	�lþl� in
scenario 1; diagram b: B� !
K��

0 ð1430Þlþl� in scenario 1;

diagram c: B�!K��
0 ð1430Þ�

lþl� in scenario 2; diagram
d: �B0

s ! f0ð980Þlþl� in scenario
1; diagram e: �B0

s !f0ð1500Þlþl�
in scenario 1; diagram f: �B0

s !
f0ð1500Þlþl� in scenario 2.

FIG. 5. Partial decay widths of
the semileptonic B ! S�þ��
decays as functions of q2.
Diagram a: B� ! 	��þ�� in
scenario 1; diagram b: B� !
K��

0 ð1430Þ�þ�� in scenario 1;

diagram c: B� ! K��
0 ð1430Þ�

�þ�� in scenario 2; diagram
d: �B0

s !f0ð980Þ�þ�� in scenario
1; diagram e: �B0

s !f0ð1500Þ�
�þ�� in scenario 1; diagram
f: �B0

s ! f0ð1500Þ�þ�� in sce-
nario 2.
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glected in this work. In Figs. 2 and 3, we give our pre-
dictions on the partial decay width of BðsÞ ! Sl� ��l (l ¼ e,
�) and BðsÞ ! S�� ��l, respectively. The diagrams in Figs. 4

and 5 are similar but for the BðsÞ ! Slþl� (l ¼ e, �) and

BðsÞ ! S�þ�� decays. In Fig. 4, there exists a small dis-

continuity in each diagram, which is caused by the dis-
continuities in functions hðm̂c; ŝÞ and hð1; ŝÞ in Eq. (35).
When l ¼ � in Fig. 5, the discontinuities in the diagrams
disappear, because the origins of q2 axes become 4m2

�

which is large enough to ensure that the variation of q2

does not pass the discontinuities in the hðm̂c; ŝÞ and hð1; ŝÞ
functions.
The results for the total branching ratios are collected in

Tables IX, X, XI, and XII, with the errors estimated with
the errors of the form factors. One can find that the branch-
ing ratios with � lepton(s) in the final state are smaller than
the ones without � lepton(s), because the large mass of �
lepton(s) makes the phase space much smaller. In Table IX,
BrðBðsÞ!Se ��eÞ
BrðBðsÞ!S� ���Þ is smaller than 2 when the scalar meson be-

longs to the light nonet. While for the heavy nonet mesons,
the value of this ratio is larger than 2. The reason is that
more energy is released when the final state is a light
meson, and thus the effect of m� on the phase space is
not so evident. In Tables X and XII, we also list the
predictions in light-cone sum rules (LCSR) and QCD
sum rules (QCDSR), which are smaller than our predic-
tions. The reason is that we have bigger form factors.
Taking �B0 ! aþ0 ð1450Þe� ��e as an example, the form fac-

tors that contribute are F0ðq2Þ and F1ðq2Þ, with the rela-
tionship F0ð0Þ ¼ F1ð0Þ. F0ð0Þ for �B0 ! aþ0 ð1450Þ in

scenario 2 in this paper is 0:68þ0:19
�0:15, while the correspond-

ing value in [23] is 0:52� 0:10. As a rough estimation,
supposing that corresponding form factors in these two
papers have analogical evolution with respect to q2, the
branching ratio in this paper should be ð0:69=0:52Þ2 � 1:7
times larger.

V. CONCLUSIONS

In this work, we have studied the B ! S form factors in
the pQCD approach under two different scenarios for the
scalar mesons. In scenario 1, both of the light and heavy
nonet are described as the �qq state while in scenario 2, we
have only studied the heavy nonet. Because of the large
decay constant �fS, we have found that most of our pre-
dictions are larger than those for the B ! P transition form
factors, especially in scenario 2. Contributions from vari-
ous LCDAs are explicitly specified. Because of the large

TABLE XII. Same as Table IX except in scenario 2.

B� ! K��
0 ð1430Þeþe�ð�þ��Þ B� ! K��

0 ð1430Þ�þ��
This work 9:78þ7:66

�4:40 6:29þ5:71
�2:95 � 10�2

LCSR [23] 5:7þ3:4
�2:4 9:8þ12:4

�5:5 � 10�2

Light front quark model [25] 1.63 2:86� 10�2

QCDSR [26] 2:09� 2:68 ð1:70� 2:20Þ � 10�2

�B0
s ! f00ð1500Þeþe�ð�þ��Þ �B0

s ! f00ð1500Þ�þ��
This work 10:0þ8:5

�3:8 0:13þ0:12
�0:06

LCSR [23] 5:3þ2:3
�1:8 0:12þ0:08

�0:05

TABLE XI. The total branching ratios for the b ! slþl� in
scenario 1 (unit:10�7) with the same error sources as Tables IX
and X.

B ! Seþe�ð�þ��Þ B ! S�þ��

B� ! 	� 4:38þ2:73
�1:84 0:56þ0:36

�0:25

B� ! K��
0 ð1430Þ 3:13þ1:73

�1:21 2:00þ1:16
�0:77 � 10�2

�B0
s ! f00ð980Þ 5:21þ3:23

�2:06 0:38þ0:25
�0:16

�B0
s ! f00ð1500Þ 1:74þ1:14�0:94 2:21þ1:32

�1:21 � 10�2

TABLE IX. The total branching ratios for the b ! ul ��l in
scenario 1 (unit: 10�4). The errors are estimated with errors
from the form factors.

B ! Se ��eð� ���Þ B ! S� ���

B� ! � 0:81þ0:52
�0:31 0:51þ0:33

�0:19
�B0 ! aþ0 ð980Þ 1:84þ1:09

�0:73 1:01þ0:61
�0:40

B� ! f0ð1370Þ 0:29þ0:19
�0:13 0:13þ0:09

�0:06
�B0 ! aþ0 ð1450Þ 0:67þ0:41

�0:29 0:28þ0:17
�0:12

�Bs ! 	þð800Þ 1:42þ0:82
�0:53 0:88þ0:52

�0:33
�Bs ! K�þ

0 ð1430Þ 0:77þ0:37
�0:27 0:35þ0:17

�0:12

TABLE X. Same as Table IX except in scenario 2.

B� ! f0ð1370Þe ��eð� ���Þ B� ! f0ð1370Þ� ���

This work 1:55þ1:53
�0:65 0:67þ0:68

�0:29

�B0 ! aþ0 ð1450Þe ��eð� ���Þ �B0 ! aþ0 ð1450Þ� ���

This work 3:25þ2:36
�1:36 1:32þ0:97

�0:57

LCSR [23] 1:8þ0:9
�0:7 0:63þ0:34

�0:25

�Bs ! K�þ
0 ð1430Þe ��eð� ���Þ �Bs ! K�þ

0 ð1430Þ� ���

This work 2:45þ1:77
�1:05 1:09þ0:82

�0:47

LCSR [23] 1:3þ1:3
�0:4 0:52þ0:57

�0:18

QCDSR [24] 0:36þ0:38
�0:24
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masses of a0ð1450Þ, K�
0ð1430Þ, f0ð1500Þ, their twist-3

LCDAs have provided more than one-half contributions
to the form factors in both scenarios. In scenario 1, the two
Gegenbauer moments B1, B3 for the twist-2 LCDAs have
different signs and they give destructive contributions to
the form factors; while in scenario 2, although the two
Gegenbauer moments are small in magnitudes, they give
constructive contributions and induce larger form factors.
Contributions from terms with Gegenbauer moments in the
twist-3 LCDAs are also investigated, and we find that these
terms do not give large changes. We also study the semi-
leptonic B ! Sl �� and B ! Slþl� decays, including the
partial decay width and the integrated branching fractions.
Branching ratios of the semileptonic B ! Sl �� decays are
found to have the order of 10�4, while branching fractions
of the B ! Slþl� decays have the order of 10�7.
Compared with results in the previous studies, our predic-
tions are a bit larger which is caused by larger form factors.
These predictions will be tested by the future experiments.
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APPENDIX: PQCD FUNCTIONS

In this part, we collect the functions which are essential
in the pQCD calculation:

t1e ¼ maxðtc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� x2Þ�

q
mB; 1=b1; 1=b2Þ;

t2e ¼ maxðtc ffiffiffiffiffiffiffiffi
x1�

p
mB; 1=b1; 1=b2Þ;

(A1)

with tc ¼ 1 for the calculation of the central values and
tc ¼ 0:75–1:25 for error estimation:

heðx1; x2; b1; b2Þ ¼ K0ð ffiffiffiffiffiffiffiffiffi
x1x2

p
mBb1Þ½
ðb1 � b2Þ

� K0ð ffiffiffiffiffi
x2

p
mBb1ÞI0ð ffiffiffiffiffi

x2
p

mBb2Þ
þ 
ðb2 � b1ÞK0ð ffiffiffiffiffi

x2
p

mBb2Þ
� I0ð ffiffiffiffiffi

x2
p

mBb1Þ�: (A2)

StðxÞ ¼ 21þ2c�ð3=2þ cÞffiffiffiffi
�

p
�ð1þ cÞ ½xð1� xÞ�c; (A3)

with c ¼ 0:4. The Sudakov factor in Eqs. (25)–(27) is
given by

SabðtÞ ¼ SBðtÞ þ SSðtÞ; (A4)

where

SBðtÞ ¼ s

�
x1

mBffiffiffi
2

p ; b1

�
þ 5

3

Z t

1=b1

d ��

��
�qð�sð ��ÞÞ; (A5)

SSðtÞ ¼ s

�
x2

mBffiffiffi
2

p ; b2

�
þ s

�
ð1� x2ÞmBffiffiffi

2
p ; b2

�

þ 2
Z t

1=b2

d ��

��
�qð�sð ��ÞÞ; (A6)

with the quark anomalous dimension �q ¼ ��s=�. The

explicit form for the function sðQ; bÞ is

sðQ; bÞ ¼ Að1Þ

2�1

q̂ ln

�
q̂

b̂

�
� Að1Þ

2�1

ðq̂� b̂Þ þ Að2Þ

4�2
1

�
q̂

b̂
� 1

�

�
�
Að2Þ

4�2
1

� Að1Þ

4�1

ln

�
e2�E�1

2

��
ln

�
q̂

b̂

�

þ Að1Þ�2

4�3
1

q̂

�
lnð2q̂Þ þ 1

q̂
� lnð2b̂Þ þ 1

b̂

�

þ Að1Þ�2

8�3
1

½ln2ð2q̂Þ � ln2ð2b̂Þ�; (A7)

where the variables are defined by

q̂ � ln½Q=ð ffiffiffi
2

p
�Þ�; b̂ � ln½1=ðb�Þ�; (A8)

and the coefficients AðiÞ and �i are

�1 ¼
33� 2nf

12
; �2 ¼

153� 19nf
24

;

Að1Þ ¼ 4

3
; Að2Þ ¼ 67

9
� �2

3
� 10

27
nf þ 8

3
�1 ln

�
1

2
e�E

�
;

(A9)

nf is the number of the quark flavors, and �E is the Euler

constant. We will use the one-loop running coupling con-
stant, i.e. we pick up only the four terms in the first line of
the expression for the function sðQ; bÞ.
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