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We compute in order «, the nonrelativistic QCD (NRQCD) short-distance coefficients that match
quark-antiquark operators of all orders in the heavy-quark velocity v to the electromagnetic current. We
employ a new method to compute the one-loop NRQCD contribution to the matching condition. The new
method uses full-QCD expressions as a starting point to obtain the NRQCD contribution, thus greatly
streamlining the calculation. Our results show that, under a mild constraint on the NRQCD operator
matrix elements, the NRQCD velocity expansion for the quark-antiquark-operator contributions to the
electromagnetic current converges. The velocity expansion converges rapidly for approximate J/i

operator matrix elements.
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I. INTRODUCTION

The electromagnetic decays of quarkonia through a
single virtual photon have played an important role in the
experimental and theoretical development of quarkonium
physics. On the experimental side, the decays of charge-
conjugation-odd quarkonium states to a lepton pair provide
unique signals for the detection of those states. On the
theoretical side, the decays of *S, quarkonium states to a
lepton pair allow one to determine one of the fundamental
parameters of the heavy-quark—antiquark (QQ) bound
state, namely, the square of the wave function at the origin.
(See, for example, Ref. [1].) The square of the wave
function at the origin enters into many calculations of
quarkonium decay and production rates.

The expression for the *S, quarkonium decay rate into a
lepton pair at leading order in the QCD coupling a; and at
leading order in v, the Q or Q velocity in the quarkonium
rest frame, has been known since the first discovery of
quarkonium and is based on the Van Royen-Weisskopf
formula [2] of quantum electrodynamics. The order-a;
corrections to this formula at leading order in v were
calculated in Refs. [3,4]. The order-a? relativistic correc-
tions at relative orders v> and v* were calculated in
Refs. [5,6], respectively. Order-a? corrections to the decay
rate were calculated in Refs. [7,8]. The correction to the
electromagnetic current of a quarkonium at relative order
a,v? was calculated in Ref. [9].

In this paper, we calculate relativistic corrections to the
quarkonium electromagnetic current at order «,. We carry
out our calculation in the context of nonrelativistic QCD
(NRQCD) [5]. We obtain closed-form expressions whose
Taylor-series expansions in v give the short-distance co-
efficients for the NRQCD QQ operators, of all orders in v,
that match to the electromagnetic current. We do not con-
sider QQ operators that contain gauge fields. Therefore,
our operators are not gauge invariant, and we evaluate their
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matrix elements in the Coulomb gauge. In the Coulomb
gauge, QQ operators involving gauge fields first contribute
at relative order v*. Our results confirm the calculation at
relative order a,v> in Ref. [9]. Since the corrections at
relative order a;;v* are not very significant at the current
level of precision of calculations of *S,; quarkonium elec-
tromagnetic decay rates, we do not expect the order-a;
corrections at still higher orders in v to be important
numerically.

We present our calculation primarily as a demonstration
of a new method for computing the one-loop NRQCD
contribution that enters into the matching of NRQCD to
full QCD. The direct computation of one-loop NRQCD
expressions to all orders in v would be a formidable task, in
that it would require knowledge of the NRQCD interac-
tions and electromagnetic-current operators, their Born-
level short-distance coefficients, and their Feynman rules
to all orders in v. Instead of following the direct NRQCD
approach, we note that NRQCD through infinite order in v
is equivalent to QCD, but with the interactions rearranged
in an expansion in powers of v. Therefore, we can obtain
the one-loop NRQCD contribution by starting from full-
QCD expressions and expanding integrands in powers of
momenta divided by the heavy-quark mass m before we
carry out the dimensional regularization. In dimensional
regularization, this method is related to the method of
regions [10]. We explain this relationship in Sec. II. The
method of regions has been used previously at leading
order in v to compute NRQCD short-distance coefficients
from full-QCD expressions. (See, for example, Ref. [8].)

Our results show that, under a mild constraint on the
NRQCD operator matrix elements, the NRQCD velocity
expansion for the quark-antiquark-operator contributions
to the electromagnetic current converges. The velocity
expansion converges rapidly for approximate J/ ¢ opera-
tor matrix elements.
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The remainder of this paper is organized as follows. In
Sec. II we discuss the one-loop matching of NRQCD to
QCD at all orders in v. We define the notation that we use
to describe the kinematics of the calculation in Sec. III.
Section IV contains detailed formulas for the NRQCD QQ
short-distance coefficients. In Sec. V we compute the one-
loop QCD corrections to the electromagnetic current,
while in Sec. VI we use our new method to compute the
one-loop NRQCD corrections to the electromagnetic cur-
rent. We give analytic and numerical results for the short-
distance coefficients in Sec. VII, present a formula that
resums a class of relativistic corrections to all orders in v,
and discuss the convergence of the velocity expansion. Our
conclusions are given in Sec. VIIL. The Appendices contain
compilations of integrals and identities that are useful in
the calculation.

II. MATCHING TO ALL ORDERS IN v

We define the hadronic part of the quarkonium electro-
magnetic decay amplitude A%, as

(—ieeg)i Ay = (0lJEy|H), (1)

where H is the quarkonium, e is the electromagnetic
charge, ey is the heavy-quark charge, and JEy is the
heavy-quark electromagnetic current:

Jin = (—ieeg)fy* . 2

Here, ¢ is the heavy-quark Dirac field, and y* is a Dirac
matrix.

In the quarkonium rest frame, iﬂl% = (0 because of
conservation of the electromagnetic current. According to
NRQCD factorization [5], we can write the spatial compo-
nents i A}, as

Ay =2my Y ¢, (010, |H), 3)

where the ¢, are short-distance coefficients, the O are
NRQCD operators, and my is the quarkonium mass. We
regulate the operator matrix elements in Eq. (3) dimen-
sionally in d = 4 — 2€ dimensions. The factor \/2my on
the right side of Eq. (3) appears because the NRQCD
operator matrix elements have nonrelativistic normaliza-
tion, while we choose the amplitude on the left side of Eq.
(3) to have relativistic normalization for the quarkonium
H.

The aim of this paper is to calculate the short-distance
coefficients c, that correspond to QQ color-singlet opera-
tors in order ). We can determine these c,, by making use
of a matching equation that is the statement of NRQCD
factorization for perturbative QQ color-singlet states:

AL = > .c,{010,100)), “)

where the subscript 1 indicates a color-singlet state.
Throughout this paper, we suppress the factor /N, that
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comes from the implicit color trace in i ﬂ’Q o, where N, =
1
3 is the number of colors. Through order a!, the matching

equation is

PAN i Al = 3+ eD)0105100,)0

+ 3 c(010:100,), (5)

where the superscripts (0) and (1) indicate the order in «;.
In the first sum in Eq. (5), only color-singlet QQ operators
contribute, while in the last sum, additional operators can
contribute if they mix into color-singlet QQ operators
under one-loop corrections.

We define the quantity

[iﬂggl]NRQCD = ZCE’[O)<0|@£1|QQ_1>(O)’ (6)

which is the expansion of iﬂlggl in powers of g/m, where

g is half the relative momentum of the heavy quark and
heavy antiquark. At order o, the matching equation (5)
yields

iAg =3 cl(0104100), (7)

from which the cﬁ,o) can be determined. The cﬁ,o) have been
computed previously in Ref. [1].
At order a!, the matching equation (5) yields

Ay = gcﬁll)<o|(9;|QQ1><0> + [ AL Trocp: (®)

from which the ¢’ can be computed. We compute the
T 0)) ) .
quantities lJZlQQ] and [lﬂQQ]]NRQCD in Secs. V and VI,
respectively.
The quantity

[iﬂiQ(g]]NRQCD = ZC20)<0|@Z|QQ1>(1) &)

would be formidable to calculate directly in NRQCD
because it involves operators and interactions of all orders
in v. Rather than carry out such a direct calculation, we
take a new approach. We note that, by construction,
NRQCD reproduces all of the interactions in full QCD,
but with those interactions reorganized in an expansion in
powers of v. Therefore, we can obtain [ ﬂl’Q(lQ)] Inroep from
i(1)
00,
powers of the momentum divided by m. Before making

this expansion, we carry out the integration over the tem-
poral component of the loop momentum, using contour
integration. This procedure establishes the scale of the
temporal component of the loop momentum, which varies
from contribution to contribution, and it avoids the gen-
eration of ill-defined pinch singularities that can arise when
one expands the Q and Q propagators prematurely in
powers of the momentum. We expand the integrand in

the expression for i A by expanding the integrand in
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powers of both the external momenta divided by m and the
loop momenta divided by m. We then regulate the integrals
dimensionally, setting scaleless, power-divergent integrals
equal to zero. Ultimately, we renormalize ultraviolet diver-
gences according to the MS prescription.

The procedure of expanding both external and loop
momenta in power series before regulating dimensionally
was first utilized in the Appendix of Ref. [5]. The rationale
for it was discussed in Refs. [9,11]. This procedure
amounts to the prescription that infrared-finite contribu-
tions that arise from loop momenta in the vicinity of zero
are kept in the short-distance coefficients [1 1!

If one uses dimensional regularization, then the quantity

3 .c(0101100,)© corresponds to the contribution from
the hard region in the method of regions [10], while the

quantity [iﬂggl]NRQCD corresponds to the sum of the

contributions from the potential, soft, and ultrasoft regions,
i.e., the contribution from the small-loop-momentum re-
gion. In the method of regions, it is assumed that there are
no contributions from the region in which the temporal
component of the gluon momentum is of order m, but the
spatial component of the gluon momentum is of order muv.
As we shall see explicitly in our calculation, this assump-
tion is justified because the contribution from this region of
integration vanishes in dimensional regularization. We
note, however, that the contribution from this region does
not vanish in the case of a hard-cutoff regulator. One
potentially useful feature of the approach that we present
here is that it can be applied in the case of a hard cutoff,
such as lattice regularization, while the method of regions
is applicable only in dimensional regularization. In the
method of regions, one can compute the contribution
from the hard region directly, rather than computing it, as
we do, by subtracting the small-loop-momentum contribu-
tion from the full-QCD contribution. As we shall explain
later, there may be advantages to our indirect procedure in
calculating the hard contribution to all orders in v.

III. KINEMATICS

Before proceeding to write explicit formulas for the
short-distance coefficients, let us define some notation for
the kinematics of the heavy-quark electromagnetic vertex.
We take p; and p, to be the momenta of the incoming
heavy quark Q and heavy antiquark 0, respectively. p, and
P, can be expressed as linear combinations of their average
p and half their difference ¢g:

(10a)
(10b)

ri=ptgq
P2=p—q.

In the case of hard-cutoff regularization, such as lattice
regularization, the expansion in powers of loop momentum
divided by m would be uniformly convergent and would yield
the same result as the unexpanded expression.
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In the QQ rest frame, the momenta are given by

P = (EJI), (lla)
p> = (E, —q), (11b)
p=(E0), (11c)
q=1(0,9), (11d)

where E = /m? + ¢°. The quark Q and antiquark Q are on
their mass shells: p? = p3 = m?. For later use, it is con-
venient to define a parameter

lgl
0 =— 12
-3 (12)
which is related to the velocity
v= M (13)
m

We can write 6 in terms of v as
v
0 = ———. (14)
V1 + v?

E? and ¢ are expressed in terms of m and & as
2

B=r (15a)
m?5?
¢ =15 (15b)

IV. FORMULAS FOR THE SHORT-DISTANCE
COEFFICIENTS

Now let us make use of the matching conditions (7) and
(8) to compute the short-distance coefficients for the spe-
cific color-singlet QQ operators that we consider in this
paper. These operators are

=

. t 2n .
0, = x(-5%) v,

. I <\2n—2 i = I o
Bn = )(T(—EV) (—EV )<_EV) -oy, (16b)

where ¢ is the Pauli spinor field that annihilates a heavy
quark, xT is the Pauli spinor field that annihilates a heavy
antiquark, and o' is a Pauli matrix. Our operators contain
ordinary derivatives, rather than covariant derivatives.
Therefore, our operators are not gauge invariant, and we
evaluate their matrix elements in the Coulomb gauge. We
do not consider QQ operators involving the gauge fields,
which first contribute at relative order v*. We note that O’
can be decomposed into a linear combination of the
S-wave operator O, and the D-wave operator O, :

(16a)

. 1 . :
%n = F@;{n + @an’ 17

where OF  is defined by
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(9 )

L 0

In the basis of operators @), and O}, , the matching

conditions (7) and (8) become
Za<°)<0|@ﬁ;,,IQQ1><°> + 3 5(0105,100,)0,

(19a)
Lﬂgy—Zanoszmm+§}$@@@m@»w

. 2 i(0)
lﬂlQ

+ [ A g4 Inrac, (19b)
where a, and b, are the corresponding short-distance
coefficients. A similar equation holds in the basis O,
and 0%, where the associated short-distance coefficients
are

1

=a, + —
Sn a, d—1

b, (20a)

d,=b,, (20b)

respec:tive_ly.2
The QQ matrix elements in Eq. (19) are

010,,100)0 = g*"nto'é,
0105,100)0 = ¢ 2¢'ntq - 0§

where & and 7 are two-component spinors. In order to
maintain consistency with our calculations in full QCD, we
have taken the QQ states to have nonrelativistic normal-
ization and we have suppressed the factor /N, that comes
from the color trace.

Because of current conservation, the most general form

. l .
of zﬂlQQl is

(21a)
(21b)

Ay, = 0(p)(GY' + Hg'ulp), (22)

where

2If we rq_place the ordinary derivatives ¥V with covariant
derivatives D in an S-wave operator O/, then we obtain one
of the conventional gauge-invariant S-wave NRQCD operators.
Because the squared covariant derivatives (D)2 commute with
themselves, the substitution of covariant derivatives for ordinary
derivatives leads to a unique S-wave operator at each order n.
Therefore, the S-wave short-distance coefficients s, that we
compute are also the short-distance coefficients of the S-wave
operator in which ordinary derivatives have been replaced with
covariant derivatives. In the case of the D-wave operators O},
the replacement of ordinary derivatives with covariant deriva-
tives does not lead to a unique operator because (D)’ and (D)/ do
not commute. Therefore, each of the D-wave short-distance
coefficients d,, that we compute is the sum of the short-distance
coefficients for the various operators at order n that can be
constructed from covariant derivatives.
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G =Zy(1 + A). (23)

Zo is the fermion wave-function renormalization, and A is
the multiplicative correction to the fermion electromag-
netic vertex. Similarly,

i[ﬂiQQ]]NRQCD = 9(p2)(Gnraep Y’ + Hxracng)u(py),
(24)
where
Gnroep = [ZgInroep (1 + Anrgep)- (25)

Using nonrelativistic normalization for the spinors u and
v, we obtain

. . intqg-oé
o(p2)y'u(py) = nto'é - %, (26a)
i intg - o
g o(pautpy) = — T TE (26
Then,
. . G H
. 1 B p— ‘I’ 1 i
iAp =Gn'o'é [E(E+m) ]q n'q-oé
(27)
Similarly,
LA 55, INRQCD NRQCD 7] O AE(E + m)
H .
+ %Qw]q’n*q -oé. (28)

Using the matching condition (19a) and Egs. (21) and

(27), we obtain the short-distance coefficients at order a¥:

=1 2Ygo| s, (299)
!
h: aq =0
O — g0 — 1 <6y*[cw H@]
! 8 (n—1)'\og> E(E+m) JE
1 J \rn—1 1
= (— S 29b
n— 1>z<aq2) [E<E+m>] (295)
1
sf,o) = a,(f)) + gbﬁf’. (29¢)

Using the matching condition (19b) and Egs. (21), (27),

and (28), we obtain the short-distance coefficients at order
1

ay:
1
all) = _<aq ) AGD | ) (30a)
F
1
b =d) = - ———
(n—1)
a \-1[f AGW AHD
X — + , (30b
Ge) lezem 2] gm0 O
1
s =@l + =i, (30¢)
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where
— (1
AGY =G - GNroeps
— (D
AHY = HY — Hgoep.

(31a)
(31b)

The infrared divergences in GSI)QQCD and Hl(\II])QQCD cancel
in AG"Y and AH" because NRQCD reproduces full QCD
in the infrared region. The one-loop NRQCD matrix ele-
ments in GI(\H{QCD contain ultraviolet divergences, which
we renormalize according to the MS prescription. The
quantity HI(\}I)QQCD is free of ultraviolet divergences. The
quantities A and Z,, also contain ultraviolet divergences.
However, because of the usual cancellation between the
vertex and fermion-wave-function renormalizations, G
is free of ultraviolet divergences. H) is also free of
ultraviolet divergences. Carrying out the renormalization,
we have

1 /0 \n
M — 2 (2 Y AgD). 32
Lan ]MS n!(aqz) MS q2:0’ (322)
1
M —r /M — _
s = [ s = — 0=
n—1 AGQ AH(I)
x(iz) [ S ] , (32b)
q EE+m)  E 1|z
1
[0 Ts = s + 3104 T (20)

In deriving the expression for [s(nl)]M—S, we have used the
fact that, in minimal subtraction, one removes the 1/ € pole
times the order-a¥ d-dimensional matrix element. Hence, a
term proportional to (d — 1) 'e! is subtracted in Eq.
(30c) in carrying out the renormalization.

V. QCD CORRECTIONS

In this section, we calculate the QCD corrections to the
heavy-quark electromagnetic current. That is, we compute

. i1
iA 00,
A. Vertex correction

In the Feynman gauge, the vertex correction to the
electromagnetic current is given by

AH = _ig%CF
% f (p2)Ya(—=po + K+ m)y (fy + K+ m)y*u(p,)
k DyD,D, ’
(33)
where g2 =4ma, is the strong coupling, Cp =

(N> —-1)/(2N,) = 4/3, and
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d
Dy = K + i, (34b)
D, = k2 +2k-p, +is, (34c)
Dy = k2 — 2k~ p, + ie. (34d)

M is the renormalization scale. The loop momentum k is
chosen to be the gluon momentum.

By making use of Eq. (10) and applying the equations of
motion,

o(p2)pulp,) =0, (35a)
v(po)du(py) = mo(py)u(py), (35b)
we find that Eq. (33) can be written as
— 2 1 = — N2
Av = —igiCy [ Gl - 2k
—4(2p* — m?) + 8k - qly* + 4mkH
— 8q"k + 22 — Ak*u(p,). (36)

Tensor reductions of the integrals in Eq. (36) are given in
Appendix A. The result is

A — —ig%cpﬁ(pz){[(d — ), — 42p* — md),

2mpHt 2mg*
+ 4]3 + 2(2 - d).]4:|')/’u + mf .15 - mzq 3
p q
g* pH

+2(2 - d)m<?J6 + o h)}u(pl), (37

where the integrals J; are defined by

N,

= [ 5nse (38)

kDoyD1Dy

and

N, =k, (39a)
N, =1, (39b)
N3 =2k-q, (39¢)

1 (k-p)?  (k-q)?
Ny=—=|K — - ] 39d
4 d _ 2[ p2 q2 ( )
Ns =2k p, (39€)

1 o, (k- p) (k-q)7

No= g e e @B oo
N7 = k- pk-q. (392)

The integrals J; — J; are evaluated in Appendix B. The
results are tabulated in Eq. (B12). We note that J5 and J
vanish, as is required by conservation of electromagnetic
current in Eq. (37).

Writing the vertex correction as
(Ay* + Hg")u(p,), we have

A* = 5(py) X
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A= —ig?Cpl(d — 2)J, — 4(2])2 — m2)J, + 415 + 22 — d)J,]

C 1 A u?
dar Eyvy

C o0+ 52)L(5)(

2 im( 1 Tple Ve 387
+ 1+52[1—l—7(—+1 +
( ) 1) €R g q2 1+ 82

1)
2m 212 — d)m
H = _lgsCF[_?JZ’) — o:l

a,Cp1—8° i
= — 2L(6) — — |,
dar m I: (3) 5]

where the subscripts on 1/e denote the origins of the
divergences and vy is the Euler-Mascheroni constant.
The functions L(8) and K(§) are given by

1+6
L(3) = 2 5 loe(i—3) (41a)
28 26
K@) =75 [Sp<1 n 5) Sp<_ m)] (41b)
where Sp is the Spence function:
0log(1l —
Sp (x) = [ Mdt. (42)

In Eq. (40), we have neglected terms of order €' and
higher. In the remainder of this paper, we drop such
higher-order terms.

B. Wave-function renormalization

The heavy-quark wave-function renormalization Z,

evaluated in dimensional regularization, is given in
Ref. [12]:

o a,Cr (8 1 47T,u,2€7YE
Al = 1+—== 2(—+1 —)—
iAL, =M a’f[ . {31} - og 5
int,y. 2 :
_q'n'q a§{1+asCF|:_4+7T _177( 1
2m?

v €IR

Equation (45) agrees with Eq. (4.16) of Ref. [9].

VI. NRQCD CORRECTIONS

In this section, we calculate the NRQCD corrections to
the heavy-quark electromagnetic current. That is, we com-

pute [i ﬂgg INroep- In order to demonstrate our method
1

for calculating these corrections from full-QCD expres-
sions, we present the calculation in some detail.
Divergent integrals are regulated using dimensional
regularization, with d = 4 — 2€. We define the following
notation for the loop integrals in d — 1 dimensions:

+log

A ule VE
ogL) + 662L(8) — 4(1 + 8HK(S)

)

(40b)
C 1 2 Aarple Ve
Zy=1+2 F(————— 3log— 2 — —4).
dar €y €R m
(43)

C. Summary of QCD results

By making use of Egs. (23), (40), and (43), we find that
G and H are given by

a,Cr 47T,u2e_75>
G=1+——+ —_—
4

{2[(1 + 8?)L(5) 1](i I L
EIR m
+68%L(8) —4(1+ 8H)K(8) —4+(1+ 8%

™ imf 1 Tule Ve 382
X|———|—+1 + 44
[5 S(eIR TP 1+82>]}’ H

_aSCF1—52

4

[2L(5) - %] (44b)

Expanding Eq. (27) through order v?, using Eq. (44), we
obtain

2 2 2 - 2,~YE
8 +2L+ (1 +3L)[1—l—w(i+ log%)] — 3i77v}]
9 2 /JLv v \ep 7

#u)]} +0(?). 45)

We also define 5, and 7, , which have the same meaning
as [, and [, , except that it is understood for #f, that one
carries out the k° integration first, and it is understood for
both s, and 4, that one expands the integrand in powers
of the momenta divided by m.

A. Vertex correction

Now, we calculate the NRQCD vertex correction to the
electromagnetic current. From Eq. (36), we see that the
vertex correction is given by
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Afroep = _ig%CFjﬁﬁﬁ(Pz){[(d - 2)k?
—4Q2p* — m?) + 8k - qly' + 4mk' — 8q'¥
+2(2 = Ak Ku(p,). (47)
The vertex correction (47) can be written as
A{\IRQCD = —ig?Crv(p{[(d — 2)S, — 4(2p* — m?)S$,
+ 8qMS§L]yi +2[2mS% — 4)/MS§'“qi
+ (2 = d)y,. Sy Tu(p), (48)

where

S .’df ! (49a)
= _— a

! kD1D2

1
S, = ﬁjfi (49b)
k DoD1D,
Sk ke 49

= _— C
} kDoD D, (49¢)

k* kY
SHY = _— 49d
4 kDoD1D, (49

The factors in the denominator of the integrands are de-
fined in Eq. (34). In the QQ rest frame, the factors D; in
Eq. (34) are

DO = (k0)2 - k2 + ie

= (kO — |k| + ie)(k° + |k| — ie), (50a)
D, ="+ E?—A?+ie

=K +A+E—ie)k°— A+ E+ig), (50b)
D, = (k" —E)?— A +ie

=K +A—-—E—ie)k— A—E+ig), (50c)

where A is defined by

A= \/mz + (k + q)°. (51)

The following are identities that we use frequently:

K +2%-q
A—E= ﬁ, (523)
A2 — (E = |k|)? = R2lk(ET q - k), (52b)

where @ = a/|a| for any spatial vector a. We first evaluate
the k¥ integral by contour integration, closing the contour
in the upper half-plane in every case. The contributions
from the poles in the gluon, quark, and antiquark propa-
gators are defined as S,-g, Sip»and S,-Q, respectively. Certain
integrals that we wuse frequently are tabulated in
Appendix C.

We note that the contributions ;5 correspond to the
potential region in the method of regions, and the contri-
butions §;, correspond to the soft and ultrasoft regions in
the method of regions [10]. The contributions §;, corre-
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spond to a region of integration in which the temporal
component of the gluon momentum is of order m, but the
spatial component of the gluon momentum is of order muv.
As we have mentioned, in the method of regions it is
assumed that this region of integration does not contribute
[10]. We shall see explicitly in the calculations that follow
that this assumption is justified because the contributions
from this region of integration consist of scaleless, power-
divergent integrals, which vanish in dimensional regulari-
zation. In the case of a hard-cutoff regulator these contri-
butions do not vanish, and they must be included in the
calculation of the NRQCD corrections.

1S,

The integral S, is the sum of two contributions: §; =
By making use of Eq. (50), we evaluate the k° integral.
The contribution from the quark pole is

[ 1
Si0 = ‘s—zﬂﬁm- (53)

Expanding 1/A and 1/(A + E) in Eq. (53) in powers of
(k + q)>/m?, we find that all of the terms in the expansion
are scaleless, power-divergent integrals. Hence,

The contribution from the antiquark pole is

NP (55)

i 1
_8_Ejka(A —E—ig)
We use the identity (52a) to reduce the integrand in Eq.
(55) to the following form:

i E 1
So=—N(1+Z)5—— (56
10 SEjﬁ< A)k2+2k-q—is (56)

Expanding 1/A in Eq. (56) in powers of (k + q)>/m?, we
find that the expansion brings in additional factors of
(k + ¢)*. In each additional factor, only the term g> sur-
vives, as the terms k> + 2k - g lead to scaleless, power-
divergent integrals, which vanish. As a result, we can re-
place A with E'in Eq. (56). Hence, S, is proportional to an
elementary integral n;, which is defined in Eq. (C3a):

_ i _ 4
10 7 35™ T T Yo 57)
Using Egs. (12), (54), and (57), we obtain
i,
2.5,

The integral S, is the sum of three contributions: S, =
52g + S2Q + S2Q
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By making use of Eq. (50), we evaluate the k° integral.
The gluon-pole contribution is

l 1
S = —_
% ZJﬁk |kI[A? = (E+ |k|)?> —ig][A? — (E—
_i 1
8 Jk|k|[E*—

|kl)* — ie]
(39)

(q-%)*]
where we have used the identity (52b). Making use of Eq.
(C4b), we find that S,, is proportional to n, in Eq. (C2):

i E + |q|
= L plog(Z )
AT Og(E - Iql) (60)

Using Egs. (15) and (C2), we express S5, in terms of m and

S as
i 1 1\1-8. [1+&
Sy, =—t (-~ 1 G
2 32772m2<6UV em) 26 °g<1 - 5) D)

The contribution from the quark pole is

1
S0 = TN AR T B[R T B =K + ie]
i 00 k2n
- L 2
8E ,;)jfk A(A + E)>H3 62)

Now we expand 1/A and 1/(A + E) in Eq. (62) in powers
of (k + q)>/m?. All of the terms in the expansion yield

scaleless, power-divergent integrals, which vanish.
Therefore, we have
The contribution from the antiquark pole is
G = i 1
20 8E Ju A(A — E — ig)[k* — (A — E)* — ie]’
(64)
If we use the relation (52a), we obtain
i E
Sop=——N(1+=
0= 51 3)
1
X . (65)
(k> + 2k - q — ig)[1 — k%(kgf';q)z]

The denominator factor in the brackets can be expanded to
give

i E 1
520 = _@%(1 " K)[kz(k2 +2k - q — ig)

< (k2 + 2k - q)z”l]
+ .
r; k2n+2(A +E)2n

Now we expand E/A and 1/(A + E) in powers of
(k + q)?/m?. The expansion brings in additional factors
of (k + g)* in each term in the integrand of Eq. (66). In
each additional factor (k + ¢)?, only the term g> survives,
as the terms k2 + 2k - q lead to scaleless, power-divergent

(66)

PHYSICAL REVIEW D 79, 014007 (2009)

integrals. Therefore, we can replace A in Eq. (66) with E.
Furthermore, in the numerator of the second term in brack-
ets in Eq. (66), only the term (2k - g)*"~! survives, as the
other terms lead to scaleless, power-divergent integrals.
Then, we have

i 1
Soqs = ——
20 %I:kz(k2 + 2k - q — i)
(k q)Zn 1
Z k2n+2E2n ] (67)
The term proportional to (k - g)>"~! yields a scaleless,
logarithmically divergent integral. However, this integral
vanishes because the integrand is an odd function of k.

Thus, only the first term in the brackets in Eq. (67) sur-

vives, and we find that
/ 2,=ve
+ logw + iw),
q’

(68)

I 1 1
S S = — —
207 T4™ T T 64nElql (em

where n, is defined in Eq. (C3b).
Making use of Eqs. (15), (61), (63), and (68), we obtain

i 1-8° 2

1 1 T
S =————-|2LO6)|——— ) ——
g (477)2 4m? [ ()<€Uv 6IR) 0
] 1 20~ YE
+E(_+1ogL‘ ¢ )] (69)
0 \€R q

where L(8) is defined in Eq. (41a).

3. 5"

The integral S% is the sum of three contributions: S5 =

S5, + S5 T 855

We first evaluate S9. The integral of S% over k¥ is
identical to the integral of S, over k° except that, in S9,
the result contains an additional factor of k° evaluated at
the gluon, quark, or antiquark pole. Thus, by making use of

Egs. (52a), (59), (62), and (66), we obtain
i 1

N =— | —m——, 70a
» s et b o
2n
50— L k
3Q E = A(A + E)2n+2’ (70b)
k* + 2k - )"
) Zjﬁ §+2 9 2 (70¢c)
3Q 8En0 K kT2AA + E)

Sgg is a scaleless, power-divergent integral, which van-
ishes. In 89, and SgQ we expand 1/A and 1/(A + E) in

powers of (k + q)>/m?. We find that every term in the
expansions leads to a scaleless, power-divergent integral,
which vanishes. Hence,

S =0. (71)

Next we compute the spatial components S%. The inte-
gral of S% over k° is identical to the integral of S, over k°
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except that, in S g, the result contains an additional factor of
ki. Thus, by making use of Egs. (59) and (62), we obtain
, i ki
Sto== —, (72a)
* 8 JklkPLE? — (- k)]

g =_szﬁ k2n
0 B8E & i AA + B

Sgg is a scaleless, power-divergent integral, which van-
ishes. Expanding 1/A and 1/(A + E) in S}, in powers
of (k + q)*/m?, we also obtain only scaleless, power-
divergent integrals, which vanish. If we multiply the sec-
ond term in brackets in Eq. (67) by k', we obtain only
scaleless, power-divergent integrals. Hence,
. i k'
Slo=—— . 73
30 AE )i k*(k* + 2k - q — ig) (73)
After making a standard reduction of the tensor integral in
Eq. (73) to a scalar integral, we obtain
o iq f (k> + 2k - q) — k? iq'
= — = n
30 8Eq” Juk*(K2 + 2k -q—is) 8Eq

(72b)

1 4
- 74
327 Elgl (74)
where n; is defined in Eq. (C3a) and we have discarded
scaleless, power-divergent integrals. Hence,
. 1 4
Sh= =0 = 75
3 327 Elgq| (75)

Writing our results in Eqs. (71) and (75) in covariant
form, we obtain

i 1—8%im

M= - - " T gk
3 (4m)? 2m? 5q’

(76)

where we have made use of Eq. (15) to express E and |q| in
terms of §.

4 st

The integral S“ " is the sum of three contributions:
A\ S + S Sff Qf’ .

We ﬁrst evaluate S%. The integral of S}° over k° is
identical to the integral of S over k° except that, in S°,
the result contains an additional factor of k° evaluated at
the gluon, quark, or antiquark pole. Thus, by making use of
Egs. (52a) and (70), we obtain

] 1
500 — i ., 77a
L S I = -7 77
k2n
4Q = SE Z ‘4[ A(A + E)2n+l’ (77b)
0 _ _i (k2 + 2k - q)2n+1
Sio SE ’g)jfk K2 FIA(A + B2 (77¢)

Every integral in Eq. (77) is a scaleless, power-divergent

PHYSICAL REVIEW D 79, 014007 (2009)

integral. Hence,
S = 0. (78)

Next we compute S¢'. The integral of S over k¥ is
identical to the integral of S9 over k° except that, in SY,
the result contains an additional factor of k. Thus, by
making use of Eq. (70), we obtain

, i k'

Shp=—< | 5=———F, 79a
“ = 8 LB — (g B .
oi i k2n

Sio =g ZO# A(A + )2 (790)

ki(k* + 2k - g)*"

01 - 7

S = # k2n+2A(A + E)Zn ( 9C)

Sg; is a scaleless, power-divergent integral, which van-
ishes. S% and SgiQ also vanish, once we expand 1/A and
1/(A + E) in powers of (k + q)>/m?. Thus,

S% = 0. (80)

Finally, we evaluate the integrals S . The integral of S}
over k° is identical to the integral of S% over k° except that,
in Sf{, the result contains an additional factor of k/. Thus,
by making use of Eqs. (72) and (73), we obtain

i k'k/

S = —, 8la
s s T~ B
. Kk k2

ij

S4Q 8E Z jﬁ A(A + E)2n+3’ (81b)
. kiki/

SV = ——/ . 81
40 AE )i k* (K2 + 2k - q — ig) (81c)

Sf{g is a scaleless, power-divergent integral, which van-
ishes. SQ’Q also vanishes, once we expand 1/A and
1/(A+E) in powers of (k+¢)*/m?*. The tensor integral
S 4o in Eq. (81c) must be a linear combination of the two
symmetric tensors 6% and ¢g'q’/. By contracting these ten-
sors into Eq. (81c), we determine the coefficients of the
linear combination. The result is

) i ) 1
PRI
407 T 4E@—2) L0\ T 4™

q'q’ d—1
P (nl e n3>]

- lql y N
= 2 —2F 2)E|:81 +(d—3) p ] (82)

where n5 is defined in Eq. (C3c). Because S” and S”
vanish, we find that S = S;JQ. The integral in Eq. (82) is
finite and, therefore, we may set d = 4.
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The covariant form of the integral S§” at d = 4 is then Axrocn = a,Cp 1+ 62)[2L(5)<L B L)
dar €R Eyv
) N 7’ i7T< 1 N logﬂ',uze*” N 3682 ):I
i — a? ruirl B )
Siu}: l Zﬂ[g;u)_l 25 <p;4pv+q 3 )] (83) 1) ) €R q2 1+ 52
a,Cp1—8%( im
H == - 84b
NRQCD p- o ( 5 ) (84b)
5. Summary of the NRQCD vertex correction
Substituting S, — Sf;w in Egs. (58), (69), (76), and (83) B. Wave-function renormalization
into Eq. (48) and using the equations of motion in Eq. (35), In the Feynman gauge, the self-energy of the heavy
we obtain quark, evaluated at four-momentum p, is
J
. V(b + K+ m)y”
s = —ig2C 3)0 2 , 85
[ (pl)]NRQCD 185 L (k2 + lS)[(pl + k)2 _ m2 ¥ l8] ( )

where m is the mass of the heavy quark and & is the loop momentum, which has been chosen to be the momentum of the
virtual gluon. In d dimensions, we find that the numerator factor reduces to

: C-d)(F + K +dm
3 = —igC Jﬁ ) 86
[2(p1)INroeD 18:Crf K+ i0)[(p, + K7 — i T is] (86)
The heavy-quark wave-function renormalization Z, is defined by
ol 1 o
[ZoInrocn = [1 prdl (pl):lluNRQCD ] 4P [ (pl):lluNRQCD +0(a?). 87)
m apl pr=m m apl pri=m
Differentiating Eq. (86), we find that
pi 9[Z2(P1)Inroep — _ig2C jﬁ{z —d 22— d)(f+m)+dm](p, -k + mz)}
m apf pi=m ST k D()Dl mDoD%
2—d Q2—-dk+2 1 1 2m?
= —igic,of]| SR ] (88)
k D()Dl m DOD1 Dl DODI
I
where D and D, are defined in Eq. (34). The expression in _ a,Cp( 1 1 )
Eq. (88) can be written in terms of the integrals T, T, [ZoIvraep = 1+ 2m (% - %) + Olag). O
Tyy, Ty, Tt,, and T}5, which are defined by
1
Ty = jﬁ Tk (89a) C. Summary of NRQCD results
](;M ! Making use of Egs. (84) and (91), we find that
¢ 01 GNRQCD = 1 + as F{Z[(l + 52)L(6) - 1]<— - —)
T €R  €uv

These integrals are evaluated in Appendix D, and the , . .
results are summarized in Eqs. (D7) and (DS8). The only PN A 1 mpe 7r

are St : + (14 6% — + log——5—
nonvanishing integral is T'j,. Hence, o 1)

€IR q
382
= 4ig2Crm’Ty,. (90) + T 52)]}, (92a)
. _aCp1—=8%( im
Making use of Egs. (87), (90), and (D8), we obtain the Hyroep = pp o (— )
heavy-quark wave-function renormalization in NRQCD:

d [ Z(p1)INrocp
m apy

5 ) (92b)
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Expanding Eq. (28) through order v?, we obtain

i[ﬂz)@] Inrgep = 1t O'if[

3 qin*q'af{

2m? 47 v

Comparing Eq. (93) with Egs. (4.28) and (4.29) of Ref. [9],
we find agreement. We have also checked Eq. (93) by
carrying out a conventional calculation in NRQCD.

VII. RESULTS FOR THE SHORT-DISTANCE
COEFFICIENTS

Now we can collect the results of our calculations and
obtain the short-distance coefficients. By making use of
Egs. (31), (44), and (92), we find that

1) _ a,Cr ) _ B 47T/Lze_“/f
A0 =L D1+ 8)1(5) ~ 1)+ log )
+682L(8) — 4(1 + 82)K () — 4}, (94a)

_ 2
AH(I):aS_CFML(g). (94b)

4ar

As expected, the infrared poles in G and GNRQCD have

canceled in AGY. Note that AG™") and AH" are real and
contain only even powers of v = |g|/m. Renormalizing
the matrix elements in the MS scheme, we obtain

Gl =& CF {2[(1 + SL(8) — l]log— + 65°L(5)

— 4(1 + B)K(5) - 4}, (95)
where now w is the NRQCD factorization scale. Using Eq.
(29), we obtain the short-distance coefficients a(o) and bE{”:

al = 8,0, (962)
b = - ﬁ (96b)
b = % (96¢)
bV = — ﬁ. (96d)

The results in Egs. (96a)—(96c) agree with those in
Eq. (5.5) of Ref. [6] and those in Egs. (3.13)—(3.20) of
Ref. [13]. Using Eqgs. (32), (94b), and (95), we obtain the

short-distance coefficients [a,(,l)]m and [bg,l)]m:

nCofi?(1_ 1y, (
4 3 €IR €Eyv

2 .
1+ a‘CF[”—— f(i +1
v €IR

PHYSICAL REVIEW D 79, 014007 (2009)

2 2 2,k
1+ 3L)I:l — f(L + 10g4’”’u ‘23 E):I — 3i7TU}]
2 v v \€Rr q

2,7 YE
o™ ) - 2T+ 0w ©3)
q v

aol)]Ms a4CF( 8), (97a)
s = 0 L2 Sioett) ©O7b)
) a47cTF ”114< %_g M_Z), ©70)
s = %" s (iTozs * 105 %) ©79
(b ks = aiff % (97¢)
i L0 ) om
s = 5 (15 3 0els) ©7¢)

The operators O 44, Oy4,, and O, in Eq. (16) correspond to
the operators that were considered in Ref. [9], provided
that one neglects the gauge fields in the latter operators.
Therefore, short-distance coefficients [aJyg, [a) lys, and
[by Jy5s are related to the coefficients ¢; in Eq. (4.29) of
Ref. [9] as follows:

[ao]NTs =cCp (98a)
1

lailys = — Py (98b)
1

(b1 ]ys = T2 (98c)

Our results for these short-distance coefficients agree with
those in Eq. (4.29) of Ref. [9].

A. Resummation

Let us define ratios of the S-wave QQ operator matrix
elements to the S-wave QQ operator matrix element of
lowest order in v:

(010},1HCS}))
010}lHCS))’
where O, is defined in Eq. (16a), and we have used the
property that the ratios are independent of the value of the
index i. In Ref. [14], it was shown that these ratios of

operator matrix elements are related according to a gener-
alized Gremm-Kapustin relation [15]:

[<q2>H(3SI)];/I—S

@ es,) = (99)

(e nes)bus = (100)
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This relation holds for the matrix elements in spin-inde-
pendent-potential models. Hence, for each value of n, it
holds up to corrections of relative order v?.

We can use the relation (100) to resum a class of
relativistic corrections to the quarkonium electromagnetic
current. From Egs. (20a) and (32), we find that

Y 0 + [s)01 0}, IHES )
n=0

- {[1 TEE+ :f;)(d = 1)]<1 i AG%)

7 )
CEd-1) AH }

(OlO}IHES)). (101

=5

Because the relation (100) contains corrections of relative
order v? at each order v?", the resummation in Eq. (101)
does not improve the nominal accuracy beyond order v*.
The resummation might, however, improve the numerical
accuracy beyond the accuracy that is obtained through
order v* if the coefficients in the velocity expansion
grow rapidly with the order in v. In any case, it is interest-
ing to use the resummed result to examine the rate of
convergence of the velocity expansion.

B. Numerical results and convergence of the velocity
expansion

Let us evaluate the sums of products of S-wave short-
distance coefficients and operator matrix elements, using
the relation (100). For {g*) 5,)» we take the central value
of the J/y matrix element from Ref. [1]: {¢*);/, =
0.441 GeV?. Taking m,. = 1.5 GeV and setting u = m,,
we find that

- (1) 2 n __oCp
D Lo Toslla?y g = — X8 (102a)
n=0
! n a,C
> s lisl{a®hu s = — =~ X 7.826, (102b)
n=0
2
n a,C
> Ui sla2hyu Jig = — =5~ < 7883, (102¢)
n=0
’;
z n a,C
> s bislta?hyu s = — 5~ X 7872 (102d)
n=0
S () o o _aCr
> [ hasl(a?dy g = ==, X 7873 (102e)
n=0

In the last line of Eq. (102), we have used the resummed
result in Eq. (101). Taking o, = a,(2m,) = 0.25, we see
that the corrections of order a,v” and a v* are 0.5% and
—0.2%, respectively. These are not very significant at the
current level of precision of the theory of J/ decays to a
lepton pair.

PHYSICAL REVIEW D 79, 014007 (2009)

As can be seen from Eq. (102), the velocity expansion
converges rapidly for approximate charmonium matrix

elements. In fact, the expressions for AG% in Eq. (95)

and AH" in Eq. (94b), taken as functions of v = |q|/m,
have finite radii of convergence. The logarithms in L(§)
[Eq. (41a)] and the Spence functions in K(8) [Eq. (41b)]
have branch points at § = *1, i.e., v = *00. The quantity
8 = v/~/1 + v? has branch points at v = *i. Therefore,
the closest singularities to the origin in AG% or AH are
at v = *i. Consequently, the radii of convergence of
AG% and AH as functions of v are one. It follows

that the velocity expansion for the QQ operators is abso-
lutely convergent, provided that the absolute values of the
operator matrix elements are bounded by a geometric
sequence in which the ratio between elements of the se-

quence is less than m?.

VIII. CONCLUSIONS

We have presented a calculation in NRQCD of the
order-a; corrections to the quarkonium electromagnetic
current. Our calculation gives expressions for the short-
distance coefficients of all of the QO NRQCD operators
that contain any number of derivatives but no gauge fields.
Our operators are not gauge invariant, and we evaluate
their matrix elements in the Coulomb gauge. Our principal
results are given in Egs. (94b) and (95). The NRQCD short-
distance coefficients can be obtained, according to Eq. (32),

from the Taylor-series expansions of AG% in Eq. (95) and

AHW in Eq. (94b). Our results at relative order v> agree
with those in Ref. [9].

Our calculation makes use of a new method for comput-
ing, to all orders in v, the one-loop NRQCD corrections
that enter into the matching of NRQCD to full QCD. In this
new method, we begin with QCD expressions for the loop
integrands. We obtain the NRQCD corrections from these
QCD expressions by carrying out the integration over the
temporal component of the loop momentum and then ex-
panding the loop integrands in powers of the loop and
external momenta divided by the heavy-quark mass m.
We carry out this expansion before implementing the di-
mensional regularization. The new approach allows one to
avoid the daunting task of obtaining NRQCD operators and
interactions to all orders in v, along with their Born-level
short-distance coefficients, and computing their contribu-
tions to the one-loop corrections. In terms of the total labor
involved, the computation of the NRQCD corrections to all
orders through the new approach is comparable to the
calculation of the NRQCD corrections at relative order
v? through conventional NRQCD methods. This new
method should be applicable to matching calculations for
a variety of effective field theories, including heavy-quark
effective theory and soft-collinear effective theory.

As we have mentioned, our approach is related to the
method of regions [10]. The NRQCD corrections in our
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approach correspond in the method of regions to the sum of
the contributions from the potential, soft, and ultrasoft
regions, i.e., the contribution from the small-loop-
momentum region [10]. In our approach we have computed
the quantities AG") and AH) by subtracting the NRQCD
corrections from the full-QCD corrections. In the method
of regions, AG') and AH" could, in principle, be com-
puted directly from the contribution from the hard region.
However, a straightforward computation of the contribu-
tion from the hard region, carried out by expanding the
integrand in powers of the small momentum, would yield
Taylor-series expansions of AG") and AH") in Eq. (94) in
powers of 6. It would be nontrivial to sum those expan-
sions to obtain the compact expressions in Eq. (94). In
contrast, in our approach, expansions of the integrand
occur only in the NRQCD expressions and lead to very
simple series that can be summed at the integrand level.
Hence, our method may be more efficient than the method
of regions for computations of short-distance coefficients
to all orders in v. Our method is also applicable in the case
of a hard-cutoff regulator, such as lattice regularization,
while the method of regions applies only in the case of
dimensional regularization.

Because we have omitted operators that contain gauge
fields, the operators that we consider are not the complete
set of NRQCD operators that describe the quarkonium
electromagnetic current. In the Coulomb gauge, the
gauge-field operators first enter at relative order v*, and
so our results cannot be considered to be complete beyond
order v2. However, the operators that we consider account
for all of the contributions that are contained in the
Coulomb-gauge wave function of the quarkonium QQ
Fock state. The correction to the S-wave component of
the electromagnetic current that we find in relative order
a,v* is only about —0.2%, which is not significant at the
current level of the precision of the theory of J/ i decays
to a lepton pair.

"
jk etk p) = 2 [k P kf (k. p).

fk kR (K, p) = ﬁ [dy(k, p)g"” + dy(k, p)p* p"1f(k, p)

f ke f(k, p, q) = p* / dy(k, p, ) f(k, p, q) + q* f dy(k, p, ) f(k, p, q),
k k k
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We have examined the convergence of the NRQCD
velocity expansion for S-wave QQ operators. In Eq.
(102), we give the numerical values for the sums of the
first few S-wave contributions to the electromagnetic cur-
rent and for the sum of all of the S-wave contributions. In
these computations, we have made use of the value of the
relative-order-v> J/4 matrix element that is given in
Ref. [1] and the approximate relation between operator
matrix elements in Eq. (100), which holds in spin-indepen-
dent-potential models [14]. It can be seen from Eq. (102)
that the velocity expansion converges rapidly in this case.
In fact, the expressions for AG% in Eq. (95) and AH" in
Eq. (94b), taken as functions of v = |g|/m, have radii of
convergence one. Therefore, the velocity expansion for the
QQ operators is absolutely convergent, provided that the
absolute values of the operator matrix elements are
bounded by a geometric sequence in which the ratio be-

tween elements of the sequence is less than m?.
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APPENDIX A: TENSOR-INTEGRAL REDUCTION

In this Appendix, we describe the tensor-integral reduc-
tion that we use to simplify Eq. (36).

Tensor integrals of rank-1 and -2 that depend on p or on
both p and ¢ can be expressed in terms of scalar integrals
as follows:

(Ala)
(Alb)

(Alc)

[k”k”f(k, P q) = g””[ds(k, 2. Q) f(k p,q) +p“p”fd6(k, 2. )f(k, p,q)
k k k

+ q“q”[ka%(k, p. )f(k p,q) + (ptq” + p”q“)fkdg(k 2. )f(k p, q),

(Ald)

where f is an arbitrary scalar function of the argument four-vectors. If p - ¢ = 0, then the functions d; in Eq. (A1) are given

by
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dy(k, p) = — [k2 G- p )2], (A2a)

dy(k, p) = ﬁ[ 2+ pp )2], (A2b)
ds(k, p, q) = kl;—zp, (A2¢)
dy(k, p, q) = :—zq, (A2d)
ds(k, p, q) = ﬁ[kz _ ke (k%f)z], (A2¢)
Aotk p.0) = 3| 4+ - 1>("'§’)2+(k;]3)2], (A20
dq(k, p, q) = ﬁ[— (k;)z +(d—-1) (k;)z], (A2g)
dg(k, p, q) = kpzp quq. (A2h)

APPENDIX B: INTEGRALS FOR THE QCD
CORRECTIONS

In this Appendix, we evaluate the integrals in Eq. (38).
Throughout this Appendix, we neglect expressions of order
€ or higher. The integrals in Eq. (38) can be expressed in

terms of elementary integrals Iyi0, 1110, L9171, 1111, and
Iy
Jy = Iy, (Bla)
Jo =1, (B1b)
J3 = 1I110 — lon1, (Blc)
Jy = ﬁ(lon %) (B1d)
Js =0, (Ble)
Jo=—Jy+ : Iy + Mlom» (BIf)
4q 1.2 4g?m?
J; =0, (Blg)

where the scalar integral /,,,. is defined by

1

Lipe = | ———- B2

abc /k DSD[],DE ( )
In deriving Eq. (B1), we have used the fact that 7, = 1,.p,
which follows from the symmetry of the integrals under
p1 < py and k — —k. We have also discarded the scale-
less, power-divergent integral [,q,, which vanishes in di-
mensional regularization. In deriving the expressions for J,
and Jg, we have made a further tensor reduction, using Eq.
(Ala), which leads to

2p?

I = Wlom- (B3)

2

Iy10 and 1o, which depend only on m*, are given by

: 1 Arple e
1010 = ;zm2<— +lo gL + 1) (B4a)
(47T) Eyv m

i 1 drule Ve
1 + log————+ 2). B4
1o = (4 )2 (EUV o8 m? ) (B4b)

The scalar integrals I; and /_;;; can be evaluated by
using Feynman parametrization. After integrating over k,
we obtain

Iy = (4i)2 <47T'u ) F(E)j dz(z> — 8% —ie) "¢,
con = (G el
X [()1 dz(? — 8% —ig)' ¢,

where z = 2x — 1 and x is the original Feynman parame-
ter. Expanding the integrands of Eq. (B5) in powers of e,
integrating over z, and using Eq. (15), we find that

(B5a)

(B5b)

i dmute™”
2

1 E
Iy =——| —+1 +2—-28°L(8)+i 5],
011 (47T)ZI:€UV 0og (6) +im
(B6a)
i m? drp’e e
=————| (- 52< 7+1>
(4m)?1— [( ) €uy +log m?

—28%+48%L(8) — 2771'53],

1—111

(B6b)

where L(6) is defined in Eq. (41a) and we have used the
following results, which hold for 0 = 6 < 1:
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1
f log(z? — 8% — ie)dz = —2 + 28°L(8) + log(1 — &%) — imé,
0

1 1 2
[ (2 — 8% —ig)log(z> — 8% —ie)dz = §|:_
0

111, can be evaluated by using Feynman parametriza-
tion. After integrating over k, we obtain

x[ dz(zz—sz—ie)-l-f,
0

(B8)

where z = 2x — 1 and the original Feynman parameters
are x and y. The infrared divergence is isolated in the

integral over y:
1 1
d —1-2e — _ .
/0 Y 2EIR

The integral over z can be evaluated by expanding the
integrand in powers of €. Then, we obtain

i 1=82(/1 drple e i
Ly=— L 102 P\ op5)+ 2
1 (47T)2 4m2 {(EIR Og m2 )[ ( ) 5 ]

w2 i 482 }

(B9)

where K(6) is defined in Eq. (41b) and we have used the
following results, which hold for0=6<1:

1 dz
_ ——Lb‘
fozz—ﬁz—is 26 (@),
jllog(z2—52—is)
0

22— 6% —ie

(B10)

(Blla)

dz = —log(1 — 8%)L(8) — 2K(5)

)
+ 747
5 log(25)

By making use of Egs. (B1), (B4), (B6), and (B10), we
find that

(B11b)

47T,LL e E

i 1
J, = —+ +2—28%L(8) + 6]
! (477')2[€UV ° (8) +im

(B12a)

i 1-8%(/1 drp’e Ve i

J=—s—F—+log———)| —2L(8) + —

2 @4m)? 4m? {(EIR % m> )[ (3) 6]

wr i 452

+4K(8) — — — — log——+, B12b

()~ %~ T log; (B12b)

Iy = (4 ey L _[282L(8) — im6], (B12¢)
1 i

Jy==|—+J | B12d

=ilam ] (B12d)

Js =0, (B12e)

1
Jo= =31 (B126)
J; =0. (B12g)
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(B7a)

3 + 48% —48*L(8) + (1 — 38%) log(1 — 8%) + 2mid? :| (B7b)

|
The results for J,
Ref. [16].

— J, in Eq. (B12) agree with those in

APPENDIX C: INTEGRALS FOR THE NRQCD
CORRECTIONS

Here, we tabulate some integrals that are useful in
computing the NRQCD corrections.

In dimensional regularization,
divergent integrals vanish:

1
— =0
[klkl"

for n # 3. The only scaleless logarithmically divergent
integral that we encounter is

scaleless, power-

(CDH

1 1 1
—m=———) C2
kP> 472 (EUV eIR) ()
There are a few integrals that depend on ¢ that appear in the

evaluations of the §; in Eq. (49):

1
——Iql

—_— C3
kk>+2k-q—is 4w (C3a)

1
" ﬁkz(k2 Y2k -q—ie)

. 2 —
:_;(Lﬂogw
¢I

167lq| \er

= - P (30

n = —_—n e —
3T @12k -q—is 277"
We also make use of the angular averages:
k? 1

f(k) __ ( |¢I|>/f(k2) (C4a)

kE*q-k 2|qI — lql

[k% [f 2)<E+1q kK E- 1q k)

1 gl 5
= 1 k 4b
2Elq] Og<E— Iql)[kf( ) (Cav)

where f(k?) is any function of k2.

APPENDIX D: EVALUATION OF THE INTEGRALS
FOR [Zg Jxrqep

In this Appendix, we evaluate the integrals T, Ty, T1»,
Th,, T1,, and Ty, which enter into the calculation of
[ZyINrgep and are defined in Eq. (89). We make use of
the same strategy that we used in evaluating the S; integrals
in Sec. VI, except that we carry out the evaluation in the
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rest frame of the heavy quark, p, = (m, 0), where the
expressions become compact. The change of frame shifts
momenta by an amount of order mv. Therefore, the
NRQCD expansion in powers of the external momentum
divided by m remains valid. In the heavy-quark rest frame,
the gluon- and quark-propagator denominators are

[D0]rest = (ko + |k| - 18)(k0 - |k| + is): (Dla)
[D s = K° + m + Vm? + k2 — i)
X (kO +m — Vm? + k% + ie). (D1b)

We evaluate the k° integrals by using contour integration,
closing the contour in the upper half-plane in every case.
We denote the contributions of gluon and quark poles by
subscripts g and Q, respectively.

The integral Ty, is

i 1

Tpoo=-N ———. D2
2 T2 S + 1) b
The integral T yields
i 1
T, =— | — D
e = 7 fkkz’ (D3a)
| 1
Tip = —Ljf—2(1 - L) (D3b)
dm Jrk 1/m2 + k2
The integral T}, yields
i 1 i
Th,=—— | —== ——=n,, D4
12¢ 8m? Ji |k|? gm2 10 (D4a)
i 1
Tho=—N ———=5, D4b
R A=

where n is defined in Eq. (C2).

In the cases of the integrals Tf,, T, and T}, the
integrand of the temporal component 79, is identical to
that of 7,,, except that the integrand in T, contains an
additional factor of k°. Integrating over k°, we obtain

PHYSICAL REVIEW D 79, 014007 (2009)

T82Q = _ijm km’ (D5a)
T?lg = —ﬁ k%, (D5b)
T?IQ = ﬁjﬁﬁ, (D5c¢)
?2g = 81? k#, (D5d)

3
o= g fel i) O

For the spatial component 7", the integrand is identical to
the integrand in T,,, except that the integrand in 7%,

contains an additional factor k'. By making use of Egs.
(D2)—(D4), we find that

T(i)ZQ = ijﬁk (mz-fW’ (D6a)
Ti,, = ﬁ k% (D6b)
”w=‘£;k§0‘iﬁ%ﬁ) (Déc)
Tiyy = —8%12 L Il% (D6d)
Tiyo = 8# k(mszzw. (D6e)

Expanding the integrands in Egs. (D2)-(D6) in powers
of k?/m?, we find that all of the terms in the expansions
yield scaleless, power-divergent integrals, with the excep-
tion of the integral T,, in Eq. (D4a). Therefore,

TIIZTOZZT&:Tﬁ:TﬁZO (D7)

and

i 1 1
Tp=——t (— =) DS
12 327T2m2 <6UV EIR> ( )

where we have used Eq. (C2).
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