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We investigate the effect of the electric-charge neutrality in � equilibrium on the chiral phase transition

by solving the chiral and diquark condensates in the two-flavor Nambu–Jona-Lasinio model. We

demonstrate that the electric-charge neutrality plays a similar role as the repulsive vector interaction;

they both weaken the first-order chiral phase transition in the high-density and low-temperature region.

The first-order chiral phase transition is not affected, however, at finite temperatures where the diquark

condensate melts. In this way the chiral phase transition could be second order at intermediate

temperatures if the diquark effects overwhelm the chiral dynamics, while the first-order transition may

survive at lower and higher temperatures. The number of the critical points appearing on the phase

diagram can vary from zero to three, which depends on the relative strength of the chiral and diquark

couplings. We systematically study the possibility of the phase structure with multiple QCD critical points

and evaluate the Meissner screening mass to confirm that our conclusion is not overturned by chromo-

magnetic instability.
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I. INTRODUCTION

It is generally believed that quantum chromodynamics
(QCD) exhibits a rich phase structure in an extreme envi-
ronment such as high temperature and high baryon density.
In the last decade the color-superconducting (CSC) phase
has attracted lots of theoretical interest and triggered ex-
tensive studies of dense and cold quark matter [1–4]. At
asymptotically high density that justifies the perturbative
QCD calculations the color-flavor locked (CFL) phase [5]
has been established as the ground state of quark matter.
There, the pairing energy, the critical temperature, the
screening properties, the collective excitation energy, and
so on are well understood from the first-principle
calculations.

In a practical sense, however, the accessible baryon
density in nature would be, at most, ten times the normal
nuclear density even in the interior of the compact stellar
objects. In terms of the quark chemical potential the cor-
responding value should be less than 500 MeV in reality
and thus other MeV energy scales such as the current and
dynamical quark masses, the electric chemical potential,
etc. take part into the dynamics. We are yet far from
thorough understanding on the phase structure in this
density region which is commonly referred to as the inter-
mediate density. Going down from the CFL phase, we have
to rely on chiral effective theories to unveil the possible
CSC phases and to draw the boundary lines on the phase
diagram which separate different CSC states [3,4].

Recently, an interesting proposal has been made for the
plausible phase structure in the intermediate density region

[6]. That is, there may exist a new QCD critical point (i.e.
the terminal of the first-order phase boundary) induced by
the UAð1Þ-breaking vertex. This speculation is based on a
general Ginzburg-Landau theory in terms of the order
parameter fields constrained by QCD symmetries. There,
the three-flavor anomaly term generates the coupling be-
tween h �c c i (chiral condensate), hc c i (diquark conden-
sate), and h �c �c i (antidiquark condensate). It has been then
argued that the resultant crossover of chiral restoration at
small temperature embodies the hadron-quark continuity
hypothesis [7]. Whether the new critical point appears with
reasonable parameter set or not needs further investigation.
Maybe, to settle the situation without ambiguity, we should
wait for future developments in lattice QCD simulations at
finite density.
In a different context, before discussed in Ref. [6], the

appearance of another critical point at low temperature was
pointed out in Ref. [8] within the two-flavor Nambu–Jona-
Lasinio (NJL) model. The crucial ingredient in Ref. [8] is
the four-fermion interaction in the vector channel as well
as in the scalar one. In this case, the vector interaction
diminishes the first-order chiral phase transition [9–11],
which allows for enhanced competition between the chiral
and diquark condensates in the widened coexisting phase.
For some choices of the NJL model parameter two critical
points show up along the phase boundary that signifies
crossover, first-order transition, and crossover again with
increasing temperature. We note that a similar phase dia-
gram with two critical points is suggested in the lattice
calculation of two-color QCD [12], though it seems to have
not been established yet. As mentioned in Ref. [8], the
vector-channel interaction could give a possible explana-
tion for this two-color phase structure with two critical
points.
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In this paper we will reveal another mechanism leading
to multiple QCD critical points; the electric-charge neu-
trality realized in � equilibrium can make chiral restora-
tion being smooth cross over at low temperature, so that an
analogous situation to Refs. [6,8] takes place. It is worth
remarking here that imposing the electric neutrality has a
similar effect on the thermodynamic potential to introduc-
ing the vector-channel interaction. One can understand this
in terms of the electric chemical potential �e, which we
define such that�e > 0 not for positron but electron. In the
model treatment without gauge fields a nonzero�e mimics
the role of A0 to neutralize the system. The point is that�e

enters the dynamics like the vector-channel interaction; a
vector-channel interaction �GVð �c��c Þ2 induces an ef-
fective (renormalized) chemical potential [9] which takes a
form,

�R ¼ �� 2GV � �q: (1)

Here GV > 0 represents the repulsive vector coupling con-
stant and �q is the quark number density, h �c�0c i. For
two-flavor QCD �e leads to a mismatch between the
u-quark chemical potential �u ¼ �� 2

3�e and the

d-quark one �d ¼ �þ 1
3�e. We shall use a notation, ��,

to denote the average chemical potential for u and d quarks
resulting in

�� ¼ �� 1
6�e: (2)

Comparing the forms of �R and �� above, one may well
anticipate that �e � 0 can be taken in effect as a repulsive
vector coupling for the bulk properties, in addition to
keeping the electric neutrality. In physics terms, the elec-
tric chemical potential realizing a finite electric-charge
density in part plays a role as a baryon chemical potential
on its own. This situation is drastically different from the
massless three-flavor case where the electric-charge gen-
erator happens to be traceless so that no coupling between
the electric charge and baryon fluctuations arises (i.e. no
term proportional to �e arises in �� in this case).

To the best of our knowledge the direct coupling be-
tween the quark density and the electric chemical potential
has drawn only little attention so far, though the vector-
channel interaction and the electric neutrality have been
investigated in separate contexts. In view of the results in
Ref. [8], which is produced solely by the vector interaction,
it is natural to expect that �e may also have a significant
impact on both the chiral and CSC phase transitions.

The purpose of this paper is to investigate this issue
seriously and depict an intuitive picture which opens a
possibility to drive more QCD critical points than only
one. We shall demonstrate our idea in the framework of the
two-flavor NJL model for concreteness. Indeed, the com-
petition between the chiral and diquark dynamics results in
zero, one, two, and three critical points depending on the
relative strength of the chiral and diquark couplings.

The paper is organized as follows. In Sec. II, the model
is introduced and the formalism is presented. The numeri-
cal results and discussions are given in Sec. III. The final
section is devoted to the summary and concluding remarks.

II. MODEL AND FORMALISM

We will explain the choice of the effective model, the
model parameters, and the resulting thermodynamic po-
tential in order. Since we adopt a standard description by
the NJL model, the experts could skip to our results in
Sec. III.

A. Model

Varieties of NJL-type models have been extensively
used to investigate the CSC phase transition at moderate
and large density [3] as well as at zero density [13,14]. For
the two-flavor case, the commonly used Lagrangian of the
NJL model reads

L NJL ¼ �c ði��@� � m̂0Þc þL �qq þLqq; (3)

where the chiral interaction part is

L �qq ¼ G½ð �c c Þ2 þ ð �c i�5 ~�c Þ2�; (4)

and the diquark part which is relevant to the mean-field
condensate (i.e. the spin, flavor, and color are all antisym-
metric) is

L qq ¼ H½ð �cC�5�2�A
�c TÞðc TC�5�2�Ac Þ�: (5)

Here, C ¼ i�0�2 stands for the Dirac charge conjugation
matrix, and G and H are the coupling constants for the
mesonic and diquark channels. The current quark mass
matrix is given by m̂ ¼ diagðmu;mdÞ in two flavors and
we shall work in the isospin symmetric limit with mu ¼
md ¼ m. We note that �A’s are the antisymmetric Gell-
Mann matrices (i.e. A runs over 2, 5, 7 only) for the color
SU(3) group and ~�’s are the Pauli matrices in flavor space.
For simplicity, the coupling constant in the vector chan-

nel is set to zero in this paper. The effect of the electric-
charge neutrality on the chiral phase transition, including
the Polyakov loop dynamics and the nonzero vector inter-
action, will be reported in our future work [15].
It deserves noting here that the scalar four-fermion

interactionL �qq in general consists of two types of different

interactions [13,14,16], that is,

L 1 ¼ G1½ð �c c Þ2 þ ð �c ~� c Þ2 þ ð �c i�5c Þ2
þ ð �c i�5 ~�c Þ2�; (6)

L 2 ¼ G2½ð �c c Þ2 � ð �c ~� c Þ2 � ð �c i�5c Þ2
þ ð �c i�5 ~�c Þ2�: (7)

Both interaction terms have the symmetry of SUð2ÞL �
SUð2ÞR � Uð1Þ, while the axial symmetry, UAð1Þ, remains
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only in L1. The UAð1Þ breaking part L2 belongs to the
instanton-induced (two-flavor ’t Hooft) interaction. In the
mean-field level the constituent quark masses in the pres-
ence of L1 and L2 are

Mu ¼ m� 4G1h �uui � 4G2h �ddi;
Md ¼ m� 4G1h �ddi � 4G2h �uui:

(8)

Therefore, in general, Mu � Md if there exists a chemical
potential mismatch between u quarks and d quarks by �e

and thus h �uui � h �ddi. If we introduce a parameter � to
relate G1 and G2 to G in a way that

G1 ¼ ð1� �ÞG; G2 ¼ �G; (9)

we notice that the standard Lagrangian (4) corresponds to
the case of � ¼ 0:5. In such a case, as is clear from Eq. (8),
the constituent mass of u quarks is always identical to that
of d quarks regardless of a difference in �u and �d. Once
we get ready to proceed to the numerical calculations, in
Sec. II C, we will check the dependence on � in a simple
case without diquark condensation. In any case, because
this paper aims to illustrate a general feature in the phase
structure, we shall stick to the simplest choice � ¼ 0:5
which makes no difference in the qualitative picture.

Then, there are four model parameters left; the current
quark mass m of u and d quarks, the coupling constants G
andH, and the three-momentum cutoff�. In this work, we
take the same parameters as in Ref. [17] which are fixed so
as to reproduce the three physical quantities in vacuum; the
pion mass m� � 140 MeV, the pion decay constant f� �
94 MeV, and the chiral condensate h �uui ¼ h �ddi �
�ð251 MeVÞ3 with
m¼ 5:5 MeV; G¼ 5:04 GeV�2; �¼ 0:651 GeV:

(10)

The corresponding constituent quark mass in vacuum is
325:5 MeV for this set of the model parameter. The stan-
dard value of the ratio H=G is 3=4 ¼ 0:75, which is
deduced by the Fierz transformation from the local
current-current interaction. In this paper, we rather treat
this ratio as a free parameter and shall perform a systematic
survey.

B. Thermodynamic potential with neutrality condition

In general, the quark chemical potential matrix �̂ takes
the form [18]

�̂ ¼ ���eQþ�3T3 þ�8T8; (11)

where � is the quark chemical potential (i.e. one-third of
the baryon chemical potential), �e is the chemical poten-
tial associated with the (negative) electric charge, and �3

and�8 represent the color chemical potentials correspond-
ing to the Cartan subalgebra in color SU(3) space. The
explicit form of the electric-charge matrix is Q ¼
diagð23 ;� 1

3Þ in flavor space, and the color charge matrices

are T3 ¼ diagð12 ;� 1
2 ; 0Þ and T8 ¼ diagð13 ; 13 ;� 2

3Þ in color

space. The chemical potentials for different quarks are
listed below:

�ru ¼ �� 2
3�e þ 1

2�3 þ 1
3�8;

�gu ¼ �� 2
3�e � 1

2�3 þ 1
3�8;

�rd ¼ �þ 1
3�e þ 1

2�3 þ 1
3�8;

�gd ¼ �þ 1
3�e � 1

2�3 þ 1
3�8;

�bu ¼ �� 2
3�e � 2

3�8;

�bd ¼ �þ 1
3�e � 2

3�8:

(12)

The four-quark interactions develop a dynamical quark
mass with nonzero chiral condensate as

M ¼ m� 	 ¼ m� 2Gh �c c i; (13)

while the diquark condensate � and antidiquark conden-
sate �� could appear at high enough baryon density. Here,
we follow the common treatment for two-flavor CSC that
the blue quarks do not take part in the Cooper pairing.
Using the standard bosonization technique, the mean-

field thermodynamic potential in the NJL model with the
diquark degrees of freedom as well as the electron contri-
bution takes the following form:

� ¼ 	2

4G
þ �2

4H
� 1

12�2

�
�4

e þ 2�2T2�2
e þ 7�4

15
T4

�

� T
X
n

Z d3p

ð2�Þ3 Tr ln
S�1
MFði!n; ~pÞ

T
; (14)

where the sum runs over the Matsubara frequency !n ¼
ð2nþ 1Þ�T and Tr is taken over color, flavor, and Dirac
indices. The inverse quark propagator matrix including
both the chiral and diquark condensates in the Nambu-
Gor’kov formalism is then given by

S�1
MFði!n; ~pÞ ¼ ½Gþ

0 ��1 ��5�2�2

����5�2�2 ½G�
0 ��1

� �
; (15)

with

½G�
0 ��1 ¼ �0ði!n � �̂Þ � ~� � ~p� m̂: (16)

Taking the Matsubara sum, we can express the thermody-
namic potential as usual as

�ð�e;�3;�8;	;�;�;TÞ ¼ 	2

4G
þ �2

4H
� 1

12�2

�
�
�4

e þ 2�2T2�2
e þ 7�4

15
T4

�

�X12
i¼1

Z d3p

ð2�Þ3 fEi þ 2T lnð1

þ e�Ei=TÞg; (17)

with the dispersion relations for six quasiparticles [that is,
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2 flavors� 3 colors; the spin degeneracy is already taken
into account in Eq. (17)] and 6 quasianti-particles. The
unpaired blue quarks have the following four energy dis-
persion relations:

Ebu ¼ E��bu; �Ebu ¼ Eþ�bu

Ebd ¼ E��bd; �Ebd ¼ Eþ�bd;
(18)

with E ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þM2

p
. In the rd-gu quark sector with pair-

ing we can find the four dispersion relations,

E�
rd-gu ¼ E� � 1

2ð�rd ��guÞ ¼ E� � 1
2ð�e þ�3Þ;

�E�
rd-gu ¼ �E� � 1

2ð�rd ��guÞ ¼ �E� � 1
2ð�e þ�3Þ;

(19)

and the ru-gd sector has another four as

E�
ru-gd ¼ E� � 1

2ð�ru ��gdÞ ¼ E� � 1
2ð�e ��3Þ;

�E�
ru-gd ¼ �E� � 1

2ð�ru ��gdÞ ¼ �E� � 1
2ð�e ��3Þ;

(20)

where E� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðE� ��Þ2 þ �2
p

and �E� ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðEþ ��Þ2 þ �2
p

. The average chemical potential is de-
fined by

�� ¼ �rd þ�gu

2
¼ �ru þ�gd

2
¼ ���e

6
þ�8

3
: (21)

For the two-flavor CSC case, the color charge corre-
sponding to the matrix T3 is always zero since the color SU
(2) symmetry is left unbroken for red and green quarks.
That means �3 ¼ 0. In contrast to that in the NJL model,
nontrivial coupling to the Polyakov loop might induce a
nonzero �3 in the case of the Polyakov loop augmented
NJL (PNJL) model [19,20], which is beyond the current
scope.

Since we know that �8 is much smaller than �e [18,21]
to neutralize two-flavor CSC matter, the positive �e=6 is
overwhelming in Eq. (21) so that we can neglect �8 in the

numerical calculation. The average chemical potential then
amounts to Eq. (2).
Minimizing the thermodynamic potential (17), we can

solve the mean fields 	 and � together with the chemical
potential �e from

@�

@	
¼ @�

@�
¼ @�

@�e

¼ 0: (22)

C. Dependence on � and the constituent quark mass
difference

For the cases with � � 0:5, as we have mentioned, Mu

should be different fromMd in the presence of nonzero�e,
which is apparent in Eq. (8). Figure 1 shows the depen-
dence on � in the behavior ofMu,Md, and�e as a function
of � at a fixed temperature T ¼ 5 MeV. We do not take
account of the diquark condensate for the moment. From
the figure we note the following two points: First, �e

becomes larger with increasing �, and the first-order phase
transition tends to occur at a higher chemical potential.
This means that the value of �e, which plays a role similar
to the vector interaction in the chiral phase transition, is
sensitive to the magnitude of the flavor-mixing interaction.
Second, in contrast to their absolute values of masses, we
see that the mass differences between u and d quarks are
sizable for � ¼ 0 and � ¼ 0:1, while the mass difference
becomes minor for � 	 0:2.
It should be noted that the strength of the flavor-mixing

interaction which originates from the UAð1Þ anomaly may
be small in comparison with the Uð2Þ � Uð2Þ symmetric
part, and it would be intriguing to explore its effect on Mu

and Md. We stress, however, that we should perform such
studies for the three-flavor case where the quantitative
effect of the UAð1Þ anomaly is more clearly seen in the

-
0 system (for instance [22]). In the present two-flavor
analysis, therefore, we shall only consider � ¼ 0:5 for
elucidating the effect of �e on the chiral and CSC phase

FIG. 1 (color online). The constituent quark mass difference between u and d quarks for � ¼ 0, 0.1, 0.2, 0.7, 0.9, where � is a
parameter to indicate the flavor-mixing interaction defined in Eq. (9). All results are obtained under the electric charge neutrality and
without diquark condensation.
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transitions. Actually, Fig. 1 shows that we can reasonably
ignore the difference between Mu and Md induced by �e

unless �< 0:2.
It is known that as the coupling constantGV of the vector

interaction increases, the whole critical or crossover line of
the chiral phase transition shifts toward larger chemical
potential and the critical point moves toward smaller tem-
perature and larger chemical potential, which disappears
eventually at a large value of GV [8–11]. Let us show that
the �e affects the phase diagram in a similar way as GV,
which is anticipated from Eqs. (1) and (2). To demonstrate
it clearly, we try to enhance the effect of �e artificially by
varying the u-quark electric charge Qu by hand as Qu ¼
jej, 2jej=3, jej=3, while keeping the d quarks unchanged:
The case of Qu ¼ jej=3 corresponds to the situation with
no net effect on the average chemical potential. The real
world is Qu ¼ 2jej=3. We can induce a further large net
shift in the average chemical potential by taking Qu ¼ jej.
Figure 2 shows that the critical point shifts from ðT;�Þ ¼
ð36 MeV; 332 MeVÞ for Qu ¼ jej=3 to ðT;�Þ ¼
ð24 MeV; 345 MeVÞ for Qu ¼ 2jej=3, and eventually dis-
appears from the phase diagram when we chooseQu ¼ jej.
These results are quite reminiscent of the effects of chang-
ing GV discussed in the literature [8–11].

III. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we shall discuss the effect of electric-
charge neutrality in � equilibrium on the phase structure
with the CSC phase as well as with the chiral transition
taken into consideration. We shall show that the �e in-
duced by the neutrality constraint gives rise to a phase
structure with multiple critical points, and the number of
the critical points can be zero, one, two, and three.

Before presenting our numerical results, we shall give an
intuitive account of the mechanism which causes the phase
diagram with multiple critical points. We depict a sche-
matic sketch in Fig. 3 which is useful to explain what
would be anticipated in advance. There is a terminal point
of the first-order phase boundary, that is the QCD critical

point located at D, as long as the coupling ratio H=G is
small and hence the neutrality constraint is not significant.
When the coupling ratioH=G becomes substantially large,
the critical line of the first-order phase transition is
breached by the induced �e in the CSC phase, and there
appear two more edges in the critical line of the first-order
transition; the new critical points are denoted as E and F.
Here we notice that there exist three critical points as a
whole. So to speak, the first-order line attached to F is a
‘‘survivor’’ transition that surpasses the diquark effect at
sufficiently low temperature where the first-order chiral
transition remains strong. The first-order line D-E is, on
the other hand, to be regarded as a ‘‘remnant’’ where the
diquark condensate almost melts and would hardly affect
the chiral transition. For a largerH=G, the survivor may be
gone and then the two critical pointsD and E are left on the
phase diagram. If we further increase H=G, all the first-
order transitions of chiral restoration and all the critical
points are washed away eventually.
In the subsequent subsections we shall present numeri-

cal results and see that what is described above is actually
the case. For convenience we shall adopt the same nota-
tions as those in Ref. [6] to distinguish the different regions
on the T-� phase diagram; NG, CSC, COE, and NOR refer
to the hadronic (Nambu-Goldstone) phase with 	 � 0 and
� ¼ 0, the color-superconducting phase with � � 0 and
	 ¼ 0, the coexisting phase with 	 � 0 and � � 0, and
the normal phase with 	 ¼ � ¼ 0, respectively, though
they have exact meaning only in the chiral limit. In fact, as
seen from our results such as Figs. 5(b), 7(b), and 8, and so
on, M stays 10
 100 MeV even in CSC but near COE.

A. The case of intermediate diquark coupling

We first consider the standard ratio H=G ¼ 0:75, which
is usually referred to as the ‘‘intermediate’’ diquark cou-
pling strength. Two phase diagrams with and without the
charge-neutrality constraint are presented in Fig. 4; hence-
forth, the thick solid curve, the dashed curve, and the thin
solid curve in the T-� plane stand for the critical lines of
first-order phase transition, smooth crossover, and second-
order phase transition, respectively. Since the magnitude of

FIG. 2 (color online). The phase diagram for the chiral phase
transition under the electric-charge neutrality. The solid line
(dashed line) represents the first-order transition (smooth cross-
over) and the filled circle dot locates the QCD critical point.

µ µ µ µ

smaller H/G larger H/G

D D D

E
E

F

FIG. 3. The schematic change of the phase structure with
increasing H=G from the left to the right. The solid and dashed
lines represent the first-order transition and crossover, respec-
tively. The number of the critical points depends on H=G.
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�8 is very small [21], as we have mentioned, we ignore it
in the numerical calculation. We have checked that non-
zero �8 has only a minor effect on our main results.

Both panels in Fig. 4 show that all the four phases, i.e.,
NG, CSC, COE, and NOR are realized in the phase dia-
gram. The upper triple point at which the NG, CSC, and
NOR phases encounter happens to be the critical point D
for the chiral-to-CSC phase transition.

Figure 4(a) shows that the chiral phase transition keeps
of first order at low temperatures even with the emergence
of a COE phase when the charge-neutrality condition is not
imposed. We remark that similar phase diagrams were
obtained in the previous works [8,24–26] without imposing
the charge-neutrality constraint in the NJL model, the
instanton-based models, and the random matrix model.

In contrast to Fig. 4(a), one finds an unconventional
phase structure in Fig. 4(b) where the charge-neutrality
constraint is imposed: The would-be critical line for the
first-order transition is terminated at two points E and F,
between which the phase transition becomes crossover
from COE to CSC. Hence there exist three distinct critical
points, D, E, and F, as a whole. Although a possible phase
structure with two critical points was suggested previously
[6,8], the present work is the first model study that shows
possible existence of three critical points in the QCD phase
diagram.

In addition to the appearance of the three-critical-point
structure, the following points are notable in Fig. 4(b):

(i) The critical line for the first-order chiral phase tran-
sition in the low-temperature region is shifted con-
siderably toward higher quark chemical potential.
Furthermore, the critical pointD is somewhat shifted
to lower T and higher �; ðT;�Þ ¼
ð42 MeV; 330 MeVÞ ! ð33 MeV; 341 MeVÞ.
These are to be understood as the same effect of �e

as we mentioned in the explanation of Fig. 2.
(ii) The coexisting region is widened both in the T and�

directions. The lower triple point of NG, COE, and
CSC, labeled as E0 in Fig. 4(a) and E in 4(b), moves

toward higher T and �; ðT;�Þ ¼
ð5 MeV; 333 MeVÞ ! ð25 MeV; 343 MeVÞ.

It is not difficult to understand the emergence of a
smooth crossover for the chiral phase transition in the
low-temperature region of the phase diagram when the
diquark pairing is taken into account. The positive �e first
considerably reduces the discontinuity in the constituent
quark mass at the first-order transition, and then the com-
petition between the chiral and diquark condensates leads
to the complete disappearance of the discontinuity. This
situation is similar to what happens with the vector inter-
action as described in Ref. [8]; in Ref. [8], though the
charge-neutrality condition is not imposed, a similar phase
diagram to ours is obtained and the enlargement of the
coexisting phase is attributed to the enhanced competition
between the chiral and diquark condensations by the vector
interaction.
Now let us discuss the mechanism for realizing the

three-critical-point structure shown in Fig. 4. For this
sake, we also show, in Fig. 5, the � and T dependence of
M, �, and �e in the upper and lower panels, respectively.
We see the nature of the chiral phase transition from low to
high temperatures in order.
(1) In the low-temperature region below the critical

point F, we have a first-order transition from the
COE to CSC phase, as shown in Fig. 4(b). This
feature is also clearly exhibited in the first panel of
Fig. 5(a) and the fourth panel in Fig. 5(b) both of
which show discontinuous jumps in the physical
quantities. This result can be interpreted as follows:
in this low-temperature region, the chiral conden-
sate even in the COE phase has a rather large value
and dominates over the diquark condensate at
present diquark coupling H=G ¼ 0:75. We should
notice that the diquark condensate smears the Fermi
surface like at finite temperature, which in turn tends
to make the chiral transition weak [8]. In short, the
effect of the diquark condensate is not yet strong
enough in this temperature region to convert the

(a) (b)

FIG. 4 (color online). The phase diagrams for the intermediate coupling constant H=G ¼ 0:75, including the diquark condensate.
The left (a) [right (b)] panel corresponds to the case without (with) enforcing the charge neutrality. In the left figure the unstable region
is indicated by the dotted curve (see the discussion in Sec. III D).
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first-order chiral phase transition to a smooth cross-
over. We identify this remaining first-order transi-
tion a survivor of the chiral transition which should
be first order without the diquark condensate.

(2) Figure 4(b) shows that at intermediate temperatures
between E and F, the chiral transition becomes
smooth. The underlying mechanism for this may
be understood from an unusual temperature depen-
dence of the diquark condensate in the relevant
chemical potential region. In fact, as shown in the
third panel of Fig. 5(b), the diquark condensate
increases as T is raised for a fixed �. This is due
to the combined effects of the charge-neutrality
constraint and the temperature [21]: The neutrality
constraint causes mismatched Fermi spheres for the
quarks involved in the pairing, which unfavors the
pairing, especially at small temperatures. At larger
temperature, the mismatched Fermi surfaces are
smeared enough to allow for the significant number
of the quarks involved in the pairing, and hence the
diquark condensate can develop. Besides, the chiral
condensate decreases in a monotonic way with in-
creasing temperature, and a smaller quark mass
favors the formation of the diquark condensate be-
cause of a larger Fermi surface at a fixed�. Thus the

effect of the diquark condensate may overwhelm the
chiral condensate at intermediate temperatures,
which suppresses discontinuity in the chiral phase
transition which turns to crossover.

(3) In the still higher temperature region, we find that
the phase transition comes back to first order from
NG to CSC, which is between D and E in Fig. 4(b).
These features can be understood as follows. First,
we note thatD is attached to the critical line where�
melts, and the diquark condensate decreases along
D-E with the increasing temperature, as shown in
the second panel of Fig. 4(b). It means that the chiral
condensate dominates over the diquark pairing in
this region. Thus the original feature of the chiral
transition without the diquark condensation is intact
there, and COE does not appear. We see that the
chiral restoration remains of first order as shown in
the third panel of Fig. 5(a) and the second panel of
Fig. 5(b). In short, the first-order transition in this
region is a remnant of the chiral restoration existing
without the effect of the diquark pairing.

(4) For even higher temperatures than D, the chiral
transition is a crossover and the condensates only
show smooth behavior as seen in the fourth panel of
Fig. 5(a) and the first panel in Fig. 5(b) where the

(a)

(b)

FIG. 5 (color online). M,�, and�e as functions of the chemical potential in (a) and the temperature in (b) forH=G ¼ 0:75 under the
condition of electric-charge neutrality.
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second-order nature of the CSC transition is also
exhibited.

B. The case of strong diquark coupling

We next choose H=G ¼ 0:8 and H=G ¼ 0:875 as ex-
amples for the ‘‘strong’’ coupling case and present the
corresponding phase diagrams in Fig. 6. One can see
that, with increasing diquark coupling constant, the three-
critical-point structure is first replaced by the two-critical-
point structure and eventually the whole chiral phase tran-
sition becomes crossover. The phase boundary of the CSC
phase is always a critical line of second-order transitions,
which would be altered by gauge field fluctuations [27].

In contrast to Fig. 4(b), Fig. 6 shows that, as H=G
increases, the critical lines for the chiral and diquark phase
transitions shift toward the lower chemical potential direc-
tion and the COE region is relatively enlarged. This is a
natural result since the enhanced diquark condensate more
strongly suppresses the chiral condensate. It is interesting
that the enhanced diquark condensate first converts the
survivor line existing at intermediate coupling into cross-
over as noticed from Fig. 6(a) and then melts the remnant
line down to crossover as shown in Fig. 6(b). This means
that in the COE region the diquark condensate plays a
dominant role over the chiral condensate and the original
nature of the chiral transition fails to survive at low tem-
perature. We remark that the two-critical-point structure in
Fig. 6(a) is topologically the same as what was reported in
Ref. [8], which may further illustrate an analogy between
the positive �e and the repulsive vector interaction.

The dependence of M, �, and �e on � (or T) for
different fixed T (or �) with H=G ¼ 0:8 is presented in
Fig. 7(a) (or 7(b)). All the figures show that all the physical
quantities behave in accord with the above picture.

Figure 8 shows M, �, and �e as functions of T at four
fixed chemical potentials at H=G ¼ 0:875. We find that
both the remnant and the survivor are breached by the large
diquark condensate and no first-order transition remains.
We only notice that Fig. 8 shows again the unusual tem-
perature dependence of the diquark condensate, especially

in the COE region; the diquark condensate is an increasing
function of T in the low-temperature region, and then it
decreases in the higher temperature region. The mecha-
nism for this peculiar behavior of the diquark condensate
has been accounted for in the last subsection. It is worth-
while to note that the fourth panels in Figs. 7(b) and 8 show
that, if the diquark coupling is strong enough so that� � 0
at T ¼ 0, the nonmonotonous behavior of the gap energy
exists no more, which only decreases with increasing
temperature.

C. The case of weak diquark coupling

In this subsection, we present and discuss the phase
diagrams for ‘‘weak’’ diquark coupling choosing H=G ¼
0:7 and 0.6875. As we will see, weakening the diquark
coupling can lead to an unexpected complication in the
phase diagram owing to the interplay between the chiral
and diquark correlations, which is enhanced by the charge-
neutrality constraint.
Figures 9(a) and 9(b) are the phase diagrams forH=G ¼

0:7 and 0.6875, respectively. Figure 9(a) shows that the
smooth crossover line E-F seen in Fig. 4(b) shrinks in a
way that the critical point F meets E at E0 on Fig. 9(a).
Then, the three-critical-point structure is replaced by the
usual one-critical-point structure. This is because the mag-
nitude of the diquark condensate is too small to turn the
chiral transition into crossover.
Let us briefly discuss a notable point that, for H=G ¼

0:6875, the critical point D and the triple point denoted by
D0 can become separate. It seems that, as long as the
diquark coupling is larger than a certain critical value,
there is a mechanism to make D and D0 coincide. A similar
observation is reported in the 2þ 1 flavor case too [28]. If
H=G is lowered further, our numerical calculation results
in the shrinking COE and the enhancing (low-T) NOR
regions.
Although we can recognize an intriguing structure in

Fig. 9(b) in comparison to (a)—the emergence of a NOR
‘‘island’’ surrounded by the CSC phase at low T—we will
not take a close look into this region. This is because the

(a) (b)

FIG. 6 (color online). The phase diagrams for the strong diquark couplings H=G ¼ 0:8 (a) and H=G ¼ 0:875 (b) under electric-
charge neutrality. The unstable region is indicated by the dotted curve as previously.
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newly arising NOR phase and the triple pointG in Fig. 9(b)
are located deeply in the unstable region, the boundary of
which is indicated by the dotted curve. We shall address the
instability problem in the next subsection.

D. Chromomagnetic instability

It has been known that the homogeneous CSC state
could suffer from instability [29–33] when the Fermi sur-

face mismatch grows comparable to the pairing gap. The
instability occurs in various channels simultaneously [34],
among which the transverse gluon field triggers the chro-
momagnetic instability. We can theoretically perceive the
instability by the negative Meissner screening mass
squared (or pure imaginary Meissner mass). In Figs. 4(b),
6, and 9 we have located the unstable region given by the
condition that either of eight gluons has negative Meissner

(a)

(b)

FIG. 7 (color online). M, �, and �e as functions of the chemical potential in (a) and the temperature in (b) for H=G ¼ 0:8 under the
condition of electric-charge neutrality.

FIG. 8 (color online). M, �, and �e as functions of the temperature for H=G ¼ 0:875 under the condition of electric-charge
neutrality.
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mass squared. In what follows let us first explain how we
calculate the Meissner mass.

In the two-flavor case the analytical expressions for the
Meissner mass are available in the hard dense loop (HDL)
approximation [29,35]. In our evaluation we have utilized
them with our model parameters substituted to the formu-
lae. We draw the dotted curves in Figs. 4(b), 6, and 9 in this
way. At the same time we have carried out the brute-force
computation by means of the potential curvature with
respect to the gauge field source [33]. This calculation is
necessary for the numerical check of the consistency be-
tween the HDL in Ref. [35] and the approximation made in
this work. We have in fact confirmed the consistency in the
case that we keep using a sharp three-momentum cutoff
� ¼ 651 MeV. It should be mentioned that how to renor-
malize the unphysical cutoff dependence is not yet known
in a field-theory manner [30]. Our prescription is motivated
in accord with the NJL model treatment, while a larger �
would make the unstable regions smaller. In this sense,
even though the dotted curves in Figs. 4(b), 6, and 9 might
move downward, the cutoff dependence would not affect
the stable regions above them.

We show the Meissner masses squared for the fourth and
eighth gluons at H=G ¼ 0:75 as functions of � in Fig. 10.

We note that the Meissner mass squared changes rapidly
from NG to COE leading to the chromomagnetic instabil-
ity in the high-� and low-T region of COE and CSC as
indicated by the dotted curve in Fig. 4(b).
Figures 4(b) and 6(a) tell us that two critical points

associated with the D-E line are outside the unstable
region. However, the instability analysis solely cannot
tell the fate of another critical point F in reality. In fact,
there are two possibilities to accommodate three critical
points; one is that the unstable region may shrink to lower
temperature if the cutoff is taken large and the other is that
some other H=G value may push F up above the unstable
region. The latter case can been confirmed in the current
model study when H=G is located in a narrow region near
but below 0.75. To settle the robustness of F, we have to go
into the identification of the true ground state inside the
unstable region.
There are some attempts to overcome the chromomag-

netic instability. The instability has a favorite direction
leading to the (colored) Larkin-Ovchinnikov-Fulde-
Ferrell (LOFF) state [34,36,37] (or spontaneous current
generation [38,39], which shares the same mathematical
structure with the colored plane-wave LOFF description
[40]). We note that the gluonic phase [41] with one gluon

(a) (b) (c)

FIG. 10 (color online). Meissner masses squared as functions of � for different temperatures withH=G ¼ 0:75. All the results are in
the unit m2

g ¼ 4�2
s ��

2=ð3�Þ.

(a) (b)

FIG. 9 (color online). The phase diagrams for the weak diquark couplings H=G ¼ 0:7 and H=G ¼ 0:6875 under electric-charge
neutrality. The boundary of the unstable region is indicated by the dotted curve as previously.
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condensate can translate into the plane-wave LOFF state,
while a more stable gluonic phase with multiple gluon
condensates has a chance to surpass the LOFF state [42].
The stable-unstable boundary we drew on the phase dia-
gram can be regarded as a second-order phase transition
line from the homogeneous CSC phase to one of these
inhomogeneous states. Therefore, even though F in Fig. 4
(b) is overridden by the instability or the second-order
phase transition, the physical consequence is very similar
to the three-critical point structure, that is, one of the
critical points is replaced by the critical line.
Interestingly enough, then, Fig. 6(a) is indistinguishable
from Fig. 4, meaning that the three-critical point (or line)
interpretation is in effect elongated for a wider range of
H=G due to the chromomagnetic instability.

E. Discussions

In the previous subsections, we have given a detailed
account for four possible scenarios for the critical point
structure with the influence of the diquark condensate
under the electric-charge neutrality. For the model parame-
ters adopted here, numerical calculations suggest that the
three-critical-point structure of the phase diagram appears
in the range 0:735 & H=G & 0:767, while the two-critical-
point structure in the range 0:767 & H=G & 0:82. For the
stronger coupling region H=G * 0:82, the chiral phase
transition remains crossover, while for the weaker coupling
region H=G & 0:735, only one-critical-point structure
appears.

We have checked that the region with multi-critical-
point structure is slightly modified quantitatively when
nonzero �8 is taken into account; the range 0:745 &
H=G & 0:772 corresponds to the three-critical-point struc-
ture and 0:772 & H=G & 0:80 to the two-critical-point
one. Thus we can conclude that our main results on the
novel phase structures are not altered even when the color-
charge neutrality is fully incorporated although the pa-
rameter range leading to the multi-critical-point structure
may be somewhat narrowed.

It should be noted that the multi-critical-point structure
was not pointed out in the previous works such as Ref. [28]
where the electric neutrality and the dynamical quark mass
were simultaneously considered for 2þ 1 flavor quark
matter. Since the strange quark mass is still as large as
the quark chemical potential near the chiral phase transi-
tion, the u and d quarks should play the dominant role in
the vicinity of this region. Then, what causes the difference
in the phase diagram? We have found that the appearance
of the multi-critical-point structure is sensitive to the value
of the constituent quark mass in the vacuum. In the present
study the vacuum constituent quark mass for light quarks is
325.5 MeV, while it is 400 MeV in Ref. [28]. Notice that
the larger the constituent quark mass is, the smaller the
Fermi sphere becomes, disfavoring the diquark pairing for
a given �. Therefore, in Ref. [28], the strong first-order

chiral transition at low temperature is hardly affected by
the diquark even with �e, which could make the chiral
transition smooth. However, in turn, it suggests the possi-
bility that the multi-critical-point structure may appear
even with the large constituent quark mass adopted in
Ref. [28] if the repulsive vector interaction is also included,
which is rather close to the realistic situation.

IV. CONCLUSIONS AND OUTLOOK

In this paper, we have explored the effect of electric-
charge neutrality in � equilibrium on the chiral phase
transition with and without considering the diquark con-
densate within a simple two-flavor NJL model.
We first disclosed the similarity of the roles on the chiral

phase transition played by the positive electric chemical
potential and the repulsive vector interaction as follows:
(1) Both of them make the chiral critical line at low
temperature shift toward larger quark chemical potential
and effectively weaken the first-order chiral phase transi-
tion. (2) Both of them effectively enhance the competition
between the chiral and diquark condensates.
In some model parameter region, including the diquark

condensate, the combination of these two properties can
result in the emergence of the two-critical-point structure
for the chiral phase transition in the electric-charge neutral
case. It is noticeable that the magnitude of the repulsive
vector interaction in Ref. [8] was an assumption although
the existence itself of such an interaction has a generic
foundation; on the other hand, the positive electric chemi-
cal potential in this paper is self-consistently determined
by the physical requirement that the bulk matter must be
under the charge-neutrality condition.
Besides two nontrivial effects mentioned above, our

investigation also showed a quite unconventional three-
critical-point structure for the chiral phase transition.
This result is directly associated with the abnormal behav-
ior that the diquark energy gap can increase with increasing
temperature in the coexisting region for a certain range of
T-� and H=G, which is possible under the tangled influ-
ences of electric-charge neutrality and the interplay be-
tween the chiral and diquark condensates. To our
knowledge, so far, this is the first case which concretely
demonstrates the three-critical-point structure for the chiral
phase transition. Although this result with three critical
points could be sensitive to the model parameter choice, it
definitely gives a hint that there may exist a possibility that
the complexity in QCD allows for more complicated phase
boundaries associated with the chiral phase transition.
Moreover we have studied the chromomagnetic instability
and found that the three-critical-point scenario may be
taken over by the structure with two critical points and
one critical line. Our result also has a meaningful implica-
tion for the study of phase transitions leading to a coexist-
ing phase involving superconductivity in condensed matter
physics when external conditions are enforced to the sys-
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tem like the neutrality constraint causing the mismatched
Fermi surfaces.

In view of the common effects on the chiral phase
transition by the positive �e and the repulsive vector
interaction GV, it is natural to expect that the influences
mentioned above will be greatly enhanced when these two
aspects are considered simultaneously. It is expected that
the three-critical-point structure may extend to a weaker
coupling region in the presence of the vector interaction,
although the number of the critical points might change in
a different way from that depicted in Fig. 3 when the vector
coupling is increased.

In addition, the confinement-deconfinement phase tran-
sition at finite temperature and density is still poorly under-
stood inside the CSC phase, that is because of the lack of
confinement in the NJL-type model. Recently the PNJL
was proposed [43,44] and had been extensively used to
study the thermal properties and the phase transition of
QCD [17,19,20,45–51]. It is interesting to investigate
whether the results obtained in this paper are also true
when including the Polyakov loop dynamics. Practically,
the PNJL model tends to push the location of the critical

point up toward the higher temperature region. That means
a detailed structure observed in this work could be magni-
fied by the Polyakov loop. More details on these two issues
will be reported in our future publication [15], and in fact,
we have already verified that the multi-critical-point struc-
ture still exists when the Polyakov loop effect is taken into
account.
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