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We revisit the effect of CP violating anomalous top-quark couplings in t�t production and decay. We

consider t�t production through gluon fusion (and light q �q annihilation) followed by top-quark decay into

bW or b‘�. We find explicit analytic expressions for all the triple products generated by the anomalous

couplings that fully incorporate all spin correlations. Our results serve as a starting point for numerical

simulations for the CERN LHC.
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I. INTRODUCTION

With the upcoming start of the CERN LHC, it is timely
to revisit the question of CP violation searches in high
energy observables. A particularly useful concept for these
searches is that of inclusive observables such as those
defined in terms of jet momenta in Ref. [1]. These permit
the construction of ‘‘null tests’’: that is, observables that
vanish in the limit of CP conservation. Many examples
have been studied for p �p and eþe� colliders in detail [2].
These observables take the form of triple product correla-
tions which we refer to as ‘‘T odd’’ because they change
sign under the reversal of direction of all three momenta
and are not necessarily CP odd.1

At the LHC, the pp initial state is not a CP eigenstate.
Nevertheless, it is possible to construct a null test of CP by
focusing on a suitable final state. For example, in Ref. [3]
we illustrated that this was possible by studying a triple
product correlation inH ! t�t ! b �bWþW� that originates
in a spin correlation in t�t production. In this case the
reaction with the good CP properties is the Higgs decay,
and the LHC is viewed as a Higgs factory. We then
extended that idea to the same final state without the
intermediate Higgs. For this purpose we considered the
LHC to be a t�t factory and then worked with this as the
initial state. In particular at LHC energies, t�t production via
gluon fusion is dominant; and it is possible to construct the
null tests for the reaction gg ! t�t (or to consider subse-
quent t decay). The gg initial state is not a CP eigenstate,
but summing over the gluon color and spin degrees of
freedom can produce truly CP-odd observables much in
the same manner as the jet observables of Ref. [1]. This
was illustrated in Ref. [3] using the simple example of a
Ht�t induced CP violation. Of course, even in this case the
remnants of the two initial protons are not a CP eigenstate
and could conceivably fake a given CP-odd asymmetry.
Although this type of background must eventually be

studied, for now we assume that the t�t state can be cleanly
identified.
In this paper we extend the study of Ref. [3] to consider

the case of dimension five, CP violating, anomalous top-
quark couplings. This case describes in principle all mod-
els in which there are no new particles [beyond those
already present in the standard model (SM)] within reach
of the LHC. It does not result in very large signals, but it
illustrates the kind of observables that can be constructed
for other models.
CP violating anomalous tbW couplings have been con-

sidered in the literature before. The ones we use here were
originally defined in Ref. [4]. Several aspects of these
couplings have been studied in connection to hadron col-
liders [5–8], including a detailed numerical study of the
ATLAS sensitivity [9], and also in the context of eþe�
colliders [10]. The anomalous couplings have also been
studied at length without special emphasis on CP violating
observables [11]. A recent numerical study of the ATLAS
sensitivity to these couplings is Ref. [12].
The main new result from our calculation is a complete

analytic expression for all the T-odd correlations in the
process gg ! t�t ! b �b‘þ�‘� ��. These analytic expres-
sions are relatively simple and fully incorporate all the
spin correlations behind the observables. They are well
suited for implementation in simulations that use the
narrow-width approximation for both the top-quark and
W propagators.

II. MIXED HELICITY FRAMEWORK FOR
gg ! t �t ! b �bWW

The dominant mechanism for production of t�t pairs at
the LHC is gluon fusion and we concentrate on it now. For
this source of t�t pairs there are four relevant diagrams
shown in Fig. 1 that we will consider. The first three
diagrams are the usual s, t, u channels in the SM. We
will also consider the possibility of CP violation in the ttg
vertex as described below. In general, there is also a CP
violating effective ttgg vertex, the fourth diagram. A con-
venient way to calculate the CP asymmetry is to consider
the process as in Fig. 2 in the parton CM frame and use a
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mixed method of helicity amplitudes and traces of Dirac
matrices as we described in Ref. [3]. The top-quark pair
production by the four diagrams in Fig. 1 is represented by
�P in Fig. 2. The t and �t decays into bW are represented by
�D; �D. We will consider two cases: first, we treat theW as a

final state, an approximation useful to describe hadronicW
decays where no correlations involving the decay products
of the W are observed; and second, we allow the W to
decay into ‘�with a standard model vertex. The amplitude
can then be written schematically as

M ¼ � �ub�Dðp6 t þmtÞ�Pð�p6 �t þmtÞ� �Dv �b

ðp2
t �m2

t Þðp2
�t �m2

t Þ
: (1)

We now split the production and decay processes using
helicity amplitudes and replace the numerator of the top-
quark (and anti–top-quark) propagator with a sum over
polarizations. We work within the narrow-width approxi-
mation for the t and �t decays; and, therefore, these polar-
ization sums refer to on shell t�t states. Notice, however,
that this procedure preserves the full spin correlations. As it
turns out, the CP-odd observable arises from the interfer-
ence of amplitudes in which the intermediate states have
different helicities. Since the b and the �b polarizations are
not observable, we sum over them immediately after squar-
ing the amplitude. Similarly, we sum over the W polariza-
tion for the case of W final states or over the ‘ and �
polarizations for the case when the W decays leptonically.
We thus write

jMj2 ¼
�

�

mt�t

�
2
�ðp2

t �m2
t Þ�ðp2

�t �m2
t Þ

X
�;�0;�;�0

T tð�0; �Þ

�T �tð�;�0ÞT Pð�;�; �0; �0Þ; (2)

where we have defined the helicity factors

T tð�0; �Þ � ð �ut�0�0�y
D�

0p6 b�Dut�Þ;
T �tð�;�0Þ � ð �v�t�� �Dp6 �b�

0�y
�D
�0v�t�0 Þ;

T Pð�;�;�0; �0Þ � ð �ut��Pv�t� �v�t�0�0�y
P�

0ut�0 Þ:
(3)

To proceed, we consider several cases separately in what
follows.

III. CP VIOLATION IN THE PRODUCTION
VERTEX

We first study CP violation in the production vertex,
taking the decay vertices to proceed as in the standard
model. CP violation will be due to an effective dipole
moment anomalous coupling of the top-quark defined via
the Lagrangian

L cdm ¼ �igs
~d

2
�t����5tG

��; (4)

where gs is the strong coupling constant and G�� is the
usual field strength tensor. This Lagrangian modifies the
standard model top-quark couplings to gluons as follows
(for incoming gluons that carry momentum q):

gt�t ! �igs
�a

2
ð�� þ ~d���q

��5Þ;
ggt�t ! i��s½�b; �c�~d����5:

(5)

The production factor becomes, summing over the gluon
helicity �1;2,

T Pð�;�; �0; �0Þ ¼ 1

4

g4sCij

64

X
�1;�2

MPið�1; �2; �; �Þ

�M?
Pjð�1; �2; �

0; �0Þ; (6)

where MPi represents the helicity amplitudes for gg ! t�t
from channel i ¼ s, t, u; the factor 1=4 accounts for the
average over gluon helicities; and Cij=64 accounts for the

color factor. Given the color structure of the effective
vertices in Eq. (5), these color factors are the usual ones
for gg ! t�t, namely2:

Css ¼ 12; Cst ¼ 6; Csu ¼ �6;

Ctt ¼ Cuu ¼ 16

3
; Ctu ¼ � 2

3
:

(7)

The new, seagull diagram has the same color structure as

FIG. 2. Decomposition of t�t production and decay vertices
with helicity amplitudes.

FIG. 1. Diagrams responsible for CP asymmetry in top-quark
pair production via gluon fusion: s channel, t channel, u channel
and seagull.

2The signs of these are defined by writing the amplitude as
M ¼ Ms½Ta; Tb� þMtTaTb þMuTbTa.
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the s-channel diagram; hence, its associated color factors
are the same as the corresponding ones for the s-channel
amplitude. For our calculations we treat it as part of the
s-channel amplitude. The helicity amplitudes correspond-
ing to the production process are standard and can be found
in the literature. For example, our amplitudes (including
the anomalous top-quark coupling) agree with those in
Ref. [13]. As it turns out, this way of splitting the calcu-
lation simplifies it sufficiently that no explicit helicity
amplitudes are needed.

For the decay factors we consider several cases.

A. W� final states

We begin by considering the case where theW is treated
as a final state. We thus assume that its momentum can be
reconstructed but not its polarization. That is, no angular
correlations involving theW decay products are measured.
To consider this case we use the standard model vertex

�D ¼ g

2
ffiffiffi
2

p ��ð1� �5Þ	?�Wþ ; (8)

the corresponding SM vertex � �D and sum over the W�
polarization to obtain

T tð�0; �Þ ¼ g2

4
�ut�0

�
�mt

�
1� m2

t

M2
W

�
þ p6 b

�
2� m2

t

M2
W

��

� ð1� �5Þut�;

T �tð�;�0Þ ¼ g2

4
�v�t�

�
mt

�
1� m2

t

M2
W

�
þ p6 �b

�
2� m2

t

M2
W

��

� ð1� �5Þv�t�0 : (9)

In these two factors only the terms proportional to p6 b and
p6 �b contribute to the T-odd correlations.

Combining all the different factors, we arrive at the final
result. When we use the expressions in Eq. (9) in combi-
nation with the production factors of Eq. (6), it is possible
to turn the sum over t and �t polarizations back into traces
and compute the trace directly. It is also possible to obtain
our results by using explicit helicity amplitudes to sum
over the intermediate states. We have checked our results
by computing them with both methods.

Interestingly, we find that the T-odd correlations gener-
ated in this case are truly CP odd and that they can be
expressed in a factorized form: as a product of form factors
that depend only on the gg ! t�t production kinematic
quantities s, t, u, and certain triple product correlations
involving the momenta in the t (�t) decay chains as well as
the beam direction p1 � p2. Moreover, the asymmetries
are quadratic in this beam direction, ensuring their inde-
pendence from the choice of p1 between identical particles
in the initial state.

We express our results for the triple products with a
generic structure involving the parton four-momentum
sum and difference P � p1 þ p2 and q � p1 � p2; the

top antitop momenta; and one momentum vector pD and
p �D from the t and �t decay products, respectively. From the
invariant matrix element squared, we show only those
terms that lead to triple product correlations. All such
terms arise from the interference between the standard
model amplitude and the CP violating anomalous cou-
plings3:

jMj2CP¼C1ðs;t;uÞq � ðp�t�ptÞ	ðpt;p�t;pD;p �DÞ
þC2ðs;t;uÞðP �pt	ðpD;p �D;p�t;qÞ
þP �p�t	ðpD;p �D;pt;qÞÞþC3ðs;t;uÞ
�ðP �pD	ðp �D;pt;p�t;qÞþP �p �D	ðpD;pt;p�t;qÞÞ:

(10)

This form exhibits explicitly the symmetry between t and �t
momenta, but it is also possible to simplify it further. For
example, the factor in front of C1 is just q � ðp�t � ptÞ ¼
t� u; and similarly the factor multiplying C2 can be
written as s	ðpD; p �D; P; qÞ=2. The three form factors that
appear in Eq. (10) are independent as we have verified both
with the use of all relevant Schouten identities [14] and by
explicitly constructing them in the parton center of mass
frame. Using Schouten identities such as the one in the
appendix, it is possible to rewrite them in different ways.
For the case discussed in this subsection, the decay mo-
menta entering Eq. (10) are

pD ! pb; p �D ! p �b: (11)

There are s-, t-, u-channel contributions to the correla-
tions, and we present results separately for three different
cases. All the form factors include the overall factor

Kbb � ð�2�2
sg

4Þ
�
2� m2

t

M2
W

�
2
�

�

mt�t

�
2

� �ðp2
t �m2

t Þ�ðp2
�t �m2

t Þ: (12)

The contribution from the s-channel amplitude squared
is

Cs
1ðs; t; uÞ ¼ Cs

2ðs; t; uÞ ¼ Cs
3ðs; t; uÞ ¼

3

2
~dKbbmt

ðt� uÞ
s2

:

(13)

Notice that both the form factors in Eq. (13) and the
correlations they multiply in Eq. (10) are odd under the
interchange of p1 $ p2. The combined effect being even
under this interchange will not vanish after convolution
with the parton distribution functions.
The second contribution is that of the t and u channels.

Adding up their squared amplitudes as well as the inter-
ference between them, we obtain

3Here we use the Levi-Civita tensor contracted with four
vectors 	ða; b; c; dÞ � 	���
a

�b�c�d
 with the sign convention
	0123 ¼ 1.
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Ctu
1 ðs; t; uÞ ¼

1

48
~dKbb

mt

s2ðt�m2
t Þ2ðu�m2

t Þ2
�
9ðt� uÞ5

� 2ð5s� 36m2
t Þsðt� uÞ3 þ s2ðs2 � 22sm2

t

þ 144m4
t Þðt� uÞ þ 14m2

t s
4ðsþ 8m2

t Þ
ðt� uÞ

�

Ctu
2 ðs; t; uÞ ¼

1

48
~dKbb

mt

s2ðt�m2
t Þ2ðu�m2

t Þ2
�
9ðt� uÞ5

� 2ð5s� 9m2
t Þsðt� uÞ3

þ s2ðs2 þ 46sm2
t Þðt� uÞ

�
;

Ctu
3 ðs; t; uÞ ¼ Ctu

2 ðs; t; uÞ: (14)

Once again notice that this contribution is even under the
interchange of p1 $ p2 and will not vanish after convolu-
tion with the parton distribution functions. The last term
for C1 appears to have a factor of (t� u) in the denomi-
nator, but notice that this is just an artifact of the notation in
Eq. (10).

Finally, we compute the interference between the
s-channel amplitude and the amplitudes for the t and u
channels. We find

Ctu�s
1 ðs; t; uÞ ¼ � 3

4
~dKbb

mtðt� uÞ
s2ðt�m2

t Þðu�m2
t Þ

� ð�4sm2
t þ s2 � ðt� uÞ2Þ;

Ctu�s
2 ðs; t; uÞ ¼ �3~dKbbmt

t� u

s2
;

Ctu�s
3 ðs; t; uÞ ¼ Ctu�s

2 ðs; t; uÞ:

(15)

The form factors that appear in Eq. (10) are thus the sum of
the three contributions:

Ciðs; t; uÞ ¼ Cs
i ðs; t; uÞ þ Ctu

i ðs; t; uÞ þ Ctu�s
i ðs; t; uÞ;

(16)

for i ¼ 1, 2, 3.

B. Leptonic W decay

Instead of summing over the W polarization, we now
allow it to decay leptonically with a standard model vertex.
Using the narrow-width approximation for theW�, Eq. (2)
is trivially modified into

jMj2 ¼
�

�

mt�t

�
2
�

�

MW�W

�
2
�ðp2

t �m2
t Þ�ðp2

�t �m2
t Þ

� �ðp2
W� �M2

WÞ�ðp2
Wþ �M2

WÞ
X

�;�0;�;�0
T tð�0; �Þ

�T �tð�;�0ÞT Pð�;�;�0; �0Þ: (17)

The decay vertex is given by

�D ¼
�

g

2
ffiffiffi
2

p
�
2
��ð1� �5Þ

�
�g�� þ p�

Wþp�
Wþ

M2
W

�

� �u���ð1� �5Þv‘þ ; (18)

(the index � now denotes the neutrino) and a corresponding
SM vertex � �D. The helicity factors for the decay then
become, after summing over the spin of both leptons,

T tð�0; �Þ ¼ g4pb � p� �ut�0p6 ‘þð1� �5Þut�;
T �tð�;�0Þ ¼ g4p �b � p �� �v�t�p6 ‘�ð1� �5Þv�t�0 :

(19)

It should be obvious by comparing Eqs. (9) and (19) that,
apart from overall constants, the asymmetries in this case
can be obtained from the previous ones by replacing the b
momentum with the lepton momentum. So, in Eq. (10), we
now have

pD ! p‘þ ; p �D ! p‘� : (20)

The overall constant is now

K‘‘ � 16ð�2�2
sg

8Þðpb � p�Þðp �b � p ��Þ
�

�

mt�t

�
2

�
�

�

MW�W

�
2
�ðp2

t �m2
t Þ�ðp2

�t �m2
t Þ

� �ðp2
Wþ �M2

WÞ�ðp2
W� �M2

WÞ; (21)

and the form factors are the same as those of Eqs. (13)–(15)
with the replacement Kbb ! K‘‘.

C. One W decays into leptons

Finally, we consider the mixed case with final state
b‘þ�W� or �b‘� ��Wþ. The final state is no longer a CP
eigenstate so the corresponding triple products for the two
subcases are not CP odd. CP-odd correlations can be
constructed by adding the two possibilities. For the
b‘þ�W� final state, the momenta in Eq. (10) are

pD ! p‘þ ; p �D ! p �b; (22)

and the overall constant is now

K‘b � 4ð�2�2
sg

6Þðpb � p�Þ
�
2� m2

t

M2
W

��
�

mt�t

�
2

�
�

�

MW�W

�
�ðp2

t �m2
t Þ�ðp2

�t �m2
t Þ�ðp2

Wþ �M2
WÞ:
(23)

For the �b‘� ��Wþ final state,

pD ! pb; p �D ! p‘� ; (24)

and the overall constant is
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Kb‘ � 4ð�2�2
sg

6Þðp �b � p ��Þ
�
2� m2

t

M2
W

��
�

mt�t

�
2

�
�

�

MW�W

�
�ðp2

t �m2
t Þ�ðp2

�t �m2
t Þ�ðp2

W� �M2
WÞ:
(25)

IV. CP VIOLATION IN THE DECAY VERTEX

We write the most general tbWþ and �t �bW� vertices as
[4] (with complex form factors to allow for CP violation),

��
Wtb ¼ � gffiffiffi

2
p V?

tb �uðpbÞ½��ðfL1PL þ fR1PRÞ

� i���ðpt � pbÞ�ðfL2PL þ fR2PRÞÞuðptÞ;
��
�
Wtb ¼ � gffiffiffi

2
p Vtb �vðp�tÞ½��ð �fL1PL þ �fR1PRÞ

� i���ðp�t � p �bÞ�ð �fL2PL þ �fR2PRÞÞvðp �bÞ; (26)

and for the remainder of the paper we will take Vtb � 1.
These vertices can be derived from a dimension five effec-
tive Lagrangian as in Ref. [11], and no seagulls that con-
tribute to the T-odd asymmetries we study are present.

At tree level within the SM the form factors fL1 ¼ �fL1 ¼
1, while the other ones vanish. Under the assumption that
the new CP violating interactions are smaller than the
standard model interactions, we are only interested in those
terms that can interfere with the SM and are therefore
linear in the anomalous couplings. It is easy to see that
only the term fR2 ( �fL2 ) generates triple product correlations
via interference with the SM. To obtain signals that are
only linear in new physics, we thus take

fL1 ¼ �fL1 ¼ 1; fR2 ¼ feið�fþ�fÞ; �fL2 ¼ feið��fþ�fÞ:
(27)

We have introduced two types of phases: a CP-odd phase
�f, which can be introduced directly at the Lagrangian

level; and a CP-even absorptive phase �f. The latter arises

from absorptive contributions beyond tree level and is the
same for t and �t decay.

At the top-quark decay level, with a polarized top-quark
(antitop) and with the W boson decaying leptonically (but
summing over the b-quark and lepton spin), the vertices in
Eq. (27), generate T-odd triple products of the form

d�ðt ! bWþÞ � f sinð�f þ�fÞ	ðpt; pb; p‘þ ; stÞ þ � � � ;
d�ð�t ! �bW�Þ � f sinð�f ��fÞ	ðp�t; p �b; p‘� ; s�tÞ þ � � � :

(28)

When the top-quark (antitop) decay is connected with the
gluon fusion production of t�t, these correlations will give
rise to ones in which the top-quark (antitop) spin is ana-

lyzed by a four-vector from the production process or by
one from the decay of the antitop (top) quark.
The helicity factors for the decay of t and �t of Eqs. (9)

and (19) become, for W final states

T tð�0; �Þ ¼ g2

4
�ut�0p6 b

��
2� m2

t

M2
W

�
ð1� �5Þ

þ 2ifmt sinð�f þ �fÞ
�
ut�;

T �tð�;�0Þ ¼ g2

4
�v�t�p6 �b

��
2� m2

t

M2
W

�
ð1� �5Þ

þ 2ifmt sinð�f � �fÞ
�
v�t�0 ;

(29)

and for leptonic final states

T tð�0; �Þ ¼ g4pb � p� �ut�0p6 ‘þðð1� �5Þ
� 2if sinð�f þ �fÞp6 �Þut�;

T �tð�;�0Þ ¼ g4p �b � p �� �v�t�p6 ‘�ðð1� �5Þ
þ 2if sinð�f � �fÞp6 ��Þv�t�0 : (30)

In Eqs. (29) and (30) we have omitted terms that do not
contribute to the triple products.
In all cases we will write the triple product correlations

in the form

jMj2T ¼ f sinð�f þ�fÞ	ðpt; pb; p‘þ ; QtÞ
þ f sinð�f ��fÞ	ðp�t; p �b; p‘� ; Q�tÞ: (31)

This form occurs naturally in the calculation: the first term
arising from CP violation in polarized top-quark decay
with the top spin being analyzed by the four-vector Qt, a
linear combination of p�t, p‘� and q. Correspondingly, the
second term arises from the anti–top-quark decay. Not all
the terms in this expression violateCP as is manifest by the
presence of the strong phase �.
In the case ofCP violation in the decay vertex, the initial

T-odd spin correlations of Eq. (28) occur only when theW
decays as well. Thus, unlike the previous section, we can
only consider two cases: when bothW� decay leptonically
and when at least one of them does. The two W final-state
case does not reveal T-odd correlations originating in the
top-quark decay vertices.
Unlike two of the cases studied in the previous section,

the T-odd correlations in Eq. (31) are not CP odd. They are
generated both by CP violating phases and by CP con-
serving absorptive phases. To construct truly CP-odd ob-
servables, it is necessary to compare the distributions in
top-quark decay with those in anti–top-quark decay. One
way to do that is to notice that parts of Eq. (31) can be

T-ODD CORRELATIONS FROM CP VIOLATING . . . PHYSICAL REVIEW D 79, 013013 (2009)

013013-5



written in the form of a truly CP-odd correlation
	ðpt; p�t; p‘þ ; p‘�Þ with the aid of Schouten identities as
those in Eq. (A2) in the appendix.

A. Leptonic W decay

Once again we provide separate expressions for the
contributions of s-channel amplitude squared; t and
u-channel amplitudes squared; and interference between
the s-channel amplitude and those from t and u channels.
For the contribution from the s-channel amplitude squared,
we obtain

Qt ¼ �K‘‘

3mt

2s2
fððt� uÞ2 � s2Þp‘� þ 2ðsp‘� � ðpt þ p�tÞ

� ðt� uÞp‘� � qÞp�t þ 2ððt� uÞp‘� � ðpt þ p�tÞ
� sp‘� � qÞqg;

Q�t ¼ �K‘‘

3mt

2s2
fððt� uÞ2 � s2Þp‘þ þ 2ðsp‘þ � ðpt þ p�tÞ

þ ðt� uÞp‘þ � qÞpt � 2ððt� uÞp‘þ � ðpt þ p�tÞ
þ sp‘þ � qÞqg: (32)

For the t and u channels squared (plus their interfer-
ence), we find

Qt ¼ �K‘‘

mt

3s2ðs2 � ðt� uÞ2Þ2 fð16ð7s
4 þ 9ðt� uÞ2s2Þm4

t � 4ð7s5 þ 11ðt� uÞ2s3 � 18ðt� uÞ4sÞm2
t � ðs2 � 9ðt� uÞ2Þ

� ðs2 � ðt� uÞ2Þ2Þp‘� þ 2ðsð9ðt� uÞ4 þ 2ð9m2
t � 5sÞsðt� uÞ2 þ s3ð14m2

t þ sÞÞp‘� � pt þ sð8s4 þ ðt� uÞ2s2
� 9ðt� uÞ4 � 6m2

t ð7s3 þ 9ðt� uÞ2sÞÞp‘� � p�t þ ðt� uÞðs2 � 9ðt� uÞ2Þð4sm2
t � s2 þ ðt� uÞ2Þp‘� � qÞÞÞp�t

� 2ððt� uÞðs2 � 9ðt� uÞ2Þð4sm2
t � s2 þ ðt� uÞ2Þp‘� � pt þ ðt� uÞð�10s4 þ 19ðt� uÞ2s2 � 9ðt� uÞ4

þ 4m2
t ðs3 � 9sðt� uÞ2ÞÞp‘� � p�t þ sðs4 � 10ðt� uÞ2s2 þ 9ðt� uÞ4 þ 2m2

t ð7s3 þ 9ðt� uÞ2sÞÞp‘� � qÞÞÞq;

Q�t ¼ �K‘‘

mt

3s2ðs2 � ðt� uÞ2Þ2 fð16ð7s
4 þ 9ðt� uÞ2s2Þm4

t � 4ð7s5 þ 11ðt� uÞ2s3 � 18ðt� uÞ4sÞm2
t � ðs2 � 9ðt� uÞ2Þ

� ðs2 � ðt� uÞ2Þ2Þp‘þ � 2ðsð9ðt� uÞ4 þ 2ð9m2
t � 5sÞsðt� uÞ2 þ s3ð14m2

t þ sÞÞp‘þ � p�t � sð8s4 þ ðt� uÞ2s2
� 9ðt� uÞ4 � 6m2

t ð7s3 þ 9ðt� uÞ2sÞÞp‘þ � pt þ ðt� uÞðs2 � 9ðt� uÞ2Þð4sm2
t � s2 þ ðt� uÞ2Þp‘þ � qÞÞÞpt

þ 2ð�ðt� uÞðs2 � 9ðt� uÞ2Þð4sm2
t � s2 þ ðt� uÞ2Þp‘þ � p�t þ ðt� uÞð10s4 � 19ðt� uÞ2s2 þ 9ðt� uÞ4

� 4m2
t ðs3 � 9sðt� uÞ2ÞÞp‘þ � pt þ sðs4 � 10ðt� uÞ2s2 þ 9ðt� uÞ4 þ 2m2

t ð7s3 þ 9ðt� uÞ2sÞÞp‘þ � qÞÞÞq: (33)

Finally, for the interference between the s-channel amplitude and those from the t and u channels, we find

Qt ¼ K‘‘

3mt

s2ðs2 � ðt� uÞ2Þ fðs
4 � 2ðs� 2m2

t Þðt� uÞ2sþ ðt� uÞ4Þp‘� � 2ðs3p‘� � p�t þ ðs3 � sðt� uÞ2Þp‘� � pt

þ ðt� uÞð2sm2
t � s2 þ ðt� uÞ2Þp‘� � qÞp�t þ 2ððt� uÞð2sm2

t � s2 þ ðt� uÞ2Þp‘� � pt þ ðt� uÞð2sm2
t � 2s2

þ ðt� uÞ2Þp‘� � p�t þ sðs2 � ðt� uÞ2Þp‘� � qÞqg;
Q�t ¼ K‘‘

3mt

s2ðs2 � ðt� uÞ2Þ fðs
4 � 2ðs� 2m2

t Þðt� uÞ2sþ ðt� uÞ4Þp‘þ � 2ðs3p‘þ � pt þ ðs3 � sðt� uÞ2Þp‘þ � p�t

� ðt� uÞð2sm2
t � s2 þ ðt� uÞ2Þp‘þ � qÞpt � 2ððt� uÞð2sm2

t � 2s2 þ ðt� uÞ2Þp‘þ � pt

þ ðt� uÞð2sm2
t � s2 þ ðt� uÞ2Þp‘þ � p�t � sðs2 � ðt� uÞ2Þp‘þ � qÞqg: (34)

B. Only one W decays into leptons

When the Wþ decays into leptons, only the first term of
Eq. (31) is present. Formally Q�t ¼ 0 and Qt can be ob-
tained simply from Eqs. (32)–(34) with the replacements

p‘� ! p �b; K‘‘ ! K‘b: (35)

When theW� decays into leptons, only the second term
of Eq. (31) is present. Formally Qt ¼ 0 and Q�t can be
obtained simply from Eqs. (32)–(34) with the replacements

p‘þ ! pb; K‘‘ ! Kb‘: (36)

V. LIGHT q �qANNIHILATION

The q �q production mechanism can be treated in a similar
manner. Ignoring CP violation in the light quark couplings
it is possible to obtain the corresponding results from the
above formalism by adopting the notation
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�q �q
P � �vq�

�uq�� (37)

and using the appropriate color/spin factor g4s=18.
For CP violation in the production vertex withW� final

states we find

Cq �q
1 ðs; t; uÞ ¼ � 16

9
~dKbbmt

�ðt� uÞ
s2

þ 4
m2

t

sðt� uÞ
�
;

Cq �q
2 ðs; t; uÞ ¼ Cq �q

3 ðs; t; uÞ ¼ � 16

9
~dKbbmt

ðt� uÞ
s2

:

(38)

There is a term with an apparent factor of (t� u) in the
denominator, but recall that this is cancelled out by the
normalization in the definition of these form factors, Eq.
(10). The corresponding cases of leptonic final states or one
leptonic and one W final states are obtained from Eq. (38)
with the same replacements discussed for the gluon fusion
mechanism.

For CP violation in the decay vertex and leptonic final
states we obtain

Qq �q
t ¼ K‘‘

16mt

9s2
fð4sm2

t þ ðt� uÞ2 � s2Þp‘�

þ 2ðsp‘� � ðpt � p�tÞ � ðt� uÞp‘� � qÞp�t

þ 2ððt� uÞp‘� � ðpt þ p�tÞ � sp‘� � qÞqg;
Qq �q

�t ¼ K‘‘

16mt

9s2
fð4sm2

t þ ðt� uÞ2 � s2Þp‘þ

� 2ðsp‘þ � ðpt � p�tÞ � ðt� uÞp‘þ � qÞpt

� 2ððt� uÞp‘þ � ðpt þ p�tÞ þ sp‘þ � qÞqg: (39)

For one W and one leptonic final-state the same replace-
ments of Eqs. (35) and (36).

VI. COMPARISON WITH THE LITERATURE

The results we present in Eqs. (10)–(15) are obtained
from the manipulations implied by Eq. (3). The three
factors in Eq. (3) correspond to the decay density matrix
for the top-quark, the decay density matrix for the anti–top-
quark and the production density matrix for gg ! t�t, re-
spectively. As such, these factors have been computed
before for the case of anomalous top-quark coupling dis-
cussed here. For example, the production helicity ampli-
tudes are explicitly given in Ref. [13] and the production
density matrix in the parton center of mass frame can be
found in the appendix of Ref. [6]. The decay density matrix
for the top-quark in its rest frame is also found in Ref. [5].
These results are not sufficient to reproduce ours. For
example if one starts from Eq. A4 of Ref. [6], the produc-
tion density matrix in the parton center of mass frame, one
also needs the corresponding decay density matrices in the
same (parton center of mass) frame. We calculate the latter
and find (for the case where the W does not decay, for
example),

T tð�0; �Þ �m2
t �M2

W

E1 þmt

þ 2mt

E1 þmt

~�þ � ~pb

�m2
t �M2

W þ 2Ebmt

ðE1 þmtÞ2
~�þ � ~kþ; (40)

where we have used the notation of Eq. A4 of Ref. [6], and
there is a corresponding expression for the anti–top-quark
decay. The terms proportional to �þ � ~pb (and �� � ~p �b

from antitop decay) can be easily combined with Eq. A4
of Ref. [6] to yield contributions to C1 and C2. With the

terms proportional to �þ � ~kþ one needs to use the
Schouten identity of our appendix, Eq. (A1), to obtain
contributions to all three form factors C1, C2, C3. When
all this is done, we find agreement with our result in Eqs.
(10)–(15) after expressing it in the parton center of mass
frame. The corresponding production density matrix for
the derivation of Eq. (38) is Eq. A3 of Ref. [6].
The first paper in Ref. [8], D. Atwood et al. performs a

similar but simpler calculation. Instead of computing the
density matrices, that reference computes the production of
on shell polarized top quarks and argues that the lepton
momentum in the subsequent semileptonic top-quark de-
cay acts as a spin analyzer. This simpler calculation misses
the contributions from off diagonal entries in the spin
density matrices, corresponding to interference between
diagrams containing intermediate top-quarks with different
helicities. Our result, therefore, disagrees with this
reference.

VII. CONCLUSION

We have revisited the question of T-odd triple product
correlations in t�t production and decay arising from
anomalous top-quark couplings. We have illustrated a
method of simplifying the calculation that allows us to
obtain complete analytic expressions for the results. The
main results of our paper are thus Eqs. (10)–(15) and (32)–
(34).
When CP is violated in the production vertex, we obtain

T-odd correlations that are truly CP odd as well. In con-
trast, CP violation in the decay vertex leads to T-odd
correlations that can be faked by unitary (CP conserving)
phases. It is possible to turn these correlations into true
CP-odd observables by comparing the t and �t decays.
Our results fully incorporate the effect of all spin corre-

lations and should be easy to implement in simulations that
use the narrow-width approximation for top-quark and
W-boson propagators.

The sensitivity of the LHC to the coupling ~d has been
studied before. For example, Ref. [9] finds that ATLAS

may achieve a 5� sensitivity of ~d < 26:3� 10�5 GeV�1

(or ~d=mt < 0:046) with 10 fb�1 of data using both purely
leptonic and one W decaying into leptons final states, and
with certain assumptions about other anomalous couplings.
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Similarly, Ref. [12] finds that ATLAS may achieve a 2�
sensitivity �0:026 � f=MW � 0:0312.
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APPENDIX: IDENTITIES

Several identities involving the epsilon tensor (Schouten
identities) were used. For CP violation in the production
vertex we found the following identity useful:

ðpb � ðp1 þ p2Þ	ðp �b; pt; p�t; p1 � p2Þ þ p �b � ðp1 þ p2Þ	ðpb; pt; p�t; p1 � p2ÞÞ
¼ ðpt � p�tÞ � ðp1 � p2Þ	ðpt; p�t; pb; p �bÞ þ ð2m2

t � s=2Þ	ðpb; p �b; pt þ p�t; p1 � p2Þ
þ ðm2

t �M2
WÞ	ðpb þ p �b; pt; p�t; p1 � p2Þ: (A1)

For CP violation in the decay vertex the following identities are useful:

P � pb	ðpt; p�t; p‘þ ; p‘�Þ ¼ s

2
ð	ðpb; p�t; p‘þ ; p‘�Þ þ 	ðpt; pb; p‘þ ; p‘�ÞÞ þ ðP � p‘þ	ðpt; p�t; pb; p‘�Þ

� P � p‘�	ðpt; pb; p‘þ ; p�tÞÞ;
P � p �b	ðpt; p�t; p‘þ ; p‘�Þ ¼ s

2
ð	ðp�t; p �b; p‘� ; p‘þÞ þ 	ðpt; p �b; p‘þ ; p‘�ÞÞ þ ðP � p‘�	ðp�t; pt; p �b; p‘þÞ

� P � p‘þ	ðp�t; p �b; p‘� ; ptÞÞ: (A2)
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