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Theories beyond the standard model must necessarily respect its gauge symmetry. This implies strict

constraints on the possible models of nonstandard neutrino interactions, which we analyze. The focus is

set on the effective low-energy dimension six and eight operators involving four leptons, decomposing

them according to all possible tree-level mediators, as a guide for model building. The new couplings are

required to have sizable strength, while processes involving four charged leptons are required to be

suppressed. For nonstandard interactions in matter, only diagonal tau-neutrino interactions can escape

these requirements and can be allowed to result from dimension six operators. Large nonstandard neutrino

interactions from dimension eight operators alone are phenomenologically allowed in all flavor channels

and are shown to require at least two new mediator particles. The new couplings must obey general

cancellation conditions both at the dimension six and dimension eight levels, which result from expressing

the operators obtained from the mediator analysis in terms of a complete basis of operators. We illustrate

with one example how to apply this information to model building.

DOI: 10.1103/PhysRevD.79.013007 PACS numbers: 14.60.St, 14.60.Pq, 13.15.+g, 12.60.�i

I. INTRODUCTION

The experimental observation of neutrino masses and
mixings is the first evidence for physics beyond the stan-
dard model (SM)—maybe together with the indication for
dark matter—and points to the existence of a new, yet
unknown, physics scale. The tiny masses of the neutrinos,
which are orders of magnitude lighter than those of other
fermions, suggest a large new physics scale leading to very
suppressed effects. Since neutrinos have only weak inter-
actions with the SM particles, they may even constitute an
excellent window into the new physics underlying the
‘‘dark sectors’’ of the Universe, i.e., dark matter and dark
energy. Therefore, new physics may very well appear next
in the form of exotic couplings involving neutrinos, which
are often called nonstandard neutrino interactions (NSI)
[1–5]. This possibility is being actively explored and will
be the subject of the present work. In particular, we will, in
a model-independent way, discuss the connection between
NSI and the possible tree-level mediators of new physics
inducing them. If NSI are detected, this study will serve as
a guide for the model builder.

Note that the very tiny neutrino mass differences have
only been detectable because the masses affect the neutrino
propagation by inducing small phase shifts, which can be
compensated by the very long distances traveled in neu-
trino oscillation experiments. In contrast, nonstandard cou-
plings are short distance (local) effects, which usually do

not benefit from such an enhancement—unless they affect
the propagation in matter, one of the several possibilities
explored below. Notice, though, that neutrino oscillation
experiments may well turn out to be the best arena to
detect NSI, as they can affect oscillation amplitudes line-
arly, instead of quadratically as in most charged lepton
flavor violation processes.
On general grounds, whatever the nature of the new

putative couplings is, observable effects will only be ex-
pected for a new physics scale � near the present experi-
mental limits, i.e., above the electroweak symmetry
breaking (EWSB) scale. An example of NSI is given by
the dimension six (d ¼ 6) operator in

1

�2
ð ����

�PL��Þð �‘���‘�Þ: (1)

In this expression, spinor indices are omitted, Greek letters
denote flavor indices, PL ¼ ð1� �5Þ=2 is the left-handed
chiral projection operator, and � and ‘ label the SM
neutrino and charged lepton fields, respectively.
The operator in Eq. (1) is not a singlet of the SM gauge

group, SUð3Þ � SUð2Þ �Uð1Þ, while the high-energy the-
ory has to contain and encompass the SM gauge group. For
instance, the coupling in Eq. (1) could result from the
following gauge invariant operator:

1

�2
ð �L��

�L�Þð �L���L�Þ; (2)

where L denotes the leptonic SUð2Þ doublets. Equation (2)
illustrates the consequences of electroweak gauge invari-
ance: The coupling in Eq. (1) is necessarily accompanied
by other charged lepton transitions for which stringent
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limits may exist. As an example, for � ¼ � and � ¼ � ¼
� ¼ e, Eq. (2) would imply � ! 3e transitions with the
same strength as the interaction in Eq. (1).

In order to discuss such constraints coming from the
gauge invariant framework, it is convenient to rephrase the
problem in terms of a generic low-energy effective theory.
Effective theories allow rather model-independent analy-
ses based on the fundamental symmetries, while only the
coefficients of the effective operators are model dependent.
The impact of the heavy fields present in the high-energy
theory can be parametrized, without loss of generality, by
the addition to the Lagrangian of a tower of nonrenorma-
lizable operators Od of dimension d > 4, made out of the
SM fields and invariant under the SM gauge group. The
operator coefficients are weighted by inverse powers of the
high scale �:

L ¼ LSM þ �Ld¼5
eff þ �Ld¼6

eff þ � � � ;
with �Ld

eff /
1

�d�4
Od: (3)

After EWSB, some of the effective operators may result in
corrections to the low-energy SM parameters. In addition,
new exotic couplings may result, such as those in Eq. (1).

The only possible d ¼ 5 operator is the famous
Weinberg operator [6], which leads, after EWSB, to
Majorana neutrino masses. We will not need to consider
it for the present study of NSI.

At d ¼ 6, some operators modify the low-energy stan-
dard couplings, among which nonunitary corrections to the
leptonic Pontecorvo-Maki-Nakagawa-Sakata (PMNS)
mixing matrix are especially relevant to the case under
study. Departures from unitarity are a general feature of
beyond-the-SM models involving exotic fermions [2,7–
15]. All fermions of the same charge will generically mix
through the mass matrix, leading in those theories to
unitary mixing matrices of dimension larger than three,
while the effective 3� 3 submatrix—relevant at low en-
ergies—is not unitary. In the effective Lagrangian formal-
ism, the effect appears technically at leading order through
d ¼ 6 gauge invariant operators involving only two fermi-
ons, which induce noncanonical corrections to the fermion
kinetic terms [7–11]. Such operators are, for instance,
typical of fermion-mediated seesaw scenarios. The trade-
mark of nonunitarity is that the coefficients of the NSI
operators induced by it and contributing to neutrino pro-
duction, detection, and matter effects are not independent
but related. Barring fine-tuned cancellations, the stringent
bounds and future signals on nonunitarity [16–18] apply as
well to NSI, except for those NSI operators exclusively
affecting the propagation in matter. Recently, the value of
the elements of the PMNSmatrix have been extracted from
data without assuming a unitary mixing matrix [19], and
new related CP-odd signals have been proposed as well
[20–22]. For a detailed discussion of the NSI-nonunitarity
relationship, see [23]. We will leave nonunitarity out of the

main line of this work, discussing only its qualitative
implications.
Effective interactions, such as the NSI in Eq. (1), ob-

viously require one to consider operators made out of four
leptonic fields, plus Higgs fields in the case of operators
with d > 6 [24–26]. There is a plethora of d ¼ 6 [27] and
d ¼ 8 [28] operators,1 with different classes of models
resulting in different operators and operator coefficients.
Those among them relevant for NSI can affect neutrino
production or detection processes, or modify the matter
effects in their propagation, depending on the operator or
combination of operators considered. Notice, though, that
the coefficient of a d ¼ 8 operator is expected to be sup-
pressed by a factor v2=�2 with respect to d ¼ 6 operator
coefficients (where v is the vacuum expectation value of

the Higgs field hH0i ¼ v=
ffiffiffi
2

p ¼ 174 GeV), and thus neg-
ligible unless the new scale is very close to the electroweak
one.
Much effort has been dedicated to analyzing the experi-

mental constraints and future detection prospects of NSI
[24,30,31]. This encompasses their impact on weak de-
cays, solar and atmospheric neutrino physics [32–39],
astrophysics [40,41], early universe processes [42], col-
lider and neutrino scattering experiments [28,43–46], and
past and future neutrino oscillation experiments including
neutrino factories [47–69]. Overall, the signals involving
the �� field are, at present, the least constrained ones.
We emphasize that we study ‘‘large’’ NSI, where large

refers to being potentially observable at future neutrino
oscillation experiments. For example, for the flavor-
changing NSI interfering with standard oscillations,
bounds 10�2 to 10�3 (relative to the SM four-fermion
interaction coupling) on the operator in Eq. (1) can be
expected from a neutrino factory (see, e.g., Ref. [65]).
After EWSB, the four-fermion interactions from Eq. (3)
will be suppressed by roughly ðv=�Þd�4 with respect to the
SM four-fermion interactions, which means that � is al-
lowed to be largest for the d ¼ 6 effective operators,
whereas for d ¼ 8 operators, it has to be very close to
the electroweak scale in order to produce a sizable effect.
Therefore, we focus on the d ¼ 6 operators first, and then
increase the level of complexity. However, from this simple
comparison, one can already read off that new physics
above the TeV scale will be very difficult to be observed
at future neutrino oscillation experiments, since the sup-
pression with respect to the SM is roughly 10�2 (for d ¼ 6)
and 10�4 (for d ¼ 8), respectively—especially if the d ¼ 6
operators turn out to be not good enough.
Most of the literature deals mainly with NSI in experi-

ments, and does not discuss the models behind them—with
some exceptions [3,5,23,25,26,70–73]. In this work, we
will classify all d ¼ 6 and d ¼ 8, SUð3Þ � SUð2Þ �Uð1Þ

1d ¼ 7; 9 . . . operators [29] are odd under baryon and lepton
number and not relevant for the present discussion.
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invariant, leptonic NSI operators in terms of the heavy
mediators inducing them. This can be achieved in a
model-independent way, decomposing each operator into
all possible products of currents. The SM charges of the
corresponding field combinations will be the SM charges
of the putative heavy mediators. The study will thus be
confined to the case in which the tower of nonrenormaliz-
able operators has been produced by the tree-level ex-
change of new heavy fields, whose precise nature other
than their SM charges we do not need to know.

We will first emphasize the case in which the mediators
exchanged only couple to SM bilinear field combinations.
In this study, we refer to ‘‘SM bilinears’’ as fundamental
interactions of exactly two SM fields with one or two exotic
fields, where the latter possibility amounts to couplings
between two exotic bosons and two Higgs doublets. Other
than that, there can be, in addition, new exotic couplings
involving only one SM field, which will also be addressed
later on.

The decomposition in terms of SM bilinears, initiated in
[25,26], immediately leads to correlations between previ-
ously uncorrelated effective NSI operator coefficients, with
very fruitful physics consequences, as we will show below.
For instance, it has been realized that the lowest dimension
operators, that lead to NSI without simultaneously induc-
ing dangerous transitions among four charged leptons, are
d ¼ 8 operators. The first example proposed [24,74] is of
the form

O NSI ¼ ð �LiHiÞ��ðHyiLiÞð �E��EÞ; (4)

where i, L, E, and H denote the SUð2ÞL index, leptonic
doublet, leptonic singlet, and Higgs doublet, respectively
[note that we use the convention with Y ¼ �1=2 for the
Higgs doublet, HT ¼ ð 1ffiffi

2
p H0; H�Þ]. We will illustrate be-

low, though, that any realistic model responsible for it will
also induce other dangerous d ¼ 6 operators and/or some
other low-energy effects for which stringent experimental
bounds may exist [i.e. nonunitary corrections to the PMNS
matrix, corrections to the electroweak precision data,
flavor-changing neutral currents (FCNC), etc.]. Equation
(4) is only one example of the NSI sought. We will deter-
mine in this work several other independent d ¼ 8 opera-
tors which lead to large NSI and no charged lepton
processes. The symbol ONSI will be extended to denote
generically any element in this ensemble.

In our general analysis, after determining all possible
mediators, the resulting correlations between the possible
d ¼ 6 and d ¼ 8 operators will be systematically studied.
We will then establish which mediators or combinations of
mediators can lead to large NSI, without inducing experi-
mentally excluded leptonic charged flavor-changing tran-
sitions, and/or other undesired phenomenological
consequences.

Our main motivation in this study is to determine the
minimum level of complexity needed for a viable model of

NSI. As an illustration for model building, a particular
simple toy model will be developed in which the operator
ONSI above is induced unaccompanied by any leptonic d ¼
6 operator. The aim is to show the generic price to pay at
the theoretical level for allowing observable NSI effects at
future experiments.
Note that we focus in this study on the necessary con-

ditions to build a model with large NSI, while for any given
model additional limitations may arise. Supplementary
constraints which could arise from a phenomenological
analysis at one loop are not considered here either but
should be addressed when considering a particular model.
From the experimental point of view, we will not make any
explicit statement about how likely it is to observe large
NSI. We leave the interpretation of this likeliness, by
judging the necessary conditions for a viable model, to
the reader. Finally, possible NSI involving quark fields are
not included in this study either.

II. EFFECTIVE OPERATOR FORMALISM

The SM Lagrangian is extended to accommodate the
tower of effective operators

�Leff ¼ 1

�2

Xd¼6

i

CiOd¼6
i þ 1

�4

Xd¼8

k

CkOd¼8
k ; (5)

where the two terms run over all possible d ¼ 6 and d ¼ 8
operators relevant for purely leptonic NSI. The flavor
composition will be made explicit in each coefficient and

operator, i.e., ðCiÞ����ðOiÞ����. All distinct flavor combina-

tions for the same operator structure will be taken into
account, as they correspond, in fact, to independent
operators.

A. Effective operator basis

In order to find all possible d ¼ 6 and d ¼ 8 effective
operators leading to purely leptonic NSI, we will use the
following bases:
(i) d ¼ 6 operators.—A complete basis of d ¼ 6 op-

erators invariant under the SM gauge group and
made out of the SM light fields was proposed by
Buchmüller and Wyler (BW) [27]. The four fermion
operator structures relevant to our problem are

ðOLEÞ���� ¼ ð �L�E�Þð �E�L�Þ; (6)

ðO1
LLÞ���� ¼ ð �L���L�Þð �L���L�Þ; (7)

ðO3
LLÞ���� ¼ ð �L��� ~�L�Þð �L��� ~�L�Þ; (8)

ðOEEÞ���� ¼ ð �E���E�Þð �E���E�Þ; (9)

where L (E) refers to the SUð2Þ leptonic doublet
(singlet). We will refer to the coefficient matrices
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for these operators by ðCLEÞ����, ðC1LLÞ����, ðC3LLÞ����, and
ðCEEÞ����, respectively. The operators OEE do not

produce NSI directly, but will play a role when
considering charged lepton flavor violation [since
they share some mediators with the operators in Eqs.
(6)–(8)].
In addition to the above, there are two d ¼ 6 opera-
tor structures, including two lepton doublets L and
two Higgs doublets H,

ðO1
LHÞ�� ¼ ð �L�HÞi@6 ðHyL�Þ; (10)

ðO3
LHÞ�� ¼ ð �L� ~�HÞi 6DðHy ~�L�Þ; (11)

and an operator with two E’s and two H’s,

ðOEHÞ�� ¼ ðHyiD�HÞð �E���E�Þ; (12)

where D denotes the SM covariant derivative. These
three operators belong to the class which, after
EWSB, correct the parameters of the SM
Lagrangian. In particular, they renormalize the ki-
netic energy of neutrinos and/or charged leptons [9–
11]. As previously mentioned, they result in nonuni-
tary corrections to the leptonic mixing matrix and/or
correct the charged and neutral electroweak currents
[27], and will not be further developed in this work.
We include them above only for the sake of com-
pleteness (see also Sec. IVB2).

(ii) d ¼ 8 operators.—A basis was discussed by
Berezhiani and Rossi (BR) [28], with the relevant
operators given by

ðO1
LEHÞ���� ¼ ð �L���L�Þð �E���E�ÞðHyHÞ; (13)

ðO3
LEHÞ���� ¼ ð �L��� ~�L�Þð �E���E�ÞðHy ~�HÞ; (14)

ðO111
LLHÞ���� ¼ ð �L���L�Þð �L���L�ÞðHyHÞ; (15)

ðO331
LLHÞ���� ¼ ð �L��� ~�L�Þð �L��� ~�L�ÞðHyHÞ; (16)

ðO133
LLHÞ���� ¼ ð �L���L�Þð �L��� ~�L�ÞðHy ~�HÞ; (17)

ðO313
LLHÞ���� ¼ ð �L��� ~�L�Þð �L���L�ÞðHy ~�HÞ; (18)

ðO333
LLHÞ���� ¼ ð�i	abcÞð �L����aL�Þð �L����

bL�Þ
� ðHy�cHÞ; (19)

ðOEEHÞ���� ¼ ð �E��EÞð �E��EÞðHyHÞ: (20)

In these operators, subscripts correspond to a short-
cut notation for their SM field composition, whereas
superscripts denote the corresponding SUð2Þ charges
of the field combinations. Once again, although the

operators OEEH cannot induce NSI by themselves,
they will come to play a related role, as they induce
charged lepton flavor violating transitions.
Strictly speaking, not all of the above operators are
independent when the full flavor structure is taken
into account, as

ðO313
LLHÞ���� ¼ ðO133

LLHÞ����: (21)

However, the expressions below will look much
simpler if both operators are used.
Notice that the phenomenologically interestingONSI

operator in Eq. (4) can be expressed as a combination
of the first two operators in the list above,

O NSI ¼ 1
2ðO1

LEH þO3
LEHÞ: (22)

This means, for instance, that if a model only induces
at d ¼ 8 the operators O1

LEH and O3
LEH with similar

weights and no d ¼ 6 NSI operator, it could be an
optimal candidate for viable large NSI. We will
explore later some examples of this kind.

B. Decomposition in terms of SUð2Þ field components

After EWSB, the contributions from the d ¼ 6 and d ¼
8 gauge invariant operators result in two very simple sets of
operators. From the �LL �EE-type operators, Eqs. (6), (13),
and (14), we find

�Leff ¼ 1

�2

�
� 1

2
CLE þ v2

2�2
ðC1LEH þ C3LEHÞ

�
��

��

� ð �����PL��Þð �‘���PR‘�Þ

þ 1

�2

�
� 1

2
CLE þ v2

2�2
ðC1LEH � C3LEHÞ

�
��

��

� ð �‘���PL‘�Þð �‘���PR‘�Þ þ H:c: (23)

The first term in this equation produces the relevant NSI,
whereas the second term leads to the (unwanted) four
charged lepton contributions. The NSI in the first term
involve only right-handed charged leptons. In conse-
quence, their effect at the neutrino source will be chirally
suppressed.2

From the operators involving four lepton doublets, Eqs.
(7), (8), and (15)–(19), the results is that3

2At detection, the effect of these NSI is subdominant because
of the dominance of the neutrino-nucleon cross section.

3Here we do not show the interactions among four neutrinos
which these operators also induce. See Appendix A for a
discussion of these interactions.
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�Leff

¼ 1

�2
ðC �LL �LL

NSI Þ����ð �����PL��Þð �‘���PL‘�Þ

þ 1

�2

�
C1LLþC3LLþ

v2

2�2
ðC111LLHþC331LLH�C133LLH�C313LLHÞ

�
��

��

�ð �‘���PL‘�Þð �‘���PL‘�ÞþH:c:; (24)

where

ðC �LL �LL
NSI Þ����

¼
�
C1LL�C3LLþ

v2

2�2
ðC111LLH �C331LLH � C133LLH þC313LLHÞ

�
��

��

þ
�
C1LL� C3LLþ

v2

2�2
ðC111LLH �C331LLH þC133LLH � C313LLHÞ

�
��

��

þ
�
2C3LLþ

v2

�2
ðC331LLH �C333LLHÞ

�
��

��

þ
�
2C3LLþ

v2

�2
ðC331LLH þC333LLHÞ

�
��

��
: (25)

Note the different flavor structure in the four terms in Eq.
(25). In addition, note that the term relevant for the NSI,
i.e., the first line in Eq. (24), couples to left-handed charged
leptons, which means that source NSI can be generated as
well. In summary, matter NSI are (not) correlated with
source and production NSI for �LL �LL ( �LL �EE)-type
operators.

C. Connection to NSI and phenomenology

Let us first consider NSI in matter. The phenomenology
of neutrino propagation under these conditions is custom-
arily described in terms of the Hamiltonian in the flavor
basis [4,24,51],

H F ¼ 1

2E

8><
>:U

0
�m2

21

�m2
31

0
@

1
AUy

þ aCC

1þ 	mee 	me� 	me�
ð	me�Þ� 	m�� 	m��

ð	me�Þ� ð	m��Þ� 	m��

0
B@

1
CA
9>=
>;; (26)

where aCC is the usual matter effect term defined as aCC �
2

ffiffiffi
2

p
EGFNe (with Ne the electron number density in Earth

matter).
From Eqs. (23) and (24) it follows that

	m;L
�� ¼ v2

2�2
ðC �LL �LL

NSI Þ�e�e;

	m;R
�� ¼ v2

2�2

�
� 1

2
CLE þ v2

2�2
ðC1LEH þ C3LEHÞ

�
�e

�e
;

(27)

with C �LL �LL
NSI as defined in Eq. (25). These two parameters in

matter lead to a total

	m�� ¼ 	m;L
�� þ 	m;R

�� ; (28)

because matter effects are only sensitive to the vector
component.
In addition to the propagation in matter, the production

or detection processes can be affected by NSI. For the
specific case of a neutrino factory and considering just
the purely leptonic NSI under discussion, only effects at
the source are relevant, since the detection interactions
involve quarks.4 They are customarily parametrized in
terms of 	s��, which describes an effective source state

j�s
�i as [4,48,75]

j�s
�i ¼ j��i þ

X
�¼e;�;�

	s��j��i: (29)

In this case, the muon decay rate could be modified by the
NSI interaction in Eq. (24), with the largest effect resulting
from the coherent contribution to the state at the source
[48,53]. It appears as an admixture of a given flavor ��

with all other flavors, encoded by �� in Eq. (29). Two types

of contributions are possible,

	s�� ¼ v2

2�2
ðC �LL �LL

NSI Þe��e or 	se� ¼ v2

2�2
ðC �LL �LL

NSI Þ�e
��: (30)

The second possibility will affect the golden �e ! ��

appearance channel, where the effect might be easiest to
observe. If the coefficients in Eq. (25) are known for a
specific model, one can easily calculate the connection
between source and propagation effects via Eqs. (27) and
(30), a connection which does not hold for �LL �EE-type
operators above, as explained earlier.

D. Conditions to suppress charged lepton processes

Let us discuss now potentially dangerous contributions
to charged lepton flavor violation processes, possible mod-
ifications of GF, and the constraints on lepton universality.
The focus is set on pure charged lepton processes at tree
level. These interactions can result from the second terms
in Eqs. (23) and (24). They should be very suppressed in
any phenomenologically viable model. In order to cancel
those terms, the putative beyond-the-SM theory has to
satisfy, to a high degree of accuracy, the following con-
straints:

�
� 1

2
CLE þ v2

2�2
ðC1LEH � C3LEHÞ

�
��

��
¼ 0; (31)

�
C1LLþC3LLþ

v2

2�2
ðC111LLHþC331LLH�C133LLH�C313LLHÞ

�
��

��
¼0;

(32)

for all possible values of the flavor indices (Greek letters).
A possibility suggested by these equations is that there
could be cancellations among d ¼ 6 and d ¼ 8 operator
coefficients. However, we will not discuss such a possibil-

4Superbeams, for instance, use hadronic interactions for neu-
trino production, which are not affected by purely leptonic NSI
to first order.
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ity in this study, as it would correspond to fine-tuning the
scale�. Wewill therefore require that the d ¼ 6 and d ¼ 8
operator coefficients in Eqs. (31) and (32) cancel
independently.

For the d ¼ 6 operator coefficients, we get (omitting
flavor indices)

C LE ¼ 0; C1LL ¼ �C3LL; CEE ¼ 0; (33)

which implies that only �LL �LL-type operators can induce
large NSI. One possibility for its implementation is the
antisymmetric operator mediated by an SUð2Þ singlet sca-
lar in Ref. [26], which turns out to be the only d ¼ 6
possibility requiring just one tree-level mediator, as we
shall explicitly demonstrate.

For the d ¼ 8 operator coefficients, the cancellation
conditions read

C1LEH ¼ C3LEH; C111LLH þ C331LLH � C133LLH � C313LLH ¼ 0;

C333LLH arbitrary; CEEH ¼ 0; (34)

where the first condition corresponds to operators of the
typeONSI in Eq. (4); see Eq. (22). In the following, we will
refer to operators satisfying Eq. (34) as ONSI; i.e., we
define the class of potential nonstandard neutrino interac-
tion operators in mass dimension eight as the one which
does not introduce any harmful d ¼ 8 processes with four
charged leptons. Equation (4) is (apart from Fierz rear-
rangements) the only such possibility with two right-
handed charged leptons involved. When considering lep-
tonic NSI involving four left-handed fields, several new
operators of this kind will be determined later on.

As far as the possible NSI in terms of SUð2Þ field
components are concerned, not all flavor structures can
be generated from the d ¼ 6 effective gauge invariant
operators if charged lepton processes are suppressed.
Applying the d ¼ 6 cancellation conditions in Eq. (33) to
Eq. (25), the result is that the d ¼ 6 contribution to the

coefficient ðC �LL �LL
NSI Þ���� is antisymmetric in the flavor index

exchanges ð�; �Þ ! ð�;�Þ and ð�; �Þ ! ð�; �Þ, which
means that � � � and � � � for viable NSI. As regards
matter effects, this implies that only 	m��, 	

m
��, and 	m��—

defined in Eq. (27)—can be generated from d ¼ 6 opera-
tors, and the connection with the source effects is given by

	m�� ¼ �	see ¼ �	s��; (35)

	m�� ¼ �ð	s��Þ�: (36)

In contrast, 	m�� is not connected to the source effects at the
effective operator level.5 Notice that, for instance, the NSI
in Eq. (35) contribute to the GF measurement coherently

(i.e., the interference with SM couplings contributes line-
arly to the rates), for which quite stringent bounds exist.
These results hold, in general, for any purely leptonic NSI
d ¼ 6 operator with suppressed interactions among four
charged leptons, i.e., Eq. (33). Furthermore, for the par-
ticular case of a neutrino factory, the antisymmetry con-
ditions and constraints described above imply that the only
possible non-negligible NSI source terms induced by d ¼
6 operators are 	se� and 	s��.

III. MODEL ANALYSIS OF d ¼ 6 OPERATORS

In this section, we discuss the model-building implica-
tions of requesting large d ¼ 6 NSI induced by theories of
physics beyond the standard model. We specifically high-
light the basic principles, which can be found in the d ¼ 8
case as well. However, as we shall see later, the d ¼ 8 case
is technically somewhat more challenging.
In order to shed light on model building, let us analyze

the operators according to the possible tree-level mediator.
This is most efficiently done by listing all possible SM
bilinear field combinations, and combining them in all
possible ways [25,26].
We therefore show in Table I the possible bilinears

constructed from leptons only, which can lead to the d ¼
6 NSI operators in Eqs. (6)–(9). It is obvious from the table
that the bilinears carry the mediator information and that
they can therefore be directly associated with specific
models (as illustrated). The mediators are denoted—

throughout this paper—by XL
Y , where

(i) X denotes the SUð2Þ nature, i.e., singlet 1, doublet 2,
or triplet 3.

(ii) L refers to the Lorentz nature, i.e., scalar (s), vector
(v), left-handed (L), or right-handed (R) fermion.6

(iii) Y refers to the hypercharge Y ¼ Q� IW3 .
Table II shows, in turn, all possible d ¼ 6 operators

which can be constructed from the SM bilinear field com-
binations in Table I. The coefficients of the d ¼ 6 operators

obtained by this procedure are denoted by ðcXLÞ���� and

ðfXLÞ����, where c (f) indicates that the corresponding

operator results from the exchange of particles carrying
lepton number two (zero), and X and L refer again to the
SUð2Þ and Lorentz nature, respectively. Any subscript
refers to the combination of bilinears involved.
At this point it is important to note that the operators

obtained from the mediators do not constitute a basis.
Instead they are not independent, but linear combinations
of those in the BW basis, Eqs. (6)–(9). Therefore, it might
be more accurate to call them ‘‘mediator operators’’ or
‘‘operator combinations.’’ We will not make this special
distinction, but the reader should keep that in mind.
Rewriting the individual effective operators from Table II

5There can also be subdominant effects in detection chains.
For example, in OPERA, the taus resulting from hadronic
interactions decay into muons or electrons. This implies, for
instance, 	m�� ¼ �	s��, which means that tau decay into electrons
is in this case connected with matter NSI. Note that NSI and SM
contributions add coherently to the �� ! e��� ��e width.

6Fermionic mediators will appear explicitly later on, when
discussing d ¼ 8 effective interactions.
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in the BW basis, we find the coefficients given in the last
four columns of Table II. For example, the first line of the
second group, mediated by 1s�1, reads (including flavor

indices)

�Ld¼6
eff ¼ ðc1sLLÞ����

�2
ðð �LcÞ�i�2L�Þð �L�i�2ðLcÞ�Þ

¼ 1

4

ðc1sLLÞ����
�2

ðO1
LLÞ���� � 1

4

ðc1sLLÞ����
�2

ðO3
LLÞ����: (37)

Conversely, the decomposition of the operator O1
LL of the

BW basis can be read off from the column labeled C1LL, in
terms of the relative weights of the mediator operators:

ðC1LLÞ���� ¼ 1
4ðc1sLLÞ���� � 3

4ðc3sÞ���� þ ðf1vLLÞ����: (38)

Note that the flavor indices in the first column of Table II
are arranged such that the flavor indices of all coefficients
and of the BW operators are the same as in Eqs. (37) and
(38). Therefore, we show the flavor indices explicitly only
in the first column.

In order to have large NSI without four charged lepton
interactions, the d ¼ 6 cancellation conditions Eq. (33)
must now be implemented. One can directly read off now
from Table II that these conditions can be rewritten as

2c2v � 2f1vLE þ f2s ¼ 0 ðfrom CLE ¼ 0Þ; (39)

� c3s þ f1vLL þ f3v ¼ 0 ðfrom C1LL þ C3LL ¼ 0Þ;
(40)

c1sEE þ 2f1vEE ¼ 0 ðfrom CEE ¼ 0Þ; (41)

in the mediator picture. The operators contributing to the
first equation will not produce any NSI [since CLE ¼ 0 in
Eq. (23)], while the operators present in the second equa-
tion lead to NSI if C1LL ¼ �C3LL � 0 [cf., Eq. (24)].
One reason to use Table II is to discuss departures from

the SM couplings. For example, for a hypothetical experi-
mental departure pointing towards a four-lepton coupling
such as that in operator O3

LL in Eq. (8), Table II indicates
directly that a new heavy scalar triplet could induce it at
tree level, while a scalar doublet would not.

TABLE II. Possible d ¼ 6 operators obtained by combining the lepton bilinears in Table I. The coefficients are labeled cXL (�L ¼
2) or fXL (�L ¼ 0), where theX andL are defined as in Table I and the subscripts refer to the combination of bilinears, in an obvious
notation. The last four columns contain their contribution to the d ¼ 6 operator coefficients in the BW basis in Eqs. (6)–(9). The flavor
structure for any coefficient in the table is understood to be ðÞ����; see main text for further explanations.

d ¼ 6 operators Mediator CLE C1LL C3LL CEE
�LE �EL
ðc2v=�2Þðð �EcÞ���L�Þð �L���ðEcÞ�Þ 2v�3=2 2c2v

ðf1vLE=�2Þð �L���L�Þð �E���E�Þ 1v0 �2f1vLE
ðf2s=�2Þð �L�E�Þð �E�L�Þ 2s1=2 f2s

�LL �LL
ðc1sLL=�2Þðð �LcÞ�i�2L�Þð �L�i�2ðLcÞ�Þ 1s�1

1
4 c

1s � 1
4 c

1s

ðc3s=�2Þðð �LcÞ�i�2 ~�L�Þð �L� ~�i�2ðLcÞ�Þ 3s�1 � 3
4 c

3s � 1
4 c

3s

ðf1vLL=�2Þð �L���L�Þð �L���L�Þ 1v0 f1vLL
ðf3v=�2Þð �L��� ~�L�Þð �L��� ~�L�Þ 3v0 f3v

�EE �EE
ðc1sEE=�2Þðð �EcÞ�E�Þð �E�ðEcÞ�Þ 1s�2

1
2 c

1s
EE

ðf1vEE=�2Þð �E���E�Þð �E���E�Þ 1v0 f1vEE

TABLE I. Possible SM bilinear field combinations involving only leptons. �L refers to the lepton number of the mediator; SUð2ÞL to
electroweak singlets (1), doublets (2), or triplets (3); Uð1ÞY to the hypercharge Y � Q� IW3 ; and ‘‘Lorentz’’ to the Lorentz nature. The

mediator notation is XL
Y , where X, L, and Y denote its SUð2Þ, Lorentz, and Y properties, respectively. The mediators which carry two

units of lepton number were studied in Ref. [76].

�L SUð2ÞL Uð1ÞY Lorentz Mediator Bilinear(s) Models [Refs.]

2 1 �1 Scalar 1s�1
�Lci�2L Zee model [77–79], 6RpSUSY [80]

�2 Scalar 1s�2
�EcE

3 �1 Scalar 3s�1
�Lci�2�aL Left-right sym. [81–84]

2 �3=2 Vector 2v�3=2
�Ec��L 331 model [85–87]

0 1 0 Vector 1v0
�L��L, �E��E Models with Z0 [31]

3 0 Vector 3v0 �L���aL Models with W 0 [31]
2 1=2 Scalar 2s1=2

�EL 6RpSUSY [80]
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From the model-building perspective, it is illustrative to
consider again the case of the operator mediated by 1s�1

leading to Eq. (37). The table shows that it is the only d ¼
6 possibility using only one mediator which directly sat-
isfies the cancellation condition of pure charged lepton
interactions, Eq. (33) [or their tree-level equivalent, Eqs.
(39)–(41)]. This antisymmetric combination of the basis
elements was first found in Ref. [26].

This example serves to illuminate the power of the
mediator analysis (see Ref. [26] and also Ref. [23]). The
1s�1 exchange leading to the originally proposed operator is

depicted in Fig. 1, left diagram. Once a certain mediator is
assumed for a certain operator, contributions to other op-
erators are simultaneously induced. This is illustrated in
the center and right diagrams of Fig. 1, i.e.,

jðc1sLLÞe�e� j2
�4

¼ j
e�j2j
e�j2
M4

1s

¼ jðc1sLLÞe�e�jjðc1sLLÞe�e�j
�4

; (42)

where 
�� is the coupling for the lepton-bilepton interac-

tion and M1s is the mass of the bilepton. A coherent
contribution toGF and a violation of the lepton universality
are then induced by the middle and right diagrams of
Fig. 1. From the strict experimental bounds on these quan-
tities, 	m�� has been constrained to j	m��j & 1:9� 10�3

(90% CL), using this particular mediator [23]. The bound
from a neutrino factory on j	m��j would be 1:8� 10�2 for

complex 	m�� [65]. If it was assumed to be real, which does

not describe the most general class of models, the bound
would be 3:7� 10�4 (90% CL) [65]. However, since this is
a model-dependent assumption, we do not use this bound.

The antisymmetric operator discussed in the previous
paragraphs is not, however, the only possibility to build a
model satisfying Eqs. (39)–(41). For example, one may
choose bosonic triplets 3s�1 and 3v0 , for which the coeffi-

cients can be chosen independently, in order to satisfy Eq.
(40) without suppressing completely the d ¼ 6 NSI opera-
tor coefficient. In particular, if the simplest possibility is
experimentally constrained, one may consider models with
more than one mediator.

At this point, we would like to clarify that cancellations
or fine-tuning of operator coefficients cannot be arguments
by themselves for judging the naturalness and complexity

of a model. These depend on the field content and the
symmetries of the model. Consider for instance, once
again, the antisymmetric operator on the left-hand side of
Eq. (37), induced at tree level by the exchange of just one
mediator, 1s�1, illustrated in Fig. 1, left diagram. That

equation shows that, in the BW basis, the antisymmetric
operator appears to be constructed from the combination of
two BW operators with specific (fine-tuned?) coefficients.
In the effective operator picture, ‘‘fine-tuning’’ is thus a
basis- and model-dependent qualification. We therefore
define the simplest model to be the one with the fewest
mediators. In the d ¼ 6 case, it is the antisymmetric op-
erator in Eq. (37) with only one mediator. In the case that
the NSI come only through d ¼ 8 (or higher dimension)
effective operators, we will demonstrate that the simplest
viable models require at least two mediators. Once the field
content is chosen, any relative precise adjustment of the
couplings of the mediators can be considered as fine-
tuning, unless the symmetries of the model enforce this
adjustment. It will be left to the model builder to eventually
explore possible symmetries, whenever such cancellations
turn out to be required below for phenomenologically
viable NSI.
In general, it is easy to show that all NSI from d ¼ 6

operators are strongly constrained when the possible me-
diators are taken into account. There is, however, one
exception. The present experimental constraints allow the
condition CLE ¼ 0 in Eq. (33), which cancels interactions
among four charged leptons, to be substantially violated
for certain combinations of flavor indices. In particular, the
coefficient of the flavor conserving (BW) operator
ð �L�EeÞð �EeL�Þ is not very strongly constrained [28,74].
The mediators 2v�3=2 or 2s1=2 (cf., Table II) can generate

such an operator, leading to the following effective inter-
actions [cf., Eq. (23)]:

�Ld¼6
eff ¼ �ðCLEÞ�e�e

2�2
ðð �����PL��Þð �e��PReÞ

� ð ����PL�Þð �e��PReÞÞ þ H:c: (43)

The coefficient is constrained by [see Eq. (14) in Ref. [28]]

j	m��j ¼ v2

4�2
jðCLEÞ�e�ej ¼ j��Rj & 0:1: (44)

If the possibility of large SUð2ÞL breaking effects was
considered in addition, a possible gain of almost an order
of magnitude could be allowed for the NSI 	m�� strength
[26]. In conclusion, large (order unity) values for 	m��
resulting from d ¼ 6 effective interactions are not
excluded.
Table II also shows that the relationship between me-

diator and coefficient is unique at the d ¼ 6 level, except
for 1v0 . If a model uses this mediator, then there will be

three different d ¼ 6 operator contributions, which are
independent in the BW basis. In particular, one cannot

FIG. 1. Diagrams mediated by a bilepton 1s�1. The effective
dimension six operator results from the first diagram at energies
below the mediator mass M1s. However, the fundamental inter-
action will also create the middle and right diagrams, and the
couplings will be related.
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neglect OEE, which can induce physics effects while not
resulting in NSI.

IV. MODEL ANALYSIS OF d ¼ 8 OPERATORS

We consider all possible d ¼ 8 operators which can
induce purely leptonic NSI, analyzing them from the point
of view of their possible tree-level mediators. We will
focus on the systematic analysis of all possible products
of SM bilinears, which may result from exchanging medi-
ators which only couple to pairs of SM fields. Such an
analysis was performed for d ¼ 6 operators in
Refs. [25,26], and we extend it here to the d ¼ 8 case.
Other scenarios leading to some of the d ¼ 8 operators will
be briefly analyzed afterwards.

A convenient basis of linearly independent d ¼ 8 op-
erators has been given in Eqs. (13)–(20), i.e., the BR basis.
In order to suppress four charged lepton interactions, both
the cancellation conditions for d ¼ 8 operators in Eq. (34)
and the cancellation conditions for d ¼ 6 operators in Eq.
(33) are now required to be satisfied. Under these condi-
tions, if any d ¼ 6 operator remains, it is expected to
dominate the new physics, and as discussed in the previous
section, only effects related to 	m�� are then allowed to be
experimentally sizable. In this section, we instead focus on
NSI which stem exclusively from d ¼ 8 (and higher)
operators and their implications for model building. In
particular, we are interested in the ONSI without four
charged lepton interactions, i.e., satisfying Eq. (34), which
has been the object of intense speculations in the literature.

When the mediators couple only to SM bilinears, we
have the following options with respect to the undesired
d ¼ 6 operators:

(1) The required mediators do not induce any d ¼ 6
operator involving four leptons (in other words, the
mediators differ from those in Table II).

(2) The d ¼ 6 couplings induced by different mediators
turn out to explicitly cancel among themselves.

As we will illustrate later, there is no simple possibility
for which the first option works. For the second option to
happen, the coefficients for the BW operators in Eqs. (6)–
(9) have to vanish independently, because they constitute a
basis:

C LE ¼ 0; C1LL ¼ 0; C3LL ¼ 0; CEE ¼ 0:

(45)

Their implementation in the mediator picture can be read
off from the columns in Table II. They are given by Eqs.
(39) and (41), together with

1
4 c

1s
LL � 3

4c
3s þ f1vLL ¼ 0 ðfrom C1LL ¼ 0Þ; (46)

� 1
4c

1s
LL � 1

4c
3s þ f3v ¼ 0 ðfrom C3LL ¼ 0Þ; (47)

which replace Eq. (40) of that set. For example, if a model

introduces two bosonic doublets 2v�3=2 and 2s1=2, one can

satisfy Eq. (39) [to which Eq. (45) simplifies in this case]
by achieving 2c2v þ f2s ¼ 0.
Note that the introduction of exotic fermions potentially

leads to the additional d ¼ 6 operators in Eqs. (10)–(12),
which are made out of two lepton fields and two Higgs
doublets. In accordance with the main line of this section,
we do not consider constraints from those operators, which
means that, unless explicitly stated otherwise, when men-
tioning d ¼ 6 operators in this section we refer exclusively
to those in Eqs. (6)–(9).

A. A toy model

In order to estimate the theoretical price to pay for
obtaining large NSI from exotic particles coupling to SM
bilinears, without large charged lepton flavor violation, we
show here a toy model in a bottom-up fashion, which
precisely generates the d ¼ 8 operator ONSI in Eq. (4)
and no d ¼ 6 operator. Then we will provide a systematic
analysis, from which we will recover the toy model as the
simplest possibility in a top-down approach.
Consider the following toy Lagrangian for the under-

lying theory, which adds both a new scalar doublet (2s1=2)�

and a vector doublet (2v�3=2) V� to the SM Lagrangian,

with general couplings to the SM fields y, g, and 
’s,

L ¼ LSM � ðyÞ��ð �L�ÞiE��i � ðgÞ��ð �L�Þi��ðEcÞ�ðV�Þi
þ 
1sðHyHÞð�y�Þ þ 
3sðHy ~�HÞð�y ~��Þ
þ 
1vðHyHÞðVy

�V�Þ þ 
3vðHy ~�HÞðVy
� ~�V�Þ

þ H:c:þ . . . ; (48)

where the dots refer to other bosonic interactions not
relevant for this work. After integrating out the intermedi-
ate particles, the following d ¼ 6 effective interactions
involving leptons are induced (see Table II):

�Ld¼6
eff ¼ ðc2vÞ����

�2
ð �Ec

��
�L�Þð �L���E

c�Þ

þ ðf2sÞ����
�2

ð �L�E�Þð �E�L�Þ; (49)

where now

ðc2vÞ����
�2

¼ �ðgyÞ��ðgÞ��
M2

V

;
ðf2sÞ����
�2

¼ ðyyÞ��ðyÞ��

M2
�

:

(50)

For simplicity of notation and illustrative purposes, we can
assume M� ’ MV � Mð¼ �Þ. The d ¼ 6 cancellation
conditions on four charged lepton transitions in Eq. (33),
or its equivalent in the mediator picture, Eq. (39), translate
into
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� 2ðgyÞ��ðgÞ�� þ ðyyÞ��ðyÞ�� ¼ 0: (51)

The relevant effective d ¼ 8 Lagrangian induced reads

�Ld¼8
eff ¼ 1

M4
½
1sð �LyEÞð �EyyLÞðHyHÞ

þ 
3sð �LyEÞ ~�ð �EyyLÞðHy ~�HÞ
þ 
1vð �Lg��EcÞð �Ec��g

yLÞðHyHÞ
þ 
3vð �Lg��EcÞ ~�ð �Ec��g

yLÞðHy ~�HÞ�; (52)

where flavor indices have been omitted and each expres-
sion in brackets is to be understood as a flavor singlet.
Equation (52) can be rewritten in terms of the operators of
the BR basis in Eqs. (13) and (14), as

�Ld¼8
eff ¼ � 1

�4
ðC1LEHO1

LEH þ C3LEHO
3
LEHÞ; (53)

where

C 1
LEH ¼ 
1vðgyÞ��ðgÞ�� þ 1

2
1sðyyÞ��ðyÞ��; (54)

C 3
LEH ¼ 
3vðgyÞ��ðgÞ�� þ 1

2
3sðyyÞ��ðyÞ��: (55)

In order not to produce interactions between four charged
leptons, it is necessary to satisfy Eq. (34), i.e., the condition
C1LEH ¼ C3LEH � 0, so that the effective d ¼ 8 interaction
in Eq. (53) reduces precisely to ONSI in Eq. (22). Together
with the d ¼ 6 cancellation condition, Eq. (51), it is finally
required that


1s þ 
1v ¼ 
3s þ 
3v � 0: (56)

As a consequence, the NSI in matter can be substantial for
all flavors. While source and detection NSI cannot be
created from our toy model, the epsilon matter parameter
reads

j	m;R
�� j ¼ v4

2M4
jð
1s þ 
1vÞðgyÞe�ðgÞ�ej: (57)

In summary, by adding both an SUð2Þ doublet scalar and a
doublet vector to the SM content, and imposing two rela-
tions to their couplings, Eqs. (51) and (56), a toy model for
viable large NSI has resulted. The model interactions are
visualized in Fig. 2, where the first two effective interac-
tions in Eq. (52) correspond to the diagram on the left—
mediated by 2s1=2—and the last two interactions to the

diagram on the right—mediated by 2v�3=2. In fact, other

combinations of just one of the first two operators in Eq.
(52) together with one of the last two operators in that
equation would have been enough for this purpose.7 As we
will demonstrate below, our toy model is the most general
possible model involving only two mediators, when the
exotic particles couple only to SM bilinears.

We keep dubbing the construction above as ‘‘toy’’ be-
cause, to begin with, the presence of a vector field, which is
not a gauge boson, implies that it is nonrenormalizable.
The toy Lagrangian, Eq. (48), can thus only be considered
as an effective theory of some larger construction, such as
models of extra dimensions in which the vector doublet
could be a component of a higher dimensional gauge
theory.
Moreover, its phenomenological analysis is beyond the

scope of the present work: the constraints from electro-
weak precision tests need to be analyzed for each specific
model, in particular, the oblique corrections [88–90] it may
induce. The new couplings may also have a relevant impact
on other flavor-changing transitions at the loop level,
although considering large values for the quartic couplings

 and small values for the elements of the g and y flavor
matrices, it will probably remain phenomenologically safe.
The toy model demonstrates that it is possible to achieve

the desired d ¼ 8 interactions, without simultaneously in-
ducing d ¼ 6 ones, by fixing the coefficients of the new
fields in the Lagrangian. It requires ad hoc cancellations
though, and it is left as an open question for the model
builder whether some symmetry can justify them.

B. Systematic analysis

In this subsection, a systematic analysis of all possible
effective NSI d ¼ 8 operators is performed. The full de-
composition of any combination of d ¼ 8 operators, con-
structed from combining bilinear combinations of SM
fields, leads to a large number of possibilities. We will first
consider the cases which are conceptually similar to the toy
model above, i.e., new fundamental interactions involving
exactly two SM fields, which are the SM bilinears accord-
ing to our earlier definition. Then we will discuss new
interactions involving only one SM field.

1. Mediators coupling to SM bilinears

We summarize these possibilities for the �LL �EE-type
operators in Table III and for the �LL �LL-type operators in

FIG. 2. Dimension eight operator decomposed into dimension
four interactions.

7For instance, a combination involving 
1s and 
3v, or alter-
natively 
3s and 
1v, would be suitable.
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Table IV, which are some of the main results of this study.
The notation used has been described in Sec. III. The tables
show, from left to right in each row,

(i) an ordinal assigned to each operator,
(ii) the operator itself,
(iii) the value of the operator coefficients of the BR basis

needed to reconstruct it,
(iv) whether the d ¼ 8 cancellation conditions in Eq.

(34) are directly fulfilled (‘‘ONSI?’’),
(v) and the required mediators, with those inducing

additional d ¼ 6 interactions of four charged leptons
(Table II) highlighted in boldface.

Obviously, the number of possible mediators of d ¼ 8
interactions is much larger than for the d ¼ 6 case in
Table II. In particular, fermions are now possible media-
tors, unlike for d ¼ 6. We illustrate the operator decom-
position for operator #2 from Table III, showing the
corresponding Feynman diagram in Fig. 3.
Notice that only the minimal mediator content necessary

to obtain each possible d ¼ 8 operator is shown in
Tables III and IV. In other words, although there is always
a particular set of exotic particles whose exchange induces
at tree level the d ¼ 8 operators considered, this set might
not be unique. Nevertheless, for each operator, the particle

TABLE III. Complete list of �LL �EE-type d ¼ 8 interactions which involve two SM fields at any possible vertex of interaction (field
bilinears within brackets). The columns show an ordinal for each operator, the d ¼ 8 interaction, the corresponding combination of
interactions in the BR basis, whether ONSI is satisfied, and the necessary mediators, respectively. Those mediators also leading to
d ¼ 6 operators in Table II are in boldface. The superscript L=R indicates massive vector fermions. The flavor structure is to be
understood as �L�L�

�E�E�.

# Dimension eight operator C1LEH C3LEH ONSI? Mediators

Combination �LL
1 ð �L��LÞð �E��EÞðHyHÞ 1 1v0
2 ð �L��LÞð �EHyÞð��ÞðHEÞ 1 1v0 þ 2L=R�3=2

3 ð �L��LÞð �EHTÞð��ÞðH�EÞ 1 1v0 þ 2L=R�1=2

4 ð �L�� ~�LÞð �E��EÞðHy ~�HÞ 1 3v0 þ 1v0
5 ð �L�� ~�LÞð �EHyÞð�� ~�ÞðHEÞ 1 3v0 þ 2L=R�3=2

6 ð �L�� ~�LÞð �EHTÞð�� ~�ÞðH�EÞ 1 3v0 þ 2L=R�1=2

Combination �EL
7 ð �LEÞð �ELÞðHyHÞ �1=2 2sþ1=2

8 ð �LEÞð ~�Þð �ELÞðHy ~�HÞ �1=2 2sþ1=2

9 ð �LHÞðHyEÞð �ELÞ �1=4 �1=4 ! 2sþ1=2 þ 1R0 þ 2L=R�1=2

10 ð �L ~�HÞðHyEÞð ~�Þð �ELÞ �3=4 1=4 2sþ1=2 þ 3L=R0 þ 2L=R�1=2

11 ð �Li�2H�ÞðHTEÞði�2Þð �ELÞ 1=4 �1=4 2sþ1=2 þ 1L=R�1 þ 2L=R�3=2

12 ð �L ~� i�2H�ÞðHTEÞði�2 ~�Þð �ELÞ 3=4 1=4 2sþ1=2 þ 3L=R�1 þ 2L=R�3=2

Combination �EcL
13 ð �L��EcÞð �Ec��LÞðHyHÞ �1 2v�3=2

14 ð �L��EcÞð ~�Þð �Ec��LÞðHy ~�HÞ �1 2v�3=2

15 ð �LHÞð��ÞðHyEcÞð �Ec��LÞ �1=2 �1=2 ! 2v�3=2 þ 1R0 þ 2L=Rþ3=2

16 ð �L ~�HÞð��ÞðHyEcÞð ~�Þð �Ec��LÞ �3=2 1=2 2v�3=2 þ 3L=R0 þ 2L=Rþ3=2

17 ð �Li�2H�Þð��ÞðHTEcÞði�2Þð �Ec��LÞ �1=2 1=2 2v�3=2 þ 1L=R�1 þ 2L=Rþ1=2

18 ð �L ~� i�2H�Þð��ÞðHTEcÞði�2 ~�Þð �Ec��LÞ �3=2 �1=2 2v�3=2 þ 3L=R�1 þ 2L=Rþ1=2

Combination HyL
19 ð �LEÞð �EHÞðHyLÞ �1=4 �1=4 ! 2sþ1=2 þ 1R0 þ 2L=R�1=2

20 ð �LEÞð ~�Þð �EHÞðHy ~�LÞ �3=4 1=4 2sþ1=2 þ 3L=R0 þ 2L=R�1=2

21 ð �LHÞð��ÞðHyLÞð �E��EÞ 1=2 1=2 ! 1v0 þ 1R0
22 ð �L ~�HÞð��ÞðHy ~�LÞð �E��EÞ 3=2 �1=2 1v0 þ 3L=R0

23 ð �L��EcÞð �EcHÞð��ÞðHyLÞ �1=2 �1=2 ! 2v�3=2 þ 1R0 þ 2L=Rþ3=2

24 ð �L��EcÞð �EcHÞð��ÞðHyLÞ �3=2 1=2 2v�3=2 þ 3L=R0 þ 2L=Rþ3=2

Combination HL
25 ð �LEÞði�2Þð �EH�ÞðHT i�2LÞ 1=4 �1=4 2sþ1=2 þ 1L=R�1 þ 2L=R�3=2

26 ð �LEÞð ~�i�2Þð �EH�ÞðHT i�2 ~�LÞ 3=4 1=4 2sþ1=2 þ 3L=R�1 þ 2L=R�3=2

27 ð �Li�2H�Þð��ÞðHT i�2LÞð �E��EÞ �1=2 1=2 1v0 þ 1L=R�1

28 ð �L ~� i�2H�Þð��ÞðHT i�2 ~�LÞð �E��EÞ �3=2 �1=2 1v0 þ 3L=R�1

29 ð �L��EcÞði�2Þð �EcH�Þð��ÞðHT i�2LÞ 1=2 �1=2 2v�3=2 þ 1L=R�1 þ 2L=Rþ1=2

30 ð �L��EcÞð ~�i�2Þð �EcH�Þð��ÞðHT i�2 ~�LÞ 3=2 1=2 2v�3=2 þ 3L=R�1 þ 2L=Rþ1=2
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content shown in the tables is contained in all other pos-
sible sets of mediators leading to it.
From both Tables III and IV, and from Table II, one can

easily read off the following key results for the operators
considered:
(i) There is no way to write down a d ¼ 8 operator

without involving a mediator (pinpointed in bold-
face) which also generates d ¼ 6 four-lepton
interactions.

(ii) In order to build ONSI and to cancel the dangerous
(or all) NSI d ¼ 6 contributions, at least two new
fields are needed.

This implies that fine-tuning—or hopefully symme-
tries—will be required if all d ¼ 6 NSI are to be canceled,

TABLE IV. Same as Table III, but for the �LL �LL-type operators. Note that in this case the relationship between the flavor structure
and the symbol is not unique. We show the flavor structure for each group separately.

# Dimension eight operator C111LLH C331LLH C133LLH C313LLH C333LLH ONSI? Mediators

Combination ð �L�L�Þð �L�L�ÞðHyHÞ
31 ð �L��LÞð �L��LÞðHyHÞ 1 1v0
32 ð �L�� ~�LÞð �L�� ~�LÞðHyHÞ 1 3v0
33 ð �L��LÞð �L�� ~�LÞðHy ~�HÞ 1 1v0 þ 3v0
34 ð �L�� ~�LÞð �L��LÞðHy ~�HÞ 1 1v0 þ 3v0
35 ð�i	abcÞð �L���aLÞ� 1 ! 3v0

ð �L���
bLÞðHy�cHÞ

Combination ð �L�L�Þð �L�HÞðHyL�Þ
36 ð �L��LÞð �LHÞð��ÞðHyLÞ 1/2 1/2 ! 1v0 þ 1R0
37 ð �L��LÞð �L ~�HÞð��ÞðHy ~�LÞ 3/2 �1=2 1v0 þ 3L=R0

38 ð �L�� ~�LÞð �L ~�HÞð��ÞðHyLÞ 1=2 1=2 1=2 ! 1v0 þ 1R0 þ 3L=R0

39 ð �L�� ~�LÞð �LHÞð��ÞðHy ~�LÞ 1=2 1=2 �1=2 ! 1v0 þ 1R0 þ 3L=R0

40 ð�i	abcÞð �L���aLÞ � ð �L�bHÞð��ÞðHy�cLÞ 1 �1 3v0 þ 1R0 þ 3L=R0

Combination ð �L�L�Þð �L�HyÞðL�HÞ
41 ð �L��LÞð �Li�2H�Þð��ÞðHT i�2LÞ �1=2 1=2 1v0 þ 1L=R�1

42 ð �L��LÞð �L ~� i�2H�Þð��ÞðHT i�2 ~�LÞ �3=2 �1=2 1v0 þ 3L=R�1

43 ð �L�� ~�LÞð �L ~� i�2H�Þð��ÞðHTi�2LÞ �1=2 1=2 1=2 3v0 þ 1L=R�1 þ 3L=R�1

44 ð �L�� ~�LÞð �Li�2H�Þð��ÞðHT i�2 ~�LÞ �1=2 1=2 �1=2 3v0 þ 1L=R�1 þ 3L=R�1

45 ð�i	abcÞð �L���aLÞ � ð �L�bi�2H�Þð��ÞðHT i�2�cLÞ �1 �1 ! 3v0 þ 3L=R�1

Combination ð �L�ðLcÞ�Þðð �LcÞ�L�ÞðHyHÞ
46 ð �Li�2LcÞð �Lci�2LÞðHyHÞ 1=4 �1=4 ! 1s�1

47 ð �L ~� i�2LcÞð �Lci�2 ~�LÞðHyHÞ �3=4 �1=4 3s�1

48 ð �Li�2LcÞð �Lci�2 ~�LÞðHy ~�HÞ 1=4 �1=4 �1=4 ! 1s�1 þ 3s�1

49 ð �L ~� i�2LcÞð �Lci�2LÞðHy ~�HÞ �1=4 1=4 �1=4 ! 1s�1 þ 3s�1

50 ð�i	abcÞð �L�ai�2LcÞ � ð �Lci�2�bLÞðHy�cHÞ �1=2 �1=2 3s�1

Combination ð �L�HyÞððLcÞ�HÞðð �LcÞ�L�Þ
51 ð �Li�2H�ÞðHTLcÞð �Lci�2LÞ 1=8 �1=8 1=8 �1=8 1=8 ! 1s�1 þ 1L0 þ 1L=R�1

52 ð �L ~� i�2H�ÞðHTLc ~�Þð �Lci�2LÞ �3=8 3=8 1=8 �1=8 1=8 ! 1s�1 þ 3L=R0 þ 1L=R�1

53 ð �L ~� i�2H�ÞðHTLcÞð �Lci�2 ~�LÞ �3=8 �1=8 �3=8 �1=8 1=8 ! 3s�1 þ 1L0 þ 3L=R�1

54 ð �Li�2H�ÞðHT ~�LcÞð �Lci�2 ~�LÞ 3=8 1=8 �1=8 �3=8 �1=8 3s�1 þ 3L=R0 þ 1L=R�1

55 ð�i	abcÞð �L�ai�2H�Þ � ðHT�bLcÞð �Lci�2�cLÞ 3=4 1=4 �1=4 1=4 1=4 3s�1 þ 3L=R0 þ 1L=R�1

Combination ð �L�ðLcÞ�ÞðHyð �LcÞ�ÞðL�HÞ
56 ð �Li�2LcÞð �LcH�ÞðHT i�2LÞ 1=8 �1=8 �1=8 1=8 1=8 ! 1s�1 þ 1L0 þ 1L=R�1

57 ð �L ~� i�2LcÞð �Lc ~�H�ÞðHT i�2LÞ 3=8 1=8 �3=8 �1=8 �1=8 3s�1 þ 3L=R0 þ 1L=R�1

58 ð �Li�2LcÞð �Lc ~�H�ÞðHT i�2 ~�LÞ �3=8 3=8 �1=8 1=8 1=8 ! 1s�1 þ 3L=R0 þ 3L=R�1

59 ð �L ~� i�2LcÞð �LcH�ÞðHT i�2 ~�LÞ �3=8 �1=8 �1=8 �3=8 1=8 ! 3s�1 þ 1L0 þ 3L=R�1

60 ð�i	abcÞð �L�ai�2LcÞ � ð �Lc�bH�ÞðHT i�2�cLÞ 3=4 1=4 1=4 �1=4 1=4 3s�1 þ 3L=R0 þ 3L=R�1

FIG. 3. Example for a fully decomposed operator. The diagram
corresponds to #2 of Table III.
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Eq. (45).8 For model building, one may use the tables as
follows: In order to generate a pureONSI-type operator, it is
necessary to choose effective operators such that Eq. (34)
is fulfilled, i.e., interactions with four charged leptons are
suppressed, and that Eq. (45) is satisfied, i.e., the NSI
contributions from d ¼ 6 operators cancel. The two sim-
plest methods to build a model leading to a pure ONSI

interaction are as follows:
(1) To select from the tables those effective operators

marked as ONSI.
(2) To linearly combine the effective operators in either

of the tables to obtain an ONSI structure. One pos-
sibility is to choose any combination of at least two
non-ONSI operators which are linearly independent
in the BR basis (not considering O333

LLH).
9

The necessary mediators can then be directly read off
from the tables; as the next step, the d ¼ 6 cancellation
conditions should be translated into relations among the
couplings.

Note that, in addition, there might be flavor-dependent
conditions and other constraints, which means that our
tables can only serve as hints on how to build the simplest
models. For example, one may have to worry about elec-
troweak precision data, flavor-changing neutral currents,
nonunitarity of the PMNS matrix, loop constraints, and
chiral anomalies if exotic fermions are introduced.10 Also,
vectorial scalar SUð2Þ doublets call for a deeper theory
when present, as discussed earlier.

Other such constraints can result from interactions of the
�EE �EE type, which we show in Table V. Although these
interactions do not produce NSI, care is mandatory when
one introduces mediators which could induce such inter-

actions. For example, operator #36 not only produces NSI,
but will also lead to potential nonunitarity [through the
operator in Eq. (10)] and other unwanted d ¼ 6 effects, and
operator #61 from Table V potentially leads to charged
lepton flavor violation.
For the operators in Table III, our toy model is seen to be

the only possibility using only two new fields, namely,
2sþ1=2 and 2v�3=2. It combines operators #7, #8, #13, and

#14, which correspond to the four effective interactions in
Eq. (52) in our toy model. The table also allows us to
conclude that it is also the most general version of the
model with only two fields, while a simpler version might,
for instance, only include #7 and #14. Recall that source
and detection NSI cannot be created from our toy model,
while matter NSI for all flavors are allowed. All ONSI

operators obtained in Table III correspond to the combina-
tion of operators of the BR basis in Eq. (22) which are thus
equivalent to Eq. (4)
In Table IV, the simplest possibility to build a pureONSI

and no d ¼ 6 interaction requires at least three fields,
namely, 1s�1, 3

v
0 , and 3s�1, which may come from a large

number of possible operator combinations. For example,
one may combine operators #35 and #48. As discussed in
Sec. II, such a model could have correlations between
source and matter NSI. Note that neither these models
nor our toy model involve fermions,11 which means that
they cannot generate corrections to the unitarity of the
PMNS matrix [through contributions to the operators in
Eqs. (10) and (11)] nor to electroweak data [through con-
tributions to the operators in Eqs. (11) and (12)], or at least
not at leading order.

2. New interactions involving only one SM field

Beyond the operators in the tables above, a much larger
number of effective operators is obtained if, in addition to
the interactions with SM bilinears, couplings between one

TABLE V. Effective d ¼ 8 operators of the �EE �EE type. The
columns show an ordinal for each operator, the corresponding
coefficient in the BR basis, and the tree-level mediators, respec-
tively. The flavor structure is given in the first and fourth rows.
Although these operators are not NSI operators, they share with
the latter some common mediators which may induce charged
lepton flavor violation.

# Dimension eight operator CEEH Mediators

61 ð �E���E�Þð �E���E�ÞðHyHÞ 1 1v0
62 ð �E��EÞð �EHTÞð��ÞðH�EÞ 1 1v0 þ 2L=R�1=2

63 ð �E��EÞð �EHyÞð��ÞðHEÞ 1 1v0 þ 2L=R�3=2

64 ð �E�Ec�Þð �Ec
�E�ÞðHyHÞ 1=2 1s�2

65 ð �EHyÞðEcHÞð �EcEÞ 1=2 1s�2 þ 2L=R�3=2 þ 2L=Rþ1=2

66 ð �EEcÞðHy �EcÞðEHÞ 1=2 1s�2 þ 2L=R�3=2 þ 2L=Rþ1=2

8Recall that this condition ensures that, in addition to avoiding
lepton flavor violation among four charged fermions, other
putatively dangerous d ¼ 6 couplings are suppressed, such as
possible contributions to the very precise measurement of GF
determined from muon decay. Note as well that, in principle, one
could avoid imposing such a strong cancellation condition by
assuming very large couplings among the new heavy fields, and
very small values for the couplings between those heavy fields
and the SM fields which induce d ¼ 6 operators. However, since
the product between these two types of couplings will be present
in the d ¼ 8 operator (as in our toy model), the d ¼ 8 couplings
would be effectively suppressed as well and extreme fine-tuning
would be needed.

9In short, the linear combination of two vectors involves only
one free parameter (aside from the normalization). The condition
in Eq. (34) amounts then to a linear equation with only one
parameter, which can always be solved for. Since the vectors are
linearly independent, they cannot cancel each other, which
means that there will be nonvanishing NSI. If, on the other
hand, one chooses linearly dependent vectors, there will be no
d ¼ 8 operator at all—neither ONSI nor the harmful one.
10This concerns, for instance, several examples in Table III. In
general, in order to cancel the chiral anomaly, new vectorlike
fermions may be introduced. In the tables we just show the
smallest number of mediators which can induce the d ¼ 8
operators.

11More precisely, they do not involve Yukawa couplings linking
the exotic and standard fermions.
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SM field and two exotic fields are allowed in the funda-
mental theory [23]. The resulting d ¼ 8 operators are
diagrammatically illustrated in Fig. 4 and fall into three
categories, which contain the following SM bilinears at the
external vertices:

(1) ðLEÞ- or ðLLÞ-type interactions with new fields. At
least one of the mediators will necessarily induce
some of the d ¼ 6 interactions among four leptons
discussed earlier (corresponding to the external ver-
tices in the figure), and the couplings will thus be
subject to the corresponding constraints. The funda-
mental interactions describing the internal vertices,
however, may not be related to the previously dis-
cussed d ¼ 6 interactions.

(2) ðLHÞ-type interactions. In this case, the mediators
do not necessarily induce any dangerous d ¼ 6
operator involving four leptons, even if there are
some common mediators. The connections previ-
ously studied linking d ¼ 6 and d ¼ 8 operators
do not need to hold. Nevertheless, these types of
interactions involve exotic fermions [SUð2Þ singlets
or triplets] and are constrained by nonunitary con-
tributions to the PMNS matrix, and some of them
also by electroweak precision data (see, e.g.,
Ref. [23]): Figure 4, center diagram, illustrates
that this class of diagrams is connected to one of
the d ¼ 6 operators in Eqs. (10) and (11), or a
combination of them.

(3) ðEHÞ-type interactions. These types of interactions
are suggestive. The mediators may not induce dan-
gerous four-fermion d ¼ 6 operators. Furthermore,
they do not introduce corrections to the PMNS
matrix at leading order. They involve exotic leptons,
however, which are typically strongly constrained
by electroweak precision tests [15]. Figure 4, right
diagram, illustrates that this class of diagrams is
connected to the d ¼ 6 operators in Eq. (12).

Possible ‘‘mixed’’ diagrams, that is, diagrams involving
two different SM bilinear couplings, will combine the
corresponding properties. For instance, a model containing
both ðLEÞ and ðLHÞ couplings to exotic mediators will
simultaneously induce some of the d ¼ 6 operators in
Table II and some of the operators in Eqs. (10)–(12) which
induce nonunitarity.

It is easy to show that the vertex involving just one SM
field (L, E, or H) requires that the two exotic particles
attached to it have different SUð2Þ �Uð1Þ charges. Indeed,
we have explicitly checked that all of these possibilities
require at least two new fields to be phenomenologically
viable; i.e., they are not simpler than the cases discussed
prior to this subsection.
The scenarios in diagram #2 and especially #3 in Fig. 4

are appealing alternatives, as neither of them is correlated
to harmful d ¼ 6 interactions (i.e., four charged-fermion
lepton couplings), and #3 does not induce nonunitarity
either. Furthermore, these two examples are ONSI opera-
tors. Indeed, the exchange of a singlet fermion 1R0 and a

charged scalar 1s�1 shown in #2 gives schematically

ð �LHÞðEÞð �EÞðHyLÞ ¼ �1
4ðO1

LEHÞ � 1
4ðO3

LEHÞ: (58)

Here the projection onto the BR basis shows that it com-
plies with the d ¼ 8 cancellation conditions, Eq. (34). The
mediator 1s�1 could induce in addition d ¼ 6 effective

interactions if also couples to SM lepton doublets, as
shown in Table II, but such couplings are not mandatory.
In contrast, the PMNS unitarity constraints should be
relevant, as a singlet exotic fermion is involved.
Turning now to type #3 and the scenario with an exotic

doublet fermion 2L=R�3=2 and a charged scalar 1
s
�1, the result-

ing effective operator for this example is of the form

ðEHÞð �LÞðLÞðHy �EÞ ¼ �1
4ðO1

LEHÞ � 1
4ðO3

LEHÞ; (59)

and is thus again of theONSI type. Furthermore, in this case
the interactions neither lead to nonunitarity, nor do they
induce any d ¼ 6 operator in Table II if the charged scalar
does not couple to SM lepton doublets [in other words, the
d ¼ 6 complete cancellation conditions in Eq. (45) can be
implemented as well]. Other scenarios of the kind just
discussed do not necessarily have to lead by themselves
to ONSI structures: for them, cancellations similar to those
in our toy model could be considered. However, it remains
to be explored how difficult it is to circumvent the con-
straints which electroweak precision tests impose on exotic
leptons, and whether the necessary cancellations are fea-
sible without running into extreme fine-tunings, for in-
stance, enlarging the scalar sector of the theory.

FIG. 4. Examples for each category of diagrams which lead to d ¼ 8 operators and require couplings of the new fields both to SM
bilinears and to only one SM field.
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During the completion of this work, Ref. [23] appeared.
It explores (but is not limited to) the possible exchange of
exotic fields which in our notation have quantum numbers
of a scalar 1s�1 (to obtain d ¼ 6 NSI) and of a fermion 1R0
(to obtain d ¼ 8 NSI). The latter also induces d ¼ 6
interactions, which lead to nonunitary contributions to
the PMNS matrix, as is well known and is further explored
in that reference. Reference [23] performs a systematic
topological scan of the d ¼ 8 operators, based on
Feynman diagrams, trying to obtain the interaction ONSI

directly from just one Feynman diagram while avoiding
any harmful d ¼ 6 and d ¼ 8 contributions. Our tables
correspond to topologies 2 and 3 in this reference, whereas
the previous paragraph in this subsection would correspond
to their topology 1. Since all possibilities in our tables
contain at least one mediator leading to harmful d ¼ 6
effects if one does not allow for cancellations, Ref. [23]
effectively excludes topologies 2 and 3 in their scan (apart
from our #46, which does not induce harmful d ¼ 6 four
charged lepton interactions, but the mediator 1s�1 is con-
strained otherwise, as we and Ref. [23] discussed before).
Therefore, our work is complementary to that reference.
Note that they find that the NSI in matter and the NSI at the
source or detector are correlated in all of their examples by
the nonunitary effects of the heavy fermions, whereas it is
easy to see that uncorrelated scenarios are achievable when
one combines different operators from our Table III (such
as #7, #8, #13, and #14). As the most important difference,
we relate the operators obtained from mediator exchanges
to a complete basis of independent operators, which allows
us to deduce the general cancellation conditions.

V. SUMMARYAND CONCLUSION

In this study, we have discussed the possibility of large
NSI in the neutrino sector. Since any model of new physics
has to recover the standard model at low energies, we have
required gauge invariance under the SM gauge group and
studied the possible effective theories. The focus is set on
purely leptonic NSI, that is, on operators in which the only
fermion fields appearing are leptons. Our analysis has been
based on the full (analytical) decomposition of all possible
dimension six and eight effective operators, which can be
induced at tree level by any hypothetical beyond-the-SM
theory. Special focus has been set on the scenario in which
the exotic mediators couple to SM bilinear field
combinations.

Our aim is to gauge the theoretical price of achieving
phenomenologically viable large neutrino NSI, and to
establish the minimal constraints that models have to re-
spect for this purpose. Our main requirements are as fol-
lows:

(i) Interactions with four charged leptons have to be
absent or highly suppressed, since these would lead
to charged lepton flavor violation or corrections to
GF.

(ii) When analyzing NSI from d ¼ 8 operators, any d ¼
6 contribution among four leptons is not allowed or
has to be very suppressed, since this would either be
the dominating NSI (if harmless) or would lead to
unacceptably strong interactions among four
charged leptons (if harmful).

The NSI operators obtained have been expanded in a
complete basis of independent operators, which has al-
lowed us to consistently consider cancellations among
the contributions of different operators. This new approach
has established the general cancellation conditions which
the model parameters have to fulfill, to avoid four charged
lepton interactions when the exotic mediators couple to
SM bilinears.
We then studied the required complexity of any realistic

model, such as with respect to the number of mediators or
type of cancellations needed. In short, we have demon-
strated that it is not possible to create such NSI at d ¼ 6 for
all flavor channels. For d ¼ 8, we have constructed a
simple toy model in which the necessary cancellations
occur. It introduces two new SUð2Þ doublet mediators, a
Lorentz scalar and a vector, which induce the desired large
NSI without any dangerous d ¼ 6 flavor-changing transi-
tions among four charged leptons or nonunitarity correc-
tions. It also allows for matter NSI uncorrelated with
source or detector effects. Furthermore, we have obtained
and analyzed the general classification of d ¼ 8 interac-
tions in a systematic way.
More precisely, for the d ¼ 6 operators it is shown at the

effective operator level that, if the four charged lepton
contributions have to be exactly canceled, it is not possible
to obtain 	me� under the above assumptions. In addition,
there are certain connections between the source NSI at a
neutrino factory and the matter NSI, such as 	m�� ¼
�ð	s��Þ�. We have shown that there is only one viable

possibility for a d ¼ 6 interaction with one mediator
only, which is the well-known antisymmetric operator
from Ref. [26]. Nevertheless, there are other options with
more than one mediator in order to cancel all related
interactions involving four charged leptons. Altogether, if
the full decomposition of the operators is taken into ac-
count along with the current bounds, only a large 	m�� might
be viable with only one mediator and it can be as large as
order unity. In this case, the current bounds do not require
that the four charged lepton contributions cancel exactly.
For the d ¼ 8 operators, we have shown that at least two

new fields are required to avoid the undesired d ¼ 6 and
d ¼ 8 interactions involving four charged leptons. In fact,
when the mediators of a d ¼ 8 effective operator couple
only to SM bilinears, there will always be at least one field
leading as well to d ¼ 6 contributions as well. These have
to be canceled in each case by fine-tuning or symmetries.
This result can be directly seen from Tables III and IV,
which list the possible dimension eight operators, includ-
ing the mediators, for fundamental interactions involving
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two SM fields. In those tables, the mediators highlighted in
boldface lead to dimension six interactions as well.

Our simple toy model, with two bosonic SUð2Þ doublets
added to the SM content, leads directly to the desired d ¼
8 NSI and fulfills our minimal requirements. Notice, how-
ever, that we have not considered constraints from loop
effects, neither for this toy model nor for the general
operator analysis, as it is beyond the scope of the present
work. These corrections could be especially relevant for
some models when considering d ¼ 8 interactions, as the
one-loop corrections could spoil the d ¼ 6 cancellation
conditions. They should be taken into account in any model
which aims to be realistic.

Similar considerations apply to the scenarios in which
exotic couplings to both one SM field and SM bilinears are
simultaneously allowed. In order to then induce large d ¼
8 NSI and no d ¼ 6 couplings among four leptons, a
minimum of two exotic mediators is once again needed.
Some simple candidate models may not even require
(strong) cancellation conditions, and they deserve further
exploration. This is the case, for instance, when a singlet
scalar and a fermionic doublet are added to the SM content.

As far as the connection between source and matter NSI
is concerned, we have demonstrated that it depends on the
operators used. For example, several of the d ¼ 8 operators
in Table III, or combinations of them, will only induce
matter NSI, while those requiring singlet or triplet fermi-
onic mediators may induce correlations (through nonuni-
tary corrections to the PMNS matrix). On the other hand,
all d ¼ 8 operators in Table IV will, in principle, allow for
a connection between source and matter NSI independent
of the mediators used. Therefore, it might be very well
possible to detect matter NSI without source or detector
effects, in the absence of fermions as exotic particles, such
as is illustrated by our toy model. Note, as well, that the
models based on Table IV require at least three new fields,
which means that a source and matter NSI connection
might be more easily achieved through nonunitary correc-
tions to the PMNS matrix.

In conclusion, we have demonstrated that the minimum
complexity of a realistic model leading to large NSI and no
charged lepton flavor violation requires at least two new
fields inducing d ¼ 8 NSI couplings. We have determined
the possible SM charges of those mediators and the can-
cellation conditions for the dimension six interactions
among four leptons that they simultaneously induce in
most cases. These cancellation conditions translate into
precise relations among model parameters. One exception
might be 	m��, which might be created at the dimension six
level. Our results imply a number of constraints such that
the observational prospects do not seem bright, especially
since we did not identify some symmetry which would
account for them. On the other side, we showed that large
NSI are not excluded, and we found out which conditions
need to be satisfied in order for any model to be viable. We

agree that those conditions should be justified by symme-
tries or other arguments for the model to be credible. Until
such justification is found in some model, we leave it up to
the reader to decide on the perspective for large NSI.
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APPENDIX A: ON NONSTANDARD FOUR
NEUTRINO INTERACTIONS

Although interactions among four neutrinos hardly con-
tribute to laboratory processes, there has been some inter-
est in the literature in the context of flavor oscillations in
astrophysical environments, such as dense neutrino gases;
see, e.g., Ref. [91] and references therein. The direct
laboratory bounds on these interactions are naturally ex-
tremely weak; see Refs. [92,93]. In this appendix, we
discuss these four neutrino interactions in our gauge in-
variant framework.

1. Effective operator formalism

Since the four neutrino interactions require interactions
with four lepton doublets, they only appear for the �LL �LL
operators. In this case, Eq. (24) reads, including the four
neutrino interactions,

�Leff

¼ 1

�2
ðC �LL �LL

NSI Þ����ð �����PL��Þð �‘���PL‘�Þ

þ 1

�2

�
C1LLþC3LLþ

v2

2�2
ðC111LLHþC331LLH�C133LLH�C313LLHÞ

�
��

��

�ð �‘���PL‘�Þð �‘���PL‘�Þ

þ 1

�2

�
C1LLþC3LLþ

v2

2�2
ðC111LLHþC331LLHþC133LLHþC313LLHÞ

�
��

��

�ð �����PL��Þð �����PL��ÞþH:c: (A1)

The first point one notices is that the four charged lepton
and four neutrino interactions share for d ¼ 6 the same
coefficient C1LL þ C3LL. This means that for d ¼ 6, any
bound from charged lepton flavor violation etc. can be
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directly translated into the four neutrino interactions. This
is illustrated here with one example. For � ¼ � and � ¼
� ¼ � ¼ e, the bound from � ! eee can, apart from
some SUð2Þ symmetry breaking effects, be directly trans-
ferred to the four neutrino interactions. In our notation, one
has

Br ð� ! 3eÞ ¼ 1

G2
F

�
C1LL þ C3LL

�2

�
2 ¼ F2

G2
F

; (A2)

where the nonstandard parameter is defined as
F � ðC1LL þ C3LLÞ=�2—as often done in the literature.
The current bound Brð� ! 3eÞ< 10�12 (90% CL) [94]
then directly translates into F & 10�6GF, which is far
below any laboratory bound or even the bound from pri-
mordial nucleosynthesis. Of course, it is dependent on the
participating flavors and is somewhat looser for combina-
tions involving the �, but this procedure illustrates the
generic argument. Note that the bound for a vector medi-
ated interaction, such as often discussed in the literature,
turns out to be the same in this case.

As discussed in Sec. II, Eq. (33) should be satisfied for
any realistic model in order to avoid these bounds. As we
can read off from Eq. (A1), however, the d ¼ 6 coefficients
for the four charged lepton and four neutrino interactions
are exactly the same, which means that there will not be
any four neutrino interactions in that case. As a conse-
quence, one has to go to d ¼ 8 with the interactions being
suppressed by �4.

For d ¼ 8, the corresponding Eq. (34) to suppress the
harmful interactions among four charged fermions can be
implemented in qualitatively different ways. For example,
if C111LLH ¼ �C331LLH and C133LLH ¼ �C313LLH, there will be no
four neutrino interactions but there will be NSI, whereas
for C111LLH þ C331LLH ¼ C133LLH þ C313LLH � 0, there will be both
four neutrino interactions and NSI. As it is demonstrated
below, both possibilities can be realized within the model
framework in this study.

2. Model analysis

In order to find models for large four neutrino interac-
tions at d ¼ 8, the same argumentation as in Sec. IV is

needed. First of all, Eq. (34) has to be satisfied to suppress
the four charged lepton processes. Second, the d ¼ 6 con-
tributions to the NSI have to be canceled, since there are
strong bounds; i.e., Eq. (45) has to be satisfied. As an
additional condition, one can not have [cf., Eq. (A1)]

C 111
LLH þ C331LLH þ C133LLH þ C313LLH ¼ 0 (A3)

because such an operator will not contribute to the four
neutrino interactions. The relevant decomposed operators
can be found in Table IV, where one can easily read off if
Eq. (A3) is satisfied. Furthermore, note that operators
which only induce C333LLH will not be useful for the four
neutrino interactions. We find from the table that operators
#35, #40, #41, #43, #44, #46, #48, #49, #51, #52, #54, #56,
#57, and #58 do not contribute to the four neutrino inter-
actions. This implies that the possibility pointed out in the
main text, i.e., to combine #35 and #48, does not lead to
four neutrino interactions. One has to use more compli-
cated combinations by combining different operators, such
as #32 and #50 to satisfy Eq. (34), and #48 [which satisfies
Eq. (34)] to introduce an additional mediator to cancel the
d ¼ 6 NSI. Then the four neutrino interactions can be
constructed with three different mediators, where only
#32 and #50 contribute to the four neutrino interactions.
Constructions with less mediators are, under the assump-
tions in this study, not possible, which is different from the
NSI, which can be generated from two mediators.
As soon as a specific model is known, the relationship

among source and production NSI, matter NSI, and four
neutrino interactions can be easily calculated using Sec. II
and Eq. (A1).
In summary, for the d ¼ 6 four neutrino interactions,

gauge invariance implies that they face the stringent
bounds from charged lepton flavor violation, such as
from � to three electrons. Therefore, large four neutrino
interactions have to come from d ¼ 8 effective operators.
From the model point of view, having four neutrino inter-
actions is even more complicated than having large NSI,
since at least three different mediators are needed in the
framework discussed in this study.
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