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Starting from the temperature dependencies of the energy density and pressure from lattice QCD

calculation, we extract the temperature dependencies of the electric and magnetic condensate near Tc.

While the magnetic condensate hardly changes across Tc, we find that the electric condensate increases

abruptly above Tc. This induces a small but equally abrupt decrease in the mass of J=c , which can be

calculated through the second-order Stark effect. Combining the present result with the previously

determined QCD sum rule constraint, we extract the thermal width of J=c above Tc, which also increases

fast. These changes can be identified as the critical behavior of J=c across Tc associated with the phase

transition. We find that the mass shift and width broadening of J=c at 1:05Tc will be around �100 MeV

and 100 MeV, respectively.
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Since the pioneering work by Hashimoto et al. [1] and
the seminal work by Matsui and Satz [2], many experi-
mental and theoretical works have been performed in the
physics of J=c suppression in heavy ion collisions. The
subject has recently evolved into a new stage as lattice
calculations using maximum entropy methods (MEM)
found the peak structure to survive up to almost 2Tc

[3,4], which was speculated before [5] as lattice calcula-
tions showed that nonperturbative nature of QCD persists
well above Tc [6,7]. This suggests that the sudden disap-
pearance of J=c is not the direct signature of quark-gluon
plasma (QGP) formation. Indeed, recent results from the
Relativistic Heavy Ion Collider (RHIC) on the suppression
factors at different rapidity and higher pT seem even more
confusing [8]. Hydrodynamic calculations suggest that the
initial temperature of the QGP formed at RHIC is in the
order of 2Tc and will last for 3 to 4 fm=c [9,10]. Therefore,
considering the formation time of charmonium states after
the creation of the �cc pair, it is crucial to know the detailed
properties of J=c near Tc to fully understand the suppres-
sion and/or enhancement of J=c in heavy ion collisions.
Unfortunately, the present resolutions of the peak structure
of J=c from the lattice calculations based on MEM are far
from satisfactory [11]. In fact, the peak is too broad to even
discriminate between J=c from c 0. Moreover, the tem-
perature region between Tc to 2Tc is known to be strongly
interacting and, therefore, a nonperturbative method has to
be implemented to consistently treat the charmonium at
this temperature region. In a previous work [12], we have
implemented QCD sum rules to investigate the properties
of J=c near Tc. Although the results were nonperturbative,
only a constraint on the combined mass decrease and width
increase could be obtained. Here we point out that the
critical behavior of QCD phase transition could be identi-
fied with a critical behavior of electric condensate at Tc,

and then by making use of the QCD second-order Stark
effect, we show that such critical behavior can be translated
to a sudden change in the mass of J=c across Tc.
We begin by characterizing the properties of the strongly

interacting quark-gluon plasma (sQGP) of the pure gluon
theory across Tc in terms of local operators. This is accom-
plished by making use of the energy-momentum tensor,
which has a symmetric traceless part and a trace part via
the trace anomaly,

T�� ¼ �ST ðGa
��G

a�
� Þ þ g��

4

�ðgÞ
2g

Ga
��G

a��: (1)

Here, a and �, � are the color and Lorentz indices,
respectively. The temperature dependence of the two inde-
pendent parts of the energy-momentum tensor can be
obtained from the lattice measurement of energy density
and pressure at finite temperature.
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Here, u� is the four velocity of the heat bath. Therefore, the
temperature dependencies of gluonic operators can be
identified with the pressure and energy density. To leading
order in coupling, we can identify the trace part � 11
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a��i0� ¼ M0ðTÞ and the non-
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where [12],

M0ðTÞ ¼ ð"� 3pÞ; M2ðTÞ ¼ ð"þ pÞ; (3)

and h�s

� Ga
��G

a��i0 � Gvac
0 is the scalar gluon condensate

in the vacuum. The lattice gauge theory result for " and p
in the pure SU(3) gauge theory was obtained from
Ref. [13]. Figure 1 shows changes of M0 and M2 from
their vacuum value scaled by their asymptotic temperature
dependence of T4. One notes that while M2, which is also
proportional to entropy density times temperature, moder-
ately reaches the asymptotic temperature dependence M0,
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also known as the interaction measure or the gluon con-
densate, suddenly increases and then decreases at higher
temperature. The strongly interacting nature of QGP is
related to the large interaction measure [14], which takes
its maximum value at around 1:1Tc. It should be noted that
the temperature dependence of the gluon condensate M0

extracted here includes both the perturbative and the non-
perturbative and thus the full temperature dependence. The
sudden change near Tc is dominated by the sudden de-
crease of the nonperturbative part, which reduces to about
half of its vacuum value [7], while at higher temperatures it
is dominated by the perturbative contributions [13,15].

For the heat bath at rest, one can rewrite the thermal
expectation values of the dimension four operators of the
energy-momentum tensor in Eq. (1) in terms of electric and
magnetic condensate [16]. This is possible after making the
following identification.

�
�s

�
ST ðGa

��G
a�
� Þ

�
T
� �sðTÞ

�
hST ðGa

��G
a�
� ÞiT: (4)

The scale dependence of the matrix element is transferred
to the coupling constant. Therefore, we additionally need
to know the temperature dependence of the coupling con-
stant �sðTÞ. Since we will be using the matrix element in
the operator product expansion (OPE) with the separation
scale relevant for the heavy bound state, we will use the
temperature-dependent running coupling constant ex-
tracted from the lattice computation of the heavy quark
free energy [17]. Then we find,
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Figure 2 shows the temperature dependence of h�s

� E2iT
and h�s

� B2iT . One notes that there is a sudden increase in

the electric condensate h�s

� E2iT , while the magnetic con-

densate h�s

� B2iT hardly changes above Tc. This can be

related to the fact that the area law behavior of the space-
time Wilson loop changes to the perimeter law above Tc,
while that of the space-space Wilson loop retains the area
law behavior even above Tc [6]. The connection comes in
as the nonperturbative behavior of a rectangular Wilson
loop in the S1S2 direction can be related to the nonvanish-
ing gluon condensate h�s

� G2
S1S2

i via the operator product

expansion [18]. Hence, one can conclude that critical
behaviors of QCD phase transition can be related to the
sudden change in the electric condensate. Such local
changes will induce critical behavior of a heavy quark
system such as the J=c across the phase transition, which
can be obtained through the QCD second-order Stark
effect.
The perturbative QCD formalism for calculating the

interaction between heavy quarkonium and partons was
first developed by Peskin [19,20] in the nonrelativistic
limit. The formula for the mass shift reduces to the
second-order Stark effect in QCD, which was used previ-
ously to calculate the mass shift of charmonium in nuclear
matter [16]. The information needed from the medium is
the electric field square. As the dominant change across the
phase transition is the electric condensate, one notes that
the second-order Stark effect is the most natural formula to
be used across the phase transition.
The second-order Stark effect for the ground state char-

monium with momentum space wave function normalized

as
R d3p

ð2�Þ3 jc ðpÞj2 ¼ 1 is as follows,
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FIG. 2 (color online). Electric and magnetic condensate near
Tc as functions of temperature.
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FIG. 1 (color online). M0 ¼ ð"� 3pÞ and M2 ¼ ð"þ pÞ di-
vided by T4 as functions of temperature.

SU HOUNG LEE AND KENJI MORITA PHYSICAL REVIEW D 79, 011501(R) (2009)

RAPID COMMUNICATIONS

011501-2
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where k ¼ jkj and h�s

� �E2iT denotes the value of change

of the electric condensate from its vacuum value. The
second line is obtained for the Coulomb wave function.
Here, � is the binding energy andmc the charm quark mass.
These parameters are fit to the size of the wave function
obtained in the Cornell potential model [21], and to the
mass of J=c assuming it to be a Coulombic bound state in
the heavy quark limit [19]. The fit gives mc ¼ 1704 MeV,
a ¼ 0:271 fm and �s ¼ 0:57. A few comments are in
order. The minus sign in Eq. (7) is a model-independent
result and follows from the fact that the second-order Stark
effect is negative for the ground state. The factor of Bohr
radius square a2 follows from the dipole nature of the
interaction, and the binding energy � from the inverse
propagator, characterizing the separation scale [19,22].
Therefore, the actual value of the mass shift does not
depend much on the form of the wave function as long as
the size of the wave function is fixed. The Bohr radius used

in our calculation corresponds to hr2i1=2 ¼ 0:47 fm, which
is the size of a more realistic wave function in the Cornell
potential [21]. Therefore, the correction coming from using
a more realistic wave function should be small.

The solid line in Fig. 3 shows the mass shift obtained
from the second-order Stark effect. The second-order Stark
effect formula is based on the operator product expansion
(OPE) for bound state. As mentioned before, the formalism
was first established by Peskin in 1979 and the separation
scale is the binding � ¼ mg4. A more systematic deriva-
tion was developed recently by Brambila et al. [23] for the

bound state. Here, the relevant scales are mv and mv2,
where the former is related to the potential 1=r and the
latter to the kinetic energy p2=m. This scale mv2 is the
separation scale so that for effects with typical momentum
larger than the separation scale should be taken into ac-
count through resummed perturbation by solving the
Schrödinger equation [22], while that with smaller scale
should be taken into account through the operator product
expansion. The operators contain the nonperturbative
physics of QCD, which is typically of order �QCD.

Therefore, the OPE for the bound state works best when
mv2 � �QCD [23]. While there are concerns that this

condition is marginal for charmonium, the approach should
provide a quantitative description. Now the question is
which approach should one take for the thermal interac-
tions near Tc. Obviously, the effects of finite temperature
involve new scales like the color screening. However, as
has been known for some time, the temperature region
from Tc to 2Tc is known to be strongly interaction and
cannot be described by resumed perturbation [24].
Therefore, the approach we want to take is to calculate
the nonperturbative temperature effect to the mass shift
through the operator product expansion. The leading order
contribution in this approach is coming from h�s

� �E2iT as

is given in Eq. (7), whose temperature dependence we
extract directly from the lattice. The arguments for con-
vergence of higher dimensional operators in our approach
are twofold. First, we will restrict to the temperature region
where the change in h�s

� �E2iT is smaller than the vacuum

value of h�s

� E2i0 itself. We believe that then the OPE is

under control as has been verified by the typical QCD sum
rule approaches for heavy quark system in the vacuum. As
can be seen in Fig. 2, this condition restricts our applica-
bility to 1:05Tc, as in the QCD sum rule approach at finite
temperature [12,25]. Second, a more direct evidence comes
from the next term in the OPE correction, which comes
from magnetic condensate. However, as can be seen from
Fig. 2, the changes of h�s

� �B2iT and hence the next term in

the OPE should be small up to 1:05Tc and slightly beyond.
Therefore, we can conclude that the second-order Stark
effect should be valid near Tc. As can be seen in Fig. 3, the
results from the second-order Stark effect shows that the
mass reduces abruptly above Tc and becomes smaller by
about 100 MeVat 1:05Tc, reflecting the critical behavior of
the QCD phase transition.
We put the present result in perspective with a non-

perturbative result obtained before using the QCD sum
rules [12,25]. The points in Fig. 3 represent the maximum
mass shift obtained in Refs. [12,25]. As can be seen in the
figure, the mass shift obtained from the second-order Stark
effect is almost the same as the maximum mass shift
obtained in the sum rule up to Tc and then becomes smaller.
The mass shift at Tc is about �50 MeV. In the QCD sum
rules, only a constraint for the combined mass shift and
thermal width of ��mþ �T ’ 80þ 17ðT � TcÞ MeV
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FIG. 3 (color online). Mass shift from the second-order Stark
effect (solid line) and the maximal mass shift obtained from
QCD sum rules from Ref. [12] (points).
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could be obtained within the temperature range from Tc to
1:05Tc. Therefore, the difference between the Stark effect
and the maximummass shift obtained from QCD sum rules
above Tc in Fig. 3 could be attributed to the nonperturba-
tive thermal width at finite temperature. In Fig. 4, we plot
the thermal width obtained from combining the QCD sum
rule constraint with the mass shift obtained from the QCD
second-order Stark effect [26]. As can be seen in the figure,
the thermal width at 1:05Tc becomes as large as 100 MeV.
Such width slightly above Tc is larger than that estimated
from a perturbative LO and NLOQCDmethod [27,28], but
smaller than a recent phenomenological estimate [29]. The
mass of quarkonium at finite temperature was also inves-
tigated in the potential models [30], where the mass was
found to decrease at high temperature. However, the de-
tailed potential has to be extracted from the lattice at each
temperature and hence identifying the critical behavior
near Tc will be difficult.

Finally, we comment that while the present result is
obtained using lattice calculation in the pure gauge theory,
including dynamical quark will not greatly modify the
result. This follows from noting that the lattice result for
the temperature dependence of pressure p=T4 is indepen-
dent of the number of flavors if scaled to their correspond-
ing ideal gas limit [31]. Moreover, as was shown in
Ref. [32], G0ðTÞ extracted from a recent full lattice calcu-
lation of the interaction measure [33] after subtracting the
quark contributions, and then dividing by a factor of ð1þ
5
12 nfÞ appearing in the beta function, shows that the change
of the magnitude near Tc is remarkably similar to that of
the pure gauge theory. Hence the main input for our result
does not change much even in the presence of dynamical
quarks.

In summary, we have shown that the sudden increase in
the energy density across the phase transition, which is a
characteristic behavior of the QCD phase transition inde-
pendent of the flavor, can be translated to a rapid increase
in the electric condensate slightly above Tc. Using the
QCD second-order Stark effect, this translates into an
equally sudden decrease in the mass of J=c , which is
around �50 MeV and �100 MeV, respectively, at Tc

and 1:05Tc. Combining with a QCD sum rule constraint,
we obtain the thermal width of J=c slightly above Tc, and
found it to be larger than previous perturbative estimates,
and becoming as much as 100 MeV at 1:05Tc. Hence, one
can conclude that the critical behavior of J=c at Tc is not
its sudden disappearance, but rather the abrupt changes of
its mass and width. The mass shift is probably too small to
be detected with present resolutions at RHIC. However,
with the expected upgrades at RHIC and plans at LHC,
such direct measurement could be possible. Indeed, the
mass resolution of J=c for dimuon channel at LHC is
35 MeV for the CMS detector [34] and around 70 MeV
for ALICE [35] and ATLAS [36]. It might be better for
dielectron channel. Furthermore, the mass shift could also
influence production rates within the statistical model [37].
The large width of 100–150 MeValready at 1:05Tc suggest
that while the maximal entropy method shows a J=c peak
structure surviving up to 2Tc, the actual formation at heavy
ion collisions might only be possible at lower temperatures
where the width of the J=c becomes equal to its binding.
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