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We generate an explicit four-fold infinity of physically acceptable exact perfect fluid solutions of

Einstein’s equations by way of conformal transformations of physically unacceptable solutions (one way

to view the use of isotropic coordinates). Special cases include the Schwarzschild interior solution and the

Einstein static universe. The process we consider involves solving two equations of the Riccati type

coupled by a single generating function rather than a specification of one of the two metric functions.
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I. INTRODUCTION

Perhaps the simplest of all procedures that one can think
of for generating new exact solutions of Einstein’s equa-
tions is the use of conformal transformations. Unfor-
tunately, when applied to vacuum, no new solutions
emerge via this procedure [1]. However, when considering
static fluid spheres in isotropic coordinates, the seed metric
is not vacuum, but an unphysical fluid with pressure; but
zero energy density and viable new solutions do indeed
emerge. We now have a rather vast array of methods for
generating static fluid spheres [2], with many of the suc-
cessful procedures relying on what amounts to the develop-
ment of a linear equation of first order, for example [3,4].
In isotropic coordinates linear equations do not emerge
directly [5]. Rather, specifying one of the two metric
functions leads to a differential equation of the Riccati
type. Here we do not specify either metric function but
rather solve two equations of the Riccati type coupled by a
single generating function. Whereas we are able to solve
this system for a variety of generating functions, we have
found only one class of generating functions that gives rise
to tractable and physically interesting solutions of
Einstein’s equations.

II. GENERATING TECHNIQUE

Consider spacetimes O that are static conformal trans-
formations of seed metrics S where [6]

ds2O ¼ FðrÞds2S (1)

with

ds2S ¼ dr2 þ r2d�2 � e2�ðrÞdt2; (2)

where d�2 is the metric of a unit sphere (d�2 þ
sin2ð�Þd�2) and F is a freely specifiable function >0.
We suppose that the mathematical fluid associated with
O is generated by streamlines of constant r, �, and �.
Since this flow is shear free, the necessary and sufficient
condition for (1) to represent a static perfect fluid is given

by the Walker pressure isotropy condition [7]

Gr
r ¼ G�

�; (3)

where G�
� is the Einstein tensor. The energy density is

defined by 8��ðrÞ ¼ �Gt
t and the pressure by 8�pðrÞ ¼

Gr
r and for (3) we assume that �þ p � 0 [8]. Condition

(3), along with the definitions for � and p, is equivalent to
the Tolman-Oppenheimer-Volkoff equation. The space-
times S (for any constant F) do not represent physically
acceptable static fluid spheres since they all have zero
energy density. What we are interested in are spacetimes
O that represent physically acceptable exact perfect fluid
solutions of Einstein’s equations.
From condition (3) we find

r�00 þ r�02 ��0 þ JðrÞ ¼ 0 (4)

where

JðrÞ �
�
F0

F

�0
r�

�
F0

F

�
2 r

2
� F0

F
; (5)

and 0 � d=dr. The energy density is given by

8�� ¼ �F00

F2
þ 3F02

4F3
� 2F0

F2r
; (6)

independent of �, and the pressure is given by

8�p ¼ 2F0

F2r
þ 3F02

4F3
þ�0

�
F0

F2
þ 2

Fr

�
; (7)

where� and F are linked by (4). It is clear from (6) that F
must have a local maximum at r ¼ 0 and so from (5) we
must have Jð0Þ ¼ 0.
Let us specify F and solve for � from (4). The formal

solution is given by

� ¼
Z

bðrÞdrþ C (8)

where

b0 þ b2 � b

r
þ J

r
¼ 0 (9)

and C is a constant. Since Eq. (9) may be solved analyti-*lake@astro.queensu.ca
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cally only for certain J, we can ask what F gives rise to this
particular J? The answer follows from (5) and is given by

F ¼ exp

�Z
~bðrÞdrþ ~C

�
(10)

where

~b 0 �
~b2

2
�

~b

r
� J

r
¼ 0 (11)

and ~C is a constant. Alternatively, we can specify � and
solve for F. This is equivalent to (10) with (11) where we
consider J generated from (4). Again, we can ask what �
generated a particular J. The solution is given by (8) with
(9). In either case our ability to proceed revolves around
our ability to solve Riccati equations of the type (9) and
(11).

In the usual way, Eqs. (9) and (11) can be written in
linear form as

c 00 � c 0

r
þ Jc

r
¼ 0 (12)

and

~c 00 �
~c 0

r
þ J ~c

2r
¼ 0; (13)

where, up to a scale factor in t and a constant conformal

factor, c ¼ e� and ~c ¼ 1=
ffiffiffiffi
F

p
. Rather than specify F or

�, here Eqs. (12) and (13) are solved simultaneously,
coupled by the generating function J. The solutions for

c and ~c are, of course, quite different in general and, as
explained below, distinct even for J ¼ 0.

III. SOLUTIONS TO THE RICCATI SYSTEM

Given a particular solution to a Riccati type equation,
standard procedures [9] allow the construction of more
general solutions. However, this procedure for generating
solutions usually starts from very simple particular solu-
tions, and we have found no nontrivial known solutions
applicable to the system (12) and (13). Rather, what we
have done is to use the computer algebra system Maple
[10] to generate solutions to this system.

To motivate our choice for J, first consider

F ¼ A

ð1þ Br2Þn ; (14)

where A and B are constants and n is a ratio of integers.
This gives

J ¼ 2ð2� nÞnB2r3

ð1þ Br2Þ2 (15)

which distinguishes two special cases for which J ¼ 0:
n ¼ 0 and n ¼ 2. It is important to note that (14) is but a
special case that leads to (15). With J ¼ 0, e� ¼ CþDr2

where C and D are constants. The cases n ¼ 0 are physi-

cally unacceptable, since, as explained above, the associ-
ated energy density vanishes. All cases with n ¼ 2 are
conformally flat and so represent the well-known
Schwarzschild interior solution [11]. A special case is
given by C ¼ 1 and D ¼ B which is the Einstein static
universe. (A cosmological constant � ¼ 4B=A can be
introduced to give zero pressure.)
Motivated by the foregoing, we have considered the

generating functions

J ¼ 2ð2� nÞnB2rb

ð1þ Br2Þa ; (16)

where a and b are integers, and have been able to solve the
Riccati system (12) and (13) analytically for the integers
shown in Table I.
However, solving the differential equations does not

mean that we can find a physically acceptable, or even
tractable, solution to the Einstein equations. In some cases
(e.g. a ¼ 2, b ¼ 5) we have been unable to construct the
associated energy density and pressure simply due to the
complexity of the background spacetime. In other cases
(e.g. a ¼ 1, b ¼ 3) the most elementary physical require-
ments cannot be met (finite positive � and p at the origin
r ¼ 0 with monotone decreasing values outward). Of the
solutions represented in Table I we have found only one
case of physical interest: (a ¼ 2, b ¼ 3), that is, (15).

IV. PHYSICALLYACCEPTABLE SOLUTIONS

Now starting with (15) from (12) and (13) we find

e� ¼ C1ð1þ Br2Þð1þ
ffiffiffi
N

p Þ=2 þ C2ð1þ Br2Þð1�
ffiffiffi
N

p Þ=2; (17)

where

N � 2n2 � 4nþ 1; (18)

and

F ¼ 1

ðC3ð1þ Br2Þn=2 þ C4ð1þ Br2Þ1�n=2Þ2 ; (19)

where the Cx are constants. From (18) we have n � 1þffiffiffi
2

p
=2 and n � 1� ffiffiffi

2
p

=2. Whereas the metric is remark-
ably simple, the resultant expressions for the energy den-
sity and isotropic pressure are very long and not
reproduced here. We resort to graphical demonstrations.

TABLE I. Analytic solutions.

a b

1 1, 3, 5

2 1, 3, 5, 7

3 1, 3, 5

4 1, 3, 5,7

5 3, 5

6 3, 5, 7
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The fact that the energy density is unaffected by � is
demonstrated in Fig. 1 where we have varied C1 and C2.
Two sets of curves shown coincide. This degeneracy arises
due to the fact that we have not set a scale for t.

In Fig. 2 we have varied C3 and C4. Again, two sets of
curves shown coincide. This degeneracy arises due to the
fact that the essential physics does not change under a
constant conformal transformation.

V. DISCUSSION

An explicit four-fold infinity of new physically accept-
able exact perfect fluid solutions of Einstein’s equations

have been generated by solving two equations of the
Riccati type coupled by a single generating function rather
than specifying one of the metric functions. Special cases
of these solutions include the Schwarzschild interior solu-
tion and the Einstein static universe. The solutions are
qualitatively similar to the Tolman IV solution (see for
example [4]) and so should be of interest for the study of
internal properties of neutron stars [12].
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