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We construct rolling tachyon solutions of open and boundary string field theory (OSFT and BSFT,

respectively), in the bosonic and supersymmetric (susy) case. The wildly oscillating solution of susy

OSFT is recovered, together with a family of time-dependent BSFT solutions, for the bosonic and susy

string. These are parametrized by an arbitrary constant r involved in solving the Green equation of the

target fields. When r ¼ 0 we recover previous results in BSFT, whereas for r attaining the value predicted

by OSFT it is shown that the bosonic OSFT solution is the derivative of the boundary one; in the

supersymmetric case the relation between the two solutions is more complicated. This technical

correspondence sheds some light on the nature of wild oscillations, which appear in both theories

whenever r > 0.
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I. INTRODUCTION

Since the seminal papers by Sen on the rolling tachyon
[1–3], much work has been devoted to the study of time-
dependent solutions in string theory. These solutions de-
scribe a system of unstable D-branes which decay into
closed strings as the tachyon field rolls down from the
maximum of the potential toward the stable minimum
[4,5]. Besides the boundary state description originally
used in [1], there are two main approaches to the study
of rolling tachyon solutions: boundary string field theory
(BSFT) [6–12] and open string field theory (OSFT, often
called ‘‘cubic’’ as the bosonic version has a cubic interac-
tion) [13–16]. While in BSFT rolling tachyons are well
established, in OSFT these solutions have been searched
for a long time with unsatisfactory results; i.e., even at the
lowest-level truncation order a smooth solution of the
equations of motion interpolating between the two inequi-
valent vacua was not found, and the supposed equivalence
between BSFT and OSFT was in doubt. Two seemingly
contrasting results were found: an even bump, nonanalytic
at the origin [17], and a solution with wildly increasing
oscillations [18–20]. Recently, the understanding of OSFT
has been improved thanks to the choice of a gauge alter-
native to the Siegel gauge [21], which allowed one to prove
Sen’s conjecture analytically [21–23] (see also [24–26]). In
particular, the problem of finding bosonic rolling solutions
has been reexamined [27–29], and the existence of an
oscillating unbounded solution confirmed.1

The aim of the present paper is threefold.
(i) First, to present OSFT as an example in Minkowski

spacetime of a class of nonlocal scalar field theories
which can be solved by a method based on the
diffusion equation. The wildly oscillating solution
of supersymmetric OSFT is naturally recovered and
its series and integral representations are given.

(ii) Second, to clarify the relation between (and inter-
pretation of) even solutions [17], which are now
reinterpreted, and those with wild oscillations.
Although they seem not to be in contrast to each
other (analytic continuation of even solutions at
negative time t to the half plane t > 0 gives precisely
the oscillating behavior), it is argued that the spiky
solution may be unphysical.

(iii) Last but not least, to clarify why, contrary to what
happens in BSFT, the OSFT solution does not de-
scribe a condensate in the true vacuum. This is
achieved in two steps: (1) a generalization of the
BSFT solution to a family depending on a parameter
rwhose sign (together with the parity of the solution)
determines whether a solution in either theory rolls or
displays wild oscillations; and (2) a quantitative re-
lation between BSFT and OSFT tachyons: in the
bosonic example, the rolling BSFT tachyon is just
the antiderivative of the solution of OSFT.

The last property, although it relates approximate solu-
tions of an approximate equation in OSFT with the exact
solutions of BSFT, is remarkable and confirms previous
findings [29]. The rolling solution �ðtÞ of (0, 0)-level
bosonic OSFT studied in Ref. [17] is easily written as the
series

1For a solution of supersymmetric (Berkovits’) SFT, see [30–
32]. For a bosonic solution in another gauge, see [33].

PHYSICAL REVIEW D 78, 126010 (2008)

1550-7998=2008=78(12)=126010(20) 126010-1 � 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.78.126010


c�ðr; tÞ ¼ �6
X1
k¼1

ð�1Þke�rk2kekt; (1)

where r ¼ r� � ðln��Þ=3, �� ¼ 39=2=26 � 2:19, and

�ðtÞ ¼ �
�5=3�@2t =3� c ðr; tÞ. This equation is an approximate

solution of the OSFT equations of motion truncated at the
(0, 0)-level. Its antiderivative can be written, up to additive
and normalization constants, as

’�ðr; tÞ ¼ �X1
k¼1

ð�1Þke�rk2ekt: (2)

We claim and hereafter prove that Eq. (2) is just a one-
parameter family of solutions of BSFT. Here, the parame-
ter r is arbitrary, not necessarily equal to r�, and reflects an
ambiguity in solving the Green equation for this theory. If
we set r ¼ 0, it reproduces the BSFT solutions studied in
Refs. [10–12], and if r is left unspecified it provides a
generalization of the latter. When r is positive, the BSFT
solution has wild oscillations.

The paper is organized as follows.
The bosonic OSFT case and the diffusion equation

method are reviewed in Sec. II. The supersymmetric case
is discussed in Sec. III. The oscillating tachyon solution on
a Minkowski target spacetime is described in Sec. III B and
compared with another candidate solution which is an even
function nonanalytic at the origin; on physical grounds the
latter can be discarded.

In Sec. IV we derive the BSFT bosonic open string disk
partition function in the presence of a tachyon profile of the
form TðXÞ ¼ T0e

ip�X, where X� are the target scalars and
p� is timelike. The calculations are performed by keeping

the constant r undetermined. The exact solution is Eq. (2).
The tachyonic solution of supersymmetric BSFT is de-

rived in Sec. V. The correspondence between OSFT and
BSFT solutions is discussed in Sec. VI. The last section
contains a summary and conclusions.

The appendices are devoted to material which would
distract the reader from the main thread. The relation
between different representations of the BSFT bosonic
solution is shown in Appendix A with techniques which
can be readily extended to the susy BSFT and OSFT
solutions. The rolling solutions in BSFT have a close
relationship to the one obtained through boundary states
[1,34] (see also [35,36]). In Appendix B we construct the
solution (2) in this framework. There, the presence of the
arbitrary parameter r is justified by the order ambiguity in
the regularization of quantum correlators. It is always
possible to define an r ordering which tends to the usual
normal ordering when r ! 0.

II. BOSONIC OSFT

A General setup

The bosonic OSFT action is of Chern-Simons type [13],

S ¼ � 1

g2o

Z � 1

2�0 � �QB�þ 1

3
� �� ��

�
; (3)

where go is the open string coupling constant (with ½g2o� ¼
E6�D in D ¼ 26 dimensions),

R
is the path integral over

matter and ghost fields, QB is the BRST operator, * is a
noncommutative product, and the string field � is a linear
superposition of states whose coefficients correspond to
the particle fields of the string spectrum.
At the lowest truncation level [37], all particle fields in

� are neglected except the tachyonic one, labeled�ðxÞ and
depending on the center-of-mass coordinate x of the string.
The Fock-space expansion of the string field is truncated so
that � ffi j�i ¼ �ðxÞj #i, where the first step indicates the
state-vertex operator isomorphism and j #i is the ghost
vacuum with ghost number�1=2. At level (0, 0) the action
becomes, in D ¼ 26 dimensions and with metric signature
ð� þ . . .þÞ [14,15]

�S ¼ 1

g2o

Z
dDx

�
1

2�0 �ð�0@�@� þ 1Þ�� ��
3

�ð��0@�@�=3
� �Þ3 ��

�
; (4)

where �� ¼ 39=2=26, �0 is the Regge slope, and Greek
indices run from 0 to D� 1 and are raised and lowered
via the Minkowski metric ���. The tachyon field is a real

scalar with dimension ½�� ¼ E2. The constant � does not
contribute to the scalar equation of motion but it does
determine the energy level of the field. In particular, it
corresponds to the D-brane tension which sets the height
of the tachyon potential at the (closed-string vacuum)
minimum to zero. This happens when� ¼ ð6�2�Þ�1, which
is around 68% of the brane tension; this value is lifted up
when taking into account higher-level fields in the trunca-
tion scheme.
We define the operator

�h=3
� ¼ er�h � Xþ1

‘¼0

ðln��Þ‘
3‘‘!

h‘ ¼ Xþ1

‘¼0

c‘h
‘; (5)

where h � �@2t and

r� � ln��
3

¼ c1 ¼ ln33=2 � ln4 � 0:2616: (6)

Defining the ‘‘dressed’’ scalar field

~� � �h=3
� � ¼ er�h�; (7)

the total action is

S ¼
Z

dDx

�
1

2
�ðh�m2Þ��Uð ~�Þ ��

�
; (8)

where m2 is the squared mass of the field (negative for the
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tachyon) and we have absorbed the open string coupling

into �, so that the latter has dimension ½�� ¼ EðD�2Þ=2.
The equation of motion for the SFT tachyon is (see

[38,39] for the detailed derivation of the dynamical equa-
tions)

h� ¼ m2�þU0; (9)

where

U0 ¼ er�h ~U0 � er�h
@U

@ ~�
; (10)

is constructed from a nonlocal potential term Uð ~�Þ which
does not contain derivatives of ~�. One can also recast

Eq. (9) in terms of ~�,

ðh�m2Þe�2r�h ~� ¼ ~U0: (11)

When the nonlocal term is a monomial, the total tachyonic
potential is

~Vð�; ~�Þ � 1

2
m2�2 þ �

n
~�n þ�; (12)

where � is a coupling constant and we have isolated the
quadratic local mass term, with m2 being a dimensionless
number, and � is the (possibly vanishing) cosmological
constant, which sets the energy level

E ¼
_�2

2
ð1�O2Þ þ ~V �O1; (13)

where

O 1 ¼
Z r�

0
dsðesh ~U0Þðhe�sh ~�Þ;

O2 ¼ 2
_�2

Z r�

0
ds@tðesh ~U0Þ@tðe�sh ~�Þ:

(14)

In the local case (r� ¼ 0, �� ¼ 1),Oi ¼ 0. The tachyon of
the bosonic string has

Uð ~�Þ ¼ ��
3

~�3; m2 ¼ �1: (15)

B. Truncated power-series solution

As r ¼ r� is a small number, one can try to find a
homogeneous solution as a power series in r (subscript *
ignored from now on). The leading term r ¼ 0 is the
solution of the local system, which is

�ð0; tÞ � �locðtÞ ¼ 3

2cosh2t=2
¼ 6

Z þ1

0
d�

� cosð�tÞ
sinhð��Þ ;

(16)

where we wrote a useful integral representation. Applying
the nonlocal operator, one gets

c ðr; tÞ ¼ 6erh
Z þ1

0
d�

� cosð�tÞ
sinhð��Þ

¼ 6
Z þ1

0
d�er�

2 � cosð�tÞ
sinhð��Þ : (17)

Expanding the exponential as er�
2 � Pnmax

n¼0ðr�2Þn=n!, r <
0, Eq. (17) would display growing oscillations2 near the
origin and diverge at t ¼ 0. This is a spurious effect of the
truncation, and the full expression (17) must be used
instead. Although this example is valid only for negative
r, the same problem reappears in the physical case r > 0,
where there are no oscillations but the function blows up at
the origin.

C. Diffusion equation method

We derive a solution of SFT following the method out-
lined in [17,40]. The same features encountered in the
bosonic case [17] will emerge in the supersymmetric
string, i.e., solutions with either a spike (a point where
the left and right derivatives are finite but different3) or
wild oscillatory behavior. Since the same strategy can be
adopted also in other examples on curved backgrounds
[40,41], we shall discuss the method in detail.
(1) Interpret r� as a fixed value of an auxiliary evolution

variable r, so that the scalar field � ¼ �ðr; tÞ is
thought to live in 1þ 1 dimensions (there is no
role of the spatial directions in this discussion).
Find a solution of the corresponding local system
(r ¼ r� ¼ 0 everywhere). This is the initial condi-
tion for a system that evolves in r.

(2) Solve the eigenvalue equation of the d’Alembertian
operator, hGkðtÞ ¼ k2GkðtÞ.

(3) Write the local solution (r ¼ 0) as a linear combi-
nation of the eigenfunctions of the d’Alembertian
operator

�ð0; tÞ ¼ X
k

ckGkðtÞ: (18)

If the spectrum of h is continuous, the above series
is replaced by an integral in k.

(4) Look for nonlocal solutions �ðr; tÞ of the type

erð	þh=�Þ�ð0; tÞ for some (unknown) parameters �
and 	. Notice that the action of nonlocal operators

of the type eðr=�Þh on the local solution �ð0; tÞ now
simply corresponds to the replacement ck !
erk

2=�ck in the sum (18). Thus one looks for solu-
tions of the type

�ðr; tÞ ¼ erð	þh=�Þ�ð0; tÞ ¼ er	
X
k

erk
2=�ckGkðtÞ:

(19)

(5) The coefficients � and 	 such that Eq. (19) is a
solution (exact or approximate) of Eq. (30) can be
chosen either by equating the ‘‘modes’’ GkðtÞ in the

2These are not to be confounded with the oscillations at t > 0
of the solution below.

3The spike was not recognized in [17], whose discussion on
the point t ¼ 0 is now superseded.
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two sides of the equation of motion or by variational
techniques.

The great advantage of this procedure is that it makes the
equation of motion local in the time variable t; the ð1þ 1Þ
system solved by some �ðr; tÞ will be referred to as local-
ized. By construction, c ðr; tÞ � e�	r�ðr; tÞ satisfies the
homogeneous diffusion equation

�@rc ðr; tÞ ¼ hc ðr; tÞ: (20)

As a consequence

eqhc ðr; tÞ ¼ e�q@rc ðr; tÞ ¼ c ðrþ �q; tÞ; (21)

and the effect of the nonlocal operator eqh is a shift of the
auxiliary variable r. In our case, q must be a multiple of r;
since r and @r do not commute, we need an ordering
prescription for the exponential. We adopt the one compat-
ible with the diffusion equation (20), setting all the deriva-
tives @r to the right of the powers of r. In fact

erhc ðr; tÞ ¼ X1
k¼0

rk

k!
hkc ðr; tÞ ¼ X1

k¼0

ð�rÞk
k!

@krc ðr; tÞ

¼ c ðð1þ �Þr; tÞ: (22)

Then one can check whether the found solution fulfils the
equation of motion globally (that is, at all times) or locally
(i.e., in any specified time interval). This check is not
possible if the nonlocal operator is expanded as a truncated
power series, as any such analysis would be necessarily

limited only to solutions of the form ~� ¼ ð1þ c1hþ
� � � þ c‘max

h‘maxÞ�. In other words, one can only increase

the truncation order ‘max and see numerically whether the
solution is convergent and, in this case, sensibly postulate
that the fully resummed solution enjoys the same proper-
ties of the truncated one. However, the sum is unknown and
a formal proof of global or local convergence is not pos-
sible. On the other hand, there is no issue of convergence
for localized systems.

D. Rolling solutions of bosonic cubic SFT

An even solution of bosonic OSFTwas found in [17] and
here we recall the main equations; they can be easily
derived via the methods below. The series representation
for r > 0 is Eq. (1) for t < 0 and cþðr; tÞ ¼ c ðr;�tÞ for
t > 0, the integral representation for r < 0 is Eq. (17),
while for r > 0 one has4

c ðr; tÞ ¼ �6
Z 1

0
d�@�Kð�; rÞ sin�

e" coshtþ cos�
; (23)

where

Kð�; rÞ ¼ e��2=4r

2
ffiffiffiffiffiffi
�r

p : (24)

The e" term redefines c and all its derivatives at the origin
and it can be removed after integration over � is per-
formed. Note that the integral Eq. (23) with " ¼ 0 (‘‘strong
limit’’) is ill-defined in t ¼ 0, as the integral picks up the
poles of the integrand at � ¼ �ð2kþ 1Þ. Hence one would
conclude that c ð0Þ ¼ 1, while the spike does have a well-
defined finite value. This suggests that the ‘‘weak limit’’
(first integrate, then set " ! 0) is the only one in which the
integral representation of c makes any sense.5 The dis-
cussion of these formulas will be amended with respect to
the material presented in [17]. Since it runs along the same
lines as for the susy case, we postpone it to the next section.
The wildly oscillating solution is simply the analytic

continuation of Eq. (23) from t < 0 to positive times, Eq.
(1) (we will soon expand this statement).

III. SUPERSYMMETRIC OSFT

A. General setup

Contrary to the cubic string, there are several proposals
for superstring field theory, the first being Witten’s [42–
47]. The action was later modified by [48–50] as

S ¼ � 1

g2o

Z
Y�2

�
1

2�0 � �QB�þ 1

3
� �� ��

�
; (25)

where Y�2 is a double-step inverse picture-changing op-
erator and� now includes superfields in the 0-picture. The
operator Y�2 can be either chiral and local [48,49] or
nonchiral and bilocal [50] (see the literature and the review
[51] for full details). These two theories predict the same
tree-level on shell amplitudes but different off shell sectors.
From now one we concentrate on the nonchiral version

[50,52]. At level ð1=2; 1Þ, which is the lowest for the susy
tachyon effective action, the tachyon potential is [53]

Uð ~�Þ ¼ e4r�

36
ðer�h ~�2Þ2; m2 ¼ �1=2: (26)

Equation (26) contains derivatives of ~� and Eq. (10) does
not apply. Rather, the susy equation of motion is

ðh�m2Þ� ¼ U0 ¼ �er�hð ~�e2r�h ~�2Þ; (27)

4Equation (23) corresponds to Eq. (2.26) in [17], integrated
twice by parts, with ln� ! ðln�Þ=3 in order to match our con-
ventions. Compare Eq. (2.12) with Eq. (19) below.

5A simple example of strong and weak limits is provided by
the Fourier transform of the retarded distribution. As a weak
limit, it is just the definition of the Heaviside (step) function,
�ðpÞ ¼ lim"!0ð2i�Þ�1

Rþ1
�1 dxeipx=ðx� i"Þ. However, settingR

dx cosðpxÞ=x ¼ 0 by symmetry, also the integral with " ¼ 0
also exists (strong limit), and the result would be ð1=2Þ sgnðpÞ,
which is the Fourier transform of the principal value distribution.
The difference of the two results is a constant, which is a contact
(
) term in the integrand. The same phenomenon happens also in
our case and the choice of limiting procedure, made at the level
of the solution c of the equation of motion, is dictated by the
physics of the problem.
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but at first we will use the approximation [53]

e2r�h ~�2 � ~�2; (28)

in order to have a qualitative idea about the behavior of the
supersymmetric string. Below we verify that the nonlocal
solution of the approximated system equation (28) is not a
solution of Eq. (27), but it will be straightforward to find
the latter.

B. Rolling solutions of supersymmetric OSFT

Rescaling t ! ffiffiffi
2

p
t and � ! 3� in Eqs. (27) and (28),

the (approximate) susy equation of motion for a purely
homogeneous field configuration reads

ð1� @2t Þ� ¼ 2e4r�e�ðr�=2Þ@2t ðe�ðr�=2Þ@2t �Þ3: (29)

Performing the field redefinition �� ¼ eðr�=2Þ@2t �, and ne-
glecting the bar over � to keep notation light, Eq. (29)
becomes

ð1� @2t Þ� ¼ 2e4r� ðe�r�@2t �Þ3; (30)

so that

� ¼ 2�4=3
� ¼ 2e4r� ; m2 ¼ �1; (31)

in Eq. (12).
Let us follow the recipe of Sec. II C step by step. A

solution with r ¼ 0 satisfying the boundary condition
�ðr ¼ 0; t ¼ �1Þ ¼ 0 is �ð0; tÞ ¼ 	secht, where the 	
sign reflects the degeneracy of the potential under the
exchange � ! ��. From now on and without loss of
generality, we shall consider the positive sign, correspond-
ing to the rolling of the tachyon to the right side of the
potential. The eigenfunctions of �@2t are obviously eikt.
The local solution �ð0; tÞ can be easily expanded on the
basis of these eigenfunctions. However, the explicit expan-
sion depends on the sign of the eigenvalues k2.
Accordingly, Eq. (18) splits into two distinct cases. If k2 >
0, the sum in Eq. (18) becomes an integral and it provides
the Fourier expansion of secht

�ð0; tÞ ¼ secht ¼ 1

2

Z þ1

�1
d�

cosð�tÞ
coshð��=2Þ : (32)

If k2 < 0, Eq. (18) gives the expansion of secht as a
geometric series. Convergence of these series imposes
two different representations depending on the sign of t,

�þð0; tÞ ¼ 2

et þ e�t ¼ 2
X1
k¼0

ð�1Þke�ð2kþ1Þt; t > 0;

��ð0; tÞ ¼ 2

et þ e�t ¼ 2
X1
k¼0

ð�1Þkeð2kþ1Þt; t < 0;

(33)

where k has been redefined to be real. Notice that, strictly
speaking, none of the sums in Eq. (33) are defined at t ¼ 0;

the value�ð0; 0Þ ¼ 1 is defined by analytic continuation of
any of the sums.

Next, applying erð	�@2t =�Þ to Eqs. (32) and (33) we get

�ðr; tÞ ¼ e	r

2

Z þ1

�1
d�er�

2=� cosð�tÞ
coshð��=2Þ ; (34)

and

�þðr; tÞ ¼ 2er	
X1
k¼0

ð�1Þke�rð2kþ1Þ2=�e�ð2kþ1Þt; t > 0;

��ðr; tÞ ¼ 2er	
X1
k¼0

ð�1Þke�rð2kþ1Þ2=�eð2kþ1Þt; t < 0:

(35)

The Gaussian factors must have the appropriate signs in
order for Eqs. (34) and (35) to be well-defined. Choosing
�> 0, Eq. (34) is defined for r < 0 and Eq. (35) for r > 0;
this sign choice is justified a posteriori noting that the
equation of motion is not solved even approximately
when �< 0. For r < 0, �ðr; tÞ 2 C1 [Eq. (34)], whereas
if r > 0,�ðr; tÞ presents a spike at the point t ¼ 0, Eq. (35)
(for any other t, it is C1). The two cases behave differently
because �ðr; tÞ satisfies the diffusion equation with nega-
tive diffusion coefficient. Since the ‘‘initial condition’’ in r
has been given for r ¼ 0, the diffusion flow is for negative
values of r. In Eq. (35), on the contrary, the evolution in r is
opposite to the natural flow and a nonanalytic point is
expected on general grounds. The physical case is obtained
for r ¼ r� � 0:26, so we shall have to consider Eq. (35).
The final step is to fix the values of � and	 such that the

equation of motion (30) is approximately satisfied. One can
either minimize the L2 norm of the equation of motion with
respect to the parameters � and 	 or, more simply, impose

that the first coefficients of the modes eð2kþ1Þt in the ex-
pansion of the left- and right-hand sides (LHS and RHS,
respectively) of Eq. (30) coincide.6 In either case, the
answer is

� ¼ 1; 	 ¼ �7=2; (36)

(for the first two coefficients of the series; by including the
third, � and 	 change less than 10%). In order to avoid
confusion in the derivative with respect to r in the diffusion
equation, one absorbs the factor in 	 redefining

c ðr; tÞ ¼ e7r=2�ðr; tÞ: (37)

Notice that the local version of the two functions coincides,
c ð0; tÞ ¼ �ð0; tÞ. Then, taking into account Eq. (21), the
equation of motion becomes local in the variable t,

ð1� @2t Þc ðr; tÞ ¼ 2e�3r½c ð2r; tÞ�3; (38)

6This truncation at finite k is of a very different nature with
respect to the truncation of the series operator eh: in the former
case, this operator is fully resummed.
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and its approximate (although very accurate) solution is,
for r > 0,

cþðr; tÞ ¼ 2
X1
k¼0

ð�1Þke�rð2kþ1Þ2e�ð2kþ1Þt; t > 0;

c�ðr; tÞ ¼ 2
X1
k¼0

ð�1Þke�rð2kþ1Þ2eð2kþ1Þt; t < 0:

(39)

Besides the equation of motion (38), c ðr; tÞ satisfies the
diffusion equation (20) with � ¼ 1. Unfortunately, at the
origin t ¼ 0 the second derivative of Eq. (39) develops a

 function, so the solution breaks down at that point. One
can show that there is a way to circumvent this problem by
defining an even integral representation of c , analog to
Eq. (23), which coincides with Eq. (39) almost every-
where, is not singular in t ¼ 0 upon derivation, and is a
very accurate global solution of the equation of motion

c ðr; tÞ ¼ lim
"!0

c "ðr; tÞ

¼ lim
"!0

Z þ1

�1
d�Kð�; rÞ cos�

e" coshtþ sin�
; (40)

where the limit is performed after integration. To under-
stand to what extent Eq. (39) is a solution of Eq. (38), we
can evaluate the L2 norm of Eq. (38) written in the form
(LHS� RHS) and compare it with a typical scale in the
problem, that is the L2 norm of c or (LHSþ RHS) (both
are of the same order). The result evaluated at r ¼ r� is
� � Rþ1

�1 dtðLHS� RHSÞ2=Rþ1
�1 dtðLHSþ RHSÞ2 


10�8. It is also easy to check whether Eq. (39) is a solution
also in the exact case, Eq. (26). The equation of motion

(38) becomes ð1� @2t Þc ðr; tÞ ¼ 2eð4þ2	Þrc ½ð1þ
�Þr; t�e�r@2t c 2½ð1þ �Þr; t�. With the same values of
Eq. (36), Eq. (39) is not a solution at any time. This shows
that Eq. (28) is not, for this global solution, a good ap-
proximation.7 The equation of motion can be expanded in
powers of time and written as

P
nane

�nt ¼ 0. Imposing
an ¼ 0 for the first n’s, the (approximated) solution is
given by Eq. (35) with � � 0:67330 � 2

3 , 	 �
�2:95564 � �3, which gives �
 10�13. Therefore this
global solution can be considered as exact for all purposes.

However, we will eventually reject it and therefore omit
a lengthy technical discussion of Eq. (40). In fact, the
splitting of c in two series is due to the convergence
condition of the local series Eq. (35). When the Gaussian
factor is introduced, one is entitled to select only one

branch, as the Gaussian factor e�rð2kþ1Þ2 has the effect of
enlarging the convergence abscissa to the whole real axis.
The only constraint is given by the boundary condition at
t ¼ �1 (rolling from the local maximum), so another
solution is given by c� with domain extended to positive

values of t,

c�ðr; tÞ ¼ 2
X1
k¼0

ð�1Þke�rð2kþ1Þ2eð2kþ1Þt: (41)

Thus, Eq. (40) can be regarded as a solution with the
particular future boundary condition c ðr;þ1Þ ¼
cþðr;þ1Þ ¼ 0. Figure 1 shows the two alternative solu-
tions. Equation (41) admits an integral representation, as
k2 < 0 (exponential rather than pure-phase eigenvalues)
naturally leads to a Laplace transform which has no defi-
nite parity. Starting from the second line of Eq. (33)

c�ð0; tÞ ¼
Z 1

0
ds

X1
k¼�1

est�ið�=2Þðs�1Þ
½s� ð2kþ 1Þ�

¼ 2�
Z 1

0
dsest�ið�=2Þðs�1Þ
½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1þ cos�sÞp �;
(42)

where in the first line we have extended the sum to negative
k’s as these are ignored by the integral domain. In the
second line we have used the definition of periodic 

function. This can be written as the limit

2�
½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ cos�sÞ

p
� ¼ lim

"!0

"

1þ "2=2þ cos�s

¼ lim
"!0

sinh"

cosh"þ cos�s
: (43)

Substituting Eq. (43) in (42), one obtains

c�ð0; tÞ ¼ lim
"!0

Z 1

0
dsest

sinh" sinð�s=2Þ
cosh"þ cos�s

; (44)

which is well-defined if t is negative. However, applying
the nonlocal operator convergence is expanded on the

4 2 0 2 4
1.0

0.5

0.0

0.5

1.0

1.5

2.0

t

φ

FIG. 1 (color online). The approximated solutions of the non-
local approximate supersymmetric system. Solid curve: the wild
oscillatory solution Eq. (41). Dashed curve: Eq. (39), which
coincides with Eq. (40). The series are truncated at k
 102.
The spike is at c ðr�; 0Þ � 1:3526. The figure is unchanged for
the solution of the system with nontrivial nonlocal potential,
except for the height of the spike (lowered down to 1.2956).

7It is possible that the approximation Eq. (28) is valid for other
(e.g. kink-type) solutions asymptotically [53].
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whole real axis

c�ðr; tÞ ¼ lim
"!0

Z 1

0
dsest�rs2 sinh" sinð�s=2Þ

cosh"þ cos�s
: (45)

This function does coincide with Eq. (1), as one can see
also by numerical plots. The same result is achieved
directly by taking the Laplace antitransform of c ð0; tÞ,
which is the integral (closed to the left if t < 0) in dt of
e�stsecht on the line �	 i1, � > 0. The infinitely many
poles of the integrand at tk ¼ i�ð2kþ 1Þ=2 have residue

Rk ¼ Res

�
e�st

cosht

�
tk

¼ ð�1Þke�i�s=2e�i�sk: (46)

This is a sum of phases which is regularized in a standard
way by inserting a convergence factor e	" (depending of
the sign of k)

X1
k¼�1

Rk ¼ e�i�s=2
X1
k¼0

ð�1Þke�"k�i�sk

þ X1
k¼1

ð�1Þke�"kþi�sk

¼ e�i�s=2 1

1þ e�"�i�s þ
1

1þ e�"þi�s � 1

¼ e�i�s=2 sinh"

cosh"þ cos�s
; (47)

yielding the desired result. The bosonic case is a variation
on the same theme which presents no difficulty.

C. Bosonic and susy solutions with wild oscillations:
Comparison with the literature

A completely different way of approaching the problem
was adopted in [19] for the bosonic case and subsequently
developed in Ref. [20]. In [19], a level-truncation analysis
of the tachyon dynamics was carried out for a perturbative
solution given as a finite sum of exponentials of the form

�ðtÞ ¼ Xnmax

n¼1

ane
nt: (48)

The solution and all its derivatives satisfy the boundary

condition�ðpÞ ! 0 as t ! �1. The first three coefficients
are exact, since an can be related to the (exact) nþ 1
scattering amplitude [20]. The remaining coefficients (n �
4) can be perturbatively obtained by imposing that the trial
function (48) satisfies the cubic equation of motion in the
bosonic case at increasing levels. Reliable numerical val-
ues of an were known only up to a6 [19,20], but recently an
analytic bosonic expression for an has been derived [28].

For negative t, Eq. (48) with the appropriate coefficients
an describes the rolling of the tachyon off the unstable
maximum along the potential. The physical interpretation
for positive t is more problematic. The truncated expansion
(48) is a solution only up to some upper bound t ¼ tb,

which increases by increasing the number of terms one
includes in the sum. Consequently, the asymptotic behav-
ior of the solution for large positive t cannot be extrapo-
lated from Eq. (48): being the sum alternate, �
	1
depending on the order n at which one truncates the sum
(48).
Before exploding exponentially, the field �ðtÞ presents

an oscillatory behavior with increasing amplitudes that
makes the rolling tachyon dynamics difficult to interpret.
In particular, the width of oscillations for t > 0 is well
beyond the classical inversion point on the tachyon poten-
tial, apparently violating conservation of the total energy.
For n � 2, the coefficients an of Eq. (48) are identical to

the ones defining our analytic solution Eq. (1), even though
the latter corresponds to a (0, 0) level truncation; for n > 2
they are very close. In Fig. 2, Eq. (1) is compared to the
perturbative solution discussed in [19,20]. The two curves
are practically overlapped up to t ¼ 2. For 2< t < 4 there
are some small deviations.
While in the perturbative method the convergence ab-

scissa tb of the solution is unknown (because the full tower
of coefficients an is unknown beyond the truncation point),

1 0 1 2 3 4 5
100

50
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100

150

t

3 2 1 0 1 2

0.0

0.5

1.0

1.5

t

FIG. 2 (color online). The nonperturbative [Eq. (1), solid line]
and perturbative ([19,20], dashed line) bosonic solutions with
wild oscillations. The two curves are zoomed in in the second
panel.
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here one can verify the equations of motion at any time
(because they are localized). To check whether c�ðr; tÞ is
a solution of the SFT equation also for t > 0, one can
substitute it in Eq. (38). It turns out that this is the case,
at least up to some t� ¼ Oð1Þ (see Fig. 3).

The heat equation method allows one to find both the
bounded even solution and another (being the analytic
continuation of the left half of the former to the region t >
0) with wild oscillations. The two classes of solutions
seem, so far, not mutually exclusive, inasmuch as the
choice of one instead of the other is dictated by different
requirements. Analyticity at the origin selects the wildly
oscillating solution, while boundedness and inversion of
the nonlocal operator (the possibility to recover the local
solution by applying e�r�h to the nonlocal solution) sup-
port the even solution.

Therefore, this oscillating solution is nonperturbative
(i.e., an infinite convergent series with known coefficients)
but limited at lowest truncation level in the string spectrum.
On the other hand, the approach of [19,20] constructs an
oscillating perturbative series (that is, finite and with nu-
merical coefficients) which is higher-level (in the string
spectrum) and whose radius of convergence cannot be
calculated but seems to be infinite.

D. The physical picture: Choice of the oscillating
solution

We have at hand two possible approximate solutions of
supersymmetric SFT: either Eq. (39) or Eq. (41). However,
none of the two is completely satisfactory, both on mathe-
matical and physical grounds. One solution is well-defined
on the whole temporal axis but has a spike at the origin,
where one must define its derivatives in a delicate way. The
other solution does not have these problems, it is well-
defined at the origin but can be found only up to some finite
convergence abscissa and, for t > 0, presents ever-growing
oscillations.

Physically, the situation may seem even more obscure.
We first summarize the properties of the corresponding
local solution �ð0; tÞ ¼ secht (�> 0 from now on). At
t ¼ �1 it is at rest at the unstable (perturbative) vacuum,
that is, the local maximum of the potential V. As time
passes, the field rolls down the potential and passes through
the minimum, where the kinetic energy is maximal. Since
the energy is conserved and the system is classical, the field
cannot stop at the minimum and proceeds toward an in-
version point �� defined, through energy conservation, by
the condition Vð0Þ ¼ Vð��Þ. This happens at t ¼ 0, where
the field reaches the maximum value. For t > 0, the
tachyon inverts its motion, passing again through the mini-
mum and reaching asymptotically the unstable maximum.
The behavior of �ð0; tÞ is clear as dictated by energy
conservation.
For t < 0, both candidate nonlocal solutions behave in a

way similar to that of the local solution. For t > 0, one
solution suddenly bounces back before reaching the inver-
sion point required by energy conservation of a canonical
particle. This would happen if a rigid wall was placed
between the minimum and the inversion point of the po-
tential, while in this case the potential does not have any
such feature. On the other hand, the second solution passes
the inversion point and proceeds further along the poten-
tial, reaching energy levels that a canonical, local system
would not have at t ¼ �1.
To understand these facts, one has to abandon the mis-

leading picture of a standard particle with a given kinetic
energy moving in a potential. The point is that the self-
interaction felt by the particle is not given by the potential.
Rather, it is the potential dressed by the kinematic (non-

local) factors e�r@2t . Their presence drastically changes the
dynamics, as one can see by the following heuristic argu-
ments valid on any homogeneous background. Let us con-
sider slowly varying profiles. In this case, the interaction
term Eq. (12) can be expanded as (we ignore the cosmo-
logical constant)

~V ¼ 1

2
m2�2 þ �

n
ðerh�Þn

� 1

2
m2�2 þ �

n
�n þ r��n�1h�

¼ V þ r��n�1h�; (49)

where V is the potential of the local solution �ð0; tÞ, and
the additional term can be thought as a modification of the
kinetic energy Ekin. The Lagrangian is � �h�=2�
r��n�1h�� V ! �ðr�Þ2=2þ ðn�
1Þr��n�2ðr�Þ2 � V via an integration by parts, and

Ekin � 1
2
_�2½1� 2ðn� 1Þr��n�2�: (50)

During slow rolling, the major contribution due to the
nonlocality of the potential affects the kinetic term rather
than the potential. Specializing to the bosonic string and

1.0 0.5 0.0 0.5 1.0 1.5 2.0

20
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FIG. 3 (color online). The left- and right-hand side of Eq. (38)
(solid and dashed curve, respectively) when the oscillating
function Eq. (41), is plugged in.
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positive field values, if r < 0 the square bracket in the
right-hand side of Eq. (50) is positive definite (n, �> 0)
and the usual physical interpretation of motion along the
potential exchanging kinetic and potential energy holds.
On the contrary, r ¼ 0 is a bifurcation point for the system,
as for r > 0 the square bracket can become negative. More
precisely, if r > 0 there is a critical value for the tachyonic
field, �cðrÞ ¼ 1=ð4r�Þ, at which Ekin � 0.

Two cases are possible. If any solution of the equation of
motion exceeds �c, then the effective kinetic energy con-
tributes with a negative sign to the total energy, and con-
servation of the latter forces the tachyon to go indefinitely
up the potential. This happens to the oscillating solution,
which is related to the perturbative solution analyzed in
[19,20]. Or, since �c is located between the minimum of
the potential and the local inversion point, if the tachyon
solution is bounded it must be so by�c and not by the local
inversion point, otherwise it would undergo the previous
phenomenon. On the other hand, when the tachyon arrives
at �c it has not exhausted its velocity, being below the
inversion point. It cannot stop, otherwise it would violate
energy conservation, and the only thing it can do compat-
ibly with the latter is bouncing back rigidly. Then, the
tachyon field has a spike and its velocity changes sign.8

Within this simple approximation, all the main charac-
teristic features of the solutions we discussed are recov-
ered, including not only the spike and the indefinite growth
but also the bifurcation of the solutions when t > 0 in the
r > 0 case. One can check the validity of this qualitative
picture, for instance, in the bosonic case, where

�cðr�Þ
�ðr�; 0Þ

� 0:83; (51)

which misses the value of the spike by only 17%.
As mentioned in the introduction, the tachyon with wild

oscillations has been confirmed as a solution of the full
equation of motion [28]. A posteriori, this result is not
surprising. At level (0, 0), Schnabl’s gauge coincides with
Siegel’s gauge, and the effective equation of motion for the
tachyon is the same. As the truncation level in the Siegel
gauge increases, the shape of the effective tachyonic po-
tential changes only in the quantitative details of the local
minima. Hence, one would expect that the features of
solutions at low levels would survive through the trunca-
tion procedure. This guess was confirmed in Ref. [28] for
the case of the wildly oscillating solution. Also, evidence
was given that the radius of convergence of the series
defining this solution is actually infinite for any t. In order
to complete the comparison, one can note that the analo-
gous of the bounded solution in the Schnabl gauge for the

exact equation of motion exists and is the mirroring at t ¼
0 of the solution of [28] for negative times, as explained
above.
In the diffusion equation method, the spike solution is

more accurate than the oscillating one and has the advan-
tage of admitting several integral representations.
However, there are reasons to believe that the oscillating
solution Eq. (41) is actually the only feasible one:
(i) As said in Sec. III B, the spiky solution emerges

because we fixed the asymptotes at both the infinite
past and future. In other words, we have imposed that
the origin continues to be the inversion point of the
solution even in the nonlocal system. However, noth-
ing forces us to do so and, rather, the most natural
option is to leave the solution unconstrained
asymptotically.

(ii) The only solution found perturbatively is the oscil-
lating one. The point t ¼ 0, where the two solutions
bifurcate, is not special in the perturbative approach.

(iii) When two solutions overlap before a bifurcation
point which is not physically special, they are physi-
cally equivalent under a gauge transformation. In the
case under scrutiny there is no such gauge freedom,
so one solution must be discarded.

These arguments, together with others in Sec. IVB, show
that one can safely consider the solution with wild oscil-
lations as the only meaningful alternative. This will be our
attitude in what follows. Before proceeding, it may be
interesting to remark that one of the most common objec-
tions against the spike (‘‘The spiky solution rolls back to
the local maximum and this certainly does not describe
tachyon condensation at the minimum’’) cannot be moved
to exclude it. In fact, the same can be said regarding the
oscillating solution, which does not sit down to the local
minimum but climbs the potential indefinitely back and
forth.
For heuristic reasons, in this section we have tried to

give a partial explanation of the wild oscillations in terms
of the effective change of sign of an effective kinetic
energy. However, it was shown in [19,29] that these oscil-
lations disappear after a suitable gauge transformation
interpolating between OSFT and BSFT. In our approach
(effective OSFT lowest-level tachyonic action) it is not
possible to see this mechanism in action, the gauge being
fixed from the beginning; hence we cannot establish
whether the oscillations of the solution are physical or
gauge artifacts. However, we shall derive in Sec. VI a
relation between OSFT and BSFT governed by the sign
of the parameter r, supporting the idea that the framework
of BSFT has more transparent physical features.

IV. BOSONIC BSFT

A. General setup

In Witten’s construction of open boundary string field
theory [6], the space of all two-dimensional world sheet

8Another example of physical models with discontinuities is
thermal systems displaying one or more discontinuous phase
transitions. The relevant parameter there is the total energy,
which is a constant observable. This is also our case, as one
can verify numerically from Eq. (13).
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field theories on the unit disk, which are conformal in the
interior of the disk but have arbitrary boundary interac-
tions, is described by the world sheet action

S ¼ S0 þ Sboundary ¼ S0 þ
Z 2�

0

d�

2�
V : (52)

Here, S0 is the bulk action, a free action describing an open
plus closed conformal background integrated over the
volume of the unit disk, and V is a general perturbation
defined on the disk boundary which can be parametrized by
couplings �i,

V ¼X
i

�iV i: (53)

The couplings �i correspond to fields in spacetime, and
according to [7,8] the classical spacetime action S is de-
fined by

S ¼
�X

i

	i @

@�i þ 1

�
Z; (54)

where Z is the disk partition function of the world sheet
theory (52) and 	i are the 	 functions of the couplings
governing their world sheet renormalization group flow.
For open strings propagating in a tachyon background the
world sheet action (52) reads

S ½X� ¼
Z

d�d�
1

4�
@aXð�; �Þ � @aXð�; �Þ

þ
Z 2�

0

d�

2�
T½Xð�Þ�; (55)

and the partition function

Z ¼
Z
½dX�e�S½X�: (56)

Via a standard procedure [54–56] the bulk excitations can
be integrated out to get an effective field theory [57] which
lives on the boundary [58]

ZðJÞ ¼
Z
½dX�e�

R
2�

0
ðd�=2�Þ½ð1=2ÞX�ji@�jX�þTðXÞ�J�X�; (57)

where � denotes the scalar product of Lorentz vectors,
J�ð�Þ is the usual source generating correlators of the fields
X� restricted to the boundary of the world sheet, and the
operator ji@�j is defined by the Fourier series

ji@�j
ð�� �0Þ ¼ Xþ1

n¼�1

jnj
2�

einð���0Þ: (58)

ZðJÞ in Eq. (57) is defined up to a multiplicative constant c
which, in turn, is just the tension of theD25-brane [58,59].

To calculate the energy, we split X� in a classical term
x� (constant in world sheet coordinates) and a varying part
(which we still call X�), promote the Minkowskian metric
in Eq. (56) to a general one, ��� ! g��, and use the
standard definition of the energy-momentum tensor. The

spacetime action is proportional to the partition function
(via a positive constant c) and one has [1,12]

T�� � � 2cffiffiffiffiffiffiffi�g
p 
Z


g�� ¼ cðg��ZþA��Þ; (59)

where

A �� � 2
Z
½dX�

�Z
d�d�

1

4�
@aX�@

aX�

�
e�S½X�

¼ 2
Z
½dX�@aX�ð0Þ@aX�ð0Þe�S½X�: (60)

The first term in Eq. (59) comes from the variation of the
extra factor dDx

ffiffiffiffiffiffiffi�g
p

which appears in the measure of the

integral in X�; the zero mode has been integrated out in the
partition function Z. The second term corresponds to the
expectation value of the graviton vertex operator and is
found under the assumption that the boundary interaction
is independent from the metric. In the last line, the position
of this operator was fixed.

B. Rolling solution of bosonic boundary SFT

If we consider the case of constant source ik� for the

zero mode of the X� field, the integral over the zero mode
variable will just provide the energy-momentum conserva-
tion 
 function. In this case, the partition function (57)
becomes

ZðkÞ ¼
Z
½dX�e�

R
2�

0
ðd�=2�Þ½ð1=2ÞX�ji@�jX�þTðXÞ��ik�x; (61)

where x is the zero mode defined by

x� ¼
Z 2�

0

d�

2�
X�ð�Þ: (62)

In order to evaluate the path integral (61), we need the
Green functionG of the operator ji@�j, ji@�jGð�0Þ ¼ 
ð��
�0Þ,

Gð�Þ ¼ 2
X1
n¼1

e�"n cosn�

n
¼ � ln½1� 2e�" cos�þ e�2"�;

(63)

where " is an ultraviolet cutoff. Clearly, Gð�Þ is defined up
to an arbitrary constant, which is the kernel of the operator
ji@�j. Regularizing the propagator as in Eq. (63) and adding
the arbitrary constant parametrized as 2r, we are led to the
following prescription for Gð�Þ,

Gð�Þ ¼
�� ln½4sin2ð�2Þ� þ 2r � � 0
�2 ln" � ¼ 0

: (64)

In the second line the arbitrary constant r has been ab-
sorbed in the regulator ". The parameter r is an ambiguity
stemming from different prescriptions in the scheme
adopted to renormalize the effective action [57,60]. As
this affects vertex operators, it corresponds to a field re-

GIANLUCA CALCAGNI AND GIUSEPPE NARDELLI PHYSICAL REVIEW D 78, 126010 (2008)

126010-10



definition of target fields. In Appendix B it will be shown
that r naturally arises also in a canonical quantization
framework, and it will be related to the ordering prescrip-
tion in the evaluation of quantum correlators. The usual
normal ordering corresponds to the choice r ¼ 0.

The partition function (61) can be evaluated as an ex-
pansion in powers of the bare fields T½Xð�Þ�. Taking the
Fourier transform of the tachyon and performing all the
contractions of the Xð�iÞ fields, we get [58]

ZðkÞ ¼ X1
n¼0

ð�1Þn
n!

"�n
Z Yn

i¼1

dkiTðkiÞ �
Z 2�

0

Yn
i¼1

d�i
2�

� e
�Pn

i¼1
ðk2i =2ÞGð0Þ�P

j>i

ki�kjGð�i��jÞ



�
k�Xn

i¼1

ki

�
; (65)

where we have omitted the vector indices in the 
 function.
Taking into account the propagator (64) and evaluating the
integrand on the support of the 
 function, we obtain

ZðkÞ ¼ e�rk2 ẐðkÞ

¼ e�rk2
X1
n¼0

ð�1Þn
n!

Z Yn
i¼1

dkiT̂ðkiÞ

�
k�Xn

i¼1

ki

�

�
Z 2�

0

Yn
i¼1

d�i
2�

Y
j>i

�
4sin2

�
�i � �j

2

��
ki�kj

; (66)

where T̂ðkiÞ � TðkiÞ"k2i�1erk
2
i . Apart from a trivial rescal-

ing of the tachyon fields, all the r dependence in ZðkÞ can
be factorized out of the integrals by an overall factor e�rk2 .

In fact, ẐðkÞ is nothing but the partition function for the

tachyon field T̂ when r ¼ 0. Rolling tachyon solutions can
be obtained by the following choice of the bare tachyon
fields

TðXÞ ¼ T0e
ip�X;

TðkiÞ ¼ 1

ð2�ÞD
Z

dXe�iki�XTðXÞ ¼ T0
ðki � pÞ: (67)

This corresponds to the case in which all the momenta k
�
i

in Eq. (66) have the same value p� (coherent phases). Such
a profile is particularly simple and corresponds, in the
Minkowskian formulation, to a perturbation around the
unstable vacuum at X0 ¼ �1 if the momenta k�i are
purely timelike (in that case, T0 is the tachyon velocity at
X0 ¼ 0). Moreover, the integrals over �i can be now ex-
plicitly performed by using the formula

Z 2�

0

Yn
i¼1

�
d�i
2�

�Y
j>i

�
2 sin

�
�i � �j

2

��
2p2

¼ �ð1þ np2Þ
½�ð1þ p2Þ�n :

(68)

To get the partition function ZðXÞ in the coordinate space
we have to Fourier transform Eq. (66). Taking Eq. (68) into
account we obtain

ZðXÞ ¼ e�rh
X1
n¼0

ð�1Þn
n!

½T ðXÞ�n�ð1þ np2Þ;

T ðXÞ ¼ "p
2�1 T0e

ip�Xerp2

�ð1þ p2Þ :
(69)

The sum over n can be performed if the Euler representa-
tion for �ð1þ np2Þ is used. We get

Z ¼ e�rh
Z 1

0
dse�s½1þT ðXÞsp2�1�: (70)

The renormalized tachyon field ’ðXÞ is related to the
partition function ZðXÞ by the formula [58]

ZðXÞ ¼ 1� ’ðXÞ: (71)

The equation of motion for the renormalized field is ob-
tained by imposing the vanishing of the corresponding 	
function

	’ � � @’

@ ln"
¼ 0; (72)

which enforces the condition p2 ¼ 1, as one can verify. We
shall consider the Wick rotated back profile (iX0 ¼ t,
�ip0 ¼ pEucl

0 ) in the spatially homogeneous case, p ¼
ð1; 0; . . . ; 0Þ (pEucl

0 ¼ �i). The integration over s in Eq.

(70) is now trivial, but the effect of the (Wick rotated)

operator e�r@2t on it is cumbersome. It is preferable to first
rewrite the integral in (70) as

Z 1

0
dse�s½1þT ðtÞ� ¼ � 1

2i

Z
�R

d�
½T ðtÞ��
sinð��Þ ; (73)

where T ðtÞ ¼ T0e
tþr, and the contour �R lies on the

imaginary � axis from �i1 to þi1 keeping the pole in
� ¼ 0 to its right. Then, from Eq. (71) the renormalized
tachyon reads

’ðr; tÞ ¼ 1

2i
e�r@2t

Z
�L

d�
½T ðtÞ��
sinð��Þ ; (74)

where we have written the dependence on r as an argument
of’ and the contour �L now keeps the pole in� ¼ 0 to the
left. When r ¼ 0 one should recover the case analyzed in

Ref. [12]. Indeed, without the operator e�r@2t one gets

’þð0; yÞ ¼
X1
n¼0

ð�1Þne�ny; y > 0;

’�ð0; yÞ ¼ �X1
n¼1

ð�1Þneny; y < 0;

(75)

where y � tþ lnT0. These expressions are obtained as the
sum over the residues of the function 1= sin�� closing the
integral over � to the left or to the right depending on the

sign of y. Both the expressions ’ð	Þð0; yÞ in (75) sum to

’ð0; yÞ ¼ 1

1þ e�y ¼
1

2
þ 1

2

sinhy

coshyþ 1
: (76)
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This expression exactly represents the well-known rolling
tachyon solution of bosonic BSFT [12], as can be easily
seen by recalling the definition of the tachyon effective

potential in terms of the renormalized field 1� ’ ¼ e� ~T

[58]

U ¼ ð1� ’Þ½1� lnð1� ’Þ� ¼ e� ~Tð1þ ~TÞ: (77)

At the infinite past t ! �1, the tachyon ~T ¼ 0 starts from
the unstable maximum of the potential (77), reaching the
stable vacuum at t ! þ1 as ~T ! þ1. Expanding Eq.
(77) for small ~T, one reproduces the cubic potential.
From Eqs. (71) and (76), one has precisely the partition
function of Ref. [12]

Zðr ¼ 0Þ ¼ 1

1þ T0e
t : (78)

The value of the partition function (as well as’) at y ¼ 0 is
defined only by analytic continuation.

A solution for r < 0 can be obtained directly from Eq.
(74) by changing variable � ! �i�, leading to

’ðr; tÞ ¼ 1

2
þ 1

2

Z þ1

�1
d�er�

2 sinð�yÞ
sinhð��Þ ; r < 0; (79)

where y � tþ rþ lnT0. The factor 1=2 comes from the
integral over the half-circle around the origin. The profile
in Eq. (79) is C1 and generalizes the solution (76) and its
rolling behavior for any r � 0 [for r ¼ 0 it coincides with
Eq. (76)].

In order to get a solution in the region r > 0, one can
start from Eq. (76) and apply the method of Appendix A, or
by analytic continuation of the series representation. Both
calculations give the same result

’ðr; tÞ ¼ 1

2
þ 1

2

Z 1

�1
d�Kð�; rÞ sinhy

e" coshyþ cos�
: (80)

The behavior at the origin y ¼ 0 in the r > 0 case is
regulated by a mechanism analogous to that described in
the OSFT case and we shall not repeat it here. The solution
’ in any of its representations [for instance (79) or (80)]
satisfies the diffusion equation with �1 diffusion coeffi-
cient

@r’ðr; tÞ ¼ �@2t ’ðr; tÞ; (81)

with respect to the ‘‘radial’’ variable r and the time variable
t. In fact, ’ðr; tÞ is nothing but the solutions of this diffu-
sion equation with ‘‘initial’’ condition Eq. (76) and
‘‘boundary’’ condition ’ðr;	1Þ ¼ 1=2	 1=2. The effect
of r in the rolling solutions is twofold: it translates the
origin of time and it changes the slope of the rolling. The
first effect can be always reabsorbed by a suitable time
translation, under which the system is invariant; in alter-
native, one fixes T0 ¼ e�r.

In Appendix A we discuss the series representation of
the solution (80) for r > 0, which is

’þðr; tÞ ¼
X1
n¼0

ð�1Þne�rn2e�ny; y > 0; r > 0;

’�ðr; tÞ ¼ �X1
n¼1

ð�1Þne�rn2eny; y < 0; r > 0:

(82)

There, we show that the series and integral representation
are exactly equivalent, and they are the analytic continu-
ation of the solution with r < 0. As in the OSFT case, one
can also consider the solution

’�ðr; tÞ ¼ �X1
n¼1

ð�1Þne�rn2eny; (83)

at all times; its integral representation can be found with
the same technique of Sec. III B. The behavior of Eq. (83)
for different values of r is shown in Fig. 4. When r > 0 the
solution oscillates at positive times.
Any evaluation of the path integral (57) based on the

Taylor expansion in powers of the bare fields T½Xð�Þ�
unavoidably leads to Eq. (83), which is the representation
of ’ [or Z, through Eq. (71)] as a power series of T. An
alternative route is through the boundary states [1,34].
Even in that case, one gets the power series Eq. (83), as
the calculation is expressed in terms of correlators, and
therefore intrinsically perturbative. As the boundary state
calculation does not show any sign of the decomposition
Eq. (82), we select Eq. (83) as the correct family of BSFT
solutions. Another reason is that Eq. (82) would lead to
inconsistencies in its interpretation as an instantonic parti-
cle, since the latter could cover finite lengths
instantaneously.

4 2 0 2 4

0

1

2

1

t

FIG. 4 (color online). The BSFT solution for different values
of r, given by Eq. (79) (r � 0, kink-type) and (83) (r > 0, wild
oscillations). In the panel, r ¼ �2 (dashed curve), r ¼ �1
(dotted curve), r ¼ 0, 0.5, 1 (solid curves with decreasing
thickness).
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C Energy–momentum tensor

It is convenient to define the normal-ordered graviton
vertex operators

:@X�ðz; �zÞ �@0X�ðz0; �z0Þ: � @X�ðz; �zÞ �@0X�ðz0; �z0Þ
þ g��@ �@0 lne�rjz� z0j; (84)

and

::@X�ðz; �zÞ �@0X�ðz0; �z0Þ:: � @X�ðz; �zÞ �@0X�ðz0; �z0Þ
þ g��@ �@0 lne�2rjz� z0j2

¼ :@X� �@0X�:� g��

2
; (85)

where @ ¼ @z and �@ ¼ @�z. In agreement with our definition
of the propagator, we have generalized the expressions of
[12] for r � 0. This operation is clearly trivial, and the
calculation of [12] (to which we refer the reader for inter-
mediate steps) is reproduced. Setting g�� ¼ ���, one has
Aij ¼ 
ijZ, while

A00¼2h::@X0ð0Þ �@X0ð0Þ::e�
R
ðd�=2�ÞT½X0ð�Þ�i�Z

¼2
Xþ1

n¼0

ð�T0e
tÞn

n!
h::@X0ð0Þ �@X0ð0Þ::Yn

i¼1

Z d�

2�
eX

0ð�Þi�Z

¼2
Xþ1

n¼1

ð�T0e
tÞn

n!
e�2rnðn�1Þ=2n!�Z

¼2
Xþ1

n¼1

ð�eyÞne�rn2 �Z¼�ð1þ’Þ: (86)

Combining this expression with Eq. (59), the pressure and
energy read

p � T11 ¼ 2cð1� ’Þ; E � �T00 ¼ 2c: (87)

The energy is constant, as it should be in Minkowski, and
the tachyon tends asymptotically to pressureless matter.

V. SUPERSYMMETRIC BSFT

One can extend the discussion of Sec. IV to the case of
superstrings. Typical unstable configurations where the
open string contains a tachyon are non-Bogomolnyi-
Prasad-Sommerfield Dp-branes, with even p for type IIB
and odd p for type IIA. This situation can be described
through a perturbation of the world sheet field theory by a
boundary superpotential [61,62]

S boundary ¼
Z d�

2�

Z
d
½�̂D�̂ þ �̂TðX̂Þ�: (88)

Here, a one-dimensional superfield notation is used to
define world sheet supercoordinates on the boundary

X̂ �ð�; 
Þ ¼ X�ð�Þ þ 
c �ð�Þ; (89)

where 
 is a Grassmann variable and c � is a Majorana
fermion (in Neveu-Schwarz-Ramond formalism). In Eq.

(88), D ¼ @
 þ 
@� is the derivative in superspace and the

superfields �̂ are auxiliary anticommuting degrees of free-
dom encoding the Chan-Paton indices of the brane [61,62]

�̂ Ið�; 
Þ ¼ �Ið�Þ þ 
FIð�Þ; (90)

where �I is a propagating boundary fermion and FI is an
auxiliary field. As in [12], we will consider a single non-
Bogomolnyi-Prasad-Sommerfield D-brane. This implies
the existence of a single boundary fermion, and the index
I can be omitted. The superstring generalization of the
partition function (57) reads then

Z ¼ P
Z
½dX̂�½d�̂�e�S0½X̂��

R
ðd�=2�Þ

R
d
½�̂D�̂þ�̂TðX̂Þ�; (91)

where P is the standard path-ordering operator, here non-
trivial because of the tachyon-to-fermions coupling. In Eq.
(91), we have ignored the presence of contact terms pro-

portional to T2ðX̂Þ [2,12].
As in the bosonic case, the partition function can be

evaluated perturbatively by expanding in powers of the
tachyon field. However, it is difficult to extract the eh

operator from Z in momentum space, the reason being
that one has to solve an integral much more involved
than Eq. (68). It is more convenient to adopt the back-
ground field method [58,63]. In this case one expands the

fields X̂ around a classical background X̂�ð�; 
Þ ¼ x� þ
Ŷ�ð�; 
Þ, where x� satisfies the equations of motion and
varies slowly compared to the cutoff scale. The supersym-
metric version of the homogeneous time-dependent
tachyon field (67) can then be written as

TðX̂Þ ¼ eði=
ffiffi
2

p Þx0þði= ffiffi2p ÞŶ0ð�;
Þ � ~Teði=
ffiffi
2

p ÞŶ0ð�;
Þ;

where ~T ¼ eði=
ffiffi
2

p Þx0 (we will neglect the tilde from now
on). The partition function reads as the following func-
tional integral over the nonzero modes:

Z ¼ X1
n¼0

ð�1Þn
n!

�
T

"

�
n Z 2�

0

Yn
i¼1

d�i
2�

Z Yn
i¼1

d
i

� h�̂ð�1; 
1Þeði=
ffiffi
2

p ÞŶð�1;
1Þ � � � �̂ð�n; 
nÞeði=
ffiffi
2

p ÞŶð�n;
nÞi:
(92)

In order to evaluate this path integral, we need the super-
symmetric extension of the Green function (63) that in-
cludes the fermionic two-point function on the disc [for a
detailed derivation see [64]]

Ĝij ¼ 2
X1
n¼1

e�"n
cosnð�i � �jÞ

n
� 2
i
j

� X1
q¼0

e�"q sin½ðqþ 1=2Þð�i � �jÞ�: (93)

Adding the arbitrary constant consistently with (64), we
are led to the following definition for the Green function:
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Ĝij ¼ hŶð�i; 
iÞ; Ŷð�j; 
jÞi

¼ � lne�2rjzi � zjj2 � 2i

ffiffiffiffiffiffiffiffi
zizj

p
zi � zj


i
j

¼ �2 lne�rjzi � zj þ i
ffiffiffiffiffiffiffiffi
zizj

p

i
jj; i � j; (94)

where zi ¼ ei�i and we used the fact that f
i; 
jg ¼ 0, 
i 2
R. The zero-point Green function Ĝð0Þ � Gð0Þ is still
defined through Eq. (64). The two-point function for the
boundary fermions is defined by

h�̂ð�i; 
iÞ; �̂ð�j; 
jÞi ¼ �̂i;j � �̂ð�i � �j þ 
i
jÞ
¼ �ð�i � �jÞ þ 
ð�i � �jÞ
i
j;

(95)

where �ð�i � �jÞ is the Heaviside step function. The

partition function (92) can now be formally written as

Z¼ X1
n¼0

ð�1Þn
�
T2

"

�
nZ 2�

0

Y2n
i¼1

d�i
2�

Z Y2n
i¼1

d
i�̂1;2 . . . �̂2n�1;2n

� e
�P2n

i¼1
Gð0Þ=4�P

j>i

Gij=2

¼ X1
n¼0

ð�1ÞnT2n
Z 2�

0

Y2n
i¼1

d�i
2�

Z Y2n
i¼1

d
i�̂1;2 . . . �̂2n�1;2n

�Y
j>i

e�rjzi � zj þ i
ffiffiffiffiffiffiffiffi
zizj

p

i
jj; (96)

where the restriction to an even number of fields arises
from the overall trace over the Chan-Paton matrices here
represented by the boundary fermions. Using the relation

jzi � zj þ i
ffiffiffiffiffiffiffiffi
zizj

p

i
jj ¼ jzi � zjj þ sgnð�i � �jÞ
i
j;

(97)

the integrals in (96) can be evaluated as [12]

Z 2�

0

Y2n
i¼1

d�i
2�

Z Y2n
i¼1

d
i�̂1;2 . . . �̂2n�1;2n

Y
j>i

jzi � zj

þ i
ffiffiffiffiffiffiffiffi
zizj

p

i
jj ¼ 1

2n
: (98)

After a Wick rotation ix0 ¼ t, the tachyonic profile is T ¼
et=

ffiffi
2

p
and the final result for the field equation (71) is then

’� ¼ �X1
n¼1

ð�1Þne�2rn2eny; (99)

where y � ffiffiffi
2

p
tþ r� ln2. This is a q series with infinite

radius of convergence for r > 0 and valid for y < 0 [see
Eq. (92)].

The same calculation of Appendix A yields the integral
representation of the solution for negative values of r,

’ ¼ 1

2
þ 1

2

Z þ1

�1
d�e2r�

2 sinð�yÞ
sinhð��Þ : (100)

Modulo rescalings, Eq. (100) is identical to the bosonic
solution, Eq. (79), and satisfies the diffusion equation
h’ ¼ @r’.

VI. BSFT/OSFT CORRESPONDENCE AND
PROPERTIES OF ROLLING SOLUTIONS

We are now ready to establish a correspondence between
the bosonic OSFT and BSFT tachyon solutions we found.
The relation between wildly oscillating solutions in series
representation is clear from Eqs. (1) and (2)

6 _’ ¼ c : (101)

This relation can be verified also in integral representation.
For simplicity we shall consider t < 0, where the spiky and
the wild oscillating solutions overlap, thus implying that
Eq. (101) holds for any solution and for any sign and value
of the parameter r.
One starts with two real-valued functions

uð�; tÞ ¼ sin�

coshtþ cos�
; vð�; tÞ ¼ sinht

coshtþ cos�
;

(102)

which are harmonic conjugate

@tuþ @�v ¼ 0; @�u� @tv ¼ 0: (103)

They define a complex function in the variable z ¼ �þ it,

fðzÞ � uþ iv ¼ tan
z

2
: (104)

Since @�v is odd in �, it is possible to write the OSFT
solution in Eq. (23) as (t � 0)

c ðr; tÞ ¼ 3
Z þ1þit

�1þit
dzKðz� it; rÞ@�fðzÞ: (105)

The BSFT solution Eq. (80) in complex form reads

’ðr; tÞ ¼ 1

2
� i

2

Z þ1þit

�1þit
dzKðz� it; rÞfðzÞ; (106)

where we exploited the � parity of u. From the Cauchy-
Riemann identity @�f ¼ �i@tf one gets Eq. (101).
It should be remarked that this is a relations between

exact solutions (BSFT) and approximate solutions of an
approximate equation (OSFT). Consequently, at first sight
it could sound incidental. However, there are several argu-
ments supporting the existence of a correspondence be-
tween the two theories. An independent argument
underlying a relation between bosonic BSFT and OSFT
was advocated in [19,29]. In [29], Ellwood showed that
OSFT and BSFT solutions are related by a finite gauge
transformation. In our case such a transformations should
be parametrized by r. At present it is not clear if there is a
precise quantitative relation between Ellwood’s gauge
transformation and the BSFT/OSFT correspondence out-
lined here.
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In this work, we have regarded the ð1þ 1Þ-dimensional
nature of the tachyon field as just a mathematical trick to
localize the effective equation of motion of OSFT. A
varying parameter r is the key factor to link the solutions
of cubic SFT with those of boundary SFT. According to
this correspondence, the parameter r allows one to inter-
polate between the (unit disk) bulk where the world sheet
string field theory is conformal (OSFT) and the boundary
where nonconformal interactions are turned on (BSFT)
[41]. When r > 0, both cubic and boundary solutions c�
and ’� present wild oscillations. The choice of r is not
facultative in OSFT, as is dictated by world sheet confor-
mal symmetry: this is the reason why the only possible
cubic solution oscillates at higher and higher absolute
values of the potential. Also parity-definite solutions, if
they are granted validity, are pathological for sgnðrÞ> 0,
as they are bounded but nonanalytic at the origin. On the
other hand, in BSFT r is arbitrary and one can set it to 0 or
to negative values; in such cases the BSFT solution, to-
gether with its derivative, is bounded and analytic. In
parallel, even solutions with sgnðrÞ � 0 are bounded and
smooth.

One encounters the same situation in the supersymmet-
ric case, despite the lack of a simple relation like Eq. (101).
Using

uð�; tÞ ¼ cos�

coshtþ sin�
; vð�; tÞ ¼ sinht

coshtþ sin�
;

(107)

the even susy OSFT solution is

c ðr; tÞ ¼
Z þ1þit

�1þit
dzKðz� it; rÞf

�
�

2
� z

�
: (108)

As for the bosonic tachyon, the integral of the solution is
r-independent. However, the primitive is not the solution of
supersymmetric BSFT Eq. (99). This can also be seen by
looking at the integral form Eq. (99), which in complex
notation reads

’ðr; tÞ ¼ 1

2
� i

2

Z þ1þit

�1þit
dzKðz� it; rÞfð ffiffiffi

2
p

zÞ: (109)

This expression is similar to the OSFT solution but with the
difference that the argument of the function convoluted
with the kernel is shifted along the real axis and rescaled

(reversing the time rescaling we made in Sec. III A, z !
z=

ffiffiffi
2

p
in Eq. (108), the total relative rescaling factor is 2). In

the series representation, the shift is responsible for the
summation only over odd numbers in the exponents.
Again, the argument is unchanged when considering the
wildly oscillating solutions c� and ’�.

VII. CONCLUSIONS

Let us summarize the main results of this paper.
(i) We found and discussed in detail approximated so-

lutions to the fully nonlocal lowest-level equation of

motion for the tachyon in supersymmetric open
string field theory (in particular, in the 0-picture
formulation). One solution is even and global, and
has a spike at the origin which can be regularized or
smoothened; this solution is eventually discarded.
The other solution is related to that with increasing
oscillations already studied in the literature and is
valid up to some critical time. The description of
these properties extends also, with minor modifica-
tions, to the bosonic case presented in [17]. One can

verify that the approximation er�h ~�2 � ~�2 pro-
posed to simplify the quartic potential is not valid
for our solutions.

(ii) All these results stem from a method which can be of
broader application in the general class of nonlocal
theories. The study of nontrivial nonlocal cosmolo-
gies under the same procedure is in progress [40,41].

(iii) A family of exact solutions of boundary string field
theory was found, both in the bosonic and super-
symmetric cases. When the ambiguity r is positive,
these solutions have wild oscillations, as in the OSFT
case.

(iv) BSFT and OSFT solutions are formally related by a
continuously varying parameter r which takes fixed
values in the physical case for each SFT. In the
context of BSFT, this parameter can be naturally
interpreted in two complementary ways: as the ker-
nel of the Green function in the boundary action, and
as a normalization or normal-ordering ambiguity in
the boundary states corresponding to the open string
partition function. The sign of r determines the
behavior of these solutions in each theory; in par-
ticular, wild oscillations always occur in parity-
undefinite solutions when r > 0.

This is a summary of wildly oscillating solutions (r > 0):
(i) Bosonic OSFT: Eq. (1) (series representation).
(ii) Bosonic BSFT: Eq. (83) (series representation).
(iii) Supersymmetric OSFT: Eq. (41) (series representa-

tion) or (45) (integral representation). The solution
related to the exact potential Eq. (26) is the same but
with r ! 3r=2 and a rescaled normalization.

(iv) Supersymmetric BSFT: Eq. (99) (series
representation).

The case r < 0 is allowed in BSFT and gives rise to
bounded, smooth solutions: Eqs. (79) and (100) for bosonic
and susy BSFT, respectively.
There are several issues which have not been considered

here. Other tachyonic profiles may be chosen (e.g., [65]),
as well as particular compactification schemes. Also, we
have not given an explanation of the difference between the
bosonic and susy correspondence. For the time being we
notice that the supersymmetric cubic string field theory is
less explored than its bosonic counterpart. The gauge
trasformation of [29] was derived explicitly only in the
latter case; also, there are different proposals regarding the
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susy OSFT action. However, there seems to be no reason
why the bosonic correspondence should not have a super-
symmetric version; also, all susy OSFT candidates predict
a local (r ¼ 0) lowest-level effective action for the tachyon
with quadraticþ quartic potential, which fixes the initial
condition of the nonlocal problem. Other tachyon profiles
in BSFT would unlikely account for the difference in the
series coefficients. On the other hand the source of dis-
crepancy might be traced in the different field dependence
of the partition function (i.e., effective action) with respect
to the tachyon profile T. In both the bosonic and susy case
the BSFT renormalized tachyon field is ’ ¼ 1� Z but the
partition function is Z
 e�T for the bosonic string [59,66],

while Z
 e�T2=4 for the susy string [67]. In this respect, it
is not surprising to have found different relations for the
two string theories. This issue will require further inves-
tigation; for the time being, the BSFT/OSFT relationship
may be considered a technical device rather than a physical
correspondence.
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APPENDIX A: RELATIONS BETWEEN
DIFFERENT REPRESENTATIONS OF THE

BOSONIC BSFT SOLUTION

In Sec. III, we claimed that the series and integral
representations [Eq. (39) and (40), respectively] of the
OSFT supersymmetric solution (r > 0) are equivalent,
and both are related by analytic continuation to the integral
representation Eq. (34) (rescaled) in the region r < 0. Here
we show this in the case of the analogous formulas of
bosonic BSFT. Only the final result Eq. (80) was presented
in Sec. IV, which we write again for convenience of the
reader

’ðr; tÞ ¼ 1

2
þ 1

2

Z 1

�1
d�

e��2=4r

2
ffiffiffiffiffiffi
�r

p sinhy

coshyþ cos�
; (A1)

where y ¼ tþ rþ lnT0. First, we find and discuss the
series representation. When considering the r � 0 case,

one has to apply the operator e�r@2t to the solutions

’ð	Þð0; yÞ of Eq. (75). Since Eq. (75) is an expansion of
’ in terms of eigenfunctions of the operator @2t , one would

be tempted to replace e�r@2t with its eigenvalue e�rn2 inside
the sums, obtaining (for r > 0)

’þðr; tÞ ¼
X1
n¼0

ð�1Þne�rn2e�ny; y > 0; r > 0;

’�ðr; tÞ ¼ �X1
n¼1

ð�1Þne�rn2eny; y < 0; r > 0:

(A2)

This choice corresponds to the strong limit and shows the
discontinuity at the origin. In fact,

’þðr;0Þ �’�ðr;0Þ ¼
X1

n¼�1
ð�1Þne�rn2 ¼ #4ð0; e�rÞ� 0;

(A3)

with #4ðu; qÞ ¼ P
n2Zð�1Þnqn2e2inu being the fourth

Jacobi theta function. This discontinuity is troublesome
because ’� 1=2 should be an antisymmetric function
and as such it should vanish at the origin.
Part of the troubles exhibited by Eq. (A2) at the origin

are a consequence of the fact that the replacement e�r@2t !
e�rn2 implies an interchange of the order of two sums that
indeed do not commute at y ¼ 0. Acting with the operator
(5) on (A2) leads to a double sum. Each of the sums over n
(for any fixed ‘) is divergent, and needs to be regularized.
At y ¼ 0,

’þjy¼0 ¼ 1þ X1
‘¼0

X1
n¼1

ð�1Þn ð�rÞ‘
‘!

n2‘

¼ 1þ X1
‘¼0

ð�rÞ‘
‘!

ð22‘þ1 � 1Þ�ð�2‘Þ ¼ 1

2
;

’�jy¼0 ¼ �X1
‘¼0

X1
n¼1

ð�1Þn ð�rÞ‘
‘!

n2‘

¼ �X1
‘¼0

ð�rÞ‘
‘!

ð22‘þ1 � 1Þ�ð�2‘Þ ¼ 1

2
:

(A4)

Consequently, the series representation provides the cor-

rect result ’ð	Þðy ¼ 0Þ ¼ 1=2 if the sums over ‘ and n are
not interchanged. This regularization at the origin charac-
terizes the weak limit solution. In the integral representa-
tion it is encoded by a small regulator " which smoothens
the curve at the origin and is then set equal to 0 after
integration. The discontinuity and the problem of the
physical picture are removed either if " � 0 and the limit
" ! 0 is not performed, or by taking r � 0.
A different way to understand why Eq. (A2) is problem-

atic is the following. It would correspond to replace the

operator e�r@2t with e�r�2
in the integrand of Eq. (74) and

then closing with semicircles at infinity the contour �L to
the right or to the left depending on the sign of y. However,

this cannot be done because when the factor e�rs2 is
inserted in the integrand of (74), the path �L cannot be
closed by any curve at infinity, neither to the right nor to the
left. In fact, if r < 0 the integral diverges at the points � ¼
	1, whereas if r > 0 it diverges at � ¼ 	i1. Thus, the
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integral (74) can never be computed as a sum of residues of
the type (A2). As already discussed, an appropriate regu-
lator in the integral representation fixes the behavior at the
origin.

The demonstration that Eq. (A1) (which has no regula-
tor) and (A2) are equivalent goes as follows. We recast the
integrand in the first equation as a Gaussian times

sinhy

coshyþ cos�
¼ Im tan

z

2
¼ �1þ Im

�
2i

1þ eiz

�
; (A5)

where z � �þ iy. The first term gives a Gaussian integral
which cancels the factor 1=2 in Eq. (A1). If y > 0, the last
term in Eq. (A5) is a convergent geometric series (jeizj ¼
e�y < 1)

Im

�
2i

1þ eiz

�
¼ Im

�
2i
X1
n¼0

ð�1Þneinz
�

¼ 2
X1
n¼0

ð�1Þne�ny cosðn�Þ: (A6)

Integration over � yields immediately ’þ in Eq. (A2). If
y < 0, one writes tanðz=2Þ in terms of e�iz and repeats the
same procedure to get ’�.

Now we would like to analytically continue Eq. (A1) or
(A2) to the region r < 0. For instance, to show that Eq. (79)
is the analytic continuation of the solution with r > 0, we
take one of the two branches of Eq. (A2), say ’þ, and use
the relation (valid for n > 0)

e�rn2 ¼ 
 1

2�i

Z þ1

�1
d�

e
ir�n

�	 in
; r > 0: (A7)

By the residue theorem, we can then rewrite ’þ as

’þ ¼ 1
 1

2�i

X1
n¼1

ð�1Þne�ny
Z þ1

�1
d�

e
ir�n

�	 in

¼ 1	 1

ð2�iÞ2
Z þ1

�1
d�

Z
�
ds

�

sin�s

eð
ir��yÞs

�	 is
; (A8)

where the contour � is made of an upwards-oriented curve
parallel to the imaginary s axis, lying between the poles in
s ¼ 0 and s ¼ 1, and closed at infinity on the right. Closing
the path � on the left, one finds

’ ¼ 1	 1

2�i

Z þ1

�1
d�

X1
n¼0

ð�1Þn eð	ir�þyÞn

�
 in	 i�


 1

2�i

Z þ1

�1
d�

�er�
2
e
iy�

sinh��
; (A9)

where �> 0 is an arbitrary small constant which regular-
izes the integral for n ¼ 0. When r < 0, the integrals in the
second term of Eq. (A9) vanish for n � 1, while the third
term converges. Then

’ ¼ 1

2
þ 1

2

Z þ1

�1
d�er�

2 sinð�yÞ
sinhð��Þ ; r < 0: (A10)

This completes the proof that the BSFT solution with r > 0
[Eq. (A1) or (A2), which are equivalent] and the solution
with r < 0 [Eq. (79)] are one the analytic continuation of
the other.

APPENDIX B: BOSONIC BOUNDARY STATES

In this section we shall construct the boundary states
corresponding to the open string partition function of
Sec. IV. Let us first briefly review standard boundary states
for the rolling tachyon with r ¼ 0. One begins with the

Wick rotated profile eiX
0
which defines a conformal field

theory with a marginal boundary interaction. One can then
consider the theory as compactified on a circle of self-dual
critical radius RX0 ¼ 1. It is well-known that at this radius

the normal-ordered operator :e2iXLðzÞ: in the left-moving
sector forms a level-1 Kac-Moody suð2Þ algebra together

with :e�2iXLðzÞ: and i@zXLðzÞ. From now on, X � X0 and

Xðz; �zÞ has to be considered a closed-string variable, z ¼
eið�þ�Þ, where � and � are Euclidean world sheet coordi-
nates. In general Xðz; �zÞ is

Xðz; �zÞ ¼ Xð�; �Þ
¼ xþ p�þ pL � pR

2
�

þ iffiffiffi
2

p X
m�0

e�im�

m
ð�me

�im� þ ~�me
im�Þ; (B1)

where x is the center-of-mass coordinate of the string. At
the self-dual radius RX ¼ 1, pL ¼ pR. It is useful to define
the positive and negative parts of X at � ¼ 0 where the
boundary state is inserted

X>ð�Þ ¼ iffiffiffi
2

p X
m>0

1

m
ð�me

�im� þ ~�me
im�Þ;

X<ð�Þ ¼ iffiffiffi
2

p X
m<0

1

m
ð�me

�im� þ ~�me
im�Þ:

(B2)

Their commutator is

½X>ð�1Þ; X<ð�2Þ� ¼ � 1

2
ln

�
4sin2

�
�1 � �2

2

��
: (B3)

One also introduces the normal-ordered currents

J1 ¼ 1

2
ðJþ þ J�Þ ¼ 1

2
ð:e2iX:þ :e�2iX:Þ;

J2 ¼ 1

2i
ðJþ � J�Þ ¼ 1

2i
ð:e2iX:� :e�2iX:Þ;

J3 ¼ i@zX;

(B4)

whose Laurent modes

Jin ¼
I dz

2�i
znJiðzÞ (B5)

satisfy the level-1 Kac-Moody algebra
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½Jim; Jjn� ¼ 
ij

2
m
mþn;0 þ i�ijkJkmþn; (B6)

which in turn implies

½J3n; J3m� ¼ n

2

nþm;0; ½Jþn ; J�m � ¼ 2J3nþm þ n
nþm;0;

½J3n; J	m � ¼ 	J	nþm:

The tachyon profile corresponds to an suð2Þ generator
given by the zero mode of the Jþ current

Jþ0 ¼
Z 2�

0

d�

2�
:e2iXLð�;�¼0Þ: �

I dz

2�i
:e2iXLðzÞ: (B7)

(no Jacobian is needed when changing variable from � to z
because we are integrating a weight-1 field). The suð2Þ
algebra corresponding to the zero modes of these currents
plays an important role when one constructs the boundary
states for the conformal field theory with the periodic
boundary interaction. The Neumann boundary state for
the unperturbed D-brane can be represented in terms of
the Ishibashi state of suð2Þ as [68,69]

jNi ¼ X
j

X
m�0

jj;m;�mii; (B8)

where jj;m;�mii is the Virasoro-Ishibashi state for the
primary jj;m;mi. At the self-dual radius where the left and
right momenta pL, pR are equal, the boundary state jBi
generated by the periodic boundary interaction can be

obtained by acting with the SUð2Þ group element eiT0J
þ
0

on the Neumann boundary state

jBi ¼ exp

�
iT0

I dz

2�i
:eiXðzÞ:

�
jNi ¼ expðiT0J

þ
0 ÞjNi;

(B9)

where the last step follows from the Neumann condition
XLjNi ¼ XRjNi. When the boundary interaction T0 is
turned off, the boundary state reduces to the Neumann
state. It is known from earlier works [69,70] that such a
boundary state can be written in terms of the spin-j repre-
sentation matrix of the rotation in the Jz eigenbasis

jBi ¼ X
j¼0;1=2;...

Xj
m¼0

Dj
m;�mjj; m;mii; (B10)

where Dj
m;�m is the rotation matrix element

Dj
m;�m ¼ hj; mjeiT0J

þ
0 jj;�mi ¼ hj; mj ðiT0J

þ
0 Þ2m

ð2mÞ! jj;�mi

¼ jþm

2m

 !
ðiT0Þ2m: (B11)

This matrix element requires m to be non-negative.
To obtain an even more explicit form for the boundary

state jBi, one can use the observation by Sen [1] that the
Virasoro-Ishibashi state jj;m;mii in Eq. (B10) is built over

the primary state jj;m;mi which, in this c ¼ 1 conformal
field theory, has momentum 2m and therefore is created by

a vertex of the form :e2imXð�¼0Þ:N . Here the operator Xð�Þ is
defined where the boundary state is inserted, at � ¼ 0.
Since it should describe a Neumann boundary state, it has
to be constructed with the Neumann normal ordering ::N,
defined as [71]

: ei!Xð�Þ:N � e2i!X<ð�Þei!xei!½X<ð�Þ�X>ð�Þ�: (B12)

The exponent on the right annihilates the Neumann bound-
ary state jNi, ½X<ð�Þ � X>ð�Þ�jNi ¼ 0, and for the one-
and two-point functions one finds

h0j:ei!Xð�Þ:NjNi ¼ 
ð!Þ;
h0j:ei!Xð�1Þ:N:ei!Xð�2Þ:NjNi ¼ 
ð!1 þ!2Þ

�
�
4sin2

�
�1 � �2

2

���!2
1
:

(B13)

However, the primary state jj;m;mi has conformal weight

ðj2; j2Þ, and it can be obtained from :e2imXð0Þ:Nj0ic by act-
ing on it with an operator Oj;m which is a combination of

oscillators of total level j2 �m2. Here, j0ic is the SLð2;CÞ
invariant Fock vacuum for the closed string. This primary
state can be expressed in the form

jj;m;mi ¼ ei
ðj;mÞOj;m:e
2imXð0Þ:Nj0ic; (B14)

where 
ðj;mÞ is a suitable phase.
The general expression for jBi is quite complicated

except in the scalar sector, which does not involve any X
oscillator. Writing the boundary state in an expansion in
the bosonic oscillator basis and performing a Wick rota-
tion, one has

jBi ¼ fðtÞj0ic þ gðtÞ��1 ~��1j0ic þ . . . ; (B15)

where

fðtÞj0ic ¼
X

j¼0;1=2;...

ðiT0Þ2jjj; j; ji ¼
X

j¼0;1=2;...

ð�T0e
tÞ2jj0ic

¼ 1

1þ T0e
t j0ic: (B16)

In the second of these equalities we have used Eq. (B14)

and the phase convention of Ref. [1], ei
ðj;jÞ ¼ i2j. The last
equality provides the partition function found in [12] which
corresponds to the case r ¼ 0, Eq. (78).
We shall now introduce the ambiguity r in the boundary

state formalism. The variable r is related to the normal-
ordering ambiguity which is present both in the Neumann
normal-ordered vertex entering the primary state (B14) and
in the definition of the currents J	 of Eq. (B4).
The normal-ordering in the currents of Eq. (B4) may

contain a constant related to the prescription used to regu-
larize the vertex. We shall now look for a prescription that
provides a boundary state consistent with the open string
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partition function computed in the previous section. This
would amount to introducing a generic parameter in the
normalization of the vertex. Consider the vertex operator

:ei!Xðz;�zÞ: at � ¼ 0; its holomorphic part with ! ¼ 2 pro-

vides the generator :e2iXLð�;0Þ: appearing in Eq. (B7), which
then enters the definition of the boundary state jBi, Eq.
(B9). A regularized version of this current with a normal-
ization containing the conformal weight of the operator is
given by

V!ð�Þ ¼ e!
2r=2ei!X<ð�Þei!xei!X>ð�Þ; (B17)

where r is an arbitrary constant. The one-point function on
the closed-string vacuum for this vertex is a 
 function

h0jV!ð�Þj0ic ¼ 
ð!Þ; (B18)

and the two-point function reads

h0jV!1
ð�1ÞV!2

ð�2Þj0ic ¼ 
ð!1 þ!2Þer!2
1

�
�
4sin2

�
�1 � �2

2

���!2
1
=2
: (B19)

This correlation function reproduces the propagator struc-

ture of Eq. (64). The current :e2iXLðzÞ: should be normalized

with half of the factor in Eq. (B17), becoming er:e2iXLðzÞ:.
As a consequence, to preserve the Kac-Moody algebra

unchanged the generator :e�2iXLðzÞ: should become

e�r:e�2iXLðzÞ:.
One can define the vertex (B13) with a suitable normal-

ization which provides the boundary correlators for a
Neumann open string coordinate with the propagator pre-
scription (64). This should be given by

��ei!Xð�Þ��� er!
2
:ei!Xð�Þ:N: (B20)

In terms of this operator, the correlation functions read

h0j ��ei!Xð�Þ ��jNi ¼ 
ð!Þ;
h0j ��ei!Xð�1Þ �� ��ei!Xð�2Þ ��jNi ¼ 
ð!1 þ!2Þ

�
�
e�2rsin2

�
�1 � �2

2

���!2
1
;

(B21)

and are consistent with the open string correlation func-
tions computed in Sec. IV. Therefore, the normalization for
the bulk vertex giving the current generating the Kac-
Moody algebra and that for the boundary vertex operator
entering in Eq. (B14) are different.
Then, the boundary state becomes

jBi ¼ expðiT0e
rJþ0 ÞjNi ¼ X

j¼0;1=2;...

Xj
m¼0

Dj
m;�mjj; m;mii;

where Dj
m;�m now is

D j
m;�m ¼ hj; mjeiT0e

rJþ
0 jj;�mi ¼ jþm

2m

� �
ðiT0e

rÞ2m:
(B22)

The primary state (B14) becomes

jj;m;mi ¼ ei
ðj;mÞOj;me
�rð2mÞ2 ��e2imXð0Þ ��j0ic: (B23)

Expanding the boundary state in the bosonic oscillator
basis and performing a Wick rotation, one finds jBi ¼
fðtÞj0ic þ . . . , where

fðtÞj0ic ¼
X

j¼0;1=2;...

ðiT0e
rÞ2jjj; j; ji

¼ X
j¼0;1=2;...

ð�T0e
tþrÞ2je�rð2jÞ2 j0ic

¼ X1
n¼0

ð�1Þne�rnðn�1ÞTn
0e

ntj0ic: (B24)

This is precisely the partition function 1� ’� for the
general case r � 0 found in Appendix A. The radius of
convergence of this series is infinite (respectively, zero) for
r > 0 (r < 0). The sign of r is determined by the choice of
writing the partition function as a perturbative series, but
we have seen how to find representations of Z valid also for
r < 0.
For r ¼ 0, Eq. (B24) reproduces Eq. (B16), otherwise

one gets a solution with wild oscillations.
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