
Shear viscosity from effective couplings of gravitons

Rong-Gen Cai,1,* Zhang-Yu Nie,1,2,† and Ya-Wen Sun1,2,‡

1Institute of Theoretical Physics, Chinese Academy of Sciences, P.O. Box 2735, Beijing 100190, China
2Graduate University of Chinese Academy of Sciences, YuQuan Road 19A, Beijing 100049, China

(Received 13 November 2008; published 18 December 2008)

We calculate the shear viscosity of field theories with gravity duals using Kubo formula by calculating

the Green function of dual transverse gravitons and confirm that the value of the shear viscosity is fully

determined by the effective coupling of transverse gravitons on the horizon. We calculate the effective

coupling of transverse gravitons for Einstein and Gauss-Bonnet gravities coupled with matter fields,

respectively. Then we apply the resulting formula to the case of AdS Gauss-Bonnet gravity with F4 term

corrections of Maxwell field and discuss the effect of F4 terms on the ratio of the shear viscosity to

entropy density.
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I. INTRODUCTION

The anti-de Sitter/conformal field theory (AdS/CFT)
correspondence [1–4] has been a useful tool in the study
of properties of strongly coupled gauge theories. By using
AdS/CFT, the shear viscosity of strongly coupled gauge
theories can be calculated in the hydrodynamic limit [5–8]
on the AdS side. It is found that there is some universality
on the value of the ratio of shear viscosity over entropy
density, which is always 1=4� in the regimes described by
gravity. This ratio is also conjectured to be a universal
lower bound (the KSS bound [6]) for all materials. All
known materials in nature by now satisfy this bound. More
discussions on the universality and the bound can be found
in [9–19].

The universal value of 1=4� is also obtained in the case
with nonzero chemical potentials turned on [20–23]. In
[24], the value �=s is also calculated to be 1=4� for gauge
theories with the gravity dual of the Einstein-Born-Infeld
theory. With stringy corrections the value of �=s has a
positive derivation from 1=4� but still satisfies the KSS
bound [25–31]. However, in [32–34] the authors consid-
ered R2 higher derivative gravity corrections and found that
the modification of the ratio of shear viscosity over entropy
density to the conjectured bound is negative, which means
that the lower bound is violated in this condition. The
higher derivative gravity corrections they considered can
be seen as generated from stringy corrections given the
vastness of the string landscape. A new lower bound
4=25�, which is smaller than 1=4�, is proposed, based
on the causality of dual field theory.

In [35,36], the authors calculated the ratio of shear
viscosity to entropy density for general gravity theory
duals. They identified the value of the ratio with a quotient
of effective couplings [37] of two different polarizations of

gravitons, �xy and �rt, valued on the horizon [35]. This

ratio can be different from 1=4� in general gravity theo-
ries. In [38], the authors confirmed the dependence of shear
viscosity on the effective coupling of transverse gravitons
imposed in [35] using the approach of scalar membrane
paradigm. This effective coupling of transverse gravitons
valued on the horizon in general gravity theory may be
different from the corresponding one in Einstein gravity,
which leads to the value of the ratio different from 1=4�.
In this paper we will first confirm the formula of the

dependence of the shear viscosity on the effective coupling
of transverse gravitons using Kubo formula through a
direct calculation of the Green function of transverse grav-
itons. We reach the same result as using the membrane
paradigm fluid in [38]. The calculation of the effective
coupling of gravitons should be careful because there are
many total derivatives in the effective action of gravitons
which do not affect the equation of motion of gravitons.
Then we will calculate the effective coupling of transverse
gravitons for Einstein gravity and Gauss-Bonnet gravity
coupled to matter fields separately. In the case of Einstein
gravity it would be easy to show that the value of the ratio
is not affected if matter fields are minimally coupled.
However, in the case of Einstein-Gauss-Bonnet gravity,
it has already been observed that the ratio has correc-
tions if chemical potentials are turned on [39]. We will
also calculate, in the Gauss-Bonnet gravity, the F4 correc-
tions of Maxwell field to the ratio and find that the ratio
ranges from ð1� 4�Þ=4� to 1=4� for " � ��Gl2=72.
For " <��Gl2=72, ð1�4�Þ=4���=s�ð1�4��
��Gl2=18"Þ=4�, and the ratio cannot reach 1=4� because
the temperature has a lower bound above zero. Here " is a
parameter given shortly.
The organization of this paper is as follows. We will first

derive the dependence of shear viscosity on the effective
coupling of transverse gravitons using Kubo formula in
Sec. II. In Sec. III we calculate the effective coupling of
transverse gravitons for Einstein and Gauss-Bonnet grav-
ities coupled with matter fields, respectively. Then in
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Sec. IV we apply the resulting formula of the dependence
of shear viscosity on the effective coupling of transverse
gravitons to AdS Gauss-Bonnet gravity with F4 correc-
tions of Maxwell field. Section V is devoted to conclusions
and discussions.

II. THE DEPENDENCE OF SHEAR VISCOSITY ON
THE EFFECTIVE COUPLING

It was first noted in [35] that the shear viscosity is
determined by the effective coupling of transverse grav-
itons. In [38] the authors confirmed this by using the scalar
membrane paradigm fluid. In this section we obtain this
result by calculating the shear viscosity through the energy
momentum/graviton correspondence using the Kubo for-
mula [9,13]

� ¼ lim
!!0

1

2!i
ðGA

xy;xyð!; 0Þ �GR
xy;xyð!; 0ÞÞ; (1)

where � is the shear viscosity, and the retarded Green’s
function is defined by

GR
��;��ðkÞ ¼ �i

Z
d4xe�ik�x�ðtÞh½T��ðxÞ; T��ð0Þ�i: (2)

These are defined on the field theory side. The advanced
Green’s function can be related to the retarded Green’s
function of energy momentum tensor by GA

��;��ðkÞ ¼
GR

��;��ðkÞ�. In the frame of AdS/CFT correspondence,

one is able to compute the retarded Green’s function by
making a small perturbation of metric. Here we choose
spatial coordinates so that the momentum of the perturba-
tion points along the z-axis. Then the perturbations can be
written as h�� ¼ h��ðt; z; uÞ. In this basis there are three

groups of gravity perturbations, each of which is decoupled
from others: the scalar, vector, and tensor perturbations
[40]. Here we use the simplest one, the tensor perturbation
hxy. We use 	 to denote this perturbation with one index

raised 	 ¼ hxy and write 	 in a basis as 	ðt; u; zÞ ¼
	ðuÞe�i!tþipz. To calculate the Green functions of the
energy momentum tensor we should first fix a background
black hole solution and get the equation of motion for
gravitons in this background. In this paper we mainly focus
on the case of Ricci-flat black hole backgrounds. The case
for black holes with hyperbolic horizon topology has been
discussed recently [41,42]. We assume that the background
black hole solution is of the form

ds2 ¼ �gðuÞð1� uÞdt2 þ 1

hðuÞð1� uÞdu
2 þ r2þ

ul2
ðd~x2Þ;

(3)

where the horizon of the black hole locates at u ¼ 1 and
the boundary is at u ¼ 0, hðuÞ, gðuÞ are functions of u,
regular at u ¼ 1 and l is the AdS radius which is related to
the cosmological constant by � ¼ �6=l2. Note here that
we impose the conditions hðuÞ and gðuÞ are regular at the

horizon. This indicates that the Ricci-flat black hole solu-
tion we consider here should be a nonextremal solution.
The calculations below are not valid for extremal black
holes. One can expand the Einstein equation of motion to
the first order of 	 to get the equation of motion of
gravitons, and the effective action of gravitons can be
obtained by expanding the gravity action to the second
order of	. In the frame of Einstein gravity, the equation of
motion of	 is just the Klein-Gordon equation for massless
scalars. The effective action for the transverse gravitons is
always equal to

S ¼ 1

16�G

Z
d5x

ffiffiffiffiffiffiffi�g
p �

� 1

2

�
ðr�	r�	Þ (4)

up to some total derivatives in Einstein gravity. However,
in gravity theories with higher derivative corrections, it
may not still be the one for a minimally coupled massless
scalar. Now we consider a specific kind of effective gravi-
ton action which is the same as the one considered in [38].
We write the effective action in the momentum space

S ¼ 1

16�G

Z dwdp

ð2�Þ2 du
ffiffiffiffiffiffiffiffiffiffi�g0

p ðKðuÞ	0	0

þ w2KðuÞg0uug000 	2 � p2LðuÞ	2Þ (5)

up to some total derivatives, where a prime stands for the
derivative with respect to u, and

	ðt; u; zÞ ¼
Z dwdp

ð2�Þ2 	ðu; kÞe�iwtþipz;

k ¼ ðw; 0; 0; pÞ; 	ðu;�kÞ ¼ 	�ðu; kÞ:
(6)

This action can be viewed as a minimally coupled massless
scalar with an effective coupling KeffðuÞ ¼ KðuÞ=guu0 plus

a 	2 term proportional to p2. Here g0�� denotes the

background metric (3). For Einstein gravity, the effective
coupling Keff ¼ �1=2 as can be seen in the action (4).
However, in general gravity theories, the effective coupling
may depend on the radial coordinate u. In general the
effective coupling should be regular at the horizon, so
1=KðuÞ should have a simple pole at u ¼ 1.
With these assumptions, the equation of motion of the

transverse graviton can be derived from the action (5)

	00ðu; kÞ þ AðuÞ	0ðu; kÞ þ BðuÞ	ðu; kÞ ¼ 0; (7)

where

AðuÞ ¼ ðKðuÞ ffiffiffiffiffiffiffiffiffiffi�g0
p Þ0

KðuÞ ffiffiffiffiffiffiffiffiffiffi�g0
p ; (8)

BðuÞ ¼ �g0uug
00
0 w2 þ LðuÞ

KðuÞp
2: (9)

Substituting the metric function yields

RONG-GEN CAI, ZHANG-YU NIE, AND YA-WEN SUN PHYSICAL REVIEW D 78, 126007 (2008)

126007-2



BðuÞ ¼ w2

hðuÞgðuÞð1� uÞ2 þ
LðuÞ
KðuÞp

2: (10)

Because the shear viscosity only involves physics in the
zero momentum limit, LðuÞ would not affect the value of
�. The only constraint on LðuÞ is that it should be regular at
the horizon u ¼ 1. In fact we can also have an extra term
w2NðuÞ	2 in the action (5), and we assume NðuÞ is also a
function of u, which is regular at the horizon u ¼ 1. The
addition of such a term will not affect the value of �. Then
we follow the standard procedure to solve this Eq. (7). First
we impose the incoming boundary condition at the horizon
so that

	ðuÞ ¼ ð1� uÞ�i
wFðuÞ; (11)

where FðuÞ is regular at the horizon.
 can be calculated by
considering (7) in the limit u ! 1, which leads to


 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hð1Þgð1Þp : (12)

Because we only need to know the w ! 0 behavior of this
graviton we can expand the solution in the way

FðuÞ ¼ 1þ i
wF0ðuÞ þOðw2Þ þOðp2Þ: (13)

By expanding Eq. (7) to the first order of w, we get the
equation of F0ðuÞ

F00
0 ðuÞ þ AðuÞF0

0ðuÞ þ
1

ð1� uÞ2 þ
AðuÞ
1� u

¼ 0: (14)

The solution of this linear differential equation can be
expressed as a sum of a specific solution and a general
solution. The specific solution denoted by F0pðuÞ is easy to
find

F0pðuÞ ¼ lnð1� uÞ: (15)

The equation for the general solution F0g is

F00
0gðuÞ þ AðuÞF0

0gðuÞ ¼ 0: (16)

Integrating this equation on both sides, we get

F0
0gðuÞ ¼

C

KðuÞ ffiffiffiffiffiffiffiffiffiffi�g0
p : (17)

Further integrating leads to

F0gðuÞ ¼ C
Z 1

KðuÞ ffiffiffiffiffiffiffiffiffiffi�g0
p duþD; (18)

where C and D are two integration constants. From the
assumptions given above we know F0

0gðuÞ should have a

simple pole at u ¼ 1 because under our assumption of the
metric (3),

ffiffiffiffiffiffiffiffiffiffi�g0
p

has no poles and KðuÞ has a simple pole

at u ¼ 1. Then if KðuÞ ffiffiffiffiffiffiffiffiffiffi�g0
p

is a rational function, it

should have a factor (1� u), so F0
0gðuÞ can be written as

a sum of b=ð1� uÞ, where b is a constant, and some
function regular at u ¼ 1. Thus the integration on F0

0gðuÞ

should give

F0gðuÞ ¼ b lnð1� uÞ þ ZðuÞ; (19)

where ZðuÞ is a function regular at u ¼ 1. In many instan-
ces, KðuÞ ffiffiffiffiffiffiffiffiffiffi�g0

p
may not be a rational function. For ex-

ample, in the case of AdS Born-Infeld black holes [24], the
metric function is irrational. In those cases, if we can trust
the Taylor expansions of KðuÞ ffiffiffiffiffiffiffiffiffiffi�g0

p
in the region u 2

½0; 1� to any precision, we still can have (19) as an asymp-
totic solution to any desired precision. In this paper,
we consider the cases where (19) is valid. We define
SðuÞ ¼ KðuÞ ffiffiffiffiffiffiffiffiffiffi�g0

p
=ð1� uÞ and Sð1Þ ¼ limu!1KðuÞ�ffiffiffiffiffiffiffiffiffiffi�g0

p
=ð1� uÞ, and Sð1Þ should be a finite quantity. Then

by comparing (18) and (19), we can decide the value of s
and the derivative of the function ZðuÞ. In general, the
solution of ZðuÞ could not be given explicitly, but fortu-
nately, only Z0ðuÞ affects the final result. As a result, we
only give Z0ðuÞ here,

b ¼ � C

Sð1Þ (20)

and

Z0ðuÞ ¼ C

1� u

�
1

SðuÞ �
1

Sð1Þ
�
: (21)

With the specific solution F0p and the general solution F0g,

the final solution should be a sum F0p þ jF0g, where j is a

constant needed to be determined. By requiring the solu-
tion to be nonsingular at u ¼ 1, j should be chosen to be
�1=b and F0ðuÞ can be uniquely determined as

F0ðuÞ ¼ � 1

b
ZðuÞ: (22)

Next we put this solution into (5) to give the on-shell
action:

Son-shell ¼ 1

16�G

Z dwdp

ð2�Þ2 duðð
ffiffiffiffiffiffiffi�g

p
KðuÞ	0	Þ0Þ: (23)

Integrating this action gives

Son-shell ¼ 1

16�G

Z dwdp

ð2�Þ2 ðð
ffiffiffiffiffiffiffi�g

p
KðuÞ	0	ÞÞ

��������u¼0

u¼1
: (24)

In the appendix we argue that the other total derivatives in
the bulk action and the Gibbons-Hawking surface term
contribution exactly cancel on the boundary. Thus the
resulting effective action is totally given by the boundary
contribution in (24). Following the standard procedure, the
retarded Green function can be calculated as

GR
xy;xyðkÞ ¼ 1

16�G
2

ffiffiffiffiffiffiffiffiffiffi�g0
p

KðuÞ	0�	
��������u¼0

: (25)

Substituting the metric (3), the value (12) of
, the solution
of 	 (21) and (22), into (1), we finally get
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� ¼ 1

16�G
lim
w!0

2
ffiffiffiffiffiffiffiffiffiffi�g0

p
KðuÞ	0�	ju¼0

iw

¼ 1

16�G

r3þ
l3

ð�2Keffðu ¼ 1ÞÞ: (26)

Thus we arrive at the conclusion that the shear viscosity is
fully determined by the effective coupling of transverse
gravitons on the gravity side. In the Einstein case Keff ¼
�1=2 and � ¼ r3þ=16�Gl3, which is the same as the result
obtained in the previous calculations in [13]. In gravity
theories where the Bekenstein-Hawking entropy area for-
mula holds, we can further get �=s ¼ ð�2Keffðu ¼
1ÞÞ=4�.

III. EFFECTIVE COUPLING OF TRANSVERSE
GRAVITONS

From the previous section we learn that to calculate the
shear viscosity of a gravity dual, one only needs to know
the effective couplings of the transverse gravitons in this
theory. In [35], a formula showing effective couplings of
gravitons with different polarizations is given. However, it
is not easy to judge which of the couplings are part of a
total derivative in the general formula. Thus in this section,
we calculate the effective couplings of transverse gravitons
separately for Einstein gravity and Gauss-Bonnet gravity
with matter fields minimally coupled to gravity.

A. For Einstein gravity

The action of Einstein-Hilbert gravity with matter fields
minimally coupled to the gravity can be written as

S ¼ 1

16�G

Z
d5x

ffiffiffiffiffiffiffi�g
p ðR� 2�þLmatterÞ: (27)

Here Lmatter is the Lagrangian of the matter fields coupled
to gravity which can be the sum of any scalar or gauge
fields. We assume the background black hole solution is of
the form (3), which implies that the matter fields only
depend on the radial coordinate u and we also assume
that Lmatter depends on the metric only through the cou-
pling of the metric to some ordinary derivatives of matter
fields, such as the cases of minimally coupled scalar field
and Maxwell fields, where covariant derivatives of matter
fields are equivalent to the ordinary derivatives, so that
�ð2ÞLmatter ¼ 0 (see below). The Einstein equation of mo-

tion for this action is

R�� � 1

2
g��ðR� 2�þLmatterÞ þ �Lmatter

�g�� ¼ 0: (28)

We want to obtain the effective action for the perturbation
hxy. The effective action for 	ðuÞ is a sum of two parts: the

bulk action Sbulk and the Gibbons-Hawking boundary term
SGB. The Gibbons-Hawking term does not affect the effec-
tive coupling, and the bulk effective action should be a sum
of a surface contribution and a term proportional to the

equation of motion of	ðuÞ, the latter of which vanishes on
shell. We derive the effective action by keeping terms to
the second order of 	ðuÞ in the action:

Sbulk ¼ 1

16�G

Z
d5xð�ð2Þ

ffiffiffiffiffiffiffi�g
p ðR� 2�þLmatterÞ

þ ffiffiffiffiffiffiffi�g
p

�ð2ÞðR� 2�þLmatterÞÞ: (29)

Here �ð2Þð� � �Þ means to only keep terms of the second

order of 	 in ð� � �Þ. We have �ð2ÞLmatter ¼ 0 because the

matter fields only depend on the radial coordinate u and the
metric couples to the matter fields only through ordinary
derivatives. With the xx component of the on-shell Einstein
equation of motion R� 2�þLmatter ¼ 2gxxRxx, we can
get the action for 	ðuÞ to be always the form of (4) up to
some total derivatives. Thus Keff ¼ �1=2 holds in the
whole spacetime and thus, of course, Keff ¼ �1=2 on the
horizon. Because the Bekenstein-Hawking area entropy
formula always holds in Einstein gravity, it is straightfor-
ward that the ratio of �=s is always 1=4� as long as the
assumptions in Sec. II are satisfied.

B. For Gauss-Bonnet gravity

In this subsection we calculate the effective coupling of
transverse gravitons for Gauss-Bonnet gravity. We con-
sider the action of Einstein gravity with Gauss-Bonnet
terms as well as matter fields

S ¼ 1

16�G

Z
d5x

ffiffiffiffiffiffiffi�g
p �

R� 2�þ �l2

2
ðR2 � 4R��R

��

þ R����R
����Þ þLmatter

�
: (30)

The Einstein equation of motion for this action is

R�� �
g��

2

�
R� 2�þLmatter þ�l2

2
ðR2 � 4R

R





þR

��R


��Þ

�
þ�Lmatter

�g�� þ�l2

2
ð2RR��

� 4R��R
�
� � 4R��R���� þ 2R����R

���
�Þ ¼ 0:

(31)

To simplify calculations, we consider a simpler metric

ds2 ¼ �g?ðuÞr2þ
l2u

N2dt2 þ l2

4u2g?ðuÞ du
2 þ r2þ

ul2
ðd~x2Þ;

(32)

which is a specific case of (3) by setting gðuÞ ¼ g?ðuÞr2þ
l2uð1�uÞN

2

and fðuÞ ¼ 4u2g?ðuÞ
l2ð1�uÞ , so the calculations in Sec. II are still

valid for this metric.N2 is a constant that can be fixed at the
boundary, which is defined in order to make the solution
conformal to flat Minkowski spacetime on the boundary at
r ! 1
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N2 ¼ 1
2ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�

p Þ: (33)

By keeping the action to the second order of 	 we can get
the effective action for transverse gravitons

Sbulk ¼ 1

16�G

Z
d5x

�
�ð2Þ

ffiffiffiffiffiffiffi�g
p �

R� 2�þ �l2

2

� ðR2 � 4R��R
�� þ R����R

����Þ þLmatter

�

þ ffiffiffiffiffiffiffi�g
p

�ð2Þ
�
R� 2�þ �l2

2
ðR2 � 4R��R

��

þ R����R
����Þ þLmatter

��
: (34)

Having assumed that the matter fields couple to the metric
only through ordinary derivatives of matter fields, and the
matter fields solution only depends on the radial coordinate
u, we can see that the variation �ð2ÞLmatter vanishes. Note

that the xx component of the equations of motion (31)

Rxx � gxx
2

�
R� 2�þLmatter þ �l2

2
ðR2 � 4R��R

��

þ R����R
����Þ

�
þ �Lmatter

�gxx
þ �l2

2
ð2RRxx � 4R�xR

�
x

� 4R��R�x�x þ 2R���xR
���

xÞ ¼ 0; (35)

and �Lmatter=�g
xx ¼ 0 for the solution (32) we are con-

sidering. Substituting the above equation to (34), we find
that the effective action for transverse gravitons can be
fully expressed using background metrics and the deriva-
tives of metrics. Thus we can determine the effective
coupling of the transverse gravitons without knowing the
explicit form of matter fields. The bulk action for the
transverse graviton is therefore

Sbulk ¼ 1

16�G

Z
d5x

� ffiffiffiffiffiffiffi�g
p

�ð2Þ
�
R� 2�þ �l2

2

� ðR2 � 4R��R
�� þ R����R

����Þ
�

þ �ð2Þ
ffiffiffiffiffiffiffi�g

p ð2Rx
x þ �l2ð2RRx

x � 4R�xR
�x

� 4R��R�x�
x þ 2R���xR

���xÞÞ
�
: (36)

Substituting the metric (32) into the bulk action, we finally
get the effective coupling of the transverse graviton hxy as

KeffðuÞ ¼ �1
2ð1� 2�g?ðuÞ þ 2�ug?0ðuÞÞ: (37)

We see that this effective coupling depends on the back-
ground metric and the first derivative of the metric, and it is
independent of an explicit form of matter fields. The effect
of matter fields is reflected in the metric function g?ðuÞ.
Thus we obtain a universal formula of the shear viscosity
for the AdS Gauss-Bonnet gravity with arbitrary minimally
coupled matter fields, which only depends on the value of

the metric and the first derivative of the metric on the
horizon.

IV. EFFECTS OF F4 TERMS IN GAUSS-BONNET
THEORY

In the case of Einstein gravity, the effective coupling of
transverse gravitons is a constant and not affected by
minimally coupled matter fields. However, for Gauss-
Bonnet gravity, the effective coupling of transverse grav-
itons (37) depends on the value of the metric and its first
derivative. Thus when matter fields are coupled, the value
of the ratio �=s may be different from the case of pure
Gauss-Bonnet gravity. In [39], when the Maxwell field is
added, the ratio �=s gets a positive correction, compared to
the pure AdS Gauss-Bonnet gravity case. Now we apply
the resulting formulas (26) and (37) to the case of the
Gauss-Bonnet-Maxwell theory with F4 terms correction.
The effective action of the theory we are considering is

[43]

S ¼ Sgrav þ Smatter

¼ 1

16�G

Z
d5x

ffiffiffiffiffiffiffi�g
p �

R� 2�þ �l2

2
ðR2 � 4R��R��

þ R����R����Þ
�
þ

Z
d5x

ffiffiffiffiffiffiffi�g
p �

� 1

4
F��F

��

þ c1ðF��F
��Þ2 þ c2F��F

��F��F
��

�
; (38)

where c1 and c2 are two constants and � ¼ �6=l2. We
consider the Ricci-flat black hole solutions with only the
Ftr component of the Maxwell fields nonvanishing. In this
assumption, the solution only depends on a combination "
of c1 and c2 [43], where

" � 2c1 þ c2: (39)

The Ricci-flat black hole solution is

ds2 ¼ �HðrÞN2dt2 þH�1ðrÞdr2 þ r2

l2
d~x2;

Ftr ¼ fðrÞ;
(40)

where

HðrÞ ¼ r2

2�l2

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�

�
1�ml2

r4
� 16�G

IðrÞl2
3r4

�s �
;

(41)

IðrÞ ¼ 2
Z

drr3
�
fðrÞ2
4

þ 3"fðrÞ4
�
; (42)

and m is an integration constant, which is related to the
mass of the black hole solution, fðrÞ is given by the root of

8"fðrÞ3 þ fðrÞ � Q

r3
¼ 0: (43)
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HereQ is the electric charge of the black hole. The horizon
rþ corresponds to the biggest root of HðrÞ ¼ 0, that is to
say at rþ, one has

1�ml2

r4þ
� 16�G

IðrþÞl2
3r4þ

¼ 0: (44)

Before calculating the ratio �=s, we first consider the
near boundary behavior of the solution to get the causality
constraint for dual field theory. Although the solution of
fðrÞ and IðrÞ looks complicated, we can see from (43) that
while r ! 1, fðrÞ 	Q=r3, I 	�Q2=4r3. Then the solu-
tion near the boundary becomes the same as the one
without F4 terms [39]. As a result, we obtain the same
causality constraint as in [39]. Following [33,39], we can
calculate the local ‘‘speed of graviton’’

c2gðrÞ ¼ M2
2

1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�þM1

p
2�

�
3� 2

1� 4�þM2

1� 4�þM1

�
;

(45)

where

M1 ¼ 16�G
4�l2

3r4
I þ 4�l2m

r4
(46)

and

M2 ¼ 16�G
2�l2

3

�
f2

4
þ 3"f4

�
: (47)

Near the boundary, fðrÞ 	Q=r3, I 	�Q2=4r3, and c2gðrÞ
can be simplified to be

c2gðrÞ � 1 ¼
�
� 5

2
þ 2

1� 4�
� 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�

p
�
ml2

r4
þO

�
1

r5

�
:

(48)

With this, we obtain the condition to avoid the causality
violation

� 5

2
þ 2

1� 4�
� 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�

p < 0: (49)

This is the same result as in [33], which implies that there is
a condition on the Gauss-Bonnet coefficient � < 0:09 in
order for the dual theory to obey the causality law.

Now we turn to the �=s ratio. We perform a coordinate
transformation u ¼ r2þ=r2 on (40), which leads to

ds2 ¼ �VðuÞN2dt2 þ r2þ
4u3VðuÞdu

2 þ r2þ
ul2

d~x2; (50)

where VðuÞ is just the function obtained by changing the
variable r in HðrÞ to u. Putting this metric into the formula
(37), we have

Keff ¼ � 1

2

�
1� 4�þ 2�16�G

I0ð1Þl2
3r4þ

�
; (51)

where

I0ð1Þ ¼ �r4þ
�
fðuÞ2
4

þ 3"fðuÞ4
���������u¼1

: (52)

Note that the area formula of the Bekenstein-Hawking
entropy still holds for Ricci-flat black holes in the Gauss-
Bonnet gravity [44]. We get the ratio of shear viscosity
over entropy density by inserting the root of (43) into (26)
and (37)

�

s
¼ �Keff

2�
¼ 1

4�

�
1� 4�

�
1� 8�Gl2

3

�
f2þ
4

þ 3"f4þ
���

;

(53)

where fþ denotes fðuÞju¼1 , which is the root of the cubic
equation (43) at r ¼ rþ.
The temperature of the black hole is easy to calculate as

T ¼ 1

2�
ffiffiffiffiffiffiffi
grr

p d
ffiffiffiffiffiffiffiffiffiffi�gtt

p
dr

��������r¼rþ
; (54)

which gives

T ¼ rþ
�l2

�
1� 8�Gl2

3

�
f2þ
4

þ 3"f4þ
��

: (55)

Then the ratio of �=s (53) can be rewritten as

�

s
¼ �Keff

2�
¼ 1

4�

�
1� 4��l2

rþ
T

�
: (56)

In fact, this relation can also be deduced from the formulas
for Keff (37) and T (54). We can see that the �=s ratio
depends on the temperature apparently. As T ! 0, the
corrections to�=s vanish. Note that although the limit T !
0 is well defined in (56), in fact, some calculations in the
above are not valid for extremal black holes since we start
from the metric assumption (32) for a nonextremal black
hole.
Nowwe analyze the correction of the F4 term to the ratio

of shear viscosity to entropy density. To do so, we have to

study the behavior of the factor
f2þ
4 þ 3"f4þ, in which fþ

depends on rþ through Eq. (43). We define a new function
PðfÞ as

PðfÞ � 8"f3 þ f ¼ Q

r3
: (57)

In Fig. 1, we plot PðfÞ as a function of f. In the plot, the red
(vertical) curve denotes PðfÞ as a function of f in the case
of " > 0, while the blue (horizontal) curve for the case of
" < 0. We can see from the right-hand side of (57) that
PðfÞ ! 0 when r ! 1. The boundary condition f ! 0 as
r ! 1 implies that when PðfÞ ! 0, f must approach to
zero, too. Thus the physical part of the curve ofPðfÞ should
start from the origin in the figure.
When Q> 0, one has PðfÞ> 0. In addition, f should

approach to 0 as r ! 1. Therefore, the curves in the region
of P � 0 and f � 0 correspond to physical solutions in
Fig. 1. Namely, in the case of " > 0, the right-hand part of
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the red (vertical) curve is of physical meaning, while in the
case of " < 0, the blue (vertical) curve starting from the
origin to its peak is physical. PðfÞ is

Pmax ¼ 1

3

ffiffiffiffiffiffiffiffiffiffi
1

�6"

s
¼ Q

r3min

(58)

at the peak, where f2 ¼ f2max ¼ �1=24". This implies that

in this case, there is a minimal horizon radius r3min ¼
Q

ffiffiffiffiffiffiffiffiffiffi�6"
p

=3.
For Q< 0, the situation is similar. Without loss of

generality, we therefore consider the case of Q> 0 only.
The case of " > 0 is simple. For extremal black holes,

one has T ¼ 0, while for large black holes, the temperature
(54) has the behavior T ¼ rþ=�l2 and fþ ! 0. Therefore,
in this case, the ratio is in the range from 1=4� to ð1�
4�Þ=4�.

When " < 0, one has 0 � f2þ � �1=24". In this case,
the Hawking temperature is in the range from rþ=�l2 to
rþð1þ �Gl2=72"Þ=�l2. In order for the temperature to be
positive, one has to impose the constraint " <��Gl2=72.
This constraint excludes the existence of extremal black
holes, which requires " >��Gl2=72. As a result, if " <
��Gl2=72, the ratio is in the range

1

4�
ð1� 4�Þ � �

s
� 1

4�

�
1� 4�� �

�Gl2

18"

�
; (59)

while if 0> ">��Gl2=72, due to the existence of an
extremal black hole, the situation is the same as the case of
" > 0. Namely, the ratio is in the range

1

4�
ð1� 4�Þ � �

s
� 1

4�
: (60)

As a result, we see that for the arbitrary value of ", the
effect of correction from F2 and F4 terms is to alleviate the
violation to the universal shear viscosity bound. The ratio
ranges from ð1� 4�Þ=4� to 1=4� for " � ��Gl2=72,
and from ð1� 4�Þ=4� to ð1� 4�� ��Gl2=18"Þ=4�
for " <��Gl2=72. The range of the ratio is the same to
the case without F4 terms when " � ��Gl2=72. When
" <��Gl2=72, due to the existence of (nonextremal)
minimal black holes whose temperature is larger than
zero, F4 terms lead the ratio of �=s to be always smaller
than 1=4�.

V. CONCLUSIONS AND DISCUSSIONS

In a general form, we calculated the shear viscosity
through AdS/CFT by calculating the on-shell action of
transverse gravitons and confirmed the argument proposed
in [35] that the value of � is fully determined by effective
couplings of transverse gravitons on the horizon. Then we
calculated the effective couplings of Einstein gravity and
AdS Gauss-Bonnet gravity with matter fields minimally
coupled to the metric separately. We applied the resulting
formula for the shear viscosity to the case of AdS Gauss-
Bonnet-Maxwell theory with F4 terms correction of
Maxwell field and found that both the F4 terms and the
F2 terms together give a positive�=s correction, compared
to the case without Maxwell field. The ratio ranges from
ð1� 4�Þ=4� to 1=4� for " � ��Gl2=72. When " <
��Gl2=72, the correction makes �=s range from ð1�
4�Þ=4� to ð1� 4�� ��Gl2=18"Þ=4�, which is always
smaller than 1=4�.
We have learned that the universality of �=s ¼ 1=4� is

valid only for duals of Einstein gravity with arbitrary
matter minimally coupled to gravity. Clearly, in a general
gravity theory, the effective coupling of transverse grav-
itons on the horizon can be smaller or bigger than the
corresponding value in Einstein gravity. As a result, the
universality of �=s ¼ 1=4� must be violated in a general
gravity theory. So far, most studies have been focused on
the correction to the universal value 1=4� due to high
derivative terms of gravity, while matter fields are still
minimally coupled to gravity. It would be very interesting
to see the effect of the nonminimal coupling of matter
fields to gravity on the shear viscosity of dual field theory.
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FIG. 1 (color online). PðfÞ ¼ 8"f3 þ f with " > 0 and " < 0.
The red (vertical) curve denotes PðfÞ as a function of f in the
case of " > 0 and the blue (horizontal) curve for the case of " <
0. The fact that PðfÞ ! 0 when r ! 1 and the boundary
condition f ! 0 as r ! 1 gives that when PðfÞ ! 0, f must
approach to zero, too. Thus the physical part of the curve of PðfÞ
must start from the origin in the figure. For Q> 0, the curve of
PðfÞ must be in the above of f-axis. Thus we have 0< f <1
with " > 0 and 0< f � fmax for " < 0. The behavior of PðfþÞ
as a function of fþ is the same as PðfÞ.
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APPENDIX

In this appendix, we argue that the on-shell action on the
boundary is just (24) after the Gibbons-Hawking boundary
term is included. We assume that the effective action of
gravity is

Sbulk ¼
Z

d5x
ffiffiffiffiffiffiffi�g

p
L: (A1)

The variation of this action of gravity with a boundary @M
is

�Sbulk ¼
Z

d5x
ffiffiffiffiffiffiffi�g

p
G���g

�� þ
Z
@M

d4xB:

Here B is a boundary contribution whose existence origi-
nates from the fact that the derivatives of �g�� are not fixed
to 0 on the boundary. Then we have to choose a Gibbons-
Hawking term to cancel the contribution of B. We assume
the Gibbons-Hawking term to be

SGB ¼
Z
@M

d4xC: (A2)

Then if we choose

�SGB ¼
Z
@M

d4x�C ¼ �
Z
@M

d4xB; (A3)

the contribution of B can be eliminated. Here we consider
the case where only �gxy � 0 and we choose gxy ¼
�gxx	 as in the previous sections. Thus the variation of
the action related to �gxy should be

�Sbulk ¼
Z

d5x
ffiffiffiffiffiffiffi�g

p
Gxy�g

xy þ
Z
@M

d4xBð�gxyÞ: (A4)

The Gibbons-Hawking term should be designed to elimi-
nate B here, and this should be valid to any order of 	. To
be consistent with the previous sections, we choose all the
functions of gxy here expanded to the second order of 	.
Then Gxy ¼ 0 is just the equation of motion (7) for 	. We

consider our effective action (5) for 	, and to keep the
equation of motion unaffected, the full bulk part can be the
action (5) plus a total derivative

Sbulk ¼ 1

16�G

Z dwdp

ð2�Þ2 du½
ffiffiffiffiffiffiffi�g

p ðKðuÞ	0	0

þ w2KðuÞg0uug000 	2 � p2LðuÞ	2Þ þGð	;	0Þ0�;
(A5)

whereGð	;	0Þ0 denotes this total derivative. The variation
of this action is then

�Sbulk ¼ 1

16�G

Z dwdp

ð2�Þ2 du½ðEOMÞ�	þ 2ðKðuÞ

� ffiffiffiffiffiffiffi�g
p

	0�	Þ0 þ ð�Gð	;	0ÞÞ0�: (A6)

Because we have �	 ¼ 0 on the boundary, the term
2ðKðuÞ ffiffiffiffiffiffiffi�g

p
	0�	Þ0, which involves �	, vanishes on the

boundary after using the Stokes theorem. Thus the
Gibbons-Hawking term C should obey

�Cþ �Gð	;	0Þ ¼ 0 (A7)

on the boundary. To simplify the expression we have
chosen 16�G ¼ 1. Thus we can choose

CþGð	;	0Þ ¼ 0: (A8)

Thus after integration by parts, the total on-shell effective
action becomes a full surface term

Son-shell ¼ Sbulk þ SGB

¼ 1

16�G

Z dwdp

ð2�Þ2 ðð
ffiffiffiffiffiffiffi�g

p
KðuÞ	0	ÞÞ

��������u¼0

u¼1
(A9)

once the Gibbons-Hawking term is included.
In addition, we would stress that because we consider at

most two-order derivatives of	 in the action,Gð	;	0Þ can
be written as a sum of two kinds of terms:

Gð	;	0Þ ¼ G1ðuÞ	2 þG2ðuÞ		0: (A10)

�ðG1ðuÞ	2Þ vanishes on the boundary, so the Gibbons-
Hawking term C would not involve this part. Thus in the
on-shell surface contributions an additional G1ðuÞ	2 term
may also exist in (A9). However, this term only contributes
a real part to the Green function and thus would not affect
the value of �, so we can ignore this term in the
calculations.
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