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We analyze the classical moduli spaces of supersymmetric vacua of 3D N ¼ 2 Chern-Simons quiver

gauge theories. We show quite generally that the moduli space of the 3D theory always contains a

baryonic branch of a parent 4DN ¼ 1 quiver gauge theory, where the 4D baryonic branch is determined

by the vector of 3D Chern-Simons levels. In particular, starting with a 4D quiver theory dual to a 3-fold

singularity, for certain general choices of Chern-Simons levels this branch of the moduli space of the

corresponding 3D theory is a 4-fold singularity. Our results lead to a simple general method, using existing

4D techniques, for constructing candidate 3D N ¼ 2 superconformal Chern-Simons quivers with AdS4
gravity duals. As simple, but nontrivial, examples, we identify a family of Chern-Simons quiver gauge

theories which are candidate AdS4=CFT3 duals to an infinite class of toric Sasaki-Einstein seven-

manifolds with explicit metrics.
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I. INTRODUCTION

Three-dimensional Chern-Simons (CS) gauge theories
coupled to matter, with N ¼ 2 supersymmetry or higher,
have recently attracted considerable attention, as promi-
nent candidates for field theory duals of AdS4 vacua of
string and M theory [1]. The simplest examples of these
vacua are Freund-Rubin AdS4 � Y7 solutions of 11-
dimensional supergravity, where Y7 is a Sasaki-Einstein
seven-manifold (or orbifold). Such backgrounds are ex-
pected to be anti–de Sitter/conformal field theory (AdS/
CFT) dual to the field theory on a large number of M2-
branes at a Calabi-Yau (CY) 4-fold singularity. One would
then like to answer the question: what are the field theory
duals of such solutions? Of course this hinges on the open
problem of what are the degrees of freedom on the M2-
branes. Progress in this direction has been made in the
recent work of Aharony et al. (ABJM) [2]. The authors of
this reference have identified the gauge theory duals of a
class of AdS4 � S7=Zk backgrounds, showing that these
are N ¼ 6 (or N ¼ 8) Chern-Simons quivers with two
nodes and Chern-Simons levels ðk;�kÞ. In fact, the quiver
itself is precisely the same as the 4DN ¼ 1 model of [3].

The corresponding situation in type IIB string theory is
understood rather better. Here one can construct large
classes of N ¼ 1 AdS5=CFT4 duals by considering N
D3-branes placed at a conical Calabi-Yau 3-fold singular-
ity X. In many cases the gauge theory may be constructed
from the open string degrees of freedom living on the
(fractional) branes. In these examples the dual theory is
described by a 4D N ¼ 1 quiver gauge theory. The mod-
uli space of vacua of these theories contains a branch (the
mesonic branch) which is a symmetric product of the

Calabi-Yau singularity X one started with. The gravity
dual is then expected to be AdS5 � Y5, where Y5 is the
Sasaki-Einstein base of the Calabi-Yau cone X ¼ CðY5Þ,
thus closing the circle. The key difference with the M
theory setup described in the paragraph above is that D-
branes in string theory are currently understood in much
greater detail than M-branes in M theory.
In this paper we analyze the classical vacuum moduli

spaces (VMS) of N ¼ 2 Chern-Simons quiver gauge
theories with arbitrary CS levels. These spaces in general
may be rather complicated, containing several branches
(i.e. Coulomb, Higgs, or mixed branches). However, mo-
tivated by the situation in 4D and the CS quiver theory of
[2], we will focus our attention on a particular branch of
these theories. If the CS quiver theories we discuss indeed
have an interpretation in terms of M2-branes at a CY 4-fold
singularity, we believe it is this branch that should repro-
duce the CY 4-fold as the moduli space of the transverse
M2-branes. For simplicity we will take all ranks of the
gauge groups equal to N and denote this by UðNÞk1 �
� � � �UðNÞkn , although the results we describe may be

easily generalized to the case of arbitrary ranks. We begin
with the Abelian theory N ¼ 1. We show that the VMS
contains a branch that is closely related to the moduli space
of a parent 4D N ¼ 1 quiver theory, in a sense that we
shall explain more precisely during the course of the paper.
In particular, when this parent quiver theory arises from a
3-fold singularity, for certain general choices of Chern-
Simons levels the corresponding 3D theory has a branch of
the moduli space which is a 4-fold singularity. The dis-
cussion is extended to the non-Abelian theories with little
modification.
Note that, a priori, it is not clear what are the conditions

that a Chern-Simons quiver should satisfy in order to flow
to a superconformal fixed point in the infrared (IR). The
situation ought to be more subtle than is the case in four
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dimensions, where anomalies, NSVZ beta functions, and
a-maximization [4] provide important constraints on the
IR dynamics.

The results of this paper are a first key step towards
identifying candidate N ¼ 2 conformal Chern-Simons
quiver gauge theories with AdS4 � Y7 gravity duals. In
particular, they suggest a general method for constructing
3D Chern-Simons quiver gauge theories arising from M2-
branes at a given Calabi-Yau 4-fold singularity. As an
application, we discuss a family of Chern-Simons quiver
gauge theories that are candidate duals to an infinite family
of explicit Sasaki-Einstein seven-manifolds, constructed in
[5] and further analyzed in [6].

The plan of the rest of the paper is as follows. In Sec. II
we recall the field content and Lagrangian of N ¼ 2
Chern-Simons theories, with product gauge group and
bifundamental matter, i.e. Chern-Simons quiver gauge
theories. In Sec. III we analyze the VMS of Abelian
quivers. Section IV describes the extension to non-
Abelian gauge groups. In Sec. V we discuss the relevance
of our results for the construction of superconformal
Chern-Simons quivers with AdS4 duals. Section VI
presents an infinite family of Chern-Simons quiver gauge
theories which are candidate AdS4=CFT3 duals to a corre-
sponding family of explicit Sasaki-Einstein seven-
manifolds.

II. FIELD CONTENTAND LAGRANGIANS

We largely follow the notation and discussion in [1,2,7].
A 3D N ¼ 2 vector multiplet V consists of a gauge field
A�, a scalar field �, a two-component Dirac spinor �, and

another scalar field D, all transforming in the adjoint
representation of the gauge group G. This is simply the
dimensional reduction of the usual 4D N ¼ 1 vector
multiplet. In particular, � arises from the zero mode of
the component of the vector field in the direction along
which we reduce. The matter fields �a are chiral multip-
lets, consisting of a complex scalar �a, a fermion c a, and
an auxiliary scalar Fa, which may be in arbitrary repre-
sentations Ra of G. An N ¼ 2 Lagrangian then consists
of the three terms

S ¼ SCS þ Smatter þ Spotential: (2.1)

We describe each of these in turn.
We will be interested in product gauge groups of the

form

G ¼ Yn
i¼1

UðNiÞ: (2.2)

It will turn out to be important to allow different Chern-
Simons levels ki for each factor UðNiÞ. If Vi denotes the
projection of V onto the ith gauge group factor, then in
component notation the Chern-Simons Lagrangian, in
Wess-Zumino gauge, takes the form

SCS ¼
Xn
i¼1

ki
4�

Z
Tr

�
Ai ^ dAi þ 2

3
Ai ^ Ai ^ Ai

� ��i�i þ 2Di�i

�
: (2.3)

The Chern-Simons levels ki are quantized. In particular, for
UðNiÞ or SUðNiÞ gauge group ki 2 Z are integers if the
trace in (2.3) is normalized in the fundamental
representation.
The matter (kinetic) term takes a simple form in super-

space, namely,

Smatter ¼
Z

d3xd4�
X
a

Tr ��ae
V�a

¼
Z

d3x
X
a

D�
��aD��a � ��a�

2�a þ ��aD�a

þ fermions; (2.4)

where in the second line we have expanded into component
fields, and we have not written the terms involving the
fermions c a. The auxiliary fields � and D are here under-
stood to act on �a in the appropriate representation Ra,
just as for the covariant derivatives D� which contain the

gauge field A�.

The superpotential term is

Spotential ¼
Z

d3xd2�Wð�Þ þ c:c:

¼ �
Z

d3x
X
a

��������
@W

@�a

��������
2þfermions: (2.5)

At this stage we take the superpotential to be an arbitrary
polynomial in the scalar fields �a, and we have included
the couplings in the definition of W. Notice that the cou-
pling constants are in general not related to the Chern-
Simons levels, as is necessarily the case for N ¼ 3 su-
persymmetry [7]. In particular, they may be renormalized
in the IR.
The resemblance of these theories to 4D N ¼ 1 theo-

ries should be apparent. Notice, however, that there are no
kinetic terms for the gauge fields, which are replaced by the
CS terms. The fields in the vector multiplets are therefore
auxiliary fields.

III. ABELIAN CHERN-SIMONS QUIVERS

Recall that a quiver is a directed graph on n nodes, with
arrow set A and head and tail maps h, t: A !
f1; 2; . . . ; ng. In general we associate a gauge group factor
UðNiÞ to node i 2 f1; . . . ; ng, with the chiral field �a

transforming in the fundamental representation of the
gauge group at node hðaÞ and the antifundamental repre-
sentation of the gauge group at node tðaÞ. The gauge group
is thus given by (2.2). The superpotential W is constructed
as the trace of a sum of closed oriented paths in the quiver.
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The coefficients in this sum are the (classical) superpoten-
tial couplings.

We begin by specializing to the Abelian case with Ni ¼
1 for all i, so that the gauge group is simply

G ¼ Uð1Þn: (3.1)

All of the gauge fields Ai are hence Abelian. The labels
a 2 A on the chiral fields �a run over arrows in the
quiver, and �a has charge þ1 under Uð1ÞhðaÞ and charge

�1 under Uð1ÞtðaÞ. Furthermore, the auxiliary fields � and

D are then n-component fields, �i and Di.
The potential V for the theory is a sum of a D-term

potential and an F-term potential [given by (2.5)], so that

V ¼ VD þV F: (3.2)

Here we have defined

V F ¼ X
a2A

��������
@W

@�a

��������
2

; (3.3)

whereas the D-term potential takes the form

VD ¼ �Xn
i¼1

ki
2�

Di�i þ
X
a2A

j�aj2ð�hðaÞ � �tðaÞÞ2

� X
a2A

j�aj2ðDhðaÞ �DtðaÞÞ: (3.4)

Here the first term comes from the CS action (2.3), whereas
the second and third terms come from the matter action
(2.4). We may rewrite the last term in (3.4) as

� X
a2A

j�aj2ðDhðaÞ �DtðaÞÞ ¼ �Xn
i¼1

Di

� X
ajhðaÞ¼i

j�aj2

� X
ajtðaÞ¼i

j�aj2
�

¼ X
i

DiDi; (3.5)

where we have defined the usual 4D N ¼ 1 D term as

D i ¼ � X
ajhðaÞ¼i

j�aj2 þ
X

ajtðaÞ¼i

j�aj2: (3.6)

Integrating out the auxiliary fields Di then immediately
gives

D i ¼ ki�i

2�
; (3.7)

where there is no summation on the right-hand side. Notice
that on summing the equalities in (3.7) over all the nodes of
the quiver, the left-hand side vanishes. This follows from
the fact that nothing is charged under the overall diagonal
Uð1Þ. We thus find the condition

Xn
i¼1

ki�i ¼ 0: (3.8)

Substituting (3.7) back into the action the terms involving
Di cancel, because the potential is linear in Di, leaving
only the second term in (3.4). Thus

V D ¼ X
a2A

j�aj2ð�hðaÞ � �tðaÞÞ2: (3.9)

A. Supersymmetric vacua

In vacuum the fermions are all set to zero, with the scalar
fields taking constant vacuum expectation values (VEVs).
The potential V , since it is manifestly non-negative, then
has an absolute minimum at zero. In fact since both VD

(3.9) andV F (3.3) are both non-negative, each must vanish
separately in a supersymmetric vacuum.
The F-term equations are simply

@W

@�a

¼ 0: (3.10)

This defines an affine algebraic set

Z ¼ fdW ¼ 0g � CM; (3.11)

where in the Abelian case at hand M ¼ jAj. This is
exactly as for 4D N ¼ 1 quiver gauge theories.
We next turn to the D-term equations. Again, since (3.9)

is a sum of non-negative terms, the potential is minimized
at zero. One set of solutions is clearly given by

�1 ¼ �2 ¼ � � � ¼ �n � s: (3.12)

Here s 2 R is arbitrary. As will become clear, this is an
interesting branch of the moduli space, since the final result
when the corresponding 4D quiver theory is dual to a 3-
fold singularity will be a 4-fold singularity. In general there
could be other branches, obtained by instead setting certain
�a ¼ 0 and thus allowing for more general �i. It is simple
to write down examples of quivers which have such
branches. However, we believe that for the quivers relevant
for the AdS4=CFT3 correspondence, it is the above branch
that should reproduce the CY 4-fold geometry as the
moduli space of transverse M2-branes. In any case, we
will not consider the other branches of the VMS, if indeed
there are any, in the present paper.
The conditions (3.7) then become

D i ¼ kis

2�
: (3.13)

Note then that (3.8) implies

Xn
i¼1

ki ¼ 0: (3.14)

This is hence a necessary condition on the Chern-Simons
levels for a Chern-Simons quiver theory to admit the above
vacua with s � 0. If (3.14) does not hold then s is identi-
cally zero and note that we reduce to the usual 4D space of
D-term equations with zero Fayet-Iliopoulos (FI) parame-
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ters. This would usually be called the Higgs branch.
Indeed, the VMS equations (3.13) may be regarded as
promoting a 4D FI parameter to a VEV. The FI parameter
is �i ¼ kis=2�, and thus the direction is determined by the
vector of CS levels, while the scale is determined by the
VEV s of the auxiliary scalars. Thus, provided the vector
k ¼ ðk1; . . . ; knÞ � 0 and (3.14) holds, the 3D space of
absolute minima of the potential is always one real dimen-
sion higher than the 4D space of minima for the corre-
sponding quiver theory.

We may conveniently rewrite the 3D D-term equations
(3.13) in a 4D language as follows. We begin by noting that
the n-vector k is, more invariantly, an element of the dual
Lie algebra t�

n ffi Rn of G ¼ Uð1Þn, so
k 2 t�

n: (3.15)

There is hence a kernel

kerðkÞ � tn ffi Rn; (3.16)

given by vectors that contracted with k give zero. Provided
k � 0, this defines a vector subspace of dimension n� 1.
Then the 3D D-term equations (3.13) may be written as

Xn
i¼1

viDi ¼ 0; v 2 kerðkÞ: (3.17)

Note that this gives the correct VMS even when k ¼ 0.
Also notice that the vector v ¼ ð1; 1; . . . ; 1Þ 2 kerðkÞ if
(3.14) holds. Since the D term for this vector, and only
for this direction, is identically zero, we see that (3.17)
imposes ðn� 2Þ linearly independent equations for k � 0
satisfying (3.14). In fact from now on we assume the latter
conditions to hold.

B. Gauge symmetries

In vacuum the gauge fields are set to zero.1 Constant
gauge transformations therefore map vacua to vacua, and
to compute the space of gauge-equivalent solutions we
must also identify by these gauge transformations. We
have already noted that the overall diagonal Uð1Þ acts
trivially, and thus naively it seems one should quotient
the space of F-term and D-term solutions by the action
of Uð1Þn�1 ffi Uð1Þn=Uð1Þ to obtain the VMS. However,
there is an immediate problem with this: the VMS would
then be odd-dimensional, which is incompatible with su-
persymmetry. The resolution of this apparent puzzle be-
comes clear on examining the CS action more carefully,
precisely as in [2] (see also [8]).

We define

a ¼ Xn
i¼1

Ai; b ¼ 1

h

Xn
i¼1

kiAi; (3.18)

where we have introduced

h ¼ gcdfkig: (3.19)

The Abelian CS action for the gauge fields A ¼
ðA1; . . . ; AnÞ is

SCSðAÞ ¼ 1

4�

Xn
i¼1

Z
kiAi ^ dAi: (3.20)

Now consider making the simultaneous variations

Ai ! Ai þ �; i ¼ 1; . . . ; n (3.21)

with � an arbitrary one-form. This induces the variations

	�a ¼ n�; (3.22)

	�b ¼ 0; (3.23)

where the second equation follows from (3.14). The varia-
tion of the CS action is hence

	�SCSðAÞ ¼ 2

4�

Xn
i¼1

Z
� ^ kidAi; (3.24)

where note there are two terms to vary in each summand,
but they give equal contributions after integrating by parts.
We may rewrite this as

	�SCSðAÞ ¼ 2h

4�

Z
� ^ db: (3.25)

We thus conclude that

SCSðAÞ ¼ h

2�n

Z
b ^ fþ S0; (3.26)

where we have defined f ¼ da, and by definition

	�S
0 ¼ 0: (3.27)

Since the overall Uð1Þ decouples from the matter, we see
that the first ‘‘bf’’ term in the action (3.26) describes
completely the action for the gauge field a. We may thus
introduce a Lagrange multiplier

S
 ¼ � 1

2�

Z
d
 ^ f (3.28)

and treat f, rather than a, as the basic variable. Integrating
out f then imposes2

b ¼ n

h
d
: (3.29)

The gauge invariance of the theory is now

b ! bþ d�; 
 ! 
þ h

n
�; (3.30)

Ai ! Ai þ d�i;
Xn
i¼1

ki�i ¼ 0: (3.31)

1We will modify this statement slightly below.

2We note a factor of 2 difference with the corresponding
equation in [2].
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The gauge transformations (3.31) are precisely those that
do not act on b. The transformation (3.30) of b instead
arises from

Ai ! Ai þ d�i;
Xn
i¼1

ki�i ¼ h�: (3.32)

Consider now the character

�k: Uð1Þn ! Uð1Þ

; ðei�1 ; . . . ; ei�nÞ � exp

�
i
Xn
i¼1

ki�i

�
: (3.33)

The gauge transformation of b in (3.30) thus maps to
expðih�Þ. This lies in the kernel of (3.33) if and only if

� ¼ 2�l

h
; (3.34)

where l ¼ 1; . . . ; h. On the other hand, if we assume for the
moment that 
 has period 2�=n, then gauge fixing 
 ¼ 0
leaves a residual gauge symmetry in (3.30) that is precisely
the same as (3.34). The transformations (3.31) also lie in
the kernel of (3.33) of course. Thus, assuming that 
 has
period 2�=n, we see that the group of constant gauge
transformations acting on the VMS is precisely the kernel
of (3.33). This defines an Abelian group ker�k � Uð1Þn of
rank n� 1. Note that due to (3.14) this contains the overall
diagonal Uð1Þ, which acts trivially. Thus the effectively
acting group of gauge symmetries is the quotient

Hk ¼ ker�k=Uð1Þ ffi Uð1Þn�2 � Zh: (3.35)

It thus remains to justify that the period of 
 is indeed
2�=n.3 As is well-known, the periodicity for 
 is related to
the flux quantization condition on f via the coupling (3.28).
In the above vacua we have set all gauge fields to zero, and
thus f ¼ 0. However, since nothing is charged under the
overall diagonalUð1Þ gauge group, one may in fact turn on
a diagonal gauge field in the above vacua. To see this, note
that with nonzero gauge fields but constant �a there is an
additional term in the expression for energy

X
a2A

j�aj2ðAhðaÞ � AtðaÞÞ2: (3.36)

This comes directly from the kinetic term for the�a. Thus,
in Euclidean signature, and on the branch we consider, the
total energy of the vacuum vanishes if and only if A1 ¼
� � � ¼ An, which is a diagonal flux.4 Note this is closely
related to (3.12). The quantization condition on each Fi is
the usual Dirac condition

1

2�

Z
�
Fi 2 Z; (3.37)

where� is any two-cycle. If� is a two-sphere inR3, such a
flux would signify the presence of magnetic monopoles
inside this two-sphere. Since all Fi are equal, we thus see
that

1

2�

Z
�
f 2 nZ; (3.38)

which then leads to a period of 2�=n for 
. Note that this
analysis depends on the branch of the vacuum moduli
space we are considering. On different branches, the peri-
odicity of 
 may a priori be different.
The 3D VMS, or at least the branch satisfying (3.12), is

then the Kähler quotient of the space of F-term solutionsZ
by Hk at moment map level zero:

M 3DðkÞ ¼ Z==Hk: (3.39)

Notice this moduli space is acted on by Uð1Þ ffi
Uð1Þn�1=Hk, and that a further Kähler quotient by this
Uð1Þ would produce the usual mesonic moduli space of
the corresponding 4D theory

M 4D ¼ M3DðkÞ==Uð1Þ: (3.40)

Indeed, if one introduces an FI parameter � 2 R for this
Uð1Þ quotient, via (3.40) one obtains a family of mesonic
moduli spaces M4Dð�kÞ, labeled by � . As reviewed, for
example, in [9], in general the space of FI parameters for a
Kähler quotient is a fan, which is a set of convex polyhe-
dral cones glued together along their boundary faces.
Inside each cone the quotient spaces are isomorphic as
complex manifolds, but have an induced Kähler class
that depends linearly on � . As one moves from one cone
to another along a boundary wall, the moduli space under-
goes a form of small birational transformation called a flip.
In the case at hand, the CS vector k picks a particular real
line through the origin in the space of FI parameters of the
corresponding 4D N ¼ 1 theory, where we may interpret
� ¼ s. Thus the mesonic spaces for � > 0 are all isomor-
phic, with a Kähler class depending linearly on � . This will
be a (partial) resolution of the mesonic moduli space with
� ¼ 0. As one passes to � < 0 the moduli space undergoes
a flip, with again the moduli spaces for � < 0 being all
isomorphic and the Kähler class depending linearly on � .
Thus the 3D VMS (3.39) may be obtained by gluing this
one-parameter family of 4D mesonic moduli spaces to-
gether, with the Uð1Þ ffi Uð1Þn�1=Hk fibered over each
mesonic space in the family.
We also note that (3.39) may be viewed as a (geometric

invariant theory) quotient of Z by the complexified gauge
group

HC
k ¼ ðC�Þn�2 � Zh: (3.41)

In fact we may define M3DðkÞ as an affine variety via

3We note that in [8] the authors stated explicitly that they did
not have a field theory explanation for this period in their
orbifold models.

4Equivalently, this is implied by the equations of motion for
the �a.
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M 3DðkÞ ¼ Z==HC
k � SpecC½Z�HC

k : (3.42)

The equivalence between the two descriptions is stan-
dard—see, for example, [10]. Moduli spaces of quivers
with relations were first introduced in [11]. Given a quiver
with relations, the moduli spaces in [11] are defined by first
picking a character of the gauge group, precisely as in
(3.33), and then defining the holomorphic (geometric in-
variant theory) quotient, with respect to this character k 2
Zn, of the setZ satisfying the relations. This is very closely
related to the moduli space (3.42).5

C. Example: The ABJM theory

It is straightforward to recover the results of [2] from the
above discussion. The quiver has n ¼ 2 nodes with four
bifundamental fields, which are grouped into two pairs in
conjugate representations of the gauge group G ¼ Uð1Þ2.
The vector of CS levels is ðk;�kÞ, in the notation of [2], so
h ¼ k. In this Abelian case the superpotential is identically
zero, and thus the space of F-term solutions is Z ffi C4.
Moreover, the group (3.35) is simply Hk ffi Zk, and one
obtains M3DðkÞ ¼ C4=Zk as the 3D VMS. Note in this
example that there are certainly no other branches to the
VMS. A further quotient of this space by the relative Uð1Þ
gives the conifold singularity,6 which is of course the
mesonic moduli space of the 4D theory [3].

IV. NON-ABELIAN CHERN-SIMONS QUIVERS

We now return to the general case where

G ¼ Yn
i¼1

UðNiÞ: (4.1)

In this case�a is anNhðaÞ � NtðaÞ matrix, and�i andDi are

both Ni � Ni Hermitian matrices. We denote the gauge
indices by �, �, so that, for example, the matrix elements
of Di are denoted Di��. Here �, � ¼ 1; . . . ; Ni, so the

range of the gauge indices is understood to depend on i in
this notation. Thus

ðD�aÞ�� ¼ XhðaÞ
¼1

DhðaÞ��a� � XtðaÞ
	¼1

DtðaÞ	��a�	; (4.2)

where � ¼ 1; . . . ; hðaÞ, � ¼ 1; . . . ; tðaÞ. Note carefully the
index structure.

Taking the variation of the scalar potential with respect
to Di�� thus gives the usual 4D D-term equation

ki�i

2�
¼ � X

ajhðaÞ¼i

�a�
y
a þ X

ajtðaÞ¼i

�y
a�a � Di (4.3)

with ki�i playing the role of a moment map level. Note
there is no sum on i here. Also note that �i in (4.3) is

indeed Hermitian. Substituting back into the potential, the
terms involving Di again cancel because the potential is
linear in Di. Since �i is Hermitian, the potential may be
written

V D ¼ X
a2A

XhðaÞ
�¼1

XtðaÞ
�¼1

ðMy
a Þ��ðMaÞ��

¼ X
a2A

XhðaÞ
�¼1

XtðaÞ
�¼1

jMa��j2: (4.4)

Here we have defined

Ma ¼ ��a; (4.5)

which in matrix notation is

Ma ¼ �hðaÞ�a ��a�tðaÞ; (4.6)

or in components

Ma�� ¼ XhðaÞ
¼1

�hðaÞ��a� � XtðaÞ
	¼1

�tðaÞ	��a�	: (4.7)

The potential is thus minimized at

Ma ¼ 0: (4.8)

Recall now that the gauge group UðNiÞ acts on �i by
conjugation. So gi 2 UðNiÞ acts as

�i � gi�ig
�1
i : (4.9)

Since �i is Hermitian, it is necessarily diagonalizable by
an appropriate choice of gi. The eigenvalues of �i are then
of course real, and in this gauge we may write

�i�� ¼ si�	��; (4.10)

where there is no sum, and si� 2 R are the eigenvalues. In
such a gauge choice, which always exists, we have

Ma�� ¼ ðshðaÞ� � stðaÞ�Þ�a��: (4.11)

Again, there is no sum in this formula.

A. Branches of relative dimension 1

There are various ways of satisfying (4.8). One solution
is to take

si� ¼ s (4.12)

independently of i and �. Since the overall diagonal Uð1Þ
decouples, the sum of the traces of the 4D D terms Di is
zero. In fact this may be seen directly in the definition (4.3)
on noting that

Tr ð��yÞ ¼ Trð�y�Þ (4.13)

for anyM� N matrix �. In summing the traces of the Di

the above two terms appear precisely once each for each
bifundamental, with opposite sign, hence the result. Thus
the branch (4.12) exists as a solution to (4.3) for nonzero s

5The moduli spaces in [11] are projective versions of (3.42).
6Note the result of this further quotient does not depend on k.
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only if

Xn
i¼1

kiNi ¼ 0: (4.14)

In fact precisely this condition arises also in the mathe-
matics literature [11]. Indeed, notice this branch has one
dimension higher than the mesonic moduli space for the
4D theory, precisely as in [11]. Thus when Ni ¼ N ~Ni this
branch, when it exists, is not obviously interpreted as the
moduli space of N M2-branes. To complete the discussion
of these branches we should also analyze the gauge sym-
metries. Since the solution space to the D terms above is
one dimension higher than the mesonic moduli space, the
gauge group we divide by should be codimension one inG.
Indeed, notice that picking (4.12) in fact leaves the gauge
symmetry group completely unbroken. The discussion is
then very similar to the Abelian case. We may introduce
the Abelian gauge fields

a ¼ Xn
i¼1

TrAi; b ¼ 1

h

Xn
i¼1

kiTrAi: (4.15)

The Chern-Simons action is

SCSðAÞ ¼ 1

4�

Xn
i¼1

Z
kiTr

�
Ai ^ dAi þ 2

3
A3
i

�
: (4.16)

Varying

Ai ! Ai þ �1Ni�Ni
(4.17)

leaves b invariant if (4.14) holds. The variation of the CS
action is then

	�SCSðAÞ ¼ h

2�

Xn
i¼1

Z
� ^ db; (4.18)

precisely as in the Abelian case, and hence

SCSðAÞ ¼ h

2�
P

n
i¼1 Ni

Z
b ^ fþ S0: (4.19)

Introducing 
 precisely as before, and defining M ¼P
n
i¼1 Ni, the gauge invariance of the theory is

b ! bþ d�; 
 ! 
þ h

M
�; (4.20)

Ai ! giAig
�1
i � iðdgiÞg�1

i ;
Yn
i¼1

ðdetgiÞki ¼ 1: (4.21)

The discussion of monopoles proceeds as before, implying
that 
 has period 2�=M, and thus the group of constant
gauge symmetries Hk that we quotient by is the kernel of
the character

�ðkÞ: Yn
i¼1

UðNiÞ ! Uð1Þ

: ðg1; . . . ; gnÞ �
Yn
i¼1

ðdetgiÞki : (4.22)

Finally, we end up with a moduli space branch that is
precisely analogous to the quiver moduli spaces in [11].
In particular, this branch has one complex dimension
higher than the mesonic moduli space one obtains by
taking a Kähler quotient of the space of non-Abelian
F-term solutions by the full gauge group G. This is what
the terminology ‘‘relative dimension 1’’ means at the be-
ginning of this subsection.

B. Branches of relative dimension N

Suppose now for simplicity that Ni ¼ N for all i.7 Then
an alternative way to satisfy (4.8) is to take

�a�� ¼ 0; � � �; (4.23)

si� ¼ s�; 8i: (4.24)

This imposes that the bifundamentals �a are all diagonal,
and that the N eigenvalues of �i are independent of i. This
leads to N VEVs s�, � ¼ 1; . . . ; N. Indeed, note that
provided the �i are invertible (which at a generic point
they will be) we may write (4.8) as

�a ¼ ��1
hðaÞ�a�tðaÞ: (4.25)

On diagonalizing each �i this implies that if �a�� � 0 we

must have

shðaÞ� ¼ stðaÞ�: (4.26)

Thus generic f�ag reduce us to the branch in the previous
subsection, whereas diagonal, but otherwise generic, �a

lead to (4.23) and (4.24). Note, however, that just as for the
Abelian case, we might allow for even less constrained �
by instead further restricting certain subsets of the�a to be
zero. This branch structure thus in general appears rather
complicated. However, for now we focus on (4.23) and
(4.24).
For generic (pairwise nonequal) eigenvalues in (4.24)

the subgroup of the gauge symmetry group G preserving
this diagonal gauge choice for �i is

K ¼
�Yn
i¼1

Uð1ÞN
�
� SN ffi Uð1ÞnN � SN: (4.27)

Here the SN permutes the diagonal elements of all the
matrices, so as to preserve (4.24). When some of the
eigenvalues become equal, note that this symmetry group
becomes enhanced to a non-Abelian group. By restricting
to diagonal bifundamentals (4.23), the superpotential

7The generalization to arbitrary Ni should be a straightforward
extension.
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clearly reduces to N copies of the N ¼ 1 superpotential,
and thus the space of F-term solutions is simply ZN .
Similarly, the CS action for the gauge group (4.27) is N
copies of the Abelian N ¼ 1 CS action, with the overall
Uð1Þ decoupling in each copy separately. Thus one clearly
obtains N copies of the N ¼ 1 VMS, with the permutation
group SN in (4.27) simply permuting the copies. Thus this
branch of the VMS is the symmetric product

M 3D;NðkÞ ¼ SymNM3D;1ðkÞ (4.28)

where M3D;1ðkÞ is the Abelian moduli space. Notice this

branch is the moduli space found in [2] for the ABJM
theory. Note also that this moduli space is N complex
dimensions higher than the mesonic moduli space, com-
pared to 1 complex dimension higher for the branch dis-
cussed in the previous subsection. It seems reasonable,
given the discussion above, that the various branches that
generally exist in between these two extremes have relative
dimensions between 1 and N, and thus the branch (4.28) is
in fact the highest dimensional branch of the full VMS. It
has a natural physical interpretation as the moduli space of
N pointlike objects on M3DðkÞ ¼ M3D;1ðkÞ. The full

VMS appears to be quite a complicated object in general.
It would be interesting to investigate more carefully the
structure we have outlined above. In particular, there may
be a more elegant method for analyzing the full moduli
space than the simple discussion above.

V. IN SEARCH OF CONFORMAL CHERN-SIMONS
QUIVERS

The results we have discussed so far in this paper are
rather general: we have discussed the classical vacuum
moduli spaces of N ¼ 2 CS quivers, where the bifunda-
mental matter and superpotential are arbitrary. When the
Chern-Simons quiver arises from a parent 4D quiver gauge
theory dual to a 3-fold singularity, namely, the matter
content and interactions of the 3D theory are formally
the same as those of the 4D theory, our results imply that
the VMS contains (the symmetric product of) a complex
four-dimensional branch of the corresponding baryonic
moduli space. More precisely, we have found that a neces-
sary condition for such supersymmetric vacua to exist is
that the sum of the CS levels vanishes:

Xn
i¼1

ki ¼ 0: (5.1)

The space Z of F-term solutions is in general a fairly
complicated object, with several branches of different
dimension. For the class of 4D quiver gauge theories aris-
ing from D3-branes at toric Calabi-Yau singularities, this
space has recently been studied in [12].8 In this reference it

is shown that in these examples, with N ¼ 1, Z is a
complex ðnþ 2Þ-dimensional affine toric variety.
Moreover, there exists a particular branch (the irreducible
component) that is argued to be itself an affine Calabi-Yau
toric variety. This may be described as a Kähler quotient at
level zero irrZ ¼ Cc==Uð1Þc�n�2, where c is a number
determined from the data of the quiver. The mesonic
moduli space of the theory is obtained by performing a
further Kähler quotient, and results in the Calabi-Yau 3-
fold

M 4D ¼ irrZ==Uð1Þn�1: (5.2)

Taking the same quiver and replacing the kinetic terms for
the gauge fields with Chern-Simons terms with CS level
vector k ¼ ðk1; . . . ; knÞ obeying (5.1), we obtain instead a
branch of the 3D VMS, namely,

M 3DðkÞ ¼ irrZ==Hk: (5.3)

This a Calabi-Yau 4-fold. To see this, notice that the group
Uð1Þn�1 necessarily preserves the holomorphic volume
form of irrZ, sinceM4D is Calabi-Yau. Thus, in particular,
the subgroup Hk preserves this volume form also.
Ultimately, we are interested in conformal field theories.

These are candidate gauge theory duals of AdS4 vacua of
string or M theory. Such CFTs, however, will generically
be strongly coupled,9 and at present there are no techniques
available to perform independent field theory calculations.
Note this is different from four dimensions, where
a-maximization [4] is an important tool for testing the
existence of conjectured IR fixed points. Using the AdS/
CFT correspondence, the issue of conformal invariance in
the IR may be translated into the question of whether the
theory has an AdS4 � Y7 gravity dual, where Y7 is a
Sasaki-Einstein seven-manifold. These backgrounds arise
as the near-horizon limit of a large number of M2-branes,
placed at the singularity of the Calabi-Yau cone CðY7Þ.
Thus, a necessary condition for this situation to hold is that
the 3D gauge theory contains this Calabi-Yau 4-fold as a
(generic) component of its VMS. This suggests that (5.1) is
in fact a necessary condition for conformal invariance.
However, there may be additional conditions, yet to be
discovered, that a Chern-Simons quiver gauge theory
should satisfy in order to flow to a dual conformal fixed
point in the IR. Understanding these conditions is clearly
an interesting direction for future research.
Notice that different theories may lead to the same

moduli space M3DðkÞ. This may sound surprising at first,
but one should bear in mind that this phenomenon already
exists in 4D. There, Seiberg duality implies that different
gauge theories all flow to the same conformal field theory
in the IR. In fact, instead of thinking of gauge theory duals
of some AdS5 solution, we should more precisely think of

8In [12] this is referred to as the master space, and is denoted
F [.

9The ABJM theory is a notable exception, since it has a
weakly coupled limit for large k.
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classes of Seiberg-dual gauge theories. Similar dualities
exist for 3D theories—see [13] for a recent discussion.
However, we are led to consider the possibility that for
appropriate values of the Chern-Simons levels, (infinite)
families of 4D quivers (e.g. the Yp;q quivers [14]), may all
have the same AdS4 duals, when viewed as 3D Chern-
Simons quivers. It is unclear to us whether this will ac-
tually be the case, or rather further analysis will reveal that
these quivers do not flow to conformal field theories in
three dimensions. It will be interesting to analyze this
further.

The results discussed here lead to a simple general
method for constructing candidate 3D N ¼ 2 supercon-
formal Chern-Simons quivers with AdS4 gravity duals,
using well-developed 4D techniques.10 We illustrate this
in the following section.

VI. EXAMPLE: CHERN-SIMONS QUIVER GAUGE
THEORIES FOR THE Yp;kðCP2Þ METRICS

In this final section we discuss a simple class of ex-
amples of the construction described in this paper.11 These
are candidate gauge theory duals of the explicit Sasaki-
Einstein metrics presented in [5]. Other examples may be
treated in a similar manner—we briefly comment on vari-
ous simple extensions at the end of the paper.

Recall from [5,6] that the Yp;kðCP2Þ metrics enjoy an
SUð3Þ �Uð1Þ2 isometry, and that the corresponding
Calabi-Yau cones are described by a gauged linear sigma
model on C5, with a set of Uð1Þ charges characterized by
two integers. These properties motivate considering a
quiver gauge theory with 3 nodes and SUð3Þ symmetry.
As we shall see, this seemingly naive hypothesis leads to a
consistent picture. We thus begin with the 4D quiver gauge
theory that is AdS5=CFT4 dual to the orbifold S5=Z3,
where the Z3 � Uð1Þ is embedded along the Hopf Uð1Þ.
Equivalently, this is the theory on N D3-branes placed at
the singularity of the canonical complex cone over CP2,
which is the orbifoldC3=Z3. The quiver has 3 nodes, with a
UðNÞ gauge group at each node, and 9 bifundamental
fields, Xi, Yi, Zi, i ¼ 1, 2, 3 going from nodes 1 to 2, 2
to 3, and 3 to 1, respectively. This is shown in Fig. 1.

The superpotential takes the SUð3Þ-invariant form
W ¼ �ijkTrðXiYjZkÞ: (6.1)

The F-term equations dW ¼ 0 are hence

XiYj ¼ XjYi; YiZj ¼ YjZi; ZiXj ¼ ZjXi: (6.2)

Notice the equations with i ¼ j are redundant. Henceforth
we set N ¼ 1, so that the bifundamental VEVs are simply
coordinates on C9. Since the equations (6.2) set one mono-
mial equal to another monomial, it is a standard result that
the affine variety Z ¼ fdW ¼ 0g � C9 is a toric variety—
see, for example, [16].
We may equivalently realize Z as the affine geometric

invariant theory quotient [or equivalently Kähler quotient
by Uð1Þ � C� at level zero]

Z ¼ C6==C�
ð1;1;1;�1;�1;�1Þ: (6.3)

Here the subscript vector denotes the weights of the C�
action on C6. Thus, if we introduce coordinates ui, vi on
C6, i ¼ 1, 2, 3, then the ui have chargesþ1 and the vi have
charges �1 under the C� action. The quotient (6.3) is then
defined algebraically as

Z ¼ SpecC½u1; u2; u3; v1; v2; v3�C�
: (6.4)

In words, Z is the affine variety whose holomorphic func-
tions are precisely the C�-invariant functions on C6. This
ring of invariant functions is spanned by

xi ¼ u1vi; yi ¼ u2vi; zi ¼ u3vi: (6.5)

This embeds Z into C9, and one easily sees that the
relations between the xi, yi, and zi are indeed precisely
the F-term relations (6.2). This proves the equivalence of
the two descriptions of Z.12

For the 3D CS quiver theory, we introduce a CS vector
ðk1; k2; k3Þ, where k3 ¼ �k1 � k2, so that (3.14) holds. In
order to obtain the 4D VMS, which is the orbifold C3=Z3,
we would quotient Z by ðC�Þ3=C� ffi ðC�Þ2. In 4D terms,
these are the two anomalous baryonic symmetries of the
theory.13 However, to compute the moduli space of the 3D

FIG. 1. Quiver diagram for the candidate CS gauge theory
duals of Yp;kðCP2Þ.

10It is only a candidate because it is possible that the 3D theory
will have to obey additional properties in order to flow to a dual
conformal field theory in the IR, as discussed above. Our
analysis here is purely classical.
11This section has been added in a revised version (v2) of the
paper. In Ref. [15], which appeared before the present version
but after the first version, the authors also discuss the quiver
below. However, they did not make the connection with the
explicit metrics in [5,6].

12See also [12].
13There is also a discrete nonanomalous baryonic symmetry. A
complete discussion of the discrete symmetries of this theory
may be found in [17].
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CS theory we instead quotient by the kernel of the map

ðC�Þ3 3 ð�1; �2; �3Þ � �k1
1 �

k2
2 �

k3
3 2 C�: (6.6)

This kernel, after dividing by the diagonal C� which acts
trivially, is isomorphic to C� � Zh, where h ¼ gcdðk1; k2Þ.
For simplicity we begin by choosing the CS levels so that
h ¼ 1. The nontrivial C� in the kernel of (6.6) is then
generated by the weight vector ð�k2; k1; 0Þ. The charges
of the bifundamentals Xi, Yi, Zi under a C� action with
weights ðq1; q2; q3Þ 2 Z3 are q2 � q1, q3 � q2, q1 � q3,
respectively. Thus the charges under the C� of interest are
k1 þ k2, �k1, �k2, respectively. This determines a C�
action on Z, which we may lift to an action on C6 by
assigning charges ðk1 þ k2;�k1;�k2; 0; 0; 0Þ to the coor-
dinates ðu1; u2; u3; v1; v2; v3Þ on C6. Altogether, we thus
see that the 3D VMS, for gcdðk1; k2Þ ¼ 1, is the affine
quotient of C6 by ðC�Þ2 with charges

Q ¼ 1 1 1 �1 �1 �1
k1 þ k2 �k1 �k2 0 0 0

� �
: (6.7)

Notice that this quotient preserves the SUð3Þ symmetry.
We now make an SLð2;ZÞ transformation via

1 �k1 � k2
0 1

� �
; (6.8)

thus giving an equivalent quotient with charges

Q0 ¼ 1 1 1 �1 �1 �1
0 �2k1�k2 �k1�2k2 k1þk2 k1þk2 k1þk2

� �
:

(6.9)

We then change variables by defining

k1 ¼ 2p� k; k2 ¼ k� p (6.10)

to obtain

Q0 ¼ 1 1 1 �1 �1 �1
0 �3pþ k �k p p p

� �
: (6.11)

Thus

M 3Dð2p� k; k� p;�pÞ ¼ C6==ðC�Þ2Q0 : (6.12)

This realizes the VMS M3D explicitly as a toric CY 4-
fold. We may compute the toric diagram in the usual
manner,14 obtaining the normal vectors

w0 ¼ ½0; 0; k� p�; w1 ¼ ½0; 0; 0�;
w2 ¼ ½0; 0; p�; w3 ¼ ½1; 0; 0�;
w4 ¼ ½0; 1; 0�; w5 ¼ ½�1;�1; k�:

(6.13)

We now note that the 5 vectors w1; . . . ; w5 precisely define
the toric diagram obtained in [6] for the cone over the
explicit Sasaki-Einstein manifolds Yp;kðCP2Þ of [5]. The
vertices w1; . . . ; w5 define a compact convex lattice poly-

tope P in R3, shown in Fig. 1 of Ref. [6]. Of course, in
(6.13) we have 6 vectors, after including the vertex w0.
However, adding this vertex will define the same affine
toric variety as P , provided the vertex lies inside the
polytope P . In this case, we simply obtain a nonminimal
presentation of the toric variety, with the additional vertex
w0 corresponding to a blow-up mode of the singularity.
One easily sees from [6] that w0 lies inside P provided
p 	 k 	 2p. Thus, provided k lies within this range, the
VMS for the CS quiver gauge theory above with CS levels
ð2p� k; k� p;�pÞ is precisely the cone over the explicit
Sasaki-Einstein manifold Yp;kðCP2Þ.
It was shown in [5,6] that the metrics Yp;kðCP2Þ exist for

integers p, k satisfying the bounds 3
2p 	 k 	 3p. In fact,

the lower bound here is just a convention. From the explicit
analysis in [6], one sees that the range of k may be
extended to lie in the interval

0 	 k 	 3p: (6.14)

However, notice that the gauged linear sigma model quo-
tient is manifestly invariant under the exchange of k with
3p� k. It is satisfying to find that the explicit metrics [5,6]
are also invariant under this exchange. This may be verified
by observing that under this transformation the roots x1, x2
(recall h ¼ 3 in the notation of [6]) of the equations (2.20)
in [6] are interchanged. Thus solutions with k 2 ½0; 32p� are
equivalent to solutions with k 2 ½32p; 3p�, which is the

range considered in [5]. Hence, without loss of generality,
we may take k 2 ½32p; 3p�.
To conclude, we have thus constructed an infinite family

of CS quiver gauge theories which have explicit candidate
Sasaki-Einstein duals, for values of p, k such that15

3

2
p 	 k 	 2p: (6.15)

Notice then that k1 and k2 are non-negative. Given a quiver
with CS levels ðk1 
 0; k2 
 0; k3 	 0Þ, we may easily
determine the values of p, k of the corresponding dual
Sasaki-Einstein metric. Using (6.10), we find p ¼ k1 þ k2
and k ¼ k1 þ 2k2. Of course, we may equally pick p ¼
k1 þ k2 and k ¼ 2k1 þ k2. However, from the discussion
above, the two choices are in fact completely equivalent,
both for the VMS and for the explicit metrics.
It is interesting to examine the two limiting cases of the

interval (6.15). At the lower bound, p ¼ 2r, k ¼ 3r, the CS
levels are ðr; r;�2rÞ, and the VMS is then a Zr orbifold of
the quotient of C5 by the C� with charges

ð2; 2; 2;�3;�3Þ: (6.16)

Notice this case is symmetric under exchanging k and
3p� k. In fact, this is the cone over the homogeneous
Sasaki-Einstein manifold Y2;3ðCP2Þ ¼ M3;2 [6]. The gauge
theory we are proposing here as being dual to this manifold

14We refer to [6] for a review of the relevant toric geometry. 15Equivalently, p 	 k 	 3
2p.
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is then different from the proposal made in [18]. For k ¼
2p we obtain the CS level vector ð0; p;�pÞ, and the VMS
is then a Zp orbifold of the quotient of C5 by the C� with
charges

ð1; 1; 1;�2;�1Þ: (6.17)

Notice that Y1;2ðCP2Þ is in a sense the first nontrivial
member of the Yp;kðCP2Þ family of metrics. Numerical
values for the volumes of this particular example were
given in [6]. It would be interesting to construct the CS
quivers dual to the metrics in [5] with k 2 ð2p; 3p�.

The only check of the conjectured duality we can make
at the time of writing is that the VMSs of the CS quiver
theories contain the corresponding Calabi-Yau 4-fold ge-
ometries as a branch.16 Combining the geometric discus-
sion above with the results in [6], it is straightforward to
give an assignment of R charges of the nine bifundamental
fields Xi, Yi, Zi.

17 It would be extremely desirable to check
the proposed duality further by performing a suitable
purely field-theoretic calculation, in the spirit of
a-maximization.

Given the above construction, it is natural to conjecture
that the CS quiver gauge theories dual to the Yp;kðB4Þ
manifolds constructed in [5], where B4 may be any
Kähler-Einstein four-manifold, are described precisely by
the 4D quivers for the corresponding canonical complex
cones over B4. The remaining possibilities for B4 are
CP1 � CP1, which was also discussed extensively in [6],
and the del Pezzo surfaces dPn, n ¼ 3; . . . ; 8. Notice that
the six-dimensional manifolds M6, obtained in the reduc-
tion to type IIA described in [6], are precisely a projective
version of these complex cones; these are obtained by
compactifying the C� fibers to CP1, as described in [5].
We leave a fuller investigation of these models for future
work.
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