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We investigate spin-one color superconductivity of a single quark flavor using the Ginzburg–Landau

theory. First we examine the classic analysis of Bailin and Love and show that by restricting to the so-

called inert states, it misses the true ground state in a part of the phase diagram. This suggests the use of

the more general, noninert states, in particular, within three-flavor quark matter where the color neutrality

constraint imposes stress on the spin-one pairing and may disfavor the symmetric color-spin-locked state.

In the second part of the paper we show that, in analogy to some ferromagnetic materials, lack of space-

inversion symmetry leads to a new term in the Ginzburg–Landau functional, which favors a spatially

nonuniform long-range ordering with a spiral structure. In color superconductors, this new parity-violating

term is a tiny effect of weak-interaction physics. The modified phase diagram is determined and the

corresponding ground states for all the phases constructed. At the end, we estimate the coefficient of the

new term in the free energy functional, and discuss its relevance for the phenomenology of dense quark

matter.
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I. INTRODUCTION

It has been known for a long time that certain magnetic
materials (e.g. MnSi and FexCo1�xSi) exhibit spatially
nonuniform ordering with a long-wavelength helical struc-
ture. This phenomenon was first explained by
Dzyaloshinsky [1] and Moriya [2] fifty years ago. They
pointed out that the lack of inversion symmetry of the
underlying crystal lattice allows a new term in the
Ginzburg–Landau free energy functional (hereafter re-
ferred to as the DM term), which makes the uniform
ferromagnetic ground state unstable with respect to the
formation of the helical spin density wave. A similar effect
also occurs in antiferromagnets [3]. Microscopically, the
DM term results from the spin-orbit coupling. The theory
of helical magnetism was developed to its present form two
decades after the original discovery [4,5], and is still a
subject of intensive research in the condensed-matter-
physics community [6–8].

In the present paper we show that this phenomenon has
an analogy in a vastly different branch of physics, namely,
in strongly-interacting cold dense quark matter, which
exhibits color superconductivity (see [9] for a recent re-
view). The necessary ingredients for the helical ordering to
take place are a vector (spin) order parameter and lack of
space-inversion symmetry. We will therefore concentrate
on spin-one color superconductivity. We will show that in
this case, the parity-violating DM term is induced by weak
interactions.

Because of the exchange of gluons, the quark Cooper
pairs are formed predominantly in the spin-zero color-

antitriplet channel. At very high baryon density where
the quark masses can be neglected, the cold three-flavor
quark matter is known to be in the so-called color-flavor-
locked phase. However, at densities corresponding to the
neutron star cores the large value of the strange quark mass
as well as the charge neutrality constraint induce a mis-
match of the Fermi levels of different quark flavors, and
thus impose stress on the cross-flavor pairing. Other forms
of pairing are then likely to occur. Depending on the size of
the Fermi surface mismatch, quarks of two flavors and two
colors may combine in the so-called 2SC phase. When the
mismatch is too large, only quarks of the same flavor can
pair and the spin-one pairing then remains the only possi-
bility [9].
Originally spin-one color superconductivity was sug-

gested and studied as a mechanism for pairing of quarks
of a single flavor [10–13], or a single color [14], left over
from the 2SC pairing. The classification and physical
properties of several spin-one color-superconducting
phases were worked out in a series of papers by Schmitt
et al. [15–19]. Possible impacts of spin-one color super-
conductivity on the phenomenology of compact stars were
studied in Refs. [20–27]. A different approach to spin-one
color superconductivity, based on the Schwinger–Dyson
equations, was investigated in [28].
The weak-coupling quantum chromodynamics (QCD)

calculations at asymptotically high density show that the
ground state of the single-flavor quark matter is the color-
spin-locked (CSL) phase. However, when spin-one color
superconductivity is considered within three-flavor quark
matter (e.g. as a complement to the primary 2SC pairing),
the requirement of overall color neutrality may favor other
patterns of spin-one pairing [29]. We will therefore in the
main body of this paper perform a phenomenological
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analysis based on the Ginzburg–Landau (GL) theory, treat-
ing the coefficients in the free energy as unknown
parameters.

The plan of the paper is as follows. We start in Sec. II by
investigating the possible forms that the order parameter in
a single-flavor spin-one color superconductor may take.
Such a classification was already done by Schmitt [19] for
the sake of weak-coupling QCD calculations. However,
while in QCD the order parameter is provided by a non-
trivial function of momentum near the Fermi surface—the
gap function, in the GL description we deal with a single
(local) order parameter. This greatly simplifies the analy-
sis, allowing us to carry out a complete classification of the
possible symmetry-breaking patterns.

In Sec. III we review the GL theory for spin-one color
superconductivity without the parity-violating DM term.
This was already developed by Bailin and Love more than
20 years ago [10]. Nevertheless, they restricted their atten-
tion to the so-called inert states, proposing that one with the
lowest free energy for the ground state. Here we derive a
set of inequalities between the independent quartic terms in
the GL functional which allow us to determine the unique
absolute minimum of the free energy. We thus show that
there is a sector in the phase diagram where the true ground
state is actually noninert.

In Sec. IV we finally introduce the parity-violating DM
term into the GL free energy functional. Based on Ref. [8]
we first work out the (slightly generalized) theory of the
helical spin density wave in the ferromagnets. With all the
necessary formalism ready, we then construct the corre-
sponding helical states for the spin-one color-
superconducting phases, and determine the modified phase
diagram.

In Sec. V we demonstrate how the DM term arises from
weak-interaction physics. We estimate the corresponding
coefficient in the weak-coupling limit. In Sec. VI we then
discuss the possible relevance of this effect for the phe-
nomenology of dense quark matter. In Sec. VII we sum-
marize and conclude.

It should be noted that while some calculations such as
the derivation of the Ginzburg–Landau free energy in the
high-density, weak-coupling approximation are standard
and the details may thus certainly be omitted, the algebraic
analysis presented in Secs. II, III, and IV is particular to
spin-one color superconductivity. Even though all deriva-
tions are based on elementary linear algebra and require no
lengthy computations, we choose to provide most details
since they cannot be found elsewhere. For reader’s conve-
nience, we formulate some purely mathematical auxiliary
material in the form of simple theorems and defer the full
proofs to the appendices.

II. CLASSIFICATION OF ORDER PARAMETERS

In this section we will investigate the possible
symmetry-breaking patterns in a single-flavor spin-one

color superconductor. The order parameter transforms as
an antitriplet under SU(3) color transformations, as a vec-
tor under spatial SO(3) rotations, and carries charge of the
baryon number U(1) group. It can be represented by a
complex 3� 3 matrix, �ai, which transforms as [19]

� ! U�R; (1)

where U 2 SUð3Þ � Uð1Þ � Uð3ÞL and R 2 SOð3ÞR. The
indices L and R denote the ‘‘left’’ and ‘‘right’’ symmetry
groups, acting on the order parameter. This symmetry
structure is similar to that of the superfluid Helium 3
[30]. However, since the symmetry group of the spin-one
color superconductors is larger than that of the superfluid
Helium [which has another SO(3) instead of the SU(3)],
the classification will be somewhat simpler in the present
case.
In the following it will be helpful to consider also trans-

formations from the ‘‘diagonal’’ subgroup, SOð3ÞV,
� ! RT�R: (2)

The classification of the possible inequivalent forms of the
order parameter will be based on the following two claims
which are proved in Appendix A.
Theorem 1 By a suitable symmetry transformation, the

order parameter can always be brought in the form,

� ¼
�1 ia3 �ia2
�ia3 �2 ia1
ia2 �ia1 �3

0
@

1
A (3)

(with real parameters �i, ai), being a Hermitian, positive-
semidefinite matrix.
Theorem 2 Let the order parameter have the form (3) and

U 2 Uð3ÞL, R 2 SOð3ÞV. Then
URT�R ¼ � (4)

if and only if U� ¼ � and RT�R ¼ �.
Equation (3) represents the simplest form to which the

order parameter can in general be cast. As could have been
expected, it contains six independent parameters: A com-
plex 3� 3 matrix has altogether 18 real parameters, 12 of
which can be fixed by a transformation from the 12-
parametric symmetry group, G � Uð3ÞL � SOð3ÞR. We
will classify all special forms of the order parameter which
leave some continuous subgroup of G unbroken. The
analysis is greatly simplified by Theorem 2 which ensures
that one can separately investigate invariance under left
unitary transformations from Uð3ÞL, and diagonal orthogo-
nal rotations from SOð3ÞV. [The transformed order parame-
ter (1) can always be written as on the left-hand side of Eq.
(4) by the substitution U ! URT , which is just another
matrix from Uð3ÞL.] There is no nontrivial unbroken com-
bination of transformations from the two groups.
Therefore, we just need to classify the unbroken subgroups
of Uð3ÞL and SOð3ÞV.
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As follows from the polar decomposition, Theorem 7,
given in Appendix A, Uð3ÞL has a nontrivial unbroken
subgroup if and only if the matrix � has zero modes.
Specifically, the unbroken subgroup will be UðnÞL where
n is the number of zero modes of �.

The possible unbroken subgroups of SOð3ÞV may be
found by elementary geometry. The Hermitian order pa-
rameter � is written as a sum of its real symmetric and
imaginary antisymmetric parts, � ¼ Sþ iA. These obvi-
ously transform separately under the diagonal subgroup
SOð3ÞV. Moreover, the antisymmetric part is parameter-
ized as Aij ¼ �ijkak so that the three components ai trans-

form as a vector, ~a. The (real) symmetric matrix S may be
viewed as defining a quadratic surface with principal val-
ues �1, �2, �3. Apparently, it possesses the same symme-

try as A if and only if this quadratic surface is axially
symmetric, with the axis given by ~a. This constrains S to
be of the form

Sij ¼ ��ij þ �aiaj;

or equivalently a linear combination of identity and the
projector to the plane perpendicular to ~a, P ij ¼ �ij � aiaj

k ~ak2 .
Since S is actually diagonal, obviously at most one com-
ponent of ~amay be nonzero (or� ¼ 0) in order to preserve
a continuous subgroup of SOð3ÞV.
By combining the conditions for invariance under the

left unitary and the diagonal orthogonal transformations,
one arrives at the classification summarized in Table I. The
logic of the table is simple. First four rows display phases

TABLE I. Classification of all order parameters that leave some continuous subgroup of G
unbroken. The parameters zi are complex, while all other parameters are real, in accordance with
Eq. (3). For convenience, we explicitly distinguish the SO(2) group of real rotations from the
U(1) group of phase transformations, even though the two are actually isomorphic. The first
eight rows represent all possible phases distinguished by the unbroken continuous symmetry.
The last two rows—the axial and planar states—are merely special cases of the oblate and
cylindrical ones which have an additional discrete symmetry. For convenience, we indicate in the
last column the nomenclature introduced in [19].

Order parameter Unbroken symmetry Name Name according to Schmitt

�1 þia 0
�ia �1 0
0 0 �2

0
@

1
A SOð2ÞV Oblate

� þia 0
�ia � 0
0 0 0

0
@

1
A SOð2ÞV � Uð1ÞL Cylindrical

�1 þi�1 0
�i�1 �1 0
0 0 �2

0
@

1
A SOð2ÞV � Uð1ÞL " P7, P8

1 þi 0
�i 1 0
0 0 0

0
@

1
A SUð2ÞL � SOð2ÞV � Uð1ÞL A A, P3, P5

1 0 0
0 1 0
0 0 1

0
@

1
A SOð3ÞV CSL CSL

0 0 0
0 0 0
0 0 1

0
@

1
A SUð2ÞL � SOð2ÞR � Uð1ÞL Polar Polar, P2, P6

0 0 0
z1 z2 z3
z4 z5 z6

0
@

1
A Uð1ÞL N1 P4

0 0 0
0 0 0
z1 z2 z3

0
@

1
A SUð2ÞL � Uð1ÞL N2 P1

�1 0 0
0 �1 0
0 0 �2

0
@

1
A SOð2ÞV Axial

1 0 0
0 1 0
0 0 0

0
@

1
A SOð2ÞV � Uð1ÞL Planar Planar
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with nonzero ~a in order of increasing unbroken symmetry.
The next two rows show the CSL and polar phases, whose
order parameter is diagonal. Then come the phases N1, N2

that completely break the SOð3ÞV. These cannot be easily
cast in the form (3) and we thus display them in such a way
as to manifest the number of zero modes. Finally, the axial
and planar states are just special cases of the oblate and
cylindrical ones, already included in the table. They are
distinguished by an unbroken discrete symmetry, gener-
ated by the permutation matrix

P ¼
0 1 0
1 0 0
0 0 �1

0
@

1
A;

that is, a rotation by � about the line x ¼ y, z ¼ 0. We do
not have the ambition to extend the above analysis to
unbroken discrete symmetries. These two special cases
are mentioned explicitly because they will later turn out
to occupy a part of the phase diagram.

Four of the indicated phases are ‘‘inert’’, i.e., their order
parameter is fixed up to a symmetry transformation and an
overall normalization. These are the A, CSL, planar, and
polar phases. Note that some of the states that are distinct
according to Ref. [19], are classified as equivalent here.
This is because (as already remarked above) we treat the
matrix elements of � as pure numbers, not functions of
momentum.

A remark about the nomenclature is in order here. The
names of the four inert phases are standard in literature on
spin-one color superconductivity. The terms ‘‘oblate’’ [30]
and ‘‘"’’ [31] have been taken over from literature on
superfluid Helium 3. The remaining four names are new.
The ‘‘N’’ states are labeled by the degeneracy of the zero
eigenvalue of �. In the ‘‘cylindrical’’ phase, the quadratic
form S defines a cylinder with the vector ~a pointing along
its axis. Finally, the axial state may be thought of as
deformed CSL with just axial symmetry. As we will see
in Sec. IVB 3, this exactly happens to the CSL phase upon
switching on the DM term [32].

III. GINZBURG–LANDAU THEORYWITHOUT DM
TERM

After working out the classification of all inequivalent
forms of the order parameter, we now investigate using the
Ginzburg–Landau theory, which of the states is actually
energetically preferred. Our analysis will be similar to that
of Baym and Iida for spin-zero color superconductivity
[33]. So far, we do not include the DM term. In the
following one should always keep in mind that the GL
theory is strictly speaking only valid near the critical
temperature. For the sake of brevity, we often use the
term ‘‘ground state’’ where we mean the state minimizing
the free energy, i.e., thermodynamic equilibrium. It is only
in Sec. VI that we make some speculations concerning the
physics far from the critical point, at low temperatures.

It will sometimes be convenient to use a different nota-
tion for the order parameter, in particular, to treat the

matrix �ai as a collection of three complex vectors, ~�a,
one for each anticolor a. The GL free energy density up to
fourth order in � then reads

F ½ ~�a� ¼ a1ri
~�
y
a � ri

~�a þ a2ð ~r � ~�
y
a Þð ~r � ~�aÞ

þ b ~�
y
a � ~�a þ d1Aþ d2Bþ d3C: (5)

For the time being, the parameters a1, a2, b, d1, d2, and d3
are treated as free, constrained only by the requirement of
boundedness of the free energy from below. There are three
independent quartic G-invariant terms that we denote as
A,B, and C. Their explicit forms in both notations for the
order parameter are summarized in Table II.

A. Ground state

Since the gradient part of the free energy is required to
be bounded from below, the ground state is apparently a
uniform field configuration that minimizes the static part of
Eq. (5). As usual, the ‘‘mass term’’ b changes sign at the
critical temperature. In the following we will assume that it
is negative (i.e., we are in the superfluid phase) so that the
free energy has a nontrivial minimum. We will use the
invariant A to measure the size of the condensate; ac-
tually, it is a squared norm of � in the sense that will be
specified later. The values of the other invariants B, C then
measure the orientation of the order parameter in the color
and spin space, and we will draw the phase diagram in the
two-dimensional space of the parameters d2, d3.
Trying to determine the ground state by a direct solution

of the gap equation would be just hopeless. First, the gap
equation is a coupled set of equations for the six indepen-
dent parameters in �. Second, even if we somehow man-
aged to solve it, we could at best show that the solution is a
local minimum of the free energy. Instead, we derive a set
of inequalities between the invariants A, B, C that allow
us to uniquely determine the absolute minimum of the free
energy. We again formulate these inequalities as simple
theorems whose proof is given in detail in Appendix B. (It
is understood that all the following claims about the order
parameter hold up to a symmetry transformation.)
Theorem 3 The invariants A, B satisfy the following

inequalities,

1

3
A � B � A: (6)

TABLE II. Independent quartic invariants and their expression

using the matrix � as well as the complex vectors ~�a.

Name Vector expression Matrix expression

A ð ~� y
a � ~�aÞ2 ½Trð��yÞ�2

B j ~� y
a � ~�bj2 Trð��y��yÞ

C j ~�a � ~�bj2 Tr½��Tð��TÞy�
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The first inequality is saturated (i.e., an equality holds) if
and only if the order parameter is of the CSL type. The
second inequality is saturated if and only if the matrix �
has rank one.

Theorem 4 The invariants B, C satisfy the following
inequalities,

0 � C � B: (7)

The first inequality is saturated if and only if the order
parameter is of the A type. The second inequality is satu-
rated if and only if the order parameter is real.

Theorem 5 The invariantsA, B, C satisfy the following
inequality,

2

3
A � Bþ C: (8)

The inequality is saturated if and only if the order parame-

ter is of the oblate type with �2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

1 þ a2
q

.

Theorem 6 Let C � 1
9A. Then the invariants A, B, C

satisfy the following inequality,ffiffiffiffiffiffi
A

p
� ffiffiffi

C
p þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B� C

p
: (9)

The inequality is saturated if and only if the order parame-
ter is of the " type.

With this set of inequalities at hand, at is straightforward
to determine the phase diagram in the ðd2; d3Þ plane. We do
so by finding a lower bound on the free energy and showing
that this bound is saturated by a particular type of the order
parameter. In all cases, the free energy density can be, after
fixing the orientation of the condensate, written as

F ¼ b
ffiffiffiffiffiffi
A

p
þ �dA;

where �d is an effective quartic coupling, specific for the
given phase. The ground state condensate and free energy
are then given by

ffiffiffiffiffiffiffiffiffiffiffiffi
Amin

p ¼ � b

2 �d
; F min ¼ � b2

4 �d
: (10)

(i) d2 þ d3 > 0, d2 > d3. Using Theorems 4 and 5, we
get

d2Bþd3C¼1

2
ðd2þd3ÞðBþCÞ

þ1

2
ðd2�d3ÞðB�CÞ�1

3
ðd2þd3ÞA:

To saturate the inequality, we should have simulta-
neously Bþ C ¼ 2

3A and B ¼ C, i.e., B ¼ 1
3A.

By Theorem 3, this is only satisfied by the CSL state.
The magnitude of the condensate and minimum free

energy density are given by (10) with �dCSL ¼ d1 þ
d2þd3

3 .

(ii) d2 þ d3 < 0, d3 < 0. In this case, Theorems 3 and 4
yield

d2Bþ d3C � ðd2 þ d3ÞB � ðd2 þ d3ÞA:

The order parameter that saturates this bound should
be real and have rank one, which is precisely the
polar phase, with condensate and free energy deter-
mined by �dpolar ¼ d1 þ d2 þ d3.

(iii) d2 < 0, d3 > 0. Now we estimate the free energy
using Theorems 3 and 4 as

d2Bþ d3C � d2A:

The ground state is the A phase. The effective quartic
coupling in this case reads �dA ¼ d1 þ d2.

(iv) d3 > d2 > 0. This case is subtle; it is here that none
of the inert phases provides the absolute minimum of
the free energy. Let us assume that C � 1

9A. We then

use Theorem 6 and the Cauchy inequality (B1) with

u1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2ðB� CÞp

, u2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðd2 þ d3ÞC

p
, v1 ¼ 1=

ffiffiffiffiffi
d2

p
,

v2 ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ d3

p
to obtain

d2Bþ d3C ¼ d2ðB� CÞ þ ðd2 þ d3ÞC ¼ u21 þ u22

� ðu1v1 þ u2v2Þ2
v2
1 þ v2

2

¼ ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B� C

p þ ffiffiffi
C

p Þ2
1
d2
þ 1

d2þd3

� d2ðd2 þ d3Þ
2d2 þ d3

A:

The inequality is saturated if and only if the order
parameter is of the " type, and vectors ~u and ~v are
collinear. This fixes the order parameter to be

� ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
Amin

p � i� 0
�i� � 0
0 0 �

0
@

1
A;

� ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ d3
2d2 þ d3

s
; � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

2d2 þ d3

s
:

(11)

The effective quartic coupling in this case is �d" ¼
d1 þ d2ðd2þd3Þ

2d2þd3
. One easily checks that the initial as-

sumption C � 1
9A is fulfilled for considered values

of d2, d3.

B. Phase diagram

The calculation of the ground state for different relative
values of d2, d3 given in the previous subsection is straight-
forward, but may not be entirely transparent. Therefore, we
complement it here by an elegant and powerful geometric
picture, first developed by Kim and Frautschi [34,35] to
analyze complicated Higgs potentials in models of grand
unification. It will not only confirm our previous conclu-
sions about the ground state, but also illuminate the nature
of the inert and noninert states and the phase transitions
between them.
The idea is as follows. The quartic part of the free energy

can be thought of as depending on the squared norm of the
condensate, A, and two dimensionless quantities, �2 ¼

HELICAL ORDERING IN THE GROUND STATE OF SPIN- . . . PHYSICAL REVIEW D 78, 125027 (2008)

125027-5



B=A and �3 ¼ C=A. These specify the orientation of the
condensate in the color and spin space. For a uniform field
configuration, the free energy density thus becomes

F stat ¼ b
ffiffiffiffiffiffi
A

p
þ ðd1 þ d2�2 þ d3�3ÞA: (12)

The inequalities derived above show that the quantities �2,
�3 cannot acquire arbitrary values. Instead, their values for
all nonzero 3� 3 matrices will span some domain in the
ð�2; �3Þ plane, which we will refer to as the target space, in
order to distinguish it from the parameter space of d2, d3.
The shape of the target space is a property of the algebra of
3� 3 matrices (and the symmetry group G), and is inde-
pendent of the couplings d2, d3.

The absolute minimum of the free energy (12) can now
be found by a consecutive minimization with respect to the

‘‘angles’’ �2, �3, and then the ‘‘modulus’’
ffiffiffiffiffiffi
A

p
. But since

the free energy (12) is linear in �2, �3, the minimum will
simply lie somewhere on the boundary of the target space.
Which point of the boundary will realize the ground state,
depends on the coefficients d2, d3. For fixed values ofF stat

and
ffiffiffiffiffiffi
A

p
, Eq. (12) defines a straight line in the ð�2; �3Þ

plane. For a too small value of F stat, this line will not
intersect the target space, i.e., there is no state with the
desired value of the free energy. As F stat increases, the
straight line will shift parallel until for some F min, it will
for the first time touch the target space. The point of touch
will then define the ground state.

In the case of the spin-one color superconductor, the
explicit form of the target space is plotted in Fig. 1. We
emphasize once again that it is the points at its boundary
that will appear in the phase diagram as ground states for
some particular combination of d2, d3. The states that
correspond to the corners of the target space therefore
play a distinguished role. These are the three inert states,
A, CSL, and polar. Since they are inert, they are repre-
sented by a single point in the target space. A noninert state
of a particular type will occupy some nontrivial domain,
depending on its number of free parameters.

Let us now be more specific about the boundary of the
target space. The second inequality in Eq. (6) defines the
edge connecting the ‘‘A’’ and ‘‘polar’’ corners, which thus
involves all rank-one order parameters. The polar—CSL
edge follows from the second inequality in Eq. (7) and
consists of matrices� that can be made real by a symmetry
transformation. The CSL—X edge comes from Eq. (8). It
is occupied by matrices of the oblate type with �2 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

1 þ a2
q

. Finally, the curved segment X—A is a conse-

quence of Theorem 6 and is realized by the matrices of the
" type. This completes the picture of the target space and
elucidates the significance of the various inequalities.

The analysis carried out in Sec. III A yields the phase
diagram, displayed in Fig. 2. Note that all phase transitions
but the one between the A and " phases are first order. This
is also easily seen using the Kim–Frautschi plot of the

target space (see Fig. 1). A straight segment of the bound-
ary connecting two corners such as polar and CSL causes
the ground state to change abruptly at an infinitesimal
change of the slope of the straight line (12) (i.e., the ratio

d
2

d
3

A

polar

CSL

ε

FIG. 2. Phase diagram of the spin-one color superconductor in
the ðd2; d3Þ plane. The solid and dashed thick lines denote first-
and second-order phase transitions, respectively. The phase
boundaries are defined by straight radial lines at angles �

4 ,
�
2 ,

�, and 7�
4 with respect to the d2 axis. The cross indicates the

weak-coupling prediction, see Eq. (27).

FIG. 1. Target space in the ð�2; �3Þ plane (shaded). The various
bounding curves are determined by Eqs. (6)–(9). The curve
connecting the points A, X, and polar is defined by

ffiffiffi
C

p þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B� C

p ¼ ffiffiffiffiffiffi
A

p
. For given d2, d3 the structure of the ground

state is determined by that point on the boundary of the target
space which minimizes the expression d2�2 þ d3�3, i.e., by the
nearest point of the target space when looking at it (in the plane)
in the direction of the vector ðd2; d3Þ.
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of d2 and d3). On the other hand, as we move through the "
phase towards the transition line to the A phase, the order
parameter runs along the curved segment X—A until it
eventually continuously enters the A phase. Moreover, we
can easily check explicitly using Eq. (11) that as d2 !
0þ , the " state continuously goes to the A state.

The Kim–Frautschi plot also tells us which types of
order parameters may coexist right at the first-order phase
transition lines. If the segment of the boundary of the target
space connecting the two competing phases were concave,
we would find just these two states. However, since all the
border lines corresponding to first-order phase transitions
are straight, a much wider class of states can actually
coexist. Without going into details we just note that special
relations between d2 and d3 which define the phase tran-
sition lines, may bring in additional degeneracy in terms of
an enhanced symmetry of the free energy [36].

Note that the phase diagram in Fig. 2 does not depend on
the coefficient d1. The only way it affects the problem is
indirectly, by the requirement of boundedness of the free
energy from below. In other words, a particular value of d1
will determine a region in the ðd2; d3Þ plane which is
physically allowed.

Finally, a comparison with the phase diagram calculated
in Ref. [10] [and plotted in the ðd2; d2 þ d3Þ plane] shows
that our results agree with the exception of the " region,
which was missed in [10]. The strategy used here, based on
lower estimates of the free energy together with the con-
ditions for their saturation, ensures that we have really
found the absolute minimum of the free energy. Apart
from the phase transition lines, it is unique up to a sym-
metry transformation.

IV. GINZBURG–LANDAU THEORY WITH DM
TERM

We are now ready to analyze the GL theory for spin-one
color superconductivity including the parity-violating DM
term. However, since the construction of the helix-ordered
state for some of the color-superconducting phases is a bit
involved, we prefer to illustrate the idea and develop the
argument on a simple toy example.

A. Toy model: Complex ferromagnet

Following closely Ref. [8], we consider the GL free
energy density functional of the form [37]

F ½ ~M� ¼ a1ri
~My � ri

~Mþ a2ð ~r � ~MyÞð ~r � ~MÞ
þ b ~My � ~Mþ c ~My � ð ~r� ~MÞ þ dð ~My � ~MÞ2;

(13)

where the term proportional to c is the DM term. (Note that
it is real up to a total derivative.) Without lack of generality
we will assume that c > 0.

First of all wewould like to stress that since the DM term
will make the ground state configuration nonuniform, we
are not a priori allowed to simply minimize the static part
of the free energy to determine the magnitude of the order

parameter ~M (which we shall in this section refer to as the
magnetization). Instead, we will rely on an estimate of the
free energy, this time including the space dependence of
the order parameter. Assuming the space has finite volume
� with periodic boundary conditions, we expand the mag-
netization in Fourier modes,

~MðxÞ ¼ X
k

~mke
ik�x:

Using the integral form of the Cauchy inequality, we may
estimate the quartic part of the free energy,

Z
d3xð ~My � ~MÞ2 � 1

�

�Z
d3x ~My � ~M

�
2 ¼ �

�X
k

j ~mkj2
�
2

� �M2:

The inequality is saturated if ~My � ~M is uniform, i.e., the
magnetization has the same magnitude in the whole space.
Decomposing the Fourier mode ~mk into components

parallel (‘‘longitudinal’’) and perpendicular (‘‘transverse’’)
to the momentum k, ~mkk and ~mk?, and the transverse

component further into its real and imaginary parts,
~mk? ¼ ~uk þ i ~vk, the DM contribution to the free energy
becomes

Z
d3x ~My � ð ~r� ~MÞ ¼ 2�

X
k

k � ð ~uk � ~vkÞ:

Using elementary geometry, this is estimated as

k � ð ~uk � ~vkÞ � �jkjj ~uk � ~vkj � �jkjj ~ukjj ~vkj

� �jkj j ~ukj
2 þ j ~vkj2
2

¼ � 1

2
jkjj ~mk?j2:

The chain of inequalities is saturated if the real and imagi-
nary parts of ~mk? have the same size, are perpendicular to
each other as well as to k, and together form a left-handed
orthogonal system of vectors. (For c < 0, it would be right-
handed.) Together with the gradient terms, the DM term
can thus be minimized as follows,

Z
d3x½a1jri

~Mj2 þ a2j ~r � ~Mj2 þ c ~My � ð ~r� ~MÞ�
� �

X
k

½ða1 þ a2Þjkj2j ~mkkj2 þ ða1jkj2 � cjkjÞj ~mk?j2�:

Stability of the system with respect to longitudinal fluctua-
tions requires a1 þ a2 > 0. The longitudinal mode ~mkk
therefore always increases the free energy. On the other
hand, the DM term, being linear in momentum, can out-
weigh the gradient term and make nonuniform, transverse
field configurations energetically favorable. The minimum
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free energy is achieved when only modes with jkj ¼
jkjmin ¼ c=2a1 are included.

Putting all the pieces together, we obtain the minimum
free energy density as

1

�

Z
d3xF ½ ~M� �

�
b� c2

4a1

�
Mþ dM2: (14)

The state minimizing the free energy will be purely trans-
verse so that the a2 term in Eq. (13) actually does not play
any role. To specify the form of the ground state more
concretely, recall that apart from being composed solely of
Fourier modes with jkj ¼ jkjmin, it also ought to have a
spatially uniform magnitude of magnetization. The most
general state satisfying this condition has the form

~M ¼ � ~mke
ik�x þ � ~m�

ke
�ik�x; (15)

with fixed momentum k and real coefficients �, �.
Two special cases deserve particular attention. First, if �

or � is zero, the ground state is a single (complex) plane
wave. Second, if we require the order parameter to be real
(which is the case of the ferromagnet as well as several of
the spin-one color-superconducting phases), we arrive at

~M ¼ ~mke
ik�x þ ~m�

ke
�ik�x

¼ 2½ ~uk cosðk � xÞ � ~vk sinðk � xÞ�;
i.e., a real standing wave. The magnetization evolves along
a right-handed helix with the axis defined by the vector k,
and the wavelength � ¼ 4�a1=c. This concludes the argu-
ment and reveals the nature of the ground state induced by
the DM term.

Several remarks are in order here. First, for generic
(nonzero) coefficients �, �, the state (15) breaks both
rotational and translational invariance [38]. However, there
is a combination of a rotation about k and a simultaneous
translation along k which remains unbroken. This leads to
a peculiar, strongly anisotropic behavior of the Nambu–
Goldstone mode of the broken symmetry [6].

Second, the wavelength of the helical state is propor-
tional to 1=c, hence the weaker is the DM term, the longer
is the scale of the helical ordering. This will be particularly
important in the later application to spin-one color super-
conductivity where the c term comes from weak interac-
tions and is thus expected to be tiny.

Third, according to Eq. (14), the DM term effectively
lowers the coefficient b. Therefore, it leads to a slight
increase of the critical temperature, and at a fixed tempera-
ture to a slight increase of the magnitude of the magneti-
zation. However, its most notable consequence is the
formation of the nonuniform field configuration.

Fourth, as long as we restrict ourselves to terms up to
fourth order in� in the free energy, the ground state can be
rigorously proved to be composed of a single plane wave
(and possibly the counterpropagating wave), although the

gradient terms are minimized by Fourier modes with mo-
menta lying on a sphere of radius jkjmin.

B. Spin-one color superconductor

The generalization of the GL functional (13) to the case
of the spin-one color superconductor is straightforward and
unique,

F ½ ~�a� ¼ a1ri
~�
y
a � ri

~�a þ a2ð ~r � ~�
y
a Þð ~r � ~�aÞ

þ b ~�
y
a � ~�a þ c ~�

y
a � ð ~r� ~�aÞ

þ d1Aþ d2Bþ d3C: (16)

As above, we Fourier-decompose the order parameter field,

~� aðxÞ ¼
X
k

~’ake
ik�x; (17)

and define M � P
k ~’y

ak � ~’ak. Using the same argument

as in the preceding subsection, the free energy is estimated
as

1

�

Z
d3xF ½ ~�a� �

�
b� c2

4a1

�
Mþ �dM2; (18)

where the effective quartic coupling �d for the various spin-
one color-superconducting phases was defined in
Sec. III A. The absolute minimum of the free energy is
achieved for purely transverse configurations with uniform

summed magnitude ~�
y
a � ~�a such that for all colors a, the

real and imaginary parts of ~’ak have the same magnitude
and together with k form a left-handed orthogonal system
of vectors, and only modes with jkj ¼ jkjmin ¼ c=2a1 are
included. We shall now construct the helical states for the
phases that appear in the phase diagram in Fig. 2.

1. Polar and A phases

A single anticolor participates in the condensation. The
ground state can therefore be constructed in complete
analogy with Sec. IVA. For the polar phase, the order
parameter is real, and we thus find a real standing wave.
Choosing the coordinate basis so that the helix points along
the z axis, the order parameter takes the form

� polar ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Amin

p 0 0 0
0 0 0

coskz sinkz 0

0
@

1
A:

The condensate magnitude and free energy are given by a
modification of Eq. (10),

ffiffiffiffiffiffiffiffiffiffiffiffi
Amin

p ¼ �bð1þ �Þ
2 �d

; F min ¼ �b2ð1þ �Þ2
4 �d

;

(19)

where
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� � �c2=4a1b; (20)

and as before, �dpolar ¼ d1 þ d2 þ d3.

In the case of the A phase, the order parameter can also
be cast in such a form that only one anticolor condenses.
(The matrix� is then of course no longer Hermitian.) The

nonzero vector ~�a is forced to be ‘‘maximally complex’’ in
the sense that C ¼ 0. This leads to the single-plane wave
solution,

� A ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Amin

2

s
eikz

0 0 0
0 0 0
1 �i 0

0
@

1
A:

The condensate magnitude and free energy follow from
Eq. (19) with �dA ¼ d1 þ d2.

2. " phase

In this phase, the order parameter can be cast in a form
that just two anticolors condense, which amounts to adding
another orthogonal real vector to the above A-phase order
parameter. However, three real vectors cannot be simulta-
neously orthogonal to each other, and still orthogonal to the
momentum k. This means that the lower bound (18) cannot
be reached, or, the gradient and static parts of the free
energy cannot be separately minimized for an order pa-
rameter of the " type.

To see what the ground state will look like, we resort to
the Ginzburg–Landau equation following from Eq. (16),

�a1
~r2 ~�a � a2

~rð ~r � ~�aÞ þ b ~�a þ cðr � ~�aÞ
þ 2d1 ~�að ~�y

b � ~�bÞ þ 2d2 ~�bð ~�a � ~�
y
b Þ

þ 2d3 ~�
y
b ð ~�a � ~�bÞ ¼ 0: (21)

We are not going to solve this equation directly. After all,
even if we did, we could not prove anyway that our solution
was the absolute minimum of the free energy. Nonetheless,
Eq. (21) will provide us with the necessary insight to make
a heuristic guess about the form of the ground state.

The starting assumption is that the values of the order

parameter ~�a at different space points are connected by a
symmetry transformation. This is reasonable for otherwise
the static part of the free energy density would not be
uniform; it is hard to imagine how such a configuration
could be even a local minimum of the free energy.

The DM term in the ‘‘equation of motion’’ (21) forces

the vector ~�a to rotate about the direction of k. Also, this
term does not mix colors. Hence it is plausible that the
transformation which connects the values of the order
parameter at different points is a pure spatial rotation.
Naturally, the axis of rotation is to be identified with the
direction of the momentum k. We can then choose the
basis in the color space in such a way that for one anticolor,

the vector ~�a is perpendicular to k and rotates about it
(transverse mode), while the vector of the second anticolor

is aligned with k and static (longitudinal mode). This is
also in accord with our general discussion since a longitu-
dinal mode with nonzero momentum would cost energy.
With the above argument in mind, we write down the

helical state of the " type with k along the z axis,

� � ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Amin

p 0 0 0ffiffiffi
2

p
�eikz �i

ffiffiffi
2

p
�eikz 0

0 0 �

0
@

1
A: (22)

Here k, � �, and
ffiffiffiffiffiffiffiffiffiffiffiffi
Amin

p
are treated as variational parame-

ters with the constraint 4�2 þ �2 ¼ 1 enforced by normal-
ization. Minimizing the free energy within this class of
variational states, we find

4�2 ¼ d2 þ d3 þ �ðd1 þ d2 þ d3Þ
d2ð2þ �Þ þ d3ð1þ �Þ ;

�2 ¼ d2 � �d1
d2ð2þ �Þ þ d3ð1þ �Þ ;

and the momentum is, as above, given by k ¼ c=2a1. Note
that for � ¼ 0 these expressions reduce to the previous
result, Eq. (11). The condensate magnitude and free energy
read

ffiffiffiffiffiffiffiffiffiffiffiffi
Amin

p ¼ �b

2

1þ � d2þd3
2d2þd3

d1 þ d2
d2þd3
2d2þd3

;

F min ¼ � b2

4

1þ 2� d2þd3
2d2þd3

þ �2 d1þd2þd3
2d2þd3

d1 þ d2
d2þd3
2d2þd3

:

While the denominators of the large fractions contain the

expected effective quartic coupling, �d" ¼ d1 þ d2
d2þd3
2d2þd3

,

the numerators differ from Eq. (19). This is because the
separate minimization of the gradient and static parts of the
free energy could not be achieved so that both the conden-
sate and the condensation energy are actually smaller than
Eq. (19) would have predicted.
Apart from the variational minimization of the free

energy with the ansatz (22), we also checked explicitly
that this state with parameters fixed by the above expres-
sions indeed solves the GL Eq. (21). This provides a decent
evidence that we have found the genuine ground state.

3. CSL phase

Here the situation is even more severe than for the "
phase. In that case, the order parameter contains even after
normalization a free parameter, say, the ratio �=�. The
effect of the DM term in the free energy is then accounted
for by a slight shift of this parameter. However, the CSL
order parameter is rigid, there are no free parameters
beyond the overall norm to adjust. As a result, the CSL
state simply turns out to be incompatible with the DM
term: It is no longer a minimum of the free energy.
To see this, let us assume [as in the discussion below Eq.

(21)] that the order parameter has everywhere the CSL
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form with a fixed magnitude. Consequently, the matrix �
is unitary up to a real coordinate-independent factor. This
dramatically simplifies the GL Eq. (21), which becomes
linear and separated for the individual colors,

� a1
~r2 ~�a � a2

~rð ~r � ~�aÞ þ c ~r� ~�a þ beff ~�a ¼ 0;

with beff ¼ bþ 2 �dCSL
ffiffiffiffiffiffi
A

p
. Being linear, this equation can

be solved independently for the static and rotating modes.
In particular the existence of a static mode requires beff ¼
0. This fixes the condensate magnitude to its size without
the DM term. The rotating mode has to fulfill the condition
a1jkj2 ¼ cjkj. Therefore, even though there is a solution
with helical structure, its energy is the same as that of the
uniform CSL condensate.

In order to resolve this problem, it is important to realize
that the anticipated existence of a helical structure in the
ground state implies breaking of the rotational symmetry at
least to the group of rotations about the axis of the helix, k.
It would be naive to expect the isotropic CSL state in such a
situation.

We can take the reduced axial symmetry into account
and at the same time relax the rigidity of the order parame-
ter by considering the more general axial state (see
Table I). This is natural: There is no reason why the static
part of the order parameter, aligned with k, should have the
same length as the transverse part, which is perpendicular
to k and rotates about it. In fact, thanks to the DM term, we
should expect the transverse part to be preferred. This
argument leads us to the ansatz

� axial ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Amin

p � coskz � sinkz 0
�� sinkz � coskz 0

0 0 �

0
@

1
A; (23)

with the normalization constraint 2�2 þ �2 ¼ 1. The var-
iational minimization of the free energy now results in

�2 ¼ 1þ � d1þd2þd3
d2þd3

3þ 2�
; �2 ¼ 1� 2� d1

d2þd3

3þ 2�
:

The condensate magnitude and free energy are given by

ffiffiffiffiffiffiffiffiffiffiffiffi
Amin

p ¼ �b

2

3þ 2�

3d1 þ d2 þ d3
;

F min ¼ �b2

4

3þ 4�þ 2�2 d1þd2þd3
d2þd3

3d1 þ d2 þ d3
:

These results show that � is always larger than � so that
the rotating part of the order parameter is indeed favored
over the static one, as predicted. In comparison to the CSL
state this physically means that one can gain energy by
making the condensates of the three anticolors slightly
imbalanced in favor of the two anticolors that form the
helical structure. This has the amusing consequence that
the ground state is no longer color-neutral. The color-
density imbalance is a sheer weak-interaction effect.

4. Planar phase

The magnitude � of the static part of the axial order
parameter decreases with the sum d2 þ d3 until at d2 þ
d3 ¼ 2�d1 it goes to zero. The axial order parameter
reduces to the planar one. Since in the phase diagram
without the DM term, Fig. 2, the boundary between the
CSL and polar phases occurs at d2 þ d3 ¼ 0, we may
expect the planar phase to interpose itself between the
two at nonzero �.
The planar order parameter is explicitly expressed as

� planar ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Amin

2

s
coskz sinkz 0
� sinkz coskz 0

0 0 0

0
@

1
A; (24)

and its size and free energy are given by Eq. (19) with
�dplanar ¼ d1 þ d2þd3

2 .

C. Phase diagram

The phase diagram, modified by the parity-violating DM
term, is displayed in Fig. 3, assuming that d1 > 0. [For
d1 < 0, a large part of the ðd2; d3Þ plane would be excluded
by the requirement of the boundedness of the free energy
so that the resulting picture would not be very interesting.]
The "—A and axial—planar phase transitions are of the
second order. They are both characterized by vanishing of
the respective � parameter. The rest of the phase transi-
tions are first order.
For the axial and " states, the minimum free energy

suggested by Eq. (18) cannot be achieved. As a result,
these two phases are pushed away from the phase diagram
by the DM term. The first-order transition lines were
determined by a comparison of the free energies of the
individual phases. It was thus checked that the free energy

d
2

d
3

A

polar

axial

ε

planar

ξd
1

FIG. 3. Phase diagram of the spin-one color superconductor
including the DM term. The solid and dashed thick lines denote
first- and second-order phase transitions, respectively. The posi-
tions of the solid lines are the same as in Fig. 2 and independent
of the DM term, whereas the offset of the dashed lines is
proportional to the parameter � defined in Eq. (20).
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is continuous all over the phase diagram, which is a neces-
sary condition for the conclusion that we have not missed
any possible intermediate phase and determined the phase
diagram correctly.

Finally, note that while the complete GL free energy
(16) is SUð3Þ � SOð3Þ � Uð1Þ-invariant, the DM term has
in fact an enhanced SOð6Þ � SOð3Þ symmetry under which
the pairs of states A—planar and "—axial are degenerate.
This has, in particular, the consequence that the "—axial
transition line in the phase diagram (the CSL state being a
special case of the axial one) does not shift when the DM
term is switched on.

V. MICROSCOPIC DERIVATION OF DM TERM

In this section, we provide a microscopic derivation of
the Ginzburg–Landau free energy. Again, a thorough
analysis of this problem was performed by Bailin and
Love long time ago. Nevertheless, since the calculation
at the level of generality taken up in Ref. [10] is rather
involved, we make a number of simplifying assumptions
that allow us to arrive at a simple formula in an efficient
manner.

A. GL functional from NJL model

First of all, we fix the Dirac structure of the spin-one gap
matrix to be simply 	i. Such an order parameter has
positive parity and in the ultrarelativistic limit describes
purely transverse pairing of fermions, which was shown in
Ref. [19] to be energetically preferred to the longitudinal
pairing [39].

Second, we for simplicity disregard the gluonic fluctua-
tions which would otherwise make the superconducting
phase transition first order [41], and derive the GL free
energy in the framework of the Nambu–Jona-Lasinio
(NJL) model [42]. This is decently justified by the fact
that the coefficients of the GL free energy are to a large
extent universal, the only dynamics-dependent quantity
being the critical temperature [10]. The fact that the NJL
model does not capture correctly the effects of the soft
chromomagnetic gluons and thus predicts wrong asymp-
totic behavior of the gap and critical temperature, should
therefore not matter as long as the critical temperature is
appropriately adjusted.

Third, we neglect, as usual, the antiparticle degrees of
freedom. As mentioned above, in the ultrarelativistic limit
this automatically projects out the transverse part of the
order parameter. Here we take the advantage of the fact that
the Dirac structure 	i can be achieved within a NJL-type
model with a contact, momentum-independent interaction.
Finally, we neglect the admixture of states with higher
angular momentum [43,44].

Given the above assumptions, the mean-field approxi-
mation to the NJL model amounts to a theory of non-
interacting quasiquarks in the background of the
(possibly slowly-varying) order parameter �ai, with the

imaginary-time propagator in the Nambu space, � �
ðc ; c CÞT , given by

D�1ði!n;kÞ ¼ ði!n � �kÞ	0�
þ
k

~�
� ði!n þ �kÞ	0�

�
k

� �
;

(25)

where we used the usual notation for �k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
and

the energy with respect to the Fermi level, �k ¼ �k �
.
Also,�	

k ¼ 1
2 ½1	 1

�k
	0ð� � kþmÞ� are the standard posi-

tive/negative energy state projectors, and

� ¼ �A
affiffiffi
2

p 	i�ai; ~� ¼ 	0�
y	0; (26)

where ð�A
a Þbc ¼ �i�abc.

The GL free energy density at weak coupling and in the
ultrarelativistic limit then becomes

F ½ ~�a� ¼ 7�ð3Þp3
F

240�4
T2
c

½2jri
~�aj2 � j ~r � ~�aj2�

þ
pF

3�2
tj ~�aj2 þ 7�ð3Þ
pF

480�4T2
c

ð3Aþ 3B� 2CÞ;
(27)

where Tc is the critical temperature for the spin-one pair-
ing. We denoted t ¼ T

Tc
� 1 and for the sake of an easy

check with literature, kept separate symbols for the Fermi
momentum pF and the chemical potential 
, even though
they actually coincide in the ultrarelativistic limit.
Derivation of the GL functional (27) is routine. Yet we
are not aware of any other independent calculation for
spin-one color superconductivity using the NJL model,
and therefore provide some details in Appendix C.
A comparison with Eq. (5) now yields the phenomeno-

logical coefficients

a1 ¼ �2a2 ¼ 7�ð3Þp3
F

120�4
T2
c

; b ¼ 
pF

3�2
t;

d1 ¼ d2 ¼ � 3

2
d3 ¼ 7�ð3Þ
pF

160�4T2
c

:

The ratio of d2 and d3 is indicated in Fig. 2 by a cross. In
agreement with the full QCD calculation we conclude that
in the absence of the DM term, the weak-coupling limit
favors the CSL pattern.
In the presence of the DM term, the form of the ground

state depends on the parameter

� ¼ � c2

4a1b
¼ �c2

90�6T2
c

7�ð3Þp4
Ft
:

As remarked at the end of Sec. IVA, the DM term slightly
increases the critical temperature. Equation (19) suggests
that the corrected critical temperature is given by � ¼ �1
[45], i.e.,
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tc ¼ c2
90�6T2

c

7�ð3Þp4
F

:

Just below the (new) critical temperature, � is large and
negative. With decreasing temperature, it goes through a
singularity to large positive values and starts decreasing.
(Of course, this ‘‘singularity’’ is completely artificial and
comes just from the definition of �.) In the tiny window
below the critical temperature and above the temperature at
which � ¼ 1=6, the ground state has therefore the planar
structure, Eq. (24). Only for � < 1=6 the system enters the
distorted CSL phase—the axial phase, the ground state
being as in Eq. (23) with

�2 ¼ 1þ 4�

3þ 2�
; �2 ¼ 1� 6�

3þ 2�
:

With further decreasing temperature, � drops to zero and
the ground state relaxes to the CSL state. Needless to say
that the temperature range in which this evolution occurs is
extremely narrow, but it is nevertheless interesting to ob-
serve that the cooling of the system across the critical
temperature actually consists of a fast sequence of two
phase transitions, both of second order.

B. DM term

The last, and very important, missing ingredient in our
analysis is the actual value of the DM coefficient c. Wewill
argue here that the parity-violating DM term is naturally
induced by the underlying weak interactions. Since the DM
term is bilinear in the order parameter, we will seek weak
corrections to the collective pairing mode propagator.

Before we begin the calculation, we make a remark
about the discrete symmetries of the DM term. As already
stressed, it breaks the parity. At the same time, it is invari-
ant under charge conjugation (up to a total derivative). On
the other hand, it is well-known that weak interactions in a
single-fermion-family world violate parity, but preserve
the combined CP transformation. In the vacuum, the DM
term would therefore be prohibited, at least as a conse-
quence of weak interactions. However, charge conjugation
is broken explicitly by the presence of the dense medium,
and the DM term therefore arises from the interplay of
weak interactions and many-body physics.

Taking into account Gaussian fluctuations above the
mean-field Cooper pair condensate, the pairing field propa-
gator is given by a geometric series of the fermion bubble
diagrams [46]. The most straightforward weak correction
is then the Z-boson exchange, depicted in Fig. 4. (W	
bosons cannot be exchanged since we consider just
single-flavor quark matter.) Unfortunately, this does not
work for the following reason. As mentioned above, the
dominant spin-one pairing pattern in the ultrarelativistic
limit is transverse in the relative momentum of the pair.
Roughly speaking, it corresponds to pairing with total
momentum and orbital momentum zero and total spin

one, i.e., opposite helicity (and chirality). The quark inter-
action vertex with the Z boson can be parameterized as
	
ðuþ v	5Þ, where

u ¼ � e

2 sin2�W

�
5

3
sin2�W � cos2�W

�
;

v ¼ � e

2 sin2�W
;

for u-type quarks, and

u ¼ e

2 sin2�W

�
1

3
sin2�W � cos2�W

�
; v ¼ e

2 sin2�W
;

for d-type quarks. Here �W is the Weinberg angle and e is
the electric charge unit. The coupling of the Z boson to two
quarks of opposite chirality in the loop in Fig. 4 then
produces the factor ðuþ vÞðu� vÞ ¼ u2 � v2. However,
to achieve parity breaking, one needs an amplitude odd in
v.
We therefore have to look for corrections of higher

orders. Since each propagator of a weak intermediate
boson is suppressed by the huge weak scale of the order
of 100 GeV, it is most likely that any diagram with the
exchange of more than one heavy vector boson will be
much smaller than a graph with just one Z boson, but
including fluctuations of the pairing field. Having in
mind that the underlying interaction of the Z boson with
the weak neutral quark current induces an effective cou-

pling of Z to the pairing field ~�a (see Fig. 5), we thus
anticipate that the leading contribution to the DM term will

FIG. 5. Effective coupling of the pairing mode to the Z boson.
The labels of the fermionic lines denote momentum flowing in
the direction of the arrows.

FIG. 4. Pairing field self-energy with Z-boson insertion.
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be given by the graph in Fig. 6. The fact that the diagram
involves propagation of an intermediate spin-one collec-
tive mode unfortunately means that we will be able to
provide only a rough, order-of-magnitude estimate of the
DM coefficient c.

We first focus on the effective Z—diquark vertex,
�

ai;bjðk; pÞ, with the vector and axial-vector parts defined

by

�

ai;bjðk; pÞ ¼ uV


ai;bjðk; pÞ þ vA

ai;bjðk; pÞ:

For the sake of an analytical estimate of the DM term, we
approximate these vertex functions by their Taylor expan-
sion at zero external momentum, working again in the
high-density approximation near the Fermi surface [47].
For the vector part of the vertex we thus get

V


ai;bjð0; 0Þ ¼

2


3�2
�
0�ab�ij log

2�Fe
	�1

�Tc

;

where �F is an ultraviolet cutoff on the quark momentum;
we will choose it at the order of the Fermi momentum. On
the contrary, the axial part of the vertex is finite; it yields
the expected parity-violating structure and its Taylor series
starts at the first order. Given the g

 structure of the

Z-boson propagator, we just need to evaluate the axial
vertex for 
 ¼ 0,

A0
ai;bjðk; pÞ ¼

7i�ð3Þ
pF

48�4T2
c

�ab�0ijkðkþ 2pÞk:

The DM term is produced by the diagram in Fig. 6 where
one of the effective vertices is vectorlike and the other one
axiallike. Neglecting the momentum-dependent part of the
Z-boson propagator gives

1

M2
Z

ZX
k
Gck;dlðkÞg

½A


ai;ckðk� p; pÞV

dl;bjð�kþ p; kÞ

þ V

ai;ckðk� p; pÞA


dl;bjð�kþ p; kÞ�;
where we used the shorthand notation for a sum-integral,

ZX
k
¼ T

X
n

Z d3k

ð2�Þ3 ;

and Gai;bj denotes the collective mode propagator. In the

normal phase, it is diagonal in the internal space,
Gai;bjðkÞ � �ab�ijGðkÞ. A comparison with the DM term

in Eq. (16) then results in an expression for the coefficient
c,

c ¼ 7uv�ð3Þ
2pF

36�6T2
cM

2
Z

�
log

2�Fe
	�1

�Tc

�ZX
k
GðkÞ:

The last sum-integral is apparently quadratically diver-
gent. Part of the divergence comes from the fact that we
approximated the effective vertices in Fig. 6 with their low-
momentum limits. We therefore make a rough estimate by
replacing the Matsubara sums with a frequency integral
and putting an ultraviolet cutoff, �B, on the frequency—
momentum integration. Taking into account the appropri-
ate volume measure and the fact that the coefficient of the
leading, Oðp2Þ, in the inverse propagator of the collective
mode is typically of order 10�1 in the ultrarelativistic limit
[48], we find

c ¼ 7uv�ð3Þ
2pF

36�6T2
cM

2
Z

�; � 
 10�1�2
B log

2�Fe
	�1

�Tc

:

(28)

The cutoff�B should be well above the characteristic scale
of the pair fluctuations in order not to suppress any physical
contribution to the integral; for the moment, we treat is as a
free parameter.

VI. PHENOMENOLOGICAL IMPLICATIONS

With all coefficients of the GL functional we can now
readily determine the parameters of the ground state. In
order to be able to evaluate the condensation energy, we
naively extrapolate the GL theory to zero temperature. For
a concrete calculation we consider the CSL structure with
�d ¼ d1 þ d2þd3

3 , in the ultrarelativistic limit where pF ¼

; the orders of magnitude will nevertheless be the same
for all phases.
First of all, the wave number of the helix in the ground

state is given by

kDM ¼ c

2a1
¼ 5uv
�

3�2M2
Z

:

To appreciate the robustness of the helical ordering, we
next compare the condensation energies of the uniform
condensation and of the helical ordering itself. The first
reads

F � ¼ � 1

2
b0

ffiffiffiffiffiffi
A

p
¼ � b20

4 �d
¼ � 4
2T2

c

7�ð3Þ ;

where b0 � b=t, while the latter is

F DM ¼ � c2

4a1

ffiffiffiffiffiffi
A

p
¼ � 5
4

9�6

�
uv�

M2
Z

�
2
:

[For simplicity, we use the lower bound from Eq. (18)
which is not really saturated for the CSL state. However,
this only changes the result by a factor of order one.]
Apparently, the energy gain from the formation of the
helical structure can be many orders of magnitude smaller
than the condensation energy of the superconducting state.

FIG. 6. Pairing field self-energy with Z-boson insertion. The
hatched circles denote the effective Z—diquark vertex defined
by Fig. 5.
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It is therefore natural to ask whether the long-range helical
ordering will not be destroyed by thermal fluctuations of
the order parameter.

At low temperatures these will be dominated by the
Nambu–Goldstone boson(s) of the spontaneously broken
symmetry. The energy density deposited in the thermal
fluctuations will therefore be that of the phonon gas with

the phase velocity vph ¼ 1=
ffiffiffi
3

p
(in the ultrarelativistic BCS

limit), i.e., 3�2T4=90v3
ph. The helical ordering will be

destroyed when this becomes comparable to the condensa-
tion energy,F DM. This leads to the characteristic tempera-
ture

TDM � 


�2

�
uv�

M2
Z

�
1=2

:

[We dropped the unimportant numerical prefactor

ð50=9 ffiffiffi
3

p Þ1=4 which is close to 1.]
For temperatures in the range TDM & T & Tc, the sys-

tem will look just like the uniform spin-one color super-
conductor. Only at temperatures lower than TDM the helical
ordering will appear. This change of behavior will, of
course, not be associated with any phase transition.

In order to assess the importance of the DM effect, we
now make a specific numerical order-of-magnitude esti-
mate. To that end, we need to know that the electroweak
couplings are such that uv� 10�2, the Z-boson mass is of
order MZ � 100 GeV. We also choose the typical value of
the chemical potential to be 
 ¼ 400 MeV and set the
fermionic cutoff equally, �F ¼ 
. There is some contro-
versy in literature regarding the size of the critical tem-
perature, or gap, in spin-one color superconductors. Let us
be rather optimistic and assume that Tc � 100 keV [28].
Using Eq. (28) we thus get

kDM
MeV

� 10�10

�
�B

MeV

�
2
; TDM � 10�4�B:

The choice of the bosonic-cutoff �B is obviously cru-
cial. Our rough guess is slightly above the critical tem-
perature itself, �B � 1 MeV. For this value the
temperature scale at which the helical ordering takes place
becomes 0.1 keV, and the helix wavelength is truly macro-
scopic—about a millimeter. The temperature scale sug-
gests that the phenomenon could take place in extremely
cold quark matter only (6 orders of magnitude below the
Fermi temperature) such as in very old neutron stars.

In any case, however, the helical ordering in the ground
state results in peculiar low-energy properties of the sys-
tem. As already remarked above, this nonuniform ordering
breaks both translational and rotational invariance, leaving
unbroken just their special combination. The system will
therefore exhibit anisotropic behavior. In helical ferromag-
nets, the Nambu–Goldstone boson associated with the
broken symmetry acts as a magnon when it propagates
transversely to the helix axis, and as a phonon when it
propagates along [6]. The case of spin-one color super-

conductors will be similar, in particular, we expect that the
Nambu–Goldstone mode will have different phase veloc-
ities in the transverse and longitudinal directions. This will
in turn affect the thermodynamic properties of the system
at very low temperatures.

VII. SUMMARYAND DISCUSSION

In this paper we have revised in detail the structure of the
ground state of spin-one color superconductors, composed
of a single quark flavor. In Sec. II we provided a complete
classification of possible ground states distinguished by the
unbroken continuous symmetry, assuming a local constant
order parameter. In Sec. III we worked out the Ginzburg–
Landau description of the spin-one color superconductor
near the critical temperature. We wrote down the most
general GL free energy up to fourth power in the order
parameter and determined its unique global minimum. We
thus revealed that the noninert " state is favored in part of
the parameter space.
In Secs. IVand V we then argued that the ground state of

a spin-one color superconductor will actually be nonuni-
form as a result of a tiny parity-violating effect which is
due to the electroweak physics. Within the GL analysis,
this effect is easily taken into account by adding a new term
to the free energy. In analogy with some ferromagnetic
materials, the ground state is found to exhibit helical order-
ing, typically with a wavelength much longer than the
characteristic scale of the underlying many-fermion sys-
tem. This leads, in particular, to an anisotropic behavior of
the system at low temperatures where the helical ordering
sets.
In the course of our analysis, we made a number of

simplifying assumptions that we wish to discuss to some
extent now. First, we assumed that the local structure of the
Cooper pair and hence also the classification of Sec. II does
not change when the DM term is switched on. This is
plausible when the wavelength of the helix is long enough,
in particular, much longer than the Cooper pair size, so that
the spatial modulation of the condensate can be treated as a
perturbation. In the realization of the phenomenon consid-
ered in this paper, this is guaranteed by the huge ratio of the
electroweak vector boson mass to the pairing scale.
Second, while we considered just a positive-parity spin-

one condensate, electroweak interactions also induce a
small admixture of a negative-parity condensate which
makes the GL analysis more involved [10]. This conden-
sate does not interfere with the DM mechanism to the first
order in the electroweak effects, and we therefore neglect it
here. Moreover, while this condensate would be extremely
difficult to detect, the helical ordering of the ground state
provides a macroscopic realization of parity violation.
Third, there are other sources of parity violation than

direct weak-interaction effects. For instance, condensation
of pseudoscalar mesons due to finite chemical potential
also breaks parity [49]. However, this is most likely to
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happen only in the color-flavor-locked phase where all
quarks are paired, and hence it is not relevant for spin-
one color superconductivity.

Fourth, the fact that the condensate is spatially nonuni-
form means that the quarks pair with a small, yet nonzero
total momentum. In this sense, the helical state is analo-
gous to the Larkin–Ovchinnikov–Fulde–Ferrell state con-
sidered in crystalline color superconductors [50,51].
Different is, of course, the mechanism of the inhomoge-
neous pairing: In crystalline color superconductors, it is
driven by a mismatch of the Fermi surfaces of the quarks to
be paired, whereas in the present case the Fermi momenta
are exactly equal. The nonzero momentum of the pair is
induced by the DM term. The important difference be-
tween the various phases considered here is that unlike
the real axial, planar, and polar states, the single plane
wave-states A and " carry nonzero (charge as well as color)
current. While in crystalline superconductors this is bal-
anced by a backflow of the unpaired fermions so that the
total net current in the ground state is zero [50], the same
issue in the A and " helical phases yet remains to be
clarified.

We observe that the axial and planar states which in a
sense interpolate between the CSL and polar phases, show
up as physical ground states in the phase diagram. This
suggests that they should be seriously taken into consid-
eration even in the absence of the DM term. In particular, in
Ref. [29] the effect of color neutrality on spin-one color
superconductivity as a complement to the primary 2SC
pairing was studied. It was shown that the polar phase
may be energetically preferred. Our results open the pos-
sibility of an even more favorable state of the axial type,
which can compensate the color imbalance of the 2SC
pairing and yet gain energy from condensation of all three
anticolors.

Finally, we emphasize that the helical ordering by the
DM interaction is a fairly general phenomenon; the only
two prerequisites are a vector order parameter and broken
parity. There are several issues that deserve further inves-
tigation. Besides the stress on the spin-one color super-
conductivity which stems from the pairing of the other
quark flavors, we would like to point out, in particular,
the peculiar properties of collective excitations. They will
be anisotropic even in the CSL-like axial state and may
thus in principle provide a clear manifestation of the non-
uniform nature of the ground state. We are going to study
these issues in our future work.
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and to Jiřı́ Hošek, for urging me to look for weak-
interaction effects in color superconductors. I am indebted
to A. Schmitt for sharing with me his insight in spin-one

color superconductivity and for numerous improving re-
marks and suggestions. I have also benefited from fruitful
discussions with H. Abuki, J. Hošek, D.H. Rischke, and Q.
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APPENDIX A: ORDER PARAMETER

In this appendix we prove Theorems 1 and 2. The basic
ingredient will be the polar decomposition, well-known
from linear algebra.
Theorem 7 (Polar decomposition) Let M be a square

complex matrix. There is a unitary matrixU and a positive-
semidefinite Hermitian matrix H such that

M ¼ UH: (A1)

The matrixH is unique, while the matrixU is unique if and
only if M is nonsingular.
We will not prove this statement here but just remark

that whenM is singular, the matrixU is determined up to a
unitary transformation acting on the eigenvectors of M
with zero eigenvalue.

1. Proof of Theorem 1

Thanks to the polar decomposition (A1), we can always
make the order parameter � Hermitian and positive-
semidefinite by a suitable left unitary transformation. We
thus have � ¼ Sþ iA, where S (A) is a real (anti)sym-
metric matrix. As the next and last step we note that a
diagonal orthogonal rotation (2) preserves (anti)symmetry,
and thus transforms the matrices S, A separately. The real
symmetric matrix S can always be diagonalized by such a
transformation, which brings the order parameter to the
form (3).

2. Proof of Theorem 2

The diagonal orthogonal transformation (2) preserves
Hermiticity and the spectrum, hence Eq. (4) says U�0 ¼
�, where �0 ¼ RT�R and both � and �0 are Hermitian
and positive-semidefinite. However, Theorem 7 asserts that
the Hermitian part of the polar decomposition is unique.
Therefore, we necessarily find � ¼ �0 ¼ RT�R and
U�0 ¼ �, as was to be proved.

APPENDIX B: INEQUALITIES BETWEEN
QUARTIC INVARIANTS

In this appendix we prove Theorems 3, 4, 5, and 6.
Several proofs will be based on the well-known Cauchy
inequality which asserts that for any two complex vectors
u, v, we have
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��������X
i

u�i vi

��������2�
�X

i

juij2
��X

i

jvij2
�
: (B1)

The inequality in Eq. (B1) is saturated if and only if the
vectors u, v are collinear.

1. Proof of Theorem 3

Let us denote the (real and positive) eigenvalues of��y
as �2

i . Then A ¼ ðPi�
2
i Þ2 and B ¼ P

i�
4
i . The second

inequality in Eq. (6) as well as the condition for its satu-
ration follow immediately. For the first inequality, set ui ¼
�2
i and vi ¼ 1. The Cauchy inequality (B1) then gives

A � 3B, as was to be proved. This inequality is saturated
when all the eigenvalues �2

i are equal, that is, ��y is
proportional to the unit matrix. The order parameter � is
then unitary up to a real scale factor and can be brought to
the CSL form by a left unitary transformation.

2. Proof of Theorem 4

Using the complex-vector notation, C ¼ j ~�a � ~�bj2 so
that we obviously have C � 0 with the equality when all

scalar products ~�a � ~�b are zero. Writing ~�a in terms of its

real and imaginary parts, this first of all requires jRe ~�aj ¼
jIm ~�aj and Re ~�a ? Im ~�a for all rows ~�a of the matrix�.

One of the vectors, say ~�1, can then be cast into a special
form by a right orthogonal rotation, so that the order
parameter becomes

� ¼
z1 iz1 0
z2 z3 z4
z5 z6 z7

0
@

1
A:

Let us assume that z1 � 0 (if not, we go on processing the

second row in the same manner). The orthogonality, ~�1 �
~�2 ¼ 0, then implies z2 þ iz3 ¼ 0, and from ~�2 � ~�2 ¼ 0,

z4 ¼ 0 follows. The vectors ~�1 and ~�2 are therefore col-

linear so that ~�1 can be made zero by a suitable left unitary
transformation. Proceeding in the same manner, we next

nullify ~�2 and end up with just the third row of �, being
proportional to ð1; i; 0Þ. This is equivalent to the A-phase
order parameter.

For the second inequality in Eq. (7), recall that
Hermitian matrices span a real vector space with a scalar
product defined as ðA; BÞ ¼ TrðABÞ. If we set Z ¼ �y�,
we haveB ¼ TrðZZÞ ¼ kZk2 and C ¼ TrðZ�ZÞ ¼ ðZ�; ZÞ.
Therefore, we get

0 � kZ� Z�k2 ¼ kZk2 þ kZ�k2 � 2ðZ; Z�Þ ¼ 2ðB� CÞ:
We thus prove C � B with the equality if and only if Z ¼
Z�. This translates into the requirement that ��

ai�aj is real,

i.e., all scalar products of columns of � must be real.
However, the order parameter may always be transformed
by a left unitary matrix to the form

� ¼
a1 z1 z2
0 a2 z3
0 0 a3

0
@

1
A;

with real ai and complex zi. Applying step by step the
above reality requirement we find that the whole matrix
actually has to be real.

3. Proof of Theorem 5

As already mentioned in Appendix B 2, we can define a
scalar product of two Hermitian matrices by the trace of
their matrix product. We now introduce some further no-
tation. We first define an orthonormal basis, Ta, a ¼
0; . . . ; 8, so that ðTa; TbÞ ¼ �ab. These matrices are simply

defined as T0 ¼ 1=
ffiffiffi
3

p
and Ta ¼ �a=

ffiffiffi
2

p
, a ¼ 1; . . . ; 8, in

terms of the standard Gell-Mann matrices. Expanding a
given Hermitian matrix in this basis, e.g. A ¼ aaTa, the
scalar product becomes ðA; BÞ ¼ aaba.
As above we denote Z ¼ �y�. Recalling that the basis

matrices T2, T5, T7 are imaginary while all others are real,
we can see that the complex conjugation in Z� just changes
the sign of the coordinates z2, z5, z7. Introducing finally the
shorthand notation,

u2 ¼ z20; w2 ¼ z22 þ z25 þ z27;

v2 ¼ z21 þ z23 þ z24 þ z26 þ z28;
(B2)

we obtain the expressions for the three invariants,

A ¼ ðTrZÞ2 ¼ ðZ;1Þ2 ¼ 3u2;

B ¼ ðZ; ZÞ ¼ u2 þ v2 þ w2;

C ¼ ðZ�; ZÞ ¼ u2 þ v2 � w2:

This implies Bþ C ¼ 2ðu2 þ v2Þ, whence we immedi-
ately get the desired inequality (8). It will be saturated if
and only if v ¼ 0, i.e., if the real part of Z � �y� will be
proportional to the unit matrix. After substitution for the
order parameter from (3), it is straightforward to show that
this is equivalent to the condition stated in Theorem 5.

4. Proof of Theorem 6

This inequality is most tricky because it does not hold
for all matrices � but just for those satisfying C � 1

9A.

We will need another auxiliary claim.
Theorem 8 Every Hermitian positive-semidefinite ma-

trix Z satisfies the following inequality,

v � w
ffiffiffi
3

p � u
ffiffiffi
2

p
; (B3)

where the non-negative quantities u, v, w are defined by
Eq. (B2). The inequality is saturated if and only if Z is of
the " type.
Proof.—By a suitable diagonal orthogonal rotation, Z !

RTZR, we can always make the coordinates z5 and z7
vanish so that z2 ¼ 	w. Let us without lack of generality
assume that z2 ¼ w. Pick up a test vector as the eigenvector
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of �2 with the eigenvalue �1, jti ¼ 1ffiffi
2

p ð1;�i; 0ÞT . The
expectation value of Z is

htjZjti ¼ uffiffiffi
3

p þ z8ffiffiffi
6

p � wffiffiffi
2

p :

Positive-semidefiniteness requires that this be non-
negative, which leads to

w
ffiffiffi
3

p � z8 þ u
ffiffiffi
2

p � vþ u
ffiffiffi
2

p
:

The inequality (B3) is thus proved. In order for it to be
saturated, we must have v ¼ z8, i.e., z1 ¼ z3 ¼ z4 ¼ z6 ¼
0, and z8 ¼ w

ffiffiffi
3

p � u
ffiffiffi
2

p
. The matrix Z then reads Z ¼

uffiffi
3

p 1þ wffiffi
2

p �2 þ 1ffiffi
2

p ðw ffiffiffi
3

p � u
ffiffiffi
2

p Þ�8, which has the " form

with �1 ¼ w=
ffiffiffi
2

p
and �2 ¼ u

ffiffiffi
3

p � w
ffiffiffi
2

p
.

We now get to the proof of Theorem 6. For C � 1
9A we

find using Theorem 5,

B � C � 2

3
A� 2C � 2

3
A� 2

9
A ¼ 4

9
A;

whence 2ffiffi
3

p u ¼ 2
3

ffiffiffiffiffiffi
A

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B� C

p ¼ w
ffiffiffi
2

p
. This means that

the right-hand side of the inequality (B3) is non-negative,
and the inequality can be equivalently squared. This yields

v2 � ðw ffiffiffi
3

p � u
ffiffiffi
2

p Þ2 ¼ 3w2 � 2
ffiffiffi
6

p
uwþ 2u2;

C ¼ u2 þ v2 � w2 � 2w2 � 2
ffiffiffi
6

p
uwþ 3u2

¼ ðw ffiffiffi
2

p � u
ffiffiffi
3

p Þ2;ffiffiffi
C

p � u
ffiffiffi
3

p � w
ffiffiffi
2

p ¼
ffiffiffiffiffiffi
A

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B� C
p

:

The saturation condition is the same as that for the inequal-
ity (B3). Since the order parameter � is Hermitian and
positive-semidefinite without lack of generality, it is given
by the unique square root of Z ¼ �y�. It is therefore
"-like if and only if Z is "-like.

APPENDIX C: GL FREE ENERGY FROM NJL
MODEL

In the NJL model, the mean-field free energy of a
superconductor is determined by the quasifermionic exci-
tations above the Fermi sea, and is given in terms of the
fermion propagator (25) as

F ¼ � T

2�
Tr logD�1:

Here the trace is taken in the functional sense and the factor
1
2 comes from doubling of the number of degrees of free-

dom in the Nambu formalism. The condensate contribu-
tion, quadratic in the order parameter, is not included here
for it essentially only serves to adjust the GL coefficient b
to zero at the critical temperature. Writing the inverse
propagator as usual as D�1 ¼ D�1

0 þ �, where the self-

energy � is off diagonal in the Nambu space and contains
the pairing field, expanding in powers of the order parame-

ter up to fourth order, and subtracting the free energy of the
normal phase, the GL functional becomes

F ¼ T

2�

�
1

2
TrðD0�Þ2 þ 1

4
TrðD0�Þ4

�
:

The traces here lead to momentum integrals which are
evaluated in the high-density approximation [47]: The
integral over the momentum magnitude, jkj, is replaced
with one over the energy measured with respect to the
Fermi sea, �k, multiplied by the density of states at the
Fermi surface, N ¼ 
pF

2�2 .

Assuming for a moment the generic form of the gap
matrix, �ðxÞ ¼ �aðxÞTa, where Ta is a set of momentum-
independent matrices in the Dirac and fermion-species
(flavor) space, the individual terms (referred to as the
‘‘gradient’’, ‘‘mass’’, and ‘‘quartic’’ terms with obvious
meaning) in the GL free energy density become

gradient term ¼ 7�ð3Þp2
F

32�2
2T2
c

N
X
q

q2’�
a;q’b;�q

� hðp̂ � q̂Þ2 Trð�þ
p T

y
a���pTbÞip;

mass term ¼ 1

2
N t��

a�bhTrð�þ
p T

y
a���pTbÞip;

quartic term ¼ 7�ð3Þ
32�2T2

c

N��
a�b�

�
c�d

� hTrð�þ
p T

y
a���pTb�

þ
p T

y
c���pTdÞip:

In all the expressions, angular brackets denote averaging
over directions of the indicated momentum, and the hats
unit vectors. Also, ’a;q are the Fourier components of the

order parameter, defined as in Eq. (17), and the traces are
now taken in the Dirac and flavor space. The above ex-
pressions are valid for zero as well as finite fermion mass
and it is understood that in the projectors �		p the energy

�p and momentum p are replaced with their values on the

Fermi level, i.e., 
 and pFp̂.
One can readily check the validity of the general result

above on a particularly simple example, namely, the (rela-
tivistic) BCS superconductor. Here we have just a single
order parameter, �, and the corresponding matrix T ¼ 	5,
which ensures positive-parity pairing. All the Dirac traces
are then equal to two and the only nontrivial angular
average is hðp̂ � q̂Þ2ip ¼ 1

3 , so that we recover the well-

known GL functional of the BCS theory [10],

F BCS ¼ 7�ð3Þp3
F

96�4
T2
c

j ~r�j2 þ
pF

2�2
tj�j2

þ 7�ð3Þ
pF

32�4T2
c

j�j4:

1. GL functional for spin-one color superconductors

The calculation of the GL coefficients may be pushed
forward by making a particular assumption on the structure
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of the gap matrix. It is instructive to divide the calculation
in two steps and assume first the spin-one pairing structure
� ¼ �aiQa	i, where theQa’s are yet unspecified matrices
in the flavor space, normalized for the sake of convenience

by TrFðQaQ
y
b Þ ¼ �ab. The bilinear terms in the GL free

energy are then straightforward to evaluate using the ex-
plicit form of the energy projectors,

½��: gradient term ¼ 7�ð3Þp3
F

96�4
T2
c

��
1� p2

F

5
2

�
jr ~

i�aj2

� 2p2
F

5
2
j ~r � ~�aj2

�
; (C1)

½��: mass term ¼ 
pF

2�2

�
1� p2

F

3
2

�
tj ~�aj2: (C2)

To calculate the Dirac trace in the quartic term, we resort
to the ultrarelativistic limit. In this case, the energy pro-
jectors reduce the spatial 	-matrices to their transverse
parts,

	?i ¼ P ij	j; P ij ¼ �ij � p̂ip̂j;

and the Dirac trace simplifies to

1

2
TrDð	?i	?j	?k	?lÞ ¼ 2ðP ijP kl � P ikP jl þ P ilP jkÞ:

Using the identity

hP ijP klip ¼ 1

15
ð6�ij�kl þ �ik�jl þ �il�jkÞ;

we finally get

½��: quartic term¼7�ð3Þ
pF

240�4T2
c

ð3�ij�kl�2�ik�jlþ3�il�jkÞ

���
ai�bj�

�
ck�dlTrFðQy

aQbQ
y
cQdÞ:

(C3)

Equations (C1)–(C3) summarize the general Ginzburg–
Landau functional for a pairing with the Dirac structure
	i. In particular for the spin-one pairing considered in this
paper, the gap matrix has the form (26). The flavor trace is

then TrFðQy
aQbQ

y
cQdÞ ¼ 1

4 ð�ab�cd þ �ad�bcÞ. Putting all

the pieces together, we arrive at the expression for the free
energy in Eq. (27).

While the transverse pairing can be achieved with the
Dirac structure 	i, setting � ¼ �aiQa	0	i leads (in the
ultrarelativistic limit) to a purely longitudinal pairing. In
this case, the Dirac traces become trivial and we just quote

the final result,

½	0��: gradient term ¼ 7�ð3Þp3
F

96�4
T2
c

��
1� 4p2

F

5
2

�
jri

~�aj2

þ 2p2
F

5
2
j ~r � ~�aj2

�
; (C4)

½	0��: mass term ¼ 
pF

2�2

�
1� 2p2

F

3
2

�
tj ~�aj2: (C5)

½	0��: quartic term¼ 7�ð3Þ
pF

480�4T2
c

ð�ij�kl þ�ik�jl þ�il�jkÞ

���
ai�bj�

�
ck�dlTrFðQy

aQbQ
y
cQdÞ:
(C6)

As in the previous case, Eqs. (C4) and (C5) are valid for
arbitrary fermion mass, while the quartic term (C6) was for
simplicity derived in the ultrarelativistic limit.
In the end we would like to remark that a simple special

case of our GL functional for spin-one color superconduc-
tors is the pairing of quarks of a single color and two
flavors in the antisymmetric flavor-singlet channel, studied
by Buballa et al. [14]. In this case, the flavor matrix is given

by Q ¼ 1ffiffi
2

p �2 � P ðcÞ
3 , where �2 is the Pauli matrix in flavor

space and P ðcÞ
3 the projector on the third quark color. The

order parameter is a complex vector, ~�, and one immedi-
ately finds, in the ultrarelativistic limit,

F � ¼ 7�ð3Þp3
F

240�4
T2
c

½2jri
~�j2 � j ~r � ~�j2� þ
pF

3�2
tj ~�j2

þ 7�ð3Þ
pF

240�4T2
c

½3ð ~�y � ~�Þ2 � j ~� � ~�j2�;

F 	0� ¼ 7�ð3Þp3
F

480�4
T2
c

½jri
~�j2 þ 2j ~r � ~�j2� þ
pF

6�2
tj ~�j2

þ 7�ð3Þ
pF

960�4T2
c

½2ð ~�y � ~�Þ2 þ j ~� � ~�j2�:

It is amusing to observe that the transverse and longitudinal

cases differ in the sign of the j ~� � ~�j2 term, which results in
qualitatively different forms of the ground state. In the �

case the negative sign leads to a polarlike state, ~��
ð0; 0; 1ÞT . On the other hand, the positive sign in the 	0�
case (actually considered in [14]) leads to an A-like state,
~�� ð1; i; 0ÞT , with peculiar properties such as the exis-
tence of a single Nambu–Goldstone boson with a quadratic
dispersion relation—the spin wave [14,36].
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