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We study the dynamics of quantum entanglement between two Unruh-DeWitt detectors, one stationary

(Alice), and another uniformly accelerating (Rob), with no direct interaction but coupled to a common

quantum field in ð3þ 1ÞD Minkowski space. We find that for all cases studied the initial entanglement

between the detectors disappears in a finite time (‘‘sudden death’’). After the moment of total disen-

tanglement the correlations between the two detectors remain nonzero until late times. The relation

between the disentanglement time and Rob’s proper acceleration is observer dependent. The larger the

acceleration is, the longer the disentanglement time in Alice’s coordinate, but the shorter in Rob’s

coordinate.
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I. INTRODUCTION

A causally disconnected (spacelike separated) pair of
qubits or atoms on the same time slice can be quantum
correlated and entangled. This evokes the notion of ‘‘non-
locality’’ as an innate feature of quantum entanglement, the
precise meaning of which is a topic of sustained interest
and some controversy. When one examines the quantum
entanglement across the event horizon of a black hole, the
notion of nonlocality acquires an additional layer of mean-
ing, pertaining not only to quantum correlations in ordinary
(Minkowski) spacetime but also to some nontrivial (global)
spacetime structure.

When the atoms are coupled with quantum fields, the
situation becomes more interesting. Interaction with the
quantum fields will induce decoherence of the atoms and
affect the entanglement between them. It is known that the
behavior of quantum entanglement is in general very dif-
ferent from decoherence. For the dynamics of quantum
entanglement between two qubits different environmental
settings could lead to very different results. (Compare, e.g,
[1–3]). Here we add in another dimension of consideration,
that arising from nontrivial global structure of spacetime
such as the existence of an event horizon, as in the space-
time of a black hole (Schwarzschild) or a uniformly accel-
erated detector (UAD). Specifically, how quantum
entanglement between two detectors across the event hori-

zon, one stationary and another uniformly accelerating,
would evolve in time and how causality effects including
that of retarded mutual influences would play out in these
processes. This is an important ingredient for the establish-
ment of relativistic quantum information theory.
Alsing and Milburn [4] considered the quantum entan-

glement between two detectors (a quantum object with
internal degrees of freedom), one is inertial (Alice) and
the other is in relativistic motion (Bob, but when in uni-
form acceleration, they call it Rob). Using the fidelity of
the teleportation as a measure of entanglement, they
claimed that the entanglement is degraded in noninertial
frames due to the Unruh effect [5]. In their treatment, both
detectors are made of cavities, and the qubits are con-
structed by using ‘‘single particle excitations of the
Minkowski vacuum states in each of the cavities’’ of a
scalar field. However, as is pointed out by Schützhold and
Unruh [6], the introduction of cavities alters the boundary
conditions in the derivations of the Unruh effect [5,7,8],
and the evolution of the field modes depends on the way the
cavity is accelerated. Furthermore, if Rob’s cavity is sta-
tionary in its local frame, then there is no particle creation
inside, otherwise one has to take into account the dynami-
cal Casimir effect [6].
Without the trouble associated with the cavity, Fuentes-

Schuller and Mann [9] consider free field modes in
Minkowski space and assume the inertial Alice and the
accelerated Rob are observers sensitive to different single
modes. Suppose the quantum field is in a maximally en-
tangled state of these two modes and the uniformly accel-
erated Rob is always in the right Rindler wedge, then from
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the negativity of the observed reduced density matrix
(which is obtained by integrating out the mode in the left
Rindler wedge originally sensitive to Rob at rest but un-
detectable when Rob is accelerated), Fuentes-Schuller and
Mann claimed that the field state is always entangled if
Rob’s acceleration is finite, and because of the Unruh
effect, the larger Rob’s acceleration, the smaller the entan-
glement between the two modes. Note that the entangle-
ment here is not between qubits or anything localized in
Alice or Rob’s hands; It is the entanglement between the
two modes spread in the whole Minkowski space and
observed locally by Alice and Rob without considering
the back-reaction of the field on the detector. Note also that
both the fidelity in [4] and the negativity in [9] are inde-
pendent of time. Thus there is no dynamics in these two
earlier results.

A. Main features in this problem

In this paper, we will consider a more realistic model
with two Unruh-DeWitt (UD) detectors (atoms), which are
pointlike objects with internal degrees of freedom de-
scribed by harmonic oscillators, moving in a quantum
field: Alice is at rest and Rob is in uniform acceleration.
These two detectors are set to be entangled initially, while
the initial state of the field is the Minkowski vacuum.

The model has the advantage that it encompasses the
main issues of interest yet is simple enough because of its
linearity to yield analytical solutions over a full parameter
range. For the case of a single uniformly accelerated
detector in a quantum field studied previously [10,11],
exact results are available in closed form. Here we will
apply similar techniques to study how quantum entangle-
ment evolves between two initially entangled UD detectors
interacting through the quantum field.

In our nonperturbative treatment, the field will be evolv-
ing with the detectors as a combined closed system. The
backreactions from Alice’s inertial detector and Rob’s
uniformly accelerated detector on the quantum field are
automatically included in a self-consistent way. Moreover,
our covariant formulation can account for fully relativistic
effects. The following effects or features are included in
our consideration:

(1) Unruh effect. In calculating the two-point functions
of the detectors one can see that the uniformly
accelerated detector (Rob) would experience vac-
uum fluctuations different from those seen by the
inertial detector (Alice). It was shown in [11] that in
the Markovian regime the field state which looks
like the vacuum for the inertial detector behaves like
a thermal state for the uniformly accelerated one.
This is the Unruh effect [5].

(2) Causality and retardation of mutual influences. The
initial information and the response from one detec-
tor to vacuum fluctuations of the field will propagate
outwards and reach the other detector in finite time.

But the influence on the other detector can in turn
propagate back to the original one, which creates
memory effects. These mutual influences should
observe causality, and not propagate faster than the
speed of light. They are contained in the higher
order effects of quantum entanglement which can
be calculated in our formulation.

(3) Observer-dependence. We learnt from the one-
detector case that detectors with large acceleration
have noticeable changes in time only around t ¼ 0
because significant time dilation will be seen by the
field once jtj is large enough [12]. Therefore from
the viewpoint of Alice and the field most of the time
the detector at Rob’s place looks frozen. On the
other hand, in Rob’s coordinate time Alice will
take infinite time to reach the event horizon, and
Alice also looks frozen around Rob’s event horizon.
These may alter the evolution of physical quantities
in their dependence on Rob’s acceleration.

(4) Fiducial time. While there is no simultaneity over
space in our relativistic model, there exists a speci-
fied time slice (Minkowski time t ¼ 0) when we
define the Hamiltonian and an initial state (as a
direct product of a squeezed state of two detectors
and the Minkowski vacuum of the field). At every
moment of time the physical reduced density matrix
(RDM) for the two detectors will be obtained by
integrating out the degrees of freedom of the field on
that same time slice. One has to be cautious about
whether the RDM depends on the time slicing or
not.

B. Key issues of interest

The following key issues are addressed in this work:
(1) Disentanglement, ‘‘sudden death,’’ and entangle-

ment revival. Yu and Eberly [1] discovered that,
unlike the decoherence process, for two initially
entangled qubits each placed in its own reservoir
completely detached from the other, the disentan-
glement time can be finite, namely, quantum entan-
glement between these two qubits can see a sudden
death. Ficek and Tanas [2], as well as Anastopoulos,
Shresta, and Hu [3] studied the problem where the
two qubits interact with a common electromagnetic
field. The former authors, while invoking the Born
and Markov approximations, find the appearance of
dark periods and revivals. The latter authors treat the
non-Markovian behavior without these approxima-
tions and find a different behavior at short distances.
In particular, for weak coupling, they obtain analytic
expressions for the dynamics of entanglement at a
range of spatial separation between the two qubits,
which cannot be obtained when the Born-Markov
approximation is imposed. We wish to investigate in
the particular setup of our model whether and how

SHIH-YUIN LIN, CHUNG-HSIEN CHOU, AND B. L. HU PHYSICAL REVIEW D 78, 125025 (2008)

125025-2



these distinct features of ‘‘death’’ and/or ‘‘revival’’
manifest in the dynamics of entanglement.

(2) Entanglement in different coordinates. Following
the well-known recipe, measures of entanglement
such as logarithm negativity [13] can be calculated
in a new coordinate with a time slicing different
from Minkowski times (e.g., Rindler time). We
will study whether those measures of entanglement
in a new coordinate can be interpreted as the degree
of entanglement in Rob’s clock (Rindler time). If
yes, what is the difference between the entangle-
ment dynamics in different coordinates?

(3) Spatial separation between two detectors.How does
the entanglement vary with the spatial separation d
between the two qubits? In ð3þ 1ÞD (dimension)
the mutual influences on mode functions are pro-
portional to d�1 so it is quite small for large d even if
the coupling is not ultraweak. Still, it is of interest to
see whether the mutual influences suppress or en-
hance quantum entanglement, as compared to those
from local vacuum fluctuations at each detector.

These are some interesting new issues which will be
expounded in our present study.

C. Summary of our findings

The results from our calculations show that the interac-
tion between entangled UD detectors and the field does
induce quantum disentanglement between the two detec-
tors. We found that the disentanglement time is finite in all
cases studied, namely, there is no residual entanglement at
late times for two spatially separated detectors, one sta-
tionary and another uniformly accelerating, in ð3þ 1ÞD
Minkowski space. Around the moment of full disentangle-
ment there may be some short-time revival of entangle-
ment within a few periods of oscillations of the detectors
(equal to the inverse of their natural frequency �). But
there is no entanglement generated at times much longer
than Oð1=�Þ.

In the ultraweak-coupling limit, the leading-order be-
havior of quantum entanglement in Minkowski time is
independent of Rob’s proper acceleration a. When a gets
sufficiently large, the disentanglement time from Alice’s
view would be longer for a larger a. From Rob’s view,
however, the larger a is the shorter the disentanglement
time. Finally, in the strong-coupling regime, the strong
impact of vacuum fluctuations experienced locally by
each detector destroys their entanglement right after the
coupling is switched on.

D. Outline of this paper

This paper is organized as follows. In Sec. II, we de-
scribe the setup of the problem, introduce the model, and
describe the measure of quantum entanglement we use. In
Sec. III, we present our calculations in the Heisenberg
picture of the evolution of the operators and the two-point

functions of the detectors. In Sec. IV, we illustrate the
results in the ultraweak-coupling limit and beyond. In
Sec. V, we present a discussion on a few key issues:
(a) infinite disentanglement time in Markovian limit,
(b) entanglement and correlation, (c) coordinate depen-
dence, (d) detector-detector entanglement vs detector-field
entanglement, (e) the relation between the degree of quan-
tum entanglement and the spatial separation of two detec-
tors, and (f) how generic the features illustrated by our
results are. In Appendix A, we show the analytic form of
the mode functions, while in Appendix B, the result of the
case with two inertial detectors weakly coupled with a
thermal bath is given for comparison.

II. THE MODEL

Consider two Unruh-DeWitt detectors moving in
(3þ 1)-dimensional Minkowski space. The total action is
given by [10]

S ¼ �
Z

d4x
ffiffiffiffiffiffiffi�g

p 1

2
@��@��þ

Z
d�A

1

2
½ð@�AQAÞ2

��2
0Q

2
A� þ

Z
d�B

1

2
½ð@�BQBÞ2 ��2

0Q
2
B�

þ �0

Z
d4x�ðxÞ

�Z
d�AQAð�AÞ�4ðx� � z

�
A ð�AÞÞ

þ
Z

d�BQBð�BÞ�4ðx� � z�B ð�BÞÞ
�
; (1)

where g�� ¼ diagð�1; 1; 1; 1Þ, QA and QB are the internal

degrees of freedom of Alice and Rob, assumed to be two
identical harmonic oscillators with mass m0 ¼ 1, bare
natural frequency �0, and the same local time resolution
(so their cutoffs �0 and �1 in the two-point functions [10]
are the same). �A and �B are proper times for QA and QB,
respectively. The scalar field � is assumed to be massless,
and �0 is the coupling constant. Alice is at rest along the
world line z

�
A ðtÞ ¼ ðt; 1=b; 0; 0Þ (�A ¼ t) and Rob is uni-

formly accelerated along the trajectory z�B ð�Þ ¼ða�1 sinha�; a�1 cosha�; 0; 0Þ (�B ¼ �) with proper accel-
eration a. For simplicity we consider the cases with b > 2a
(see Fig. 1).
Note that our model (1) is different from those for

quantum Brownian motion (QBM) of two harmonic oscil-
lators (2HO) in [14,15] (and in [16] in the rotating-wave
approximation), where the cases considered are analogous
to two Unruh-DeWitt detectors at the same spatial point.
This is why there is no retarded mutual influence between
2HO’s in [14–16]. Also here the spectrum of quantum field
fluctuations felt by Alice and by Rob are different, while
the vacuum fluctuations look the same for the 2HO’s in
[14–16].
Suppose the coupling between the detectors and the field

is turned on at t ¼ � ¼ 0, when the initial state of the
combined system is a direct product of a quantum state
jqA; qBi for Alice and Rob’s detectors QA and QB and the
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Minkowski vacuum j0Mi for the field �, namely,

jc ð0Þi ¼ jqA; qBi � j0Mi: (2)

Here jqA; qBi is taken to be a squeezed Gaussian state with
minimal uncertainty, represented in the Wigner function as

�ðQA; PA;QB; PBÞ ¼ 1

�2
@
2
exp� 1

2

�
�2

@
2
ðQA þQBÞ2

þ 1

	2
ðQA �QBÞ2 þ 	2

@
2
ðPA � PBÞ2

þ 1

�2
ðPA þ PBÞ2

�
; (3)

in whichQA andQB can be entangled by properly choosing
the parameters 	 and �.

Define the two-point correlation matrix V with elements

V��ðt; �Þ ¼ hR�;R�i � 1

2
hðR�R� þR�R�Þi; (4)

where R� ¼ ðQBð�Þ; PBð�Þ; QAðtÞ; PAðtÞÞ, �, � ¼ 1, 2, 3,

4. The partial transpose of V is VPT ¼ �V�, where � ¼
diagð1; 1; 1;�1Þ. Starting with the Gaussian initial state (3)
, the reduced density matrix or Wigner function of the two
detectors is always Gaussian by virtue of the linearity of
our model. Therefore Alice’s detector QA and Rob’s de-
tector QB is entangled on time slice t if and only if [17]

�ðt; � ¼ a�1sinh�1atÞ � det

�
VPT þ i

@

2
M

�
< 0; (5)

where

M �
0 1 0 0
�1 0 0 0
0 0 0 1
0 0 �1 0

0
BBB@

1
CCCA (6)

is a symplectic matrix. We find that when � � 0 the
behavior of � is quite similar to the behavior of the
negative eigenvalues which are connected to the logarithm
negativity [13]. Thus the value of � itself is a good indi-
cator of the degree of entanglement, at least in this specific
model. Since it is relatively easy to obtain the analytic form
of �ðtÞ in the weak-coupling limit, we will calculate �
rather than the logarithm negativity to determine the dis-
entanglement time analytically.
Below we calculate the two-point functions for matrix

V. The uncertainty relation det½V þ i@M=2� � 0 can serve
as a double-check [17].

III. EVOLUTION OF OPERATORS AND
CORRELATORS

A. Evolution of operators

In the Heisenberg picture [10,11], the operators evolve
as

Q̂ið�iÞ ¼
ffiffiffiffiffiffiffiffiffi
@

2�r

s X
j

½qðjÞi ð�iÞâj þ qðjÞ�i ð�iÞâyj � þ
Z d3k

ð2�Þ3

�
ffiffiffiffiffiffiffi
@

2!

s
½qðþÞ

i ð�i;kÞb̂k þ qð�Þ
i ð�i;kÞb̂yk�; (7)

�̂ðxÞ ¼
ffiffiffiffiffiffiffiffiffi
@

2�r

s X
j

½fðjÞðxÞâj þ fðjÞ�ðxÞâyj �

þ
Z d3k

ð2�Þ3
ffiffiffiffiffiffiffi
@

2!

s
½fðþÞðx;kÞb̂k þ fð�Þðx;kÞb̂yk�; (8)

with i, j ¼ A, B, �A ¼ t, �B ¼ �. qðjÞi , qð	Þ
i , fðjÞ and fð	Þ

are the (c-number) mode functions. The conjugate mo-

menta are P̂AðtÞ ¼ @tQ̂AðtÞ, P̂Bð�Þ ¼ @�Q̂Bð�Þ, and

�̂ðxÞ ¼ @t�̂ðxÞ. The Heisenberg equations of motion for
operators imply

ð@2�i þ�2
0ÞqðjÞi ð�iÞ ¼ �0f

ðjÞðz�i ð�iÞÞ; (9)

ð@2t �r2ÞfðjÞðxÞ ¼ �0

�Z 1

0
dtqðjÞA �4ðx� zAðtÞÞ

þ
Z 1

0
d�qðjÞB �4ðx� zBð�ÞÞ

�
; (10)

1/b 1/a 2
x

1

2
t z

z

1

t = const.

τ = const.

t = τ  = 0

Eve
nt

 h
or

izo
n 

fo
r R

ob

t

t

1

2

τ 1

µ

µ

A

B

Alice

Rob

FIG. 1. Alice is at rest along the world line z
�
A ðtÞ ¼ðt; 1=b; 0; 0Þ and Rob is uniformly accelerated along the trajec-

tory z
�
B ð�Þ ¼ ða�1 sinha�; a�1 cosha�; 0; 0Þ, so the null hyper-

surface t ¼ x1 is Rob’s event horizon. The initial state of the
combined system is defined on the hypersurface t ¼ � ¼ 0,
when the coupling between the detectors and the field is turned
on. In this plot we choose b ¼ 2:2 and a ¼ 1 so b > 2a.
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ð@2�i þ�2
0ÞqðþÞ

i ð�i;kÞ ¼ �0f
ðþÞðz�i ð�iÞ;kÞ; (11)

ð@2t �r2ÞfðþÞðx;kÞ ¼ �0

�Z 1

0
dtqðþÞ

A ðt;kÞ�4ðx� zAðtÞÞ

þ
Z 1

0
d�qðþÞ

B ð�;kÞ�4ðx� zBð�ÞÞ
�
;

(12)

which have the same appearance as the corresponding

classical dynamical equations. fðjÞ and fðþÞ look like clas-
sical fields generated by two pointlike sources at zA and zB.

Solving the field equations (10) and (12), one obtains fðjÞ

and fðþÞ related to qðjÞi and qðþÞ
i by the retarded Green’s

functions of the field. Inserting them into the equations of

motion (9) and (11) one obtains the solutions of qðjÞi and

qðþÞ
i . However, the self-field induced by qðjÞi and qðþÞ

i

diverge at the positions of the two detectors, so one has
to introduce cutoffs to handle them. Assuming Alice and
Rob have the same frequency cutoffs in their local frame,
one can do the same renormalization on frequency and
obtain the effective equations of motion under the influ-
ence of field [10]:

ð@2t þ 2
@t þ�2
rÞqðjÞA ðtÞ ¼ �2

0

2�

�½��ðzAðtÞÞ�
aXðzAðtÞÞ

� qðjÞB ð��ðz�A ðtÞÞÞ; (13)

ð@2� þ 2
@� þ�2
rÞqðjÞB ð�Þ ¼ �2

0

4�

�½z0Bð�Þ �RðzBð�ÞÞ�
RðzBð�ÞÞ

� qðjÞA ðz0Bð�Þ �RðzBð�ÞÞÞ; (14)

ð@2t þ 2
@t þ�2
rÞqðþÞ

A ðt;kÞ ¼ �0f
ðþÞ
0 ðzAðtÞ;kÞ

þ �2
0

2�

�½��ðzAðtÞÞ�
aXðzAðtÞÞ

� qðþÞ
B ð��ðz�A ðtÞÞ;kÞ; (15)

ð@2�þ 2
@�þ�2
rÞqðþÞ

B ð�;kÞ ¼ �0f
ðþÞ
0 ðzBð�Þ;kÞ

þ �2
0

4�

�½z0Bð�Þ�RðzBð�ÞÞ�
RðzBð�ÞÞ

�qðþÞ
A ðz0Bð�Þ�RðzBð�ÞÞ;kÞ;

(16)

where �r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 
2

p
is the renormalized frequency,


 � �2
0=8�, and

fðþÞ
0 ðx;kÞ � e�i!tþik
x; (17)

RðxÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � b�1Þ2 þ �2

q
; (18)

XðxÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�UV þ �2 þ a�2Þ2 þ 4a�2UV

q
; (19)

��ðxÞ � � 1

a
ln

a

2jVj
�
X �UV þ �2 þ 1

a2

�
; (20)

with U ¼ t� x1, V ¼ tþ x1,! ¼ jkj, and �2 ¼ x22 þ x23.
Here one can see that qA and qB are causally linked.
The solutions of qA and qB’s satisfying the initial con-

ditions

fðþÞð0;x;kÞ ¼ eik
x; @tf
ðþÞð0;x;kÞ ¼ �i!eik
x;

(21)

qðAÞA ð0Þ ¼ qðBÞB ð0Þ ¼ 1; @tq
ðAÞ
A ð0Þ ¼ @�q

ðBÞ
B ð0Þ ¼ �i�r;

(22)

and fðjÞð0;xÞ¼@tf
ðjÞð0;xÞ¼qðþÞ

j ð0;kÞ¼@�jq
ðþÞ
j ð0;kÞ¼

qðBÞA ð0Þ¼@tq
ðBÞ
A ð0Þ¼qðAÞB ð0Þ¼@�q

ðAÞ
B ð0Þ¼0, are listed in

Appendix A.

B. Two-point functions of detectors

When sandwiched by the initial state (2), the two-point
functions split into

hR�;R�i ¼ hR�;R�iv þ hR�;R�ia; (23)

where

hR�;R�iv ¼ 1

2
h0MjðR�R� þR�R�Þj0Mi

¼ Re
Z @d3k

ð2�Þ32!rðþÞ
� ðt�;kÞrð�Þ

� ðt�;kÞ; (24)

hR�;R�ia ¼ 1

2
hqA; qBjðR�R� þR�R�ÞjqA; qBi

¼ 1

4
f@2��2 ReðrðAÞ� þ rðBÞ� ÞReðrðAÞ� þ rðBÞ� Þ

þ 	2 ReðrðAÞ� � rðBÞ� ÞReðrðAÞ� � rðBÞ� Þ
þ��2

r ½�2 ImðrðAÞ� þ rðBÞ� Þ ImðrðAÞ� þ rðBÞ� Þ
þ @

2	�2 ImðrðAÞ� � rðBÞ� Þ ImðrðAÞ� � rðBÞ� Þ�g;
(25)

where rðjÞ� ¼ ðqðjÞB ; pðjÞ
B ; qðjÞA ; pðjÞ

A Þ and pðjÞ
i ¼ @�iq

ðjÞ
i .

Substituting Eqs. (A1)–(A6), one obtains the above two-
point functions straightforwardly. The only complication is
that the integration over k space in (24) may diverge, so one
has to introduce additional frequency cutoffs correspond-
ing to the time resolution of the detector (�1) and the time
scale of switching on the interaction (�0) [10,11]. After
doing this, one has, for example,

hQ2
Bð�Þiv ¼ hQ2

Bð�Þið0Þv þ �ð�� �1ÞhQ2
Bð�Þið1Þv ; (26)

where �1 � a�1 lnðb=aÞ (see Fig. 1), hQ2
Bið0Þv is the two-
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point function of a single uniformly accelerated detector (expressions of hQ2
Bið0Þv , hP2

Bið0Þv , hQ2
Aið0Þv , and hQ2

Bið0Þv have been
listed in Appendix A of Ref. [11]), while the higher order correction reads

hQ2
Bð�Þið1Þv ¼ 4


�

Z �

�1

d�0
e�rð���0Þ sin�ð�� �0Þ

1
a cosha�0 � 1

b

hQBð�Þ; QAðb�1 � a�1e�a�0 Þið0Þv þ 4
2

�2

Z �

�1

d�0
e�rð���0Þ sin�ð�� �0Þ

1
a cosha�0 � 1

b

�
Z �

�1

d�00
e�rð���00Þ sin�ð�� �00Þ

1
a cosha�00 � 1

b

hQAðb�1 � a�1e�a�0 Þ; QAðb�1 � a�1e�a�00 Þið0Þv : (27)

Calculating the cross correlations hRAðtÞ;RBð�Þið0Þv ðR ¼
P;QÞ is also straightforward, though one has to be careful
about the contours of integration of each term on the
complex plane of � (see [10]). Note that �1 is present
only in hP2

Aiv and hP2
Biv.

IV. DISENTANGLEMENT DYNAMICS

A. Ultraweak-coupling limit

In the ultraweak-coupling limit ð
�1 � a;�Þ, the cor-
rections due to the retarded mutual influences in mode
functions (A1)–(A6) are Oð
Þ and suppressed, while the
cross correlations hRA;RBiv ðR ¼ P;QÞ accounting for
the response to the vacuum fluctuations are negligible. The
two-point functions h::ia behave like (B2)–(B8), and

hQ2
AðtÞiv �

@

2�
ð1� e�2
tÞ; (28)

hQ2
Bð�Þiv �

@

2�
coth

��

a
ð1� e�2
�Þ; (29)

and hP2
j ð�jÞiv � �2hQ2

j ð�jÞiv, j ¼ A, B. It is straightfor-

ward to calculate� and determine the separability of Alice
and Rob by inserting these two-point functions into (5).

1. Evolution of entanglement in Alice’s proper time
(Minkowski time)

At the initial moment t ¼ 0, the initial Gaussian state (3)
has

� � � @
2

16	2�2
ð@2 � 	2�2Þ2: (30)

Thus for all 	2�2 � @
2, two detectors are entangled.

Below we will see that quantum entanglement will, how-
ever, vanish at a finite disentanglement time (sudden
death), which is usually different from the decoherence
time scale 
�1.
For proper acceleration a sufficiently large such that

� ¼ a�1sinh�1at � t for t large enough, one has

e
ðtþ�Þ � e
t and

� � � @
2

16	2�2
ð@2 � 	2�2Þ2e�2
t: (31)

An example is illustrated in Fig. 2. The disentanglement
time of this case looks infinite. However, the correction of
the next order will shift the curve of � upward and make
the disentanglement time finite. When �1 is large, such a
correction is dominated by �1 terms in hP2

j iv:

hP2
Aiv �

@

2
�ð1� e�2
tÞ þ 2

�
@
�1; (32)

hP2
Biv �

@

2
�coth

��

a
ð1� e�2
�Þ þ 2

�
@
�1 (33)

[see Eqs. (A4) and (A10) in Ref. [11]]. For tdE  1, this
correction yields

1 2 3 4 5
γ t

-1.2
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-0.8

-0.6

-0.4

-0.2

Σ

4.2 4.4 4.6 4.8 5
γ t

-0.0002

-0.0001

0.0001

Σ

FIG. 2. (Left) The behavior of � (solid curve) defined in (5) can be approximated by (31) in the ultraweak-coupling limit with a
sufficiently large. Two detectors are separable when � � 0 (shaded zone), otherwise entangled. Here 
 ¼ 10�5, a ¼ 0:1, b ¼ 0:201,
	 ¼ 1:1, � ¼ 4:5,�0 ¼ �1 ¼ 100,� ¼ 2:3, and @ ¼ 1. By comparison the dotted curve is � with all h::iv set to be zero. Both curves
will become positive at late times. (Right) Looking more closely, one finds that two detectors are separable, or totally disentangled,
after 
t � 4:44.
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� � � @
2

16	2�2
ð@2 � 	2�2Þ2e�2
t

þ @
2
�1

16�	2�2
ð@2 � 	2�2Þ2;

(34)

around t � tdE, which gives

tdE � 1

2

ln
��


�1

: (35)

In Fig. 2, one has 
tdE � 4:44.
Note that � is insensitive to a here. This implies that, to

leading order in the ultraweak-coupling approximation,
Unruh effect does little to the disentanglement between
Alice and Rob from the view of Alice.

2. Two inertial detectors in Minkowski vacuum

For a ! 0, cothð��=aÞ ! 1, � ! t, and Rob is also
inertial. Suppose Alice and Rob are separated far enough,
so the mutual influences can be safely ignored again. Then,
in the weak-coupling limit with �  
�1  a ! 0, one
has

� � @
2e�4
t

16	2�2�2
½Z8ðe�4
t � 2e�2
tÞ þ Z4�; (36)

where

Z8 � ð@� 	2�Þ2ð�2 � @�Þ2; (37)

Z4 � @
2ð�4 þ 	4�4 þ 6	2�2�2Þ
� 2@�ð�2 þ 	2�2Þð@2 þ 	2�2Þ: (38)

It is clear that Z8 � 0 and Z8 � Z4 � 0. When Z4 > 0, the
disentanglement time is clearly finite:

tdE � � 1

2

ln

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Z4

Z8

s �
: (39)

Indeed, one has 
tdE � 0:125 in the right plot of Fig. 3.

When Z4 < 0, the disentanglement time looks infinite.
But again, the corrections of the next order yields

� � @
2

16	2�2�2
Z4e

�4
t þ @
3
�1

4�	2�2�2
Z2e

�2
t

þ @
4

�2�2

2�2

1 (40)

around t � tdE  1 for large �1, with

Z2 � 	2ð�2 � @�Þ2 þ �2ð	2�� @Þ2 � 0: (41)

This gives a finite disentanglement time

tdE � 1

2

ln

jZ4j�=ð2@
�1Þ
Z2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2
2 � 4	2�2Z4

q ; (42)

and 
tdE � 3:96 in Fig. 3 (left).
The dotted curves in Figs. 2 (left) and 3 (left and right)

are those�s with vacuum fluctuations of the field switched
off, namely, with hR�;R�iv set to be zero. In Fig. 2 (left)

it seems that vacuum fluctuations would reduce j�j thus
suppressing the entanglement. This is not true. One can
verify that, for sufficiently large t, the dashed curve in
Figs. 2 (left) will overtake the solid curve and then become
positive, just like what Fig. 3 (right) suggests. In the weak-
coupling limit, the vacuum fluctuations of the field that the
detectors see locally do not always suppress (or enhance)
quantum entanglement beyond the disentanglement due to
the dissipation of initial quantum fluctuations of the detec-
tors (corresponding to the exponential decay of h::ia in
time.)

3. Evolution of entanglement in Rob’s proper time
(Rindler time)

The hypersurface with constant Rindler time � extends
to t < 0 region in the left half of the Minkowski space (see
Fig. 1). Suppose, even before the initial time slice with t ¼
0, the field state has been the Minkowski vacuum. Then the

1 2 3 4
γ t

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

Σ

0.5 1 1.5 2
γ t

-0.4
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0.2

0.4

0.6

Σ

FIG. 3. When a ! 0, the behavior of � in the weak-coupling limit can be described by (36). Here ð	;�Þ ¼ ð1:1; 4:5Þ for the left plot
(Z4 < 0) and (1.5, 0.2) for the right plot (Z4 > 0). The solid curves represent � in its totality, while the dotted curves represent � with
all h::iv set to be zero.
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field state in Rindler time slicing is also a Gaussian state
and the quantity �ðt; �Þ, with a similar definition to (5) but
we let t ¼ b�1 tanha� here, can still serve as an measure of
the entanglement between Alice’s and Rob’s detector in
Rob’s frame.

For a sufficiently large, 
t ! 
=b � 1 for large �.
Then

�ðt ¼ b�1 tanha�; �Þ � @
2

64	2�2
ð@2 � 	2�2Þ2

�
�
ð1� e�2
�Þ2coth2 ��

a

� ð1þ e�2
�Þ2
�
; (43)

and the disentanglement time is approximately

�dE � ��


a
; (44)

in Rob’s point of view (see Fig. 4). This result may be
interpreted as presenting a dynamical version of the state-
ment ‘‘quantum entanglement is degraded in noninertial
frames’’ [4,9]. Note that in Rob’s frame Alice will never
cross the event horizon. So the quantum entanglement here
is not the one ‘‘across the event horizon’’.

When a gets smaller, � approaches those described in
the previous subsections. When a ! 0, the value of the
finite disentanglement time recovers the disentanglement
time in the case of two inertial detectors.

B. Beyond the ultraweak-coupling limit

1. High acceleration regime

When the proper acceleration of Rob is very large, Rob
will reach a very high speed in a very short time, when the
time dilation makes Rob appear almost frozen in the view
of Alice, and the disentanglement process becomes slower
than those in the case with Rob’s acceleration smaller. In
other words, in our setup, the larger acceleration Rob has,
the longer the disentanglement time in Alice’s clock (see

Fig. 5), while in Rob’s frame �dE is shorter from (44). The
statement ‘‘a state which is maximally entangled in an
inertial frame becomes less entangled if the observers are
relatively accelerated’’ [9] is too simplistic and could be
misleading here.

2. Strong-coupling regime

When the coupling becomes larger, there will be oscil-
lation emerging on top of the smooth curve of � in the
ultraweak-coupling limit. So around tdE the entanglement
between the detectors of Alice and Rob may disappear and
revive for several times, before they finally become sepa-
rable forever. The duration of such kind of entanglement
revival will not exceed the order of time scale 1=� (see the
upper plot of Fig. 8.)
When the coupling gets even larger, the vacuum fluctu-

ations will exert a strong impact on quantum entanglement.
Usually this shortens the disentanglement time. Indeed, in
Fig. 6 we find that, for 
�1 sufficiently large, the initial
quantum entanglement is annulled right after the coupling
is switched on.
The higher order corrections to � from retarded mutual

influences of two detectors, while their amplitudes decay in
time, are not always positive or negative. Nevertheless, the
memory effect induced by mutual influences contributes

15 30 45
t

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

Σ

FIG. 5. � for Rob in high acceleration (solid curve) with a ¼
10 and b ¼ 21. (a ¼ :01, b ¼ :021 for the gray dashed curve for
comparison.) The large time dilation makes Rob appear almost
frozen in the view of Alice at large t, and the disentanglement
time is longer for larger a. Here 
 ¼ 0:01, �0 ¼ �1 ¼ 50, and
other parameters are the same as those in Fig. 2.
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FIG. 4. The solid curves represent � in its totality in Rob’s point of view. Sudden death of entanglement occurs at 
�dE � 3:61, as
can be seen in the enlargement on the right plot. The dotted curve represents � with all h::iv set to be zero. All parameters are the same
as those in Fig. 2 except 
 ¼ 10�6, a ¼ 2, and b ¼ 4:1.
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little in the cases considered: Although the total corrections
to � from mutual influences become more obvious for a
larger coupling, they are ofOð
2Þ and remain small as seen
in Fig. 6. Results with stronger mutual influences will be
reported in a future work.

V. DISCUSSION

A. Infinite disentanglement time in Markovian limit

A criterion in the Markovian limit on finite disentangle-
ment time has been offered by Yu and Eberly [1]. In some
parameter range (a 2 ð0; 1=3Þ there) the concurrence de-
cays exponentially in time so the disentanglement time
looks infinite. Here we have similar situations in the
ultraweak-coupling limit as discussed in Secs. IVA1 and
IVA2. In particular, the parameter Z4 in (36) plays an
analogous role to a in [1]. While the entanglement gets a
clear sudden death when Z4 > 0, the disentanglement time
looks infinite otherwise. However, in Secs. IVA1 and
IVA2 we showed that the correction from the next order
to the ultraweak-coupling approximation will render the
disentanglement time of the latter case finite. According to
our results, it will be interesting to see whether the infinite
disentanglement time in the Markovian cases that Yu and
Eberly considered would become finite if one considers the
corrections beyond the Markovian approximation.

B. Entanglement and correlation

When cross correlations vanish, two detectors are un-
correlated and the two-point correlation matrix V defined

2 4 6 8 10
t

5

10

15

20

Σ

FIG. 6. � in the strong-coupling regime. The entanglement
between Alice and Rob in their initial state is annulled by the
strong impact of vacuum fluctuations (�> 0) right after the
coupling is switched on. Here 
 ¼ 0:1, �0 ¼ �1 ¼ 50, a ¼ 1,
b ¼ 2:01, and other parameters are the same as those in Fig. 2.
The dotted curve at the bottom are the � with all h::iv turned off.
Numerically we find that the higher order corrections to � from
mutual influences are less than 2%�Oð
2Þ.

γτ

τ

τ
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γ t
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0.9

A

FIG. 7. Purities of Alice (P A) and Rob (P B). (Top) P A and P B in the ultraweak-coupling regime, with the same parameters as those
in Fig. 2. In this regime P A and P B each in its own proper time has virtually the same behavior. (Middle) P A and P B in the strong-
coupling regime, with the same parameters as those in Fig. 6. Again their difference is very tiny. (Bottom) P A and P B in high
acceleration limit, with the same parameters as those for the solid curve in Fig. 5. Now their difference is evident.
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in (4) is block diagonalized so the Wigner function, or the
reduced density matrix, for the detectors can be factorized
into a tensor product of two Wigner functions or reduced
density matrices for each detector. Now two detectors are
simply separable, with a stronger condition than those for
disentangled or separable states.

In our model, the cross correlations hRA;RBi always
vanish as 
t ! 1, while the two-point functions of each
detector remain finite. We found jhRA;RBij � e�t with
 / 
 at sufficiently large t. This implies that there is no
residual entanglement at late times because

�j
t!1¼
�
hQ2

Aið0ÞhP2
Aið0Þ�

@
2

4

��
hQ2

Bið0ÞhP2
Bið0Þ�

@
2

4

���������
t!1
;

(45)

which is a product of the uncertainty relations for each
detector in steady state and is positive definite if the
coupling �0 is nonvanishing. (Note that hQA;PAi � e�
t

and hQB;PBi � exp½�ðaþ 
Þa�1sinh�1at� vanish at late
times; for explicit expressions of other late-time two-point
functions, see Appendix A in Ref. [11].) In Minkowski
time, two detectors become separable after a finite disen-
tanglement time tdE, but not simply separable or uncorre-
lated until 
t ! 1.

C. Time slicing and coordinate dependence

Consider two events, one in Alice’s world line at her
proper time t ¼ �t, the other in Rob’s world line at his
proper time � ¼ ��, defined on the same time slice in
some coordinate. Recall that the physical RDM for the
two detectors are obtained by integrating out the degrees of

freedom of the field defined on the same hypersurface
associated with a certain time slicing. Thus the RDM of
the two detectors at the two events z�A ð�tÞ and z�B ð ��Þ should
always be associated with a specification of a time-slicing
scheme, so should the criterion of separability derived
from the RDM. But there are infinitely many choices of
time slices intersecting Alice and Rob’s world line right at
these two events. Does quantum entanglement of the de-
tectors at z�A ð�tÞ and z�B ð ��Þ depend on different choices of

time slice?
In the cases we considered in this paper, the answer is

no. In our UD detector theory, the coordinate transforma-
tion from Minkowski coordinate to a new coordinate con-
sistent with some other time-slicing scheme such as
Rindler time will not change the quadratic form of the
action (1), so the combined system in the new coordinate
is still linear. If the initial time slice in the new time-slicing
scheme is identical to our t ¼ 0 hypersurface in
Minkowski coordinate, and the combined system is start-
ing with a Gaussian initial state such as (2), the quantum
state of the combined system will remain Gaussian during
the evolution in the new time-slicing scheme. Hence the
RDM of the detectors is still Gaussian and the criterion (5)
can be applied in this new time slicing. The Gaussianity
implies that both the RDM of the detectors and the crite-
rion (5) are fully described by the two-point functions of
the detectors hR�;R�i, which are independent of the

choice of time slice connecting these two events. Thus
the RDM and the separability of the Gaussian state at those
two events are independent of time slicing. We believe that
this is a general feature of quantum entanglement in rela-
tivistic quantum information theory.
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FIG. 8. (Upper) � with initial separation dI � 0:5025 (b ¼ 2:01) for the solid curve and dI ¼ 0:9999 (b ¼ 10000) for the dashed
curve. Alice is located at z1A ¼ 1=b and the initial separation between Alice and Rob at t ¼ 0 is dI ¼ a�1 � b�1. Here a ¼ 1, 
 ¼
0:025,�0 ¼ �1 ¼ 50, and other parameters are the same as those in Fig. 2. One can see that short-time revivals of entanglement occur
during t � 10� 11 and around t ¼ 12. (Lower) The dependence of � on the initial separation is not evident systematically: from left
to right are � at t ¼ 0:5, 2.5, 3.2, respectively.
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Nevertheless, in Secs. IVA1 and IVA3 we learnt that
the entanglement dynamics and the disentanglement
(proper) time are coordinate dependent, because in general
two events simultaneous in one (e.g., Minkowski) coordi-
nate are not simultaneous in another (e.g., Rindler) coor-
dinate, while quantum entanglement is a property of a
quantum state of two events at the same time slice [18].

D. Detector-detector entanglement vs detector-field
entanglement

Quantum coherence in a detector is related to its purity,
which also indicates the degree of quantum entanglement
between that detector and the rest of the combined system
(the field and the other detector) [19]. Since the combined
system is a Gaussian state, the reduced density matrix for
each detector is also Gaussian. So the purities of Alice and
Rob’s detectors are simply [11]

P j ¼ @=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hP2

j ihQ2
j i � hPj;Qji2

q ; (46)

where j ¼ A, B. Obviously the information contained in
the cross correlations hRA;RBi is ignored in every combi-
nation of P j. We illustrate some examples in Fig. 7. One

can see that the evolution of purity in each detector is quite
different from the evolution of entanglement between
them. There is no sudden death of quantum entanglement
between one detector and the rest, and the late-time purity
is always less than one. This is a consequence of the direct
interaction between each detector and the field.

E. Disentanglement time and separation of detectors

Naively one may think that spatially the closer Alice and
Bob are, the larger hRA;RBi, so the disentanglement time
gets shorter. Our results in Fig. 8 show that this is not true.
One can hardly see any simple relation between the initial
separation of the two detectors and the disentanglement
time. The larger the separation, the stronger the entangle-
ment (� more negative) at some moments, but weaker at
others.

We have considered the case with both detectors being at
rest and spatially separated. While the higher order correc-
tions from mutual influences are complicated and quite
hard to handle as t increases, for separation d large enough
that the mutual influences cannot reach in time (namely,
d > ct), we get a similar result that no simple proportion-
ality exists between the separation and the degree of en-
tanglement of the two detectors. As the system evolves,
sometimes the entanglement is stronger for larger separa-
tion, sometimes it is weaker.

F. How generic are the features contained in this
model?

Our results show that the disentanglement time in our
model is finite in all cases considered. But how generic are
these results?

Our model has two UD detectors spatially separated in
ð3þ 1ÞD spacetime, one stationary and another uniformly
accelerating and running away, without any direct interac-
tion with each other. The presence of the event horizon for
Rob has the effect of curtailing the mutual influences
higher than a certain order. When we focus on one single
UD detector, it behaves like the QBM of a harmonic
oscillator interacting with an Ohmic bath provided by the
ð3þ 1ÞD scalar quantum field [20].
If there exists a direct interaction between the two

detectors, there will certainly be residual entanglement
between them at late times, just like the late-time entan-
glement between each detector and the field in our model.
The scalar field in our model is living in a free space.

The presence of boundaries will change the result. The
backreaction started from each detector when reflected by
boundaries will add another memory effect to the dynamics
of entanglement and affect the late-time behavior of de-
tectors. One example is an electromagnetic field in a
perfect cavity. Spacetime dimension also matters.
Different spacetime dimensions or boundaries give differ-
ent spectral density functions of the field experienced by
the detectors [20]. Moreover, in ðnþ 1ÞD, n � 3 the spa-
tial separation d implies a suppression of mutual influences
by a factor 1=dn�2, so the mutual influences would be
negligible in the cases with large spatial separation.
Spatial separation also contributes to the retardation of

mutual influences, and since Alice is at rest and Rob is in
uniform acceleration, one detector’s dynamics is generally
out of phase from the backreaction of the other. If the two
detectors are located very close to each other through the
whole dynamical process, or the two detectors are sepa-
rated at a distance where resonance (d � 2�c=�) is set up,
the features of the disentanglement process can be differ-
ent. For example, residual entanglement at late times under
specific conditions in the 2HO QBM model has been
reported in [15,16]; that model is equivalent to a detector
theory with two UD detectors sitting at the same point in
3D space, when the HO bath is ohmic.
Therefore, we believe that our results in this paper are

generic for two well-separated detectors or atoms without
direct interaction with each other, but coupled to a common
quantum field in ðnþ 1ÞD, ðn � 3ÞMinkowski space with-
out boundary.
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APPENDIX A: EXPRESSIONS FOR MODE
FUNCTIONS

For the cases with b > 2a, one has

qðAÞA ðtÞ ¼ �ðtÞ e
�
t

2
½W�ei�t þWþe�i�t� þ �ðt� t2Þ�4

0

16�2a�2

�
Z t

t2

dt0Kðt� t0Þ
t02 � b�2 þ a�2

Z ��ðt0Þ

�1

d�0K½��ðt0Þ � �0�
a�1 cosha�0 � b�1

� e�
t�ð�0Þ½W�ei�t�ð�0Þ þWþe�i�t�ð�0Þ�; (A1)

qðAÞB ð�Þ ¼ �ð�� �1Þ �2
0

8��

Z �

�1

d�0Kð�� �0Þ
a�1 cosha�0 � b�1

� e�
t�ð�0Þ½W�ei�t�ð�0Þ þWþe�i�t�ð�0Þ�; (A2)

qðBÞA ðtÞ ¼ �ðt� t1Þ �2
0

4�a�

Z t

t1

dt0Kðt� t0Þ
t02 � b�2 þ a�2

� e�
��ðt0Þ½W�ei���ðt0Þ þWþe�i���ðt0Þ�; (A3)

qðBÞB ð�Þ ¼ �ð�Þ e
�
�

2
½W�ei�� þWþe�i���; (A4)

qðþÞ
A ðt;kÞ ¼ �ðtÞ�0

�

Z t

0
dt0Kðt� t0ÞfðþÞ

0 ðzAðt0Þ;kÞ

þ �ðt� t1Þ �3
0

2�a�2

Z t

t1

dt0Kðt� t0Þ
t02 � b�2 þ a�2

�
Z ��ðt0Þ

0
d�0K½��ðt0Þ � �0�fðþÞ

0 ðzBð�0Þ;kÞ

þ �ðt� t2Þ�5
0

8�2a�3

Z t

t2

dt0Kðt� t0Þ
t02 � b�2 þ a�2

�
Z ��ðt0Þ

�1

d�0K½��ðt0Þ � �0�
a�1 cosha�0 � b�1

Z t�ð�0Þ

0
dt00

� K½t�ð�0Þ � t00�fðþÞ
0 ðzAðt00Þ;kÞ; (A5)

qðþÞ
B ð�;kÞ ¼ �ð�Þ�0

�

Z �

0
d�0Kð�� �0ÞfðþÞ

0 ðzBð�0Þ;kÞ

þ �ð�� �1Þ �3
0

4��2

Z �

�1

d�0Kð�� �0Þ
a�1 cosha�0 � b�1

�
Z t�ð�0Þ

0
dt0K½t�ð�0Þ � t0�fðþÞ

0 ðzAðt0Þ;kÞ;
(A6)

where �1 � a�1 lnðb=aÞ, t1 ¼ a�1 � b�1, t2 �
ba�2 � b�1 (see Fig. 1), ��ðt0Þ ¼ a�1 lnaðt0 þ b�1Þ,
t�ð�0Þ � b�1 � a�1e�a�0 , W	 � 1	 ½ð�r þ i
Þ=��,
and KðxÞ � e�
x sin�x. In the ultraweak-coupling limit,
we shall neglect Oð�2

0Þ terms.

APPENDIX B: TWO DETECTORS AT REST
WEAKLY COUPLED TO ATHERMAL BATH

In the ultraweak-coupling limit, for QA and QB both
inertial and in contact with a thermal bath of temperature
T, one has

hQ2
j ð�jÞiv �

@

2�
coth

�

2T
ð1� e�2
�jÞ;

hP2
j ð�jÞiv � �2hQ2

j ð�jÞiv;
(B1)

hQ2
j ð�jÞia � e�2
�jðcþ1 cos2��j þ cþ2 sin

2��jÞ; (B2)

hP2
j ð�jÞia � �2e�2
�jðcþ1 sin2��j þ cþ2 cos2��jÞ; (B3)

hPjð�jÞ; Qjð�jÞia � �e�2
�jðcþ2 � cþ1 Þ sin��j cos��j;

(B4)

hQAðtÞ; QBð�Þia � e�
ðtþ�Þðc�1 cos�t cos��

þ c�2 sin�t sin��Þ; (B5)

hPAðtÞ; PBð�Þia � �2e�
ðtþ�Þðc�1 sin�t sin��

þ c�2 cos�t cos��Þ; (B6)

hPAðtÞ; QBð�Þia � �e�
ðtþ�Þðc�2 cos�t sin��

� c�1 sin�t cos��Þ; (B7)

hQAðtÞ; PBð�Þia � �e�
ðtþ�Þðc�2 cos�� sin�t

� c�1 sin�� cos�tÞ; (B8)

where j ¼ A, B, and

c	1 � 1

4

�
@
2

�2
	 	2

�
; (B9)

c	2 � 1

4�2

�
�2 	 @

2

	2

�
: (B10)

Then the quantity � reads

� � 1

16�2
ðX4e

�4
t þ X2e
�2
t þ X0Þ

� ðY4e
�4
t þ Y2e

�2
t þ Y0Þ; (B11)

where

X4 �
�
@� 	2� coth

�

2T

��
@�� �2 coth

�

2T

�
; (B12)

X2 �
�
@�2 þ @	2�2 � 2	2�2� coth

�

2T

�
coth

�

2T
;

(B13)
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X0 � 	2�2�

�
coth2

�

2T
� 1

�
; (B14)

and Yn ¼ Xnj	!ð@=�Þ;�!ð@=	Þ, n ¼ 0, 2, 4. For T > 0, if

	2�2 � @
2, �< 0 at t ¼ 0 and �> 0 as t ! 1, so the

disentanglement time tdE must be finite. It is easy to verify
that there exists only one solution for �ðtdEÞ ¼ 0: For
	2�2 > @

2,

tdE � � 1

2

ln
�X2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
2 � 4X0X4

q
2X4

; (B15)

and the disentanglement time for 	2�2 < @
2 is tdEðXn !

YnÞj	2�2>@
2 . At high temperature limit T ! 1, we have

tdE � T�1.
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