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Using the general structure of the vacuum polarization tensor ���ðk0;kÞ in the infrared (IR) limit,

k0 ! 0, the ring contribution to the QED effective potential at finite temperature and the nonzero

magnetic field is determined beyond the static limit, (k0 ! 0, k ! 0). The resulting ring potential is

then studied in weak and strong magnetic field limits. In the weak magnetic field limit, at high temperature

and for � ! 0, the improved ring potential consists of a term proportional to T4�5=2, in addition to the

expected T4�3=2 term arising from the static limit. Here, � is the fine structure constant. In the limit of the

strong magnetic field, where QED dynamics is dominated by the lowest Landau level, the ring potential

includes a novel term consisting of dilogarithmic function ðeBÞLi2ð� 2�
�

eB
m2Þ. Using the ring improved

(one-loop) effective potential including the one-loop effective potential and ring potential in the IR limit,

the dynamical chiral symmetry breaking of QED is studied at finite temperature and in the presence of the

strong magnetic field. The gap equation, the dynamical mass and the critical temperature of QED in the

regime of the lowest Landau level dominance are determined in the improved IR as well as in the static

limit. For a given value of the magnetic field, the improved ring potential is shown to be more efficient in

decreasing the critical temperature arising from the one-loop effective potential.
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I. INTRODUCTION

A. Motivation

The existence of phase transitions in the early Universe
has been a question that has preoccupied a generation of
cosmologists. Early on, Kirzhnits [1] found that the sym-
metry between the weak and electromagnetic interactions
would be restored at high temperatures. This result was
soon complemented by similar works by Weinberg [2],
Dolan and Jackiw [3], and Kirzhnits and Linde [4]. In
particular, there has been much interest in the nature of
the electroweak phase transition (EWPT), which is closely
related to the still unsolved problem of baryogenesis. It has
been known since Sakharov’s work that there are three
necessary (but not sufficient) conditions for the baryon
asymmetry of the Universe to develop [5]. First, we need
interactions that do not conserve baryon number B, other-
wise no asymmetry could be produced in the first place.
Second, C and CP symmetry must be violated in order to
differentiate between matter and antimatter, otherwise the
same rate of baryons and antibaryons would be produced
leading to zero net baryon number. Third, the Universe, in
its history, must have experienced a departure from thermal
equilibrium. In other words, the above C and CP violating
processes should have occurred in a state out of equilib-
rium, otherwise the net baryon number cannot change in
time. The standard model (SM) of electroweak interaction
meets all the above requirements to generate a baryon
asymmetry during the EWPT, provided that this last one
be of the first order.

The type of symmetry restoring phase transition is de-
termined by the behavior of the effective or thermody-
namic potential. The fact that the symmetry is restored at
high temperatures is a result of the T2m2ðvÞ term as the
leading order contribution from the thermal fluctuations of
the field. This term appears in the perturbatively calculable
one-loop effective potential. Here, T is the temperature and
m2 is the mass squared proportional to the expectation
value of some classical scalar (Higgs) field v. As the
temperature is increased, the contribution from thermal
fluctuation dominates the negative-mass-squared term in
the tree level potential and symmetry will be restored.
According to this one-loop approximation, it can be shown
that the phase transition is of the second order [1–4] and
that the effective potential includes terms proportional to
m3ðvÞT and, therefore, is imaginary when the mass squared
is negative. As it was shown in [6], however, the appear-
ance of imaginary terms in the one-loop effective potential
indicates the breakdown of the semiclassical loop expan-
sion through infared (IR) singularities. As it is then argued
in [7], these IR singularities are included in the ring (plas-
mon or daisy) diagrams of the theory. In [7], the non-
perturbative ring contribution to the effective potential is
calculated. It is shown to have the general structure

VringðvÞ ¼ T

12�
Trð½m2ðvÞ þ�00ð0Þ�3=2 �m3ðvÞÞ; (1.1)

where �00ð0Þ � �00ðn ¼ 0;k ! 0Þ is the vacuum polar-
ization in the static (zero momentum) limit.1 Adding this
contribution to the one-loop effective potential, it is then
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shown that the SM has indeed a first order phase transition
and the critical temperature is much lower than the tem-
perature arising from the one-loop effective potential [7].
As for the question of baryon asymmetry, however, it is
known that neither the amount of CP violation within the
minimal SM nor the strength of the EWPT are enough to
generate a sizable baryon number [10].2

In recent years, due to the observation that magnetic
fields are able to generate a stronger first order EWPT
[8,9,11–13], the electroweak baryogenesis is revisited
within the minimal SM and in the presence of external
hypermagnetic fields (for a review see [9]). In [8], the ring
improved effective potential of SM, including the one-loop
effective potential and ring contributions, is calculated
explicitly. Here, as in [7], the ring potential is determined
in the static (zero momentum) limit, where, in the presence
of an external magnetic field B, �00ð0Þ in (1.1) is defined
by �00ð0Þ � �00ðn ¼ 0;k ! 0; eBÞ. It is found that for
the field strengths 1023–1024 Gau�, the phase transition is

of the first order but the baryogenesis condition hvi
Tc

> 1–1:5

is still not satisfied.3 To improve this condition one is
looking for possibilities to decrease the critical tempera-
ture Tc of the EWPT.

Motivated by the previous facts and as the first step to
improve the results in [8,9,12,13] to solve the problem of
baryogenesis within the minimal SM, we will go beyond
the static (zero momentum) limit in this paper and will
calculate the ring improved effective potential of QED at
finite temperature and in the presence of a constant mag-
netic field in a certain IR limit. As we have seen above, the
ring part of the ring improved effective potential is given
by the QED vacuum polarization tensor, ���ðn;kÞ, at
finite temperature. In this paper, in contrast to previous
works, e.g., [7,8,14], we will determine the ring potential
using the vacuum polarization tensor in the IR limit, which
is particularly characterized by ðn ¼ 0;k � 0Þ.4

This paper consists of two parts: In the first part of the
paper, using the diagonalized form of the vacuum polar-
ization tensor in the IR limit ���ðn ¼ 0;k � 0Þ, the

general structure of the ring potential will be determined.
Then, the ring potential in the improved IR limit will be
calculated explicitly in the presence of weak and strong
magnetic fields and the resulting expressions will be com-
pared with the conventionally used static ring potential in
these limits. In the second part of the paper, the dynamical
chiral symmetry breaking of QED at finite temperature and
in the presence of the strong magnetic field will be studied.
Our main goal to study this example is to answer the
question of how efficient the improved IR approximation
is in decreasing the critical temperature of the above
dynamical chiral symmetry breaking. Comparing the effect
of the ring potential in the IR limit numerically with the
effect of the ring potential in various static limits, we arrive
at the conclusion that the improved IR limit is more
efficient in decreasing the critical temperature arising

from the one-loop effective potential Tð1Þ
c . Here, Tð1Þ

c is
the critical temperature that arises from the one-loop ef-
fective potential in the lowest order of � correction (ladder
approximation). Defining a ring improved critical tempera-
ture T c containing the contribution of the one-loop effec-
tive potential in the ladder approximation and the ring
contributions, it turns out that the difference of the effi-

ciency factors defined as � � 1� Tð1Þ
c

T c
is more than 60% for

the magnetic field B � 1016 Gau�. The above conclusion
is promising in view of the problem of the EWPT in the
electroweak SM in the presence of weak/strong hypermag-
netic fields [8,9,12,13]. Here, one is looking for a possi-
bility to decrease the critical temperature of the EWPT in

order to improve the baryogenesis condition hvi
Tc

> 1–1:5.

Using the improved ring potential in the IR limit in deter-
mining the critical temperature of the EWPT in the SM
may improve the results from [8,9,12,13].
The organization of this paper is as follows: In Sec. I B,

we will review some technical details on ring diagrams in
thermal field theory without a magnetic field. In particular,
we will review the well-known results of the QED ring
contribution to the effective potential in the static limit
[14]. In Sec. II, we will determine the vacuum polarization
tensor of QED in the IR limit, ���ðn ¼ 0;k � 0; eBÞ.
Here, we will use some results from [15,16]. In particular,
we will use the method in [15] to diagonalize the vacuum
polarization tensor in a certain basis. In Sec. III, using the
diagonalized ���ðn ¼ 0;k � 0; eBÞ, we will be able to

determine the general structure of the ring contribution to
the QED effective potential in the presence of an external
magnetic field at finite temperature. In Secs. III A and III B,
the resulting ring improved effective potential in the IR
limit will be considered first in the weak and then in the
strong magnetic field limit.
In the weak magnetic field limit, at high temperatures

and for � ! 0, the ring potential in the IR limit consists of

a term proportional to T4�5=2, in addition to the expected

T4�3=2 term arising from the static limit. Here, � � e2

4� is

2Other possibilities to explain the generation of baryon num-
ber during the EWPT include minimal and nonminimal super-
symmetric model.

3In the electroweak SM at finite T, the existence of a baryon
number violation is realized by means of its vacuum structure
through sphaleron mediated processes. The sphaleron transition
between different topological distinct vacua is associated to the
baryon number violation and can either induce or wash out a
baryon asymmetry. In order to satisfy the baryon asymmetry
condition during the baryogenesis process the rate of baryon
violating transitions between different topological vacua must be
suppressed in the broken phase, when the Universe returns to
thermal equilibrium. In other words, the sphaleron transitions
must be slower than the expansion of the Universe and this in
turn translates into the condition hvi

Tc
> 1–1:5, where hvi is the

Higgs mass [10,12].
4See Sec. I B for technical details.
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the fine structure constant. This term can be viewed as a
nonperturbative correction to the QED effective potential
in addition to the perturbative loop corrections to this

potential in the corresponding �5=2 order. Note that, using
hard thermal loop expansion [17], similar contributions of

orders�3=2
s and�5=2

s are previously found in QCD effective
potential at finite temperature and the zero magnetic field
(see [18] and the references therein).

In the strong magnetic field limit, the ring potential of
QED at finite temperature includes a novel term consisting
of a dilogarithmic function ðeBÞLi2ð� 2�

�
eB
m2Þ. As in the

weak magnetic field limit, a similar contribution to QCD
effective potential at finite temperature and the zero mag-
netic field is calculated in [19]. Here, going beyond the
static limit, it is shown that QCD effective potential con-
sists of an unexpected g4s lngs term. The appearance of a
similar term in the QED ring potential at finite temperature
and in the presence of the strong magnetic field is expected,
however, due to the well-known phenomenon of magnetic
catalysis [20,21]5. In the limit of the strong magnetic field,
QED dynamics is believed to be dominated by the lowest
Landau level (LLL), where the chiral symmetry of the
theory is broken by a dynamically generated fermion
mass. As a consequence of a dimensional reduction from
D to D� 2, four-dimensional QED exhibits confining
properties like ordinary confining Abelian or non-
Abelian gauge theories without the magnetic field [20,21].6

To compare the ring potential in the IR limit from III B
with the static ring potential in the LLL, we will calculate
in Secs. III C and III D, the static ring potential in the strong
magnetic field limit in two different methods. In the first
approach, we will calculate the ring potential after taking
the limit eB ! 1. In the second approach, we will take the
limit eB ! 1 after calculating the ring potential mathe-
matically. We will arrive at two different results. This
difference can be interpreted as a direct consequence of
the dynamics of QED in the LLL and the above-mentioned
dimensional reduction in the regime of LLL dominance.

In the second part of the paper, we will use the results
from III B, III C, and III D to study the dynamical chiral
symmetry breaking of QED at finite temperature and in the
presence of a strong magnetic field in (see Sect. IV).7 As
we have mentioned before, we are indeed interested in the
effect of our improved ring potential in decreasing the
critical temperature of chiral symmetry breaking of QED
at finite temperature and in the presence of a strong mag-

netic field. Using the ring improved effective potentials in
the IR and the static limit, the gap equation, the dynamical
mass, and the critical temperature Tc of QED
in the LLL are determined. To first estimate the efficiency
of the improved IR limit in decreasing the critical
temperature arising from the one-loop effective potential

in the ladder approximation, Tð1Þ
c , we will compare the ratio

u � Tð1Þ
c =T c for magnetic field eB in the interval

½10�8; 1� GeV2. Here, T c is the improved critical
temperature in the ladder approximation. This range cor-
responding to B 2 ½1:7� 1012; 1:7� 1020� Gau�, is phe-
nomenologically relevant in the astrophysics of neutron
stars, where the strength of the magnetic field is of the
order 1013–1015 Gau� (see [25] and the references therein).
It is also relevant in the heavy ion experiments, where it is
believed that the magnetic field in the center of a gold-gold
collision is eB� 102–103 MeV2 or B� 1016–1017 Gau�
[26]. Defining further an efficiency factor � � 1� u�1 for
the IR and static approximation, wewill be able to compare
the IR limit with various static limits. According to our
numerical results presented in IVE, for a given value of the
magnetic field, the IR limit seems to be more efficient in
decreasing the critical temperature arising from the one-
loop effective potential. The maximum value of � in the IR
limit is �63% for B � 1:6� 1016 Gau�. Our results are
summarized in Sec. V. In Appendix A, we will define the
one-loop effective potential and the ring potential in the
LLL at zero temperature. In Appendix B, the gap equation
arising from the one-loop effective potential and the ring
improved effective potential at zero temperature is derived.
Appendix C generalizes the definition from Appendix B to
finite temperature.

B. Technical details

1. QED ring potential at T � 0 and B ¼ 0 in the static
limit

In this section, we will review the results in [14] on the
QED ring potential at finite temperature using the static
(zero momentum) limit. Eventually we will argue why an
approximation beyond the zero momentum limit is neces-
sary when we turn on a strong magnetic field.
Let us just start with the partition function of QED at

finite temperature

Z ¼
Z

DcD �cDA�DcD �c exp

�Z �

0
d�

Z
d3xL

�
;

(1.2)

where L ¼ L0 þLI. Here, L0 is the free part of the
Lagrangian

L 0 ¼ �c ði��@
� �mÞc � 1

4
F��F

�� � 1

2	
ð@�A�Þ2

þ ð@� �cÞð@�cÞ;
and LI is the interaction Lagrangian

5The magnetic catalysis has wide applications in condensed
matter physics [22] and cosmology [23].

6A two dimensional Schwinger model is an example of a
confining Abelian gauge theory. It is known that four-
dimensional QED in the presence of a strong magnetic field is
reduced to a two dimensional theory, very similar to the ordinary
Schwinger model without the external magnetic field.

7Recently chiral transition in a strong magnetic field is studied
in [24].
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L I ¼ �e �cA��
�c :

Using the above Lagrangian the free photon propagator of
the theory is given by

D
��
0 ¼ 1

k2

�
g�� � ð1� 	Þ k

�k�

k2

�
; k0 � 2�inT;

and n 2� �1;þ1½ labels the Matsubara frequencies for
the bosons. The photon self-energy at the one-loop level is

��� ¼ D�1
�� �D�1

0��: (1.3)

Using the corresponding Ward identities arising from the
gauge invariance of the theory

k��
�� ¼ 0; k�k�D�� ¼ 	;

it is possible to determine the general structure of the
photon propagator D�� and the corresponding photon

self-energy ��� as a symmetric second-rank tensor.

Here, 	 denotes the covariant gauge. At finite temperature,
the most general tensor of this type is a linear combination
of g��, k�k�, u�u�, and k�u� þ k�u�, where u� ¼
ð1; 0; 0; 0Þ specifies the rest frame of the many body sys-
tem. Using the above properties, D�� and ��� have the

general form

��� ¼ GP
��
T þ FP

��
L ;

D�� ¼ 1

G� k2
P
��
T þ 1

F� k2
P
��
L þ 	

k2
k�k�

k2
;

(1.4)

where F andG are scalar function of k0 and! � jkj. They
are of the order e2 in the QED coupling constant e. The
projector operators PT and PL in (1.4) are given by

P00
T ¼ P0i

T ¼ Pi0
T ¼ 0; Pij

T ¼ 
ij � kikj

k2
;

P��
L ¼ k�k�

k2
� g�� � P��

T :

(1.5)

They have the properties

P
��
L PL�� ¼ �P

�
L�; P

��
T PT�� ¼ �P

�
T�;

k�P
��
T ¼ k�P

��
L ¼ 0; P��

L PT�� ¼ 0;

P
�
L� ¼ �1; P

�
T� ¼ �2:

(1.6)

As it is shown in [14], the lowest correction to the QED
thermodynamic potential V2 is of the order e

2,

Note that these two diagrams are equivalent [14]. As for
the next correction to the thermodynamic effective poten-
tial, it is not of the order e4 as expected, but of the order e3

when T > 0. It arises from the set of ring diagrams shown
in Fig. 1.8

Vring ¼ �T

2

Xþ1

n¼�1

Z d3k

ð2�Þ3
X1
N¼2

ð�1ÞN�1

N

� ½D��
0 ðn;kÞ���ðn;kÞ�N

¼ �T

2

Xþ1

n¼�1

Z d3k

ð2�Þ3 fln½1þD��
0 ðn;kÞ���ðn;kÞ�

�D
��
0 ðn;kÞ���ðn;kÞg: (1.8)

Plugging D��
0 and��� in (1.8) and using the properties

of the projection operators PL and PT from (1.5) and (1.6),
we get

Vring ¼�T

2

Xþ1

n¼�1

Z d3k

ð2�Þ3
�
2

�
ln

�
1�Gðn;!Þ

k2

�
þGðn;!Þ

k2

�

þ ln

�
1�Fðn;!Þ

k2

�
þFðn;!Þ

k2

�
: (1.9)

Here, �k2 ¼ !2 þ 4�2n2T2. To determine the next to
leading order term in the effective potential, Vring in the

static (zero momentum) limit, an IR divergent term, Ve3 , is
added to and subtracted from the ring potential (1.9) [14].
It is, therefore, given by

FIG. 1. Diagrams contributing to the ring potential (1.8). In the
LLL approximation, the wavy lines are free photon propagators
D

��
0 and the circles indicate the insertion of vacuum polarization

tensor ���. In this approximation, ��� are calculated using the

free fermion propagator in the LLL.

8In some recent references, as in [7–9,12] the ring potential,
Vring, is defined by adding (1.7) to the expression in (1.8), which
is given by the series of diagrams in Fig. 1. This means that the
series over D��

0 ðn;kÞ���ðn;kÞ on the first line of (1.8) starts in
[7–9,12] from N ¼ 1. In this paper, we will use the latter
definition, where the sum over N starts from N ¼ 1 on the first
line of (1.8) [see (3.9) for the definition of the ring potential in
this paper].
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Vring ¼ Ve3 þ Ve4 ;

where

Ve3 ¼ �T

2

Z d3k

ð2�Þ3
�
2

�
ln

�
1þGð0; 0Þ

!2

�
�Gð0; 0Þ

!2

�

þ ln

�
1þ Fð0; 0Þ

!2

�
� Fð0; 0Þ

!2

�
; (1.10)

and

Ve4 ¼ �T

2

Xþ1

n¼�1

Z d3k

ð2�Þ3
�
2

�
ln

�
1�Gðn;!Þ

k2

�
þGðn;!Þ

k2

�

þ ln

�
1� Fðn;!Þ

k2

�
þ Fðn;!Þ

k2

�

þ T

2

Z d3k

ð2�Þ3
�
2

�
ln

�
1þGð0; 0Þ

!2

�
�Gð0; 0Þ

!2

�

þ ln

�
1þ Fð0; 0Þ

!2

�
� Fð0; 0Þ

!2

�
: (1.11)

Carrying out the three-dimensional integration over k, Ve3

is given by

Ve3 ¼
T

12�
½2G3=2ð0; 0Þ þ F3=2ð0; 0Þ� ¼ T

12�
F3=2ð0; 0Þ;

(1.12)

where Gð0; 0Þ ¼ 0 is used. This is the well-known non-

perturbative e3 (or equivalently �3=2) contribution to the
thermodynamic potential arising from the ring (plasmon)
part of this potential. As for Ve4 from (1.11), it can now be
expanded in the orders of e and is thus given by

Ve4 ¼
T

4

Z d3k

ð2�Þ3
�X
n�0

�
2

�
Gðn;!Þ

k2

�
2 þ

�
Fðn;!Þ

k2

�
2
�

þ
�
2

�
Gð0; !Þ
!2

�
2 þ

�
Fð0; !Þ
!2

�
2
�

�
�
2

�
Gð0; 0Þ
!2

�
2 þ

�
Fð0; 0Þ
!2

�
2
��
; (1.13)

which is of the order e4 in the QED coupling constant. Note
that expanding the logarithms in Ve4 in the orders of e, is
only possible because it remains IR finite. This is the case
in QED but not in the confining gauge theories like QCD.
The ring contribution to the effective potential of QCD is
calculated in [19], where it is shown that, in particular
Fð0; !Þ in (1.13) is a so called ‘‘dangerous’’ term contain-
ing a logarithmically divergent part. To remove this term, it
is necessary to go beyond the static limit. This is done in
[19], where it is shown that the plasmon potential in QCD
effective potential contains besides the g3s term a contribu-
tion of the order g4s lngs at any nonzero temperature. This
contribution arises from the term ���ðn ¼ 0;k � 0Þ in
the IR limit.

In the present paper, we are, in particular, interested in
the ring improved effective thermodynamic potential of

QED in a strong magnetic field. It is believed that at
weak coupling, the QED dynamics is dominated by the
LLL. It is known that in the regime of LLL dominance the
ordinary four-dimensional QED is reduced to a two di-
mensional confining theory, like QCD, where the original
chiral symmetry is broken by a dynamically generated
fermion mass. Comparing to [19], we expect, therefore,
to have some dangerous logarithmically divergent terms in
the plasmon potential, if we use the static (zero momen-
tum) limit (n ¼ 0, k ¼ 0). To avoid these types of diffi-
culties, we will determine, in the next section, the general
structure of the QED vacuum polarization tensor in the IR
limit n ¼ 0 (or equivalently k0 ! 0) as a function of finite
three-momentum k. To determine the ring potential in the
limit of weak and strong magnetic fields, we will use (1.8),
where only n ¼ 0 is considered.

II. QED IN A CONSTANT MAGNETIC FIELD AT
ZERO AND FINITE TEMPERATURE

In the first part of this section, we will briefly review the
characteristics of QED in a constant magnetic field at zero
temperature. In particular, we will consider the fermion
and photon propagators in a strong magnetic field, where
the QED dynamics is dominated by the LLL. Then, in the
second part, we will determine the QED vacuum polariza-
tion tensor in a constant magnetic field at finite temperature
and in a certain IR limit.

A. Fermions and photons in a strong magnetic field at
zero and nonzero temperature

Let us start with the QED Lagrangian density at zero
temperature

L ¼ �c ði��Dext
� �mÞc � 1

4F��F
��; (2.1)

where Dext
� � @� þ ieAext

� ðxÞ, with the gauge field A� �
Aext
� describing an external magnetic field. In this paper, we

will choose the symmetric gauge

Aext
� ¼ B

2
ð0; x2;�x1; 0Þ;

that leads to a magnetic field in the x3 direction. From now
on, the longitudinal ðx0; x3Þ components will be indicated
as xk and the transverse directions ðx1; x2Þ components by

x?. The free (bare) fermion propagator of a four-
dimensional QED in a constant magnetic field at zero
temperature can be found using the Schwinger’s proper-
time formalism [27] from ði��Dext

� �mÞ�1. In the above

symmetric gauge, the free fermion propagator in a constant
magnetic field is given by

SFðx; yÞ ¼ exp

�
ie

2
ðx� yÞ�Aext

� ðxþ yÞ
�
Sðx� yÞ

¼ eðieB=2Þ�abxaybSðx� yÞ; a; b ¼ 1; 2: (2.2)

Here, the first factor containing the external Aext
� is the
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Schwinger line integral [27] and Sðx� yÞ is a translation-
ally invariant part, whose Fourier transform is given by

~SðkÞ ¼ i
Z 1

0
dse�ism2

exp

�
is

�
k2k �

k2?
eBs cotðeBsÞ

��
� fðmþ �k � kkÞð1þ �1�2 tanðeBsÞÞ
� �? � k?ð1þ tan2ðeBsÞÞg: (2.3)

Here, kk ¼ ðk0; k3Þ and �k ¼ ð�0; �3Þ and k? ¼ ðk1; k2Þ
and �? ¼ ð�1; �2Þ. After performing the integral over s,
~SðkÞ can be decomposed in Landau levels that are labeled
by n,

~SðkÞ ¼ ie�ðk2
?=jeBjÞ

X1
n¼0

ð�1Þn DnðeB; kÞ
k2k �m2 � 2jeBjn : (2.4)

Here, DnðeB; kÞ are expressed through the generalized
Laguerre polynomials L�

m as

DnðeB; kÞ ¼ ð�k � kk þmÞf2O½Lnð2�Þ � Ln�1ð2�Þ�
þ 4�? � k?Lð1Þ

n�1ð2�Þg; (2.5)

where we have introduced � � k2?
jeBj and

O � 1
2ð1� i�1�2signðeBÞÞ:

Relation (2.5) suggests that in the IR region, with jkkj,
jk?j �

ffiffiffiffiffiffiffiffiffijeBjp
, all the higher Landau levels with n 	 1

decouple and only the LLL with n ¼ 0 is relevant. In the
strong magnetic field limit, the free fermion propagator
(2.3) can, therefore, be decomposed into two independent
transverse and longitudinal parts [20,21]

�S LLLðx; yÞ ¼ �Skðxk � ykÞPðx?; y?Þ; (2.6)

with the longitudinal part

�S kðxk � ykÞ ¼
Z d2kk

ð2�Þ2 e
ikk�ðx�yÞk iO

�k � kk �m
; (2.7)

and the transverse part

Pðx?; y?Þ ¼ jeBj
2�

exp

�
ieB

2
�abxayb � jeBj

4
ðx? � y?Þ2

�
;

a; b ¼ 1; 2: (2.8)

As for the photon propagator D�� of QED in an external

constant magnetic field, it is calculated explicitly in
[20,21,28] in the LLL at the one-loop level. It is given by

iD��ðqÞ ¼
g?��

q2
þ qk�q

k
�

q2q2k
þ ðgk�� � qk�q

k
�=q2kÞ

q2 þ q2k�ðq2?; q2kÞ
� 	

q�q�

ðq2Þ2 ;

(2.9)

where 	 is an arbitrary gauge parameter. Since the LLL
fermions couple only to the longitudinal (0, 3) components
of the photon fields, no polarization effects are present in
the transverse (1, 2) components ofD��ðqÞ. Therefore, the
photon propagator in the LLL approximation including the
one-loop correction is given by the Feynman-like covariant
propagator [20,21]

i ~D��ðqÞ ¼ gk��

q2 þ q2
k�ðq2

k;q
2
?Þ

; (2.10)

with �ðq2?; q2kÞ having the form [29]

�ðq2?; q2kÞ ¼
2�jeBjNf

q2
k

e�ðq2?=2jeBjÞH
� q2

k
4m2

dyn

�
; (2.11)

where Nf is the number of fermion flavors. Here, HðzÞ is
defined by

HðzÞ � 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zðz� 1Þp ln

� ffiffiffiffiffiffiffiffiffiffiffiffi
1� z

p þ ffiffiffiffiffiffiffi�z
pffiffiffiffiffiffiffiffiffiffiffiffi

1� z
p � ffiffiffiffiffiffiffi�z

p
�
� 1: (2.12)

Expanding this expression for jq2
kj � m2

dyn � jeBj and

m2
dyn � jq2

kj � jeBj, we arrive at

�ðq2
?;q

2
kÞ ’ þ�jeBjNf

3�m2
dyn

e�ðq2?=2jeBjÞ

for jq2
kj � m2

dyn � jeBj; (2.13)

�ðq2
?;q

2
kÞ ’ � 2�jeBjNf

�q2
k

e�ðq2?=2jeBjÞ

for m2
dyn � jq2

kj � jeBj: (2.14)

In [20,21], it is shown that the kinematic region mostly
responsible for generating the fermion mass is the dynami-
cal mass, mdyn, satisfying m2

dyn � jq2
kj � jeBj. Plugging

(2.14) in the photon propagator (2.10) and assuming that
jq2

?j � jeBj, we get

~D ��ðqÞ � � igk��

q2 �M2
�

; with M2
� ¼ 2�jeBjNf

�
;

(2.15)

where M� is the finite photon mass whose appearance is
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the result of the dimensional reduction 3þ 1 ! 1þ 1 in
the presence of a constant magnetic field.

The dynamically generated fermion mass in the LLL
approximation is determined in [20] by solving the ladder
Bethe-Salpeter equation in the LLL approximation. It is
given by

mð1Þ
dyn ¼ C

ffiffiffiffiffiffi
eB

p
exp

�
�

ffiffiffiffi
�

�

r �
; (2.16)

where the constant C is of the order one. In [30], the same
result is determined by solving the corresponding
Schwinger-Dyson (SD) equation in the ladder LLL ap-
proximation. In both methods, to determine (2.16) in the
ladder approximation, the free fermion propagator in the
LLL approximation (2.6)–(2.8) with m ¼ mdyn is used. In

this approximation, the full photon propagator is also
replaced by the free photon propagator in the covariant
Feynman gauge

Dð0Þ
��ðqÞ ¼ � ig��

q2
(2.17)

In [31] a two-loop contribution to the corresponding SD
equation arising from the composite effective action à la
Cornwall-Jackiw-Tomboulis [32] in the LLL approxima-
tion is considered. Here, the full fermion propagator in the
LLL and the full photon propagator in a covariant and a
noncovariant gauge is taken into account in the two-loop
level. In the improved rainbow approximation, defined by
the photon propagator in a noncovariant gauge, the expres-
sion for mdyn takes the following form [31]

mdyn ¼ ~C
ffiffiffiffiffiffiffiffiffi
jeBj

p
Fð�Þ exp

�
� �

� lnðC1=�NfÞ
�
; (2.18)

where Fð�Þ ’ ðNf�Þ1=3, C1 ’ 1:82
 0:06, and ~C�Oð1Þ.
In this paper, we work with fermion and photon propa-

gators at finite temperature. To find the free fermion propa-
gator at finite temperature, we will turn to the Euclidean
space by replacing s ! �is and k0 ! i!̂‘ in (2.3) and find
[16]

S‘ð ~kÞ ¼ �i
Z 1

0
dse�sð!̂2

‘
þk2

3
þk2

?ððtanhðjeBjsÞÞ=ðjeBjsÞÞþm2Þ

� ½ð�!̂‘�
4 � k3�3 þmÞð1� i�1�2 tanhðjeBjsÞÞ

� �? � k?ð1� tanh2ðjeBjsÞÞ�: (2.19)

In the following, we indicate the Matsubara frequencies in
the fermionic case with !̂‘ � ð2‘þ 1Þ�T and those in the
bosonic case by !n � 2n�T. Next, the free photon propa-

gator Dð0Þ
��ðkÞ and the full photon propagator D��ðkÞ in a

constant magnetic field and at finite temperature are given
by [15]

Dð0Þ
��ðk0;kÞ ¼ �X4

i¼1

1

k2E

bðiÞ� b?ðiÞ�

ðbðiÞ� b?�ðiÞÞ ;

D��ðk0;kÞ ¼ �X4
i¼1

1

ðk2E þ 
iðk0;kÞÞ
bðiÞ� b?ðiÞ�

ðbðiÞ� b?�ðiÞÞ ;
(2.20)

where 
i and bðiÞ� are the eigenvalue and eigenfunctions of
the vacuum polarization tensor ���, i.e.,

���ðkÞbðiÞ� ¼ 
iðkÞbðiÞ� : (2.21)

In (2.20) kE is the Euclidean four momentum and k2E �
4�2n2T2 þ k2. In the next paragraph, we will determine

iðkÞ in the IR limit, i.e., for k0 ! 0 (n ¼ 0) but finite k.

Then, using the eigenfunctions bðiÞ� , the QED vacuum
polarization tensor ���ðk0;kÞ will be diagonalized and

eventually determined in the IR limit.

B. The QED vacuum polarization tensor in a constant
magnetic field at finite temperature

In [15] it is shown that the vacuum polarization tensor
��� in the presence of an external magnetic field and at

finite temperature can be diagonalized as

���ðk0;kÞ ¼
X4
i¼1


iðk0;kÞ bðiÞ� b?ðiÞ�

ðbðiÞ� b?�ðiÞÞ ; (2.22)

where 
i and b
ðiÞ
� are defined in (2.21). This relation can be

proved by plugging it back in (2.21) and using the property

bðiÞ� b?�ðjÞ ¼ 0,8i � j. According to the results in [15], the
eigenvalues 
i in the Minkowski space are given by


1;2ðk0;kÞ ¼ 1
2fPþ S
 ½ðP� SÞ2 � 4Q2�1=2g;


3ðk0;kÞ ¼ R; 
4ðk0;kÞ ¼ 0;
(2.23)

with

Pðk0;kÞ � k2�1 þ ðk � ~F2 � kÞ�3 � ðu � kÞ2ðk � F2 � kÞ
ðk � ~F2 � kÞ �4

Qðk0;kÞ � ðu � kÞðu � ~F � kÞ
ðk � ~F2 � kÞ

�
� k � F2 � k

k2

�
1=2

�4

Sðk0;kÞ � k2�1 � ðu � ~F � kÞ2
ðk � ~F2 � kÞ�4

Rðk0;kÞ � k2�1 � ðk � F2 � kÞ�2 þ 2F k2�3; (2.24)

where the notation a � b � a�b
� is used. Here, F�� is the

field strength tensor, ~F�� the dual tensor ~F�� �
1
2 �����F

��, u � ð1; 0; 0; 0Þ the rest frame vector in the

Minkowski space, k2 � k20 � k2 and F � � 1
4F��F

��.
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Assuming that there exists only a magnetic field B‘ ¼
1
2 �‘mnF

mn directed along the 3 axis (i.e., B ¼ Be3), we

get F12 ¼ �F21 ¼ B. The other components of F�� van-

ish. For the dual tensor ~F�� only the components ~F03 ¼
� ~F30 ¼ B survive.

Considering again (2.24), �i i ¼ 1, 2, 3, 4, are the
coefficients of the expansion of ��� as a second-rank

tensor in a certain basis �ðiÞ
�� [15]

���ðk0;kÞ ¼
X4
i¼1

�iððu � kÞ2; k � F2 � k;F ; k2Þ�ðiÞ
��;

(2.25)

where the basis �ðiÞ
�� are second-rank tensors that are built

up from four vectors k�, F��k
�, F��F

��k�, and u�.
9 They

are given by

�ð1Þ
��ðk0;kÞ ¼ k2g�� � k�k�;

�ð2Þ
��ðk0;kÞ ¼ F��k

�F��k
�;

�ð3Þ
��ðk0;kÞ ¼ �k2

�
g�� �

k�k�

k2

�
F�
�F

��

�
g�� �

k�k�

k2

�
;

�ð4Þ
��ðk0;kÞ ¼

�
u� � k�ðu � kÞ

k2

��
u� � k�ðu � kÞ

k2

�
;

(2.26)

where �ðiÞ
��, i ¼ 1; . . . ; 4 satisfy �ðiÞ

�� ¼ �ðiÞ
��, 8i. It is the

purpose of this section to determine P, Q, S, and R from
(2.24) and eventually 
i, i ¼ 1; . . . ; 4 from (2.23) in the IR
limit where k0 is taken to zero but k is nonvanishing. This
will enable us to determine the ring contribution of the
effective potential in the IR limit. To do this we have to
determine �i, i ¼ 1; . . . ; 4 from (2.25) explicitly.

Multiplying (2.25) with �ðjÞ
�� and adding over �, we arrive

at

P j ¼ X4
i¼1

Aji�i; (2.27)

where P j � ����ðjÞ
�� and Aij � �ðiÞ���ðjÞ

��. To calculate
�i, we consider (2.27) first as a generic system of equations
in terms of generic P j and Aij. Solving this system of
equations �i are given by

�1 ¼ P 1

Y
ðA22A

2
34 þ A2

23A44 � A22A33A44Þ þ P 2

Y
ðA14A23A34 � A12A

2
34 � A13A23A44 þ A12A33A44Þ

þ P 3

Y
ð�A22ðA14A34 � A13A44Þ � A12A23A44Þ þ P 4

Y
ð�A14A

2
23 þ A22ðA14A33 � A13A34Þ þ A12A23A34Þ;

�2 ¼ P 1

Y
ð�A14A23A34 þ A13A23A44 þ A12ðA2

34 � A33A44ÞÞ þ P 2

Y
ð�A14ðA14A33 � 2A13A34Þ � A2

13A44

� A11ðA2
34 � A33A44ÞÞ þ P 3

Y
ðA2

14A23 � A12ðA14A34 � A13A44Þ � A11A23A44Þ þ P 4

Y
ðA12A14A33 þ A11A23A34

� A13ðA14A23 þ A12A34ÞÞ;

�3 ¼ P 1

Y
ðA22ðA14A34 � A13A44Þ þ A12A23A44Þ þ P 2

Y
ðA14ðA14A23 � A12A34Þ þ A44ðA12A13 � A11A23ÞÞ

� P 3

Y
ðA2

14A22 þ A44ðA2
12 � A11A22ÞÞ þ P 4

Y
ðA14ðA13A22 � A12A23Þ þ A34ðA2

12 � A11A22ÞÞ;

�4 ¼ P 1

Y
ðA14ð�A2

23 þ A22A33Þ þ A34ð�A13A22 þ A12A23ÞÞ þ P 2

Y
ðA14ðA13A23 � A12A33Þ þ A34ðA12A13 � A11A23ÞÞ

þ P 3

Y
ðA14ð�A13A22 þ A12A23Þ þ A34ð�A2

12 þ A11A22ÞÞ þ P 4

Y
ðA2

13A22 þ A12ð�2A13A23 þ A12A33Þ
þ A11ðA2

23 � A22A33ÞÞ; (2.28)

with the denominator

9In Minkowskian space there are indeed 16 independent tensors�ðiÞ
��. But, as it is shown in [15], for zero chemical potential and due

to symmetry properties only �ðiÞ
��; i ¼ 1; . . . ; 4 from (2.26) are nonvanishing.
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Y ¼ �½A2
14ðA2

23 � A22A33Þ þ 2A14A34ðA13A22 � A12A23Þ � A11A22A
2
34 � A2

13A22A44 þ 2A12A13A23A44 � A11A
2
23A44

þ A11A22A33A44 þ A2
12ðA2

34 � A33A44Þ�:

Next we have to calculate Aij and P j from (2.27). Here, Aij can be determined using the�ðiÞ
�� from (2.26). They are given

by

A11 ¼ 3ðk2Þ2;
A12 ¼ �k2ðk � F2 � kÞ ¼ �B2k2k2

?;

A13 ¼ �ðk2Þ2 trðF2Þ þ k2ðk � F2 � kÞ ¼ B2k2ð2k2 þ k2
?Þ;

A14 ¼ k2u2 � ðu � kÞ2 ¼ �k2;

A22 ¼ ðk � F2 � kÞ2 ¼ B4ðk2
?Þ2;

A23 ¼ k2ðk � F4 � kÞ ¼ �B4k2k2
?;

A24 ¼ 0;

A33 ¼ ðk2Þ2 trðF4Þ � 2k2ðk � F4 � kÞ þ ðk � F2 � kÞ2 ¼ B4ð2ðk2Þ2 þ 2k2k2
? þ ðk2

?Þ2Þ;

A34 ¼ �ðk � F2 � kÞðu � kÞ2
k2

¼ �B2k20k
2
?

k2

A44 ¼ 1� 2ðu � kÞ2
k2

þ ðu � kÞ4
ðk2Þ2 ¼ 1� 2k20

k2
þ k40

ðk2Þ2 ;

(2.29)

where the rest frame constraint u�F
�� ¼ 0 and the following relations are used:

k � F � k ¼ 0; k � F2 � k ¼ B2k2
?; k � F4 � k ¼ �B4k2

?; trðF2Þ ¼ �2B2; trðF4Þ ¼ 2B4:

Other components of Aji are determined by the symmetry property Aji ¼ Aij. To determine P j from (2.27), we use �ðiÞ
��

from (2.26) and k��
�� ¼ 0 to get

P 1 ¼ k2 trð�Þ ¼ k2
�
�00 �

X3
i¼1

�ii

�
;

P 2 ¼ �k � F �� � F � k ¼ B2ð�k1k2�21 þ k21�22 þ k22�11 � k1k2�12Þ;
P 3 ¼ �k2 trð� � F2Þ ¼ �B2k2ð�11 þ�22Þ;
P 4 ¼ u �� � u ¼ �00:

(2.30)

The components of the QED vacuum polarization tensor ��� in a magnetic field at finite temperature are explicitly
calculated in [16] using the Schwinger proper-time formalism [27].10 To determine P j we need only the components
���ðn;kÞ with � ¼ 1; . . . ; 4, and�12ðn;kÞ of the vacuum polarization tensor. In the Euclidean space, they are given by

10To determine the vacuum polarization tensor��� in the Schwinger proper-time formalism, it is enough to replace the free fermion
propagator in ordinary ��� by the free fermion propagator in the constant background magnetic field arising from the Schwinger
proper-time formalism. At finite temperature, this is done in [16] to determine ���.
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�iiðn;kÞ ¼ ��TeBffiffiffiffi
�

p
Z 1

1=�2
du

ffiffiffi
u

p Z þ1

�1
dv

X1
‘¼�1

e�nðu;v;‘Þ
�
!nW‘n coth �u

sinh �uv

sinh �u
þ ðk2

? � k2i Þ
ðcosh �u� cosh �uvÞ

sinh3 �u

þ ð!2
n þ k23Þ
2

ðcosh �uv� v coth �u sinh �uvÞ
sinh �u

�
; i ¼ 1; 2;

�33ðn;kÞ ¼ ��TeBffiffiffiffi
�

p
Z 1

1=�2
du

ffiffiffi
u

p Z þ1

�1
dv

X1
‘¼�1

e�nðu;v;‘Þ
�
v!nW‘n coth �uþ k2

?
2

ðcosh �uv� v coth �u sinh �uvÞ
sinh �u

þ!2
n

ð1� v2Þ
2

coth �u

�
;

�44ðn;kÞ ¼ ��TeBffiffiffiffi
�

p
Z 1

1=�2
du

ffiffiffi
u

p Z þ1

�1
dv

Xþ1

‘¼�1
e�nðu;v;‘Þ

�
k2
?
2

ðcosh �uv� v coth �u sinh �uvÞ
sinh �u

� coth �u

�
1

u
� 2W2

‘n þ v!nW‘n � ð1� v2Þ
2

k23

��
;

�12ðn;kÞ ¼ þ�TeBffiffiffiffi
�

p
Z 1

1=�2
du

ffiffiffi
u

p Z þ1

�1
dv

Xþ1

‘¼�1
e�nðu;v;‘Þk1k2

ðcosh �u� cosh �uvÞ
sinh3 �u

; (2.31)

where k? � ðk1; k2Þ, �u � ueB, and�nðu; v; ‘Þ are defined
by

�nðu; v; ‘Þ � �k2
?

eB

ðcosh �u� cosh �uvÞ
2 sinh �u

� u

�
m2 þW2

‘n þ
ð1� v2Þ

4
ð!2

n þ k23Þ
�
:

In all the above expressions W‘n � !̂‘ � 1�v
2 !n, where

!̂‘ and !n are the Matsubara frequencies of the fermionic
and bosonic fields, respectively.11 In the IR limit n ¼ 0 (or
equivalently k0 ! 0) they are given by

�11ðn ¼ 0;kÞ ¼ 2k22I4 þ k23I1;

�22ðn ¼ 0;kÞ ¼ 2k21I4 þ k23I1;

�33ðn ¼ 0;kÞ ¼ k2
?I1;

�44ðn ¼ 0;kÞ ¼ k2
?I1 þ k23I3 � I2;

�12ðn ¼ 0;kÞ ¼ �2k1k2I4;

(2.32)

where the integrals Ii, i ¼ 1; . . . ; 4 can be determined using

(2.31) with n ¼ 0. For future purposes, we will separate Ii,
i ¼ 1; . . . ; 4 in a temperature independent part I0i and a
temperature dependent part ITi . This can be done using the
Possion resummation formula

X1
‘¼�1

e�að‘�zÞ2 ¼
�
�

a

�
1=2 X1

‘¼�1
exp

�
��2‘2

a
� 2i�z‘

�
;

that leads to

Xþ1

‘¼�1
e�uW2

‘0 ¼ 1

T
ffiffiffiffiffiffiffi
�u

p X
‘	1

ð�1Þ‘e�ð‘2=4uT2Þ þ 1

2T
ffiffiffiffiffiffiffi
�u

p ;

and

Xþ1

‘¼�1

�
�2W2

‘0 þ
1

u

�
e�uW2

‘0

¼ 1

2T
ffiffiffiffi
�

p X
‘	1

ð�1Þ‘ 1

u5=2
‘2

T2
e�ð‘2=4uT2Þ:

We arrive, therefore, at Ii ¼ I0i þ ITi , i ¼ 1; . . . ; 4 with12
11Note that compared to the results in [16], there are some
temperature independent contact terms missing in the above
expression. We will omit them here, keeping in mind that they
are relevant only to cancel temperature independent imaginary
terms in Sec. III A.

12In [16], a similar method is used to separate �44 into a
temperature dependent and a temperature independent part.
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I01 ¼ ��eB

4�

Z 1

1=�2
du

Z þ1

�1
dve�ðu;vÞ ðcosh �uv� v coth �u sinh �uvÞ

sinh �u
;

IT1 ¼ ��eB

2�

Z 1

0
du

Z þ1

�1
dve�ðu;vÞ X1

‘¼1

ð�1Þ‘e�ð‘2=4uT2Þ ðcosh �uv� v coth �u sinh �uvÞ
sinh �u

;

I02 ¼ 0;

IT2 ¼ ��eB

2�

Z 1

0
du

Z þ1

�1
dve�ðu;vÞ X1

‘¼1

ð�1Þ‘ ‘
2

T2
e�ð‘2=4uT2Þ coth �u

u2
;

I03 ¼ ��eB

4�

Z 1

1=�2
du

Z þ1

�1
dve�ðu;vÞð1� v2Þ coth �u;

IT3 ¼ ��eB

2�

Z 1

0
du

Z þ1

�1
dve�ðu;vÞ X1

‘¼1

ð�1Þ‘e�ð‘2=4uT2Þð1� v2Þ coth �u;

I04 ¼ ��eB

4�

Z 1

1=�2
du

Z þ1

�1
dve�ðu;vÞ ðcosh �u� cosh �uvÞ

sinh3 �u
;

IT4 ¼ ��eB

2�

Z 1

0
du

Z þ1

�1
dve�ðu;vÞ X1

‘¼1

ð�1Þ‘e�ð‘2=4uT2Þ ðcosh �u� cosh �uvÞ
sinh3 �u

;

(2.33)

where �ðu; vÞ � �0ðu; v; ‘Þ þ uW2
‘0. Plugging now ���ðn ¼ 0;kÞ from (2.32) in (2.30), P i, i ¼ 1; . . . ; 4 in the IR limit

are given by

P 1ðk0 ! 0;kÞ ¼ k2ð2k2I1 þ 2k2
?I4 þ k23I3 � I2Þ; P 2ðk0 ! 0;kÞ ¼ B2k2

?ð2k2
?I4 þ k23I1Þ;

P 3ðk0 ! 0;kÞ ¼ þB2k2ð2k23I1 þ 2k2
?I4Þ; P 4ðk0 ! 0;kÞ ¼ �k2

?I1 � k23I3 þ I2:
(2.34)

Plugging further Aji from (2.29) and P j from (2.34) in (2.28) and taking carefully the limit k0 ! 0, �i, i ¼ 1; . . . ; 4 can be
determined in the IR limit. They are given by

�1 ¼
I1ðk23k2

? þ 3k4
?Þ þ I2ð2k23 � k2

?Þ þ I3ðk23k2
? � 2k43Þ þ 2I4k

4
?

2k2
?k

2
;

�2 ¼
I1ðk4

? � 3k23k
2
?Þ þ I2ð2k23 � k2

?Þ þ I3ðk23k2
? � 2k43Þ þ I4ð4k23k2

? þ 2k4
?Þ

2B2k23k
2
?

;

�3 ¼
I1ðk23k2

? � k4
?Þ þ I2ðk2

? � 2k23Þ þ I3ð2k43 � k23k
2
?Þ � 2I4k

4
?

2B2k23k
2
?

;

�4 ¼
I1ðk23k2

? þ k4
?Þ þ I2ð2k23 þ k2

?Þ � I3ð2k43 þ k23k
2
?Þ þ 2I4k

4
?

2k2
?

;

(2.35)

where Ii ¼ I0i þ ITi , i ¼ 1; . . . ; 4 are given in (2.33). The above information is enough to determine 
i, i ¼ 1; . . . ; 4 from
(2.23) in the IR limit. To do this, let us replace �i, i ¼ 1; . . . ; 4 from (2.35) in (2.24) to get

Pðk0 ! 0;kÞ ¼ �k2�1 � B2k23�3 ¼ �k2I1;

Qðk0 ! 0;kÞ ¼ 0;

Sðk0 ! 0;kÞ ¼ �k2�1 þ �4 ¼ �k2
?I1 þ I2 � k23I3;

Rðk0 ! 0;kÞ ¼ �k2�1 � B2k2�3 � B2k2
?�2 ¼ �k23I1 � 2k2

?I4:

(2.36)

Thus, in the basis of bðiÞ� from (2.21), the QED vacuum
polarization tensor in the IR limit k0 ! 0 reads

���ðk0 ! 0;kÞ ¼ X4
i¼1


iðk0 ! 0;kÞ bðiÞ� b?ðiÞ�

ðbðiÞ� b?�ðiÞÞ ; (2.37)

where 
iðk0 ! 0;kÞ are determined by plugging (2.36) in

(2.23). They are given by


1ðk0 ! 0;kÞ ¼ Pðk0 ! 0;kÞ;

2ðk0 ! 0;kÞ ¼ Sðk0 ! 0;kÞ;

3ðk0 ! 0;kÞ ¼ Rðk0 ! 0;kÞ;

4ðk0 ! 0;kÞ ¼ 0:

(2.38)
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In the next section, (2.36)–(2.38) will be used to determine
the ring potential of QED in a constant magnetic field at
finite temperature.

III. QED EFFECTIVE POTENTIAL FOR T � 0 AND
B � 0 BEYOND THE STATIC LIMIT

In this section, the QED effective potential in a constant
magnetic field at finite temperature will be determined in
an approximation beyond the static limit. It receives con-
tributions from the one-loop and ring (plasmon) potentials.
Let us first look at the one-loop part of the effective

potential, Vð1Þ, which is calculated in [33] for a constant
magnetic field and zero chemical potential.13 It is given by
the following integral over the Schwinger parameter s,

Vð1Þðm; eB;TÞ ¼ � 2eB

�

Z 1

0
ds

�2ð0jis 4�
�2Þ

ð4�sÞ3=2
� cothðseBÞe�sm2

: (3.1)

Here, � is the inverse of temperature � � 1
T and

�2ðuj�Þ � 2
X1
n¼0

ei��ðnþð1=2ÞÞ2 cosðð2nþ 1ÞuÞ; (3.2)

is the elliptic � function of the second kind. The above
potential can be separated into a temperature independent

part, Vð1Þ
0 , and a temperature dependent part, Vð1Þ

T ,

Vð1Þðm; eB;TÞ ¼ Vð1Þ
0 ðm; eB; �Þ þ Vð1Þ

T ðm; eBÞ: (3.3)

To do this, we use the identity [37]

�2ðuj�Þ ¼
�
i

�

�
1=2

e�ðiu2=��Þ�4

�
u

�

��������� 1

�

�
; (3.4)

where

�4ðuj�Þ ¼ 1þ 2
X1
n¼1

ð�1Þnei�n2� cosð2nuÞ; (3.5)

is the fourth Jacobian � function. Using the above identi-
ties and the series expansion

cotht ¼ 1þ 2
X1
m¼1

e�2mt;

the temperature independent part is given by

Vð1Þ
0 ðm; eB; �Þ

¼ � eB

8�2

Z 1

1=�2

ds

s2

�
e�sm2 þ 2

X1
‘¼1

e�sðm2þ2eB‘Þ
�
;

¼ � eB

8�2

�
m2�

�
�1;

m2

�2

�

þ 2
X1
‘¼1

ðm2 þ 2eB‘Þ�
�
�1;

ðm2 þ 2eB‘Þ
�2

��
; (3.6)

with � the ultraviolet (UV) cutoff, and �ðn; zÞ �R1
z dttn�1e�t the incomplete � function. The temperature

dependent part of the one-loop effective potential (3.1)
reads

Vð1Þ
T ðm; eBÞ ¼ � eB

4�2

X1
n¼1

ð�1Þn
�Z 1

0

ds

s2
e�ðsm2þðn2�2=4sÞÞ

þ 2
X1
‘¼1

Z 1

0

ds

s2
e�ðsðm2þ2eB‘Þþðn2�2=4sÞÞ

�

¼ � eB

�2

X1
n¼1

ð�1Þn
�
m

n�
K1ðn�mÞ

þ 2
X1
‘¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðm2 þ 2eB‘Þp
n�

� K1ðn�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2 þ 2eB‘Þ

q
Þ
�
; (3.7)

where KnðzÞ is the modified Bessel-function of the second
kind defined by

Z 1

0
dxx��1 exp

�
��

x
� �x

�
¼ 2

�
�

�

�
�=2

K�ð2
ffiffiffiffiffiffiffi
��

p Þ:
(3.8)

Next, we will focus on the ring contribution to the QED
effective potential that will be determined in the IR limit.
The general structure of the ring diagram is given by

Vring ¼ T

2

Xþ1

n¼�1

Z d3k

ð2�Þ3
X1
N¼1

ð�1ÞN
N

�½Dð0Þ
��ðn;kÞ���ðn;kÞ�N

¼ �T

2

Xþ1

n¼�1

Z d3k

ð2�Þ3 ln½1þDð0Þ
��ðn;kÞ���ðn;kÞ�:

(3.9)

To simplify this potential we use the definition of the free

photon propagator Dð0Þ
��ðkÞ from (2.20) and the vacuum

13There are different equivalent methods to determine the one-
loop effective potential in the presence of a constant magnetic
field. One of these methods is to use the Schwinger proper-time
formalism [20], where the one-loop effective potential is defined
by Vð1Þ ¼ �i��1 Tr lnS�1. Here, � is the four-dimensional
space-time volume, and S is the free propagator of massive
fermions in a constant magnetic field with m (2.2) and (2.3)
[for a definition of the one-loop effective potential in the LLL
approximation see (A4) in Appendix A]. The same one-loop
effective potential is calculated in [33] using the worldline
formalism [34]. Although this method is different from the
well-known Schwinger proper-time formalism, the final result
for the one-loop effective potential is the same as in the
Schwinger’s method (see [35,36] for recent examples on the
equivalence between these two methods).
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polarization tensor ���ðkÞ from (2.22), and arrive at14

Vringðm; eB;TÞ ¼ �T

2

Xþ1

n¼�1

Z d3k

ð2�Þ3

�X4
i¼1

ln

�
1� 
iðk0;kÞ

k2E

�
; (3.10)

where for Euclidean four momentum kE, we have k2E ¼
k2 þ 4�2n2T2. Here, the orthogonality of the eigenfunc-

tions bðiÞ� from (2.21) and the relation bðiÞ� b?�ðjÞ ¼ 0, 8i �
j are used. To take the IR limit of this potential, we set n ¼
0 or equivalently k0 ! 0 in 
iðk0;kÞ as well as in k2E. We
arrive, therefore, at

VIR limit
ring ðm; eB;TÞ ¼ �T

2

Z d3k

ð2�Þ3

�X4
i¼1

ln

�
1� 
iðk0 ! 0;kÞ

k2

�
; (3.11)

where 
iðk0 ! 0;kÞ are given in (2.38). To compare this
result with the result (1.1), let us consider the static (zero
momentum) limit k ! 0 in (3.11). Using (2.36) and (2.38)
and taking k ! 0, we have


ið0; 0Þ ¼ 0; for i ¼ 1; 3; 4 and


2ð0; 0Þ ¼ Sð0; 0Þ ¼ I2:
(3.12)

Further, using (2.32), 
2ð0; 0Þ ¼ I2 ¼ ��44ð0; 0Þ.
Continuing into the Minkowski space we have 
Mink

2 �
��00 ¼ �44 ¼ �
2. Plugging this result in (3.11), the
ring contribution to the QED effective potential in the
static limit reads

Vstatic limit
ring ðm; eB;TÞ ¼ �T

2

Z d3k

ð2�Þ3
X4
i¼1

ln

�
1� 
Mink

i ð0; 0Þ
k2

�
¼ �T

2

Z d3k

ð2�Þ3 ln

�
1þ�00ð0; 0Þ

k2

�

¼ � T

4�2

Z �

0
k2dk ln

�
1þ�00ð0; 0Þ

k2

�
¼ T

12�
½�00ð0; 0Þ�3=2 þ� dependent terms: (3.13)

Taking the Higgs mass mðvÞ ¼ 0, this result indeed coincides with (1.1).
The ring improved effective potential for QED in a constant magnetic field at finite temperature is, therefore, given by

adding the one-loop effective potential (3.6) and (3.7) and the ring (plasmon) potential (3.10)

Veffðm; eB;T;�Þ ¼ � eB

8�2

�
m2�

�
�1;

m2

�2

�
þ 2

X1
‘¼1

ðm2 þ 2eB‘Þ�
�
�1;

ðm2 þ 2eB‘Þ
�2

��

� eB

�2

X1
n¼1

ð�1Þn
�
m

n�
K1ðn�mÞ þ 2

X1
‘¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðm2 þ 2eB‘Þp
n�

K1ðn�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2 þ 2eB‘Þ

q
Þ
�

� T

2

Xþ1

n¼�1

Z d3k

ð2�Þ3
X4
i¼1

ln

�
1� 
iðk0;kÞ

k2

�
: (3.14)

In the following two sections, we will determine the QED
effective potential Veff in the limit of weak and strong
magnetic fields.

A. QED effective potential in the weak magnetic field
limit

The weak magnetic field limit is characterized by eB �
m2 � T2. To determine the effective potential in this limit,
let us first consider the one-loop effective potential (3.1).
Expanding cothðeBsÞ on the right-hand side (r.h.s.) of (3.1)
in the orders of eB up to second order, we get

Vð1Þðm; eB;TÞ ¼ � 2

�

Z
S

ds

ð4�sÞ3=2 �2

�
0jis 4�

�2

�

�
�
1

s
þ sðeBÞ2

3
þ � � �

�
e�sm2

: (3.15)

14To build the ring potential, we have used the free (bare)

photon propagator Dð0Þ
��ðkÞ to be consistent with the result from

our one-loop effective potential throughout this paper. Note that
the fermion propagator that is used to determine the polarization
tensor ��� in the ring potential, is the free propagator of
massive fermions in the LLL approximation. This is also con-
sistent with the approximations used in this paper.

IMPROVED RING POTENTIAL OF QED AT FINITE . . . PHYSICAL REVIEW D 78, 125019 (2008)

125019-13



To separate (3.15) into a temperature independent and a
temperature dependent part, we use (3.4) and (3.5) and
arrive first at

Vð1Þðm; eB;TÞ ¼ � 1

8�2

Z
S

ds

s2

�
1

s
þ sðeBÞ2

3

�

� e�sm2

�
1þ 2

X1
n¼1

ð�1Þne�ðn2�2=4sÞ
�

þ � � � : (3.16)

Here, the integration region S spans over s 2 ½ 1
�2 ;1½ for

the temperature independent part, and over s 2 ½0;1½ for
the temperature dependent part. Using the definition of the
incomplete � function, �ðn; zÞ ¼ R1

z dttn�1e�t, as well as

(3.8), the one-loop effective potential can be determined in
the weak magnetic field limit up to the second order in eB,

Vð1Þ=weakðm; eB;TÞ ¼ � 1

8�2

�
m4�

�
�2;

m2

�2

�
þ ðeBÞ2

3
�

�
0;
m2

�2

�
þ 4

X1
n¼1

ð�1Þn
�
4m2

n2�2
K2ðnm�Þ þ ðeBÞ2

3
K0ðnm�Þ

��
:

(3.17)

To determine the ring contribution to the effective potential in the weak magnetic field limit, let us consider (3.11), where

ið0;kÞ, i ¼ 1; � � � ; 4 are given in (2.38). To determine 
i in the weak magnetic field limit, we have to evaluate P, S, and R
from (2.36), and consequently the functions Ii, i ¼ 1; . . . ; 4 from (2.33) in this limit. To do this we expand Ii up to the
second order in eB. Assuming k2

? � eB � k23 and neglecting, therefore, the terms proportional to k2
?ðeBÞ2 [38], we

arrive first at15

~I01 ¼ � �

4�

Z 1

1=�2
du

Z þ1

�1
dve�uðm2þðð1�v2Þ=4Þk2Þ

�
1� v2

u
� ðeBÞ2

6
uð1� v2Þ2

�
;

~IT1 ¼ � �

2�

Z 1

0
du

Z þ1

�1
dve�uðm2þðð1�v2Þ=4Þk2Þ X1

‘¼1

ð�1Þ‘e�ð‘2=4uT2Þ
�
1� v2

u
� ðeBÞ2

6
uð1� v2Þ2

�
;

~I02 ¼ 0;

~IT2 ¼ � �

2�

Z 1

0
du

Z þ1

�1
dve�uðm2þðð1�v2Þ=4Þk2Þ X1

‘¼1

ð�1Þ‘e�ð‘2=4uT2Þ ‘
2

T2

�
1

u3
þ ðeBÞ2

3u

�
;

~I03 ¼ � �

4�

Z 1

1=�2
du

Z þ1

�1
dve�uðm2þðð1�v2Þ=4Þk2Þ

�
1� v2

u
þ ðeBÞ2

3
uð1� v2Þ

�
;

~IT3 ¼ ��

2�

Z 1

0
du

Z þ1

�1
dve�uðm2þðð1�v2Þ=4Þk2Þ X1

‘¼1

ð�1Þ‘e�ð‘2=4uT2Þ
�
1� v2

u
þ ðeBÞ2

3
uð1� v2Þ

�
:

(3.18)

To perform, then, the integrations over u and v, we expand
the above expressions in the order of k2

m2 . We get the
following general structure

~I0i ¼ a0i þ
k2

m2
b0i for i ¼ 1; 3; as well as

~ITi ¼ aTi þ k2

m2
bTi ; for i ¼ 1; 2; 3; (3.19)

where the temperature independent parts are16

a01 ¼ þ 2�

45�

ðeBÞ2
m4

; b01 ¼ þ �

15�
� 2�

105�

ðeBÞ2
m4

;

a03 ¼ � �

9�

ðeBÞ2
m4

; b03 ¼ þ �

15�
þ 2�

45�

ðeBÞ2
m4

;

(3.20)
and the temperature dependent parts are

15In the following, I4 will be skipped since, as it turns out, the
ring potential in the weak magnetic field limit is determined only
by Ii, i ¼ 1, 2, 3 [see (3.22)].

16Note that the temperature independent part consists of imagi-
nary terms. These terms cancel the contact terms in (2.31) [see
footnote 11].
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aT1 ¼ X1
‘¼1

ð�1Þ‘
�
� 4�

3�
K0ð‘m�Þ þ 2�

45�

ðeBÞ2
m4

ð‘m�Þ2K2ð‘m�Þ
�
;

bT1 ¼ X1
‘¼1

ð�1Þ‘
�
2�

15�
ð‘m�ÞK1ð‘m�Þ � �

210�

ðeBÞ2
m4

ð‘m�Þ3K3ð‘m�Þ
�
;

aT2 ¼ X1
‘¼1

ð�1Þ‘
�
� 8�

�
m2K2ð‘m�Þ � 2�

3�

ðeBÞ2
m2

ð‘m�Þ2K0ð‘m�Þ
�
;

bT2 ¼ X1
‘¼1

ð�1Þ‘
�
2�

3�
m2ð‘m�ÞK1ð‘m�Þ þ �

18�

ðeBÞ2
m2

ð‘m�Þ3K1ð‘m�Þ
�
;

aT3 ¼ X1
‘¼1

ð�1Þ‘
�
� 4�

3�
K0ð‘m�Þ � �

9�

ðeBÞ2
m4

ð‘m�Þ2K2ð‘m�Þ
�
;

bT3 ¼ X1
‘¼1

ð�1Þ‘
�
2�

15�
ð‘m�ÞK1ð‘m�Þ þ �

90�

ðeBÞ2
m4

ð‘m�Þ3K3ð‘m�Þ
�
:

(3.21)

To evaluate P, S, and R from (2.36) in the limit of weak eB,
we use again k2

? � eB � k23 [38]. The most dominant
terms in 
ið0;kÞ are, therefore, given by


1ðk0 ! 0;kÞ ¼ �k23~I1 þO
�
k2?
eB

�


2ðk0 ! 0;kÞ ¼ �k23~I3 þ ~I2 þO
�
k2?
eB

�


3ðk0 ! 0;kÞ ¼ �k23~I1 þO
�
k2?
eB

�

4ðk0 ! 0;kÞ ¼ 0:

(3.22)

Next, plugging these expressions in (3.11), the ring poten-
tial in the weak magnetic field limit is given by

VIR limit=weak
ring � �T

2

Z d3k

ð2�Þ3
�
2 ln

�
1þ k23

k2
ða01 þ aT1 Þ

þ k23
m2

ðb01 þ bT1 Þ
�
þ ln

�
1þ k23

k2
ða03 þ aT3 Þ

þ k23
m2

ðb03 þ bT3 Þ �
�
aT2
k2

þ bT2
m2

���
: (3.23)

To perform the integration over three-momentum k, we
will use the same procedure as was discussed in Sec. I B.
Adding and subtracting an appropriate integral to the ring
potential (3.23), whose integrand is independent of k23, we
arrive at

VIR limit=weak
ring ¼ VðfÞ

ring þ V�
ring; (3.24)

where the finite part is

VðfÞ
ring ¼ �T

2

Z d3k

ð2�Þ3 ln

�
1�

�
aT2
k2

þ bT2
m2

��
; (3.25)

and the cutoff (�) dependent part

V�
ring ¼ �T

2

Z d3k

ð2�Þ3
�
2 ln

�
1þ k23

k2
ða01 þ aT1 Þ

þ k23
m2

ðb01 þ bT1 Þ
�
þ ln

�
1þ k23

k2
ða03 þ aT3 Þ

þ k23
m2

ðb03 þ bT3 Þ �
�
aT2
k2

þ bT2
m2

���

� T

2

Z d3k

ð2�Þ3 ln

�
1�

�
aT2
k2

þ bT2
m2

��
: (3.26)

Performing the integration over k in VðfÞ
ring we get

VðfÞ
ring � T

ðaT2 Þ3=2
ð1� bT

2

m2Þ3=2
þ cutoff dependent terms; (3.27)

whereas for V�
ring we have

V�
ring � �TOð�3Þ: (3.28)

Note that V�
ring can be derived by expanding the logarithms

in (3.26) and performing the three-dimensional integration
over k using a momentum cutoff �. Neglecting now the
cutoff dependent terms, we arrive at

VIR limit=weak
ring ¼CT

ðaT2 Þ3=2
ð1� bT2

m2Þ3=2

¼Cm3T

� 8�
�

P1
‘¼1ð�1Þ‘þ1K2ð‘m�Þ

1� 2�
3�

P1
‘¼1ð�1Þ‘ð‘m�ÞK1ð‘m�Þ

�
3=2

þO
��

eB

m2

�
2
�
: (3.29)

Here, the proportionality constant C ¼ Oð1Þ. To compare
this result with the ring potential in the leading static limit,
(3.29) will be evaluated in the high temperature expansion
m� ! 0. This can be determined from the behavior of
Bessel functions in this limit
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K�ðxÞ !x!0 1

2
�ð�Þ

�
2

x

�
�
; (3.30)

and the Bessel function identities [39,40]

X1
‘¼1

K0ð‘zÞ cosð‘�Þ ¼ 1

2

�
�þ ln

z

4�

�
þ C0ðz;�Þ: (3.31)

Here, � ’ 0:577 is the Euler-Mascheroni constant and
C0ðz;�Þ is given by

C0ðz;�Þ � �

2

X0

‘

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 þ ð�� 2�‘Þ2p � 1

2�j‘j
�
; (3.32)

where the notation
P0

‘ indicates that singular terms are
omitted when ‘ ¼ 0 [39]. Deriving (3.31) with respect to

lnz and remembering the fact that @K0ðzÞ
@ lnz ¼ �zK1ðzÞ, we get

X1
‘¼1

ð‘zÞK1ð‘zÞ cosð‘�Þ ¼ � 1

2
þ C1ðz; �Þ; (3.33)

with

C1ðz; �Þ � � @C0ðz;�Þ
@ lnz

¼ �

2

X1
‘¼�1

z2

ðz2 þ ð�� 2�‘Þ2Þ3=2 : (3.34)

Choosing now � ¼ 2 as well as x � ‘m� in (3.30) and z �
m� as well as� � � in (3.31)–(3.34), and plugging (3.30)
in the numerator and (3.33) in the denominator of (3.29),
we arrive first at

VIR limit=weak
ring ! C

8�

3

ffiffiffiffi
�

3

r
T4�3=2

ð1þ �
3� � 2�

3�C1ðm�;�ÞÞ3=2 :

(3.35)

Here, we have used
P1

‘¼1
ð�1Þ‘þ1

‘2
¼ �2

12 . Expanding now
C1ðm�;�Þ in the denominator of (3.35) in the orders of
m� and using C1ðm�;�Þ ¼ 7ðm�Þ2�ð3Þ

8�2 þOððm�Þ3Þ, we ar-
rive for � ! 0 at

VIR limit=weak
ring ¼ 8�

3

ffiffiffiffi
�

3

r
CT4

�
�

1þ �
2�

�
3=2

�
�
1� 7�ð3Þ

8�3

�

ð1þ �
2�Þ

ðm�Þ2
�
þOððm�Þ3Þ;

¼ 8�

3

ffiffiffiffi
�

3

r
CT4�3=2

�
�
1� �

2�

�
1� 7�ð3Þ

4�2
ðm�Þ2

��
þOð�7=2; ðm�Þ3Þ: (3.36)

The first term is the usual �3=2 contribution to the ring
potential from the static limit [8,9,14] [see also Sec. I B and
in particular (1.12)]. The second term, however, arises only
in the IR limit. It is a consequence of the additional bT2 term

in the denominator of Vring from (3.29). The above result
(3.29) can be viewed as a nonperturbative correction of the
QED effective potential in addition to the perturbative loop
corrections to this potential. Note that in QCD at finite
temperature and zero magnetic fields �3=2

s and �5=2
s terms

are calculated using hard thermal loop expansion (see
[17,18] and references therein). The above results are
relevant in studying the standard electroweak phase tran-
sition in the presence of the weak external magnetic field
[12].

B. QED effective potential in the limit of the strong
magnetic field

The strong magnetic field is characterized by m2 �
T2 � eB. To determine the QED effective potential in
the limit of the strong magnetic field, let us consider first
the one-loop effective potential (3.1). For eB ! 1 (3.1) is
given by

Vð1Þðm; eB;TÞ ¼ � 2eB

�

Z 1

0
ds

�2ð0jis 4�
�2Þ

ð4�sÞ3=2 e�sm2
; (3.37)

where cothðeBsÞ � 1 is used. To separate (3.37) into a
temperature dependent and a temperature independent
part, we use (3.4) and (3.5) and arrive first at

Vð1Þðm; eB;TÞ ¼ � eB

8�2

Z
S

ds

s2

�
1þ 2

X1
n¼1

ð�1Þne�ðn2�2=4sÞ
�

� e�sm2
; (3.38)

where the integration region S spans over s 2 ½ 1
�2 ;1½ for

the temperature independent part, and over s 2 ½0;1½ for
the temperature dependent part. Using the definition of the
incomplete � function as well as (3.8), the one-loop effec-
tive potential in the limit of the strong magnetic field is
given by

Vð1Þ=strongðm; eB; �; TÞ ¼ � eB

8�2

�
m2�

�
�1;

m2

�2

�

þ 8m

�

X1
n¼1

ð�1Þn
n

K�1ðnm�Þ
�
:

(3.39)

To determine the ring contribution to the QED effective
potential in the strong magnetic field limit, let us consider
(3.11) with 
ið0;kÞ, i ¼ 0; . . . ; 4 from (2.38). To determine

i, i ¼ 1; . . . ; 4 in the strong magnetic field limit, we have
to evaluate P, S, and R from (2.36), and consequently the
functions Ii, i ¼ 1; . . . ; 4 from (2.33) in this limit. Note that
in a strong magnetic field at finite temperature, as in the
zero temperature case, the QED dynamics is dominated by
the LLL, where the chiral symmetry is dynamically broken
as a consequence of the external magnetic field. As we
have mentioned in Sec. II A, the LLL is characterized by
k23, k2

? � eB and a small dynamical mass m2 � eB
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[20,21]. Keeping these facts in mind, it is easy to determine
the most dominant Ii among Ii, i ¼ 1; . . . ; 4 in the limit of
strong magnetic field. A simple calculation shows that in
the limit eB ! 1 only I2 and I3 survive. They are given by

IT2 ���eB

2�

Z 1

0

du

u2

Z 1

�1
dve�

X1
‘¼1

ð�1Þ‘ ‘
2

T2
e�ð‘2=4uT2Þ;

I03 ���eB

4�

Z 1

0
du

Z 1

�1
dve�ð1�v2Þ;

IT3 ���eB

2�

Z 1

0
du

Z 1

�1
dve�

X1
‘¼1

ð�1Þ‘e�ð‘2=4uT2Þð1�v2Þ;

(3.40)

where

� � � k2
?

2eB
� u

�
m2 þ ð1� v2Þ

4
k23

�
: (3.41)

Plugging (3.40) in (2.36), we get

P; R 			!eB!1
0; and S 			!eB!1 � k23ðI03 þ IT3 Þ þ IT2 : (3.42)

Using now the relations (2.38), only 
2ðk0 ! 0;kÞ ¼ S
survives in (3.11). The ring potential is thus given by

VIR limit=strong
ring ¼ �T

2

Z d3k

ð2�Þ3 ln

�
1� 
2ðk0 ! 0;kÞ

k2

�

� � T

8�2

Z 1

0
dðk2

?Þ
Z 1

0
dk3

� ln

�
1þ k23ðI03 þ IT3 Þ � IT2

ðk23 þ k2
?Þ

�
: (3.43)

Next the integration over k3 will be evaluated separately in
two different regimes of dynamical mass in the LLL. These
two regimes will be indicated by k23 � m2 � eB and

m2 � k23 � eB [see Sec. II A and in particular (2.13)

and (2.14)]. To do this we use the relation17Z 1

0
dk3 ¼

Z m

0
dk3 þ

Z 1

m
dk3;

where the first integral
R
m
0 dk3 corresponds to the first

regime k23 � m2 � eB and the second integral
R1
m dk3 to

the second regime m2 � k23 � eB in the LLL. As for the

integration (3.43) only the phase � from (3.41) is different
in these two regimes. Thus taking

� � � k2
?

2eB
� um2 for k23 � m2 � eB; (3.44)

� � � k2
?

2eB
� ð1� v2Þ

4
uk23 for m2 � k23 � eB;

(3.45)

in IT2 , I
0
3 , and IT3 the integration over u and v can be easily

performed. Next, we will determine the corresponding ring
contribution to the effective potential for these two regimes
separately. The results will be added eventually.

1. Ring potential in the first regime k23 � m2 � eB
of the LLL

To determine the ring potential in the k23 � m2 � eB
regime in the LLL, we have to calculate first the integrals
IT2 , I

0
3 , and I

T
3 from (3.40) in this regime. Using the phase�

from (3.44) we get

IT2 � ��eB

2�
e�ðk2

?=2eBÞ
Z 1

�1
dv

X1
‘¼1

ð�1Þ‘ð‘�Þ2

�
Z 1

0

du

u2
e�um2�ð‘2=4uT2Þ � e�ðk2

?=2eBÞAT
2 ;

I03 � ��eB

4�
e�ðk2

?=2eBÞ
Z 1

�1
dvð1� v2Þ

Z 1

0
due�um2

� e�ðk2
?=2eBÞA0

3;

IT3 � ��eB

2�
e�ðk2

?=2eBÞ
Z 1

�1
dvð1� v2ÞX1

‘¼1

ð�1Þ‘

�
Z 1

0
due�um2�ð‘2=4uT2Þ � e�ðk2

?=2eBÞAT
3 : (3.46)

Here, using the notation M2
� � 2�eB

� , we have A0
3 � � M2

�

6m2

and

AT
2 � �2M2

�

X1
‘¼1

ð�1Þ‘ð‘m�ÞK1ð‘m�Þ;

AT
3 � � M2

�

3m2

X1
‘¼1

ð�1Þ‘ð‘m�ÞK1ð‘m�Þ:
(3.47)

The ring potential (3.43) corresponding to the first regime
k23 � m2 � eB in the LLL reads, therefore

VIR limit=strong
ring jk2

3
�m2�eB �� T

8�2

Z 1

0
dðk2

?Þ
Z m

0
dk3

� ln

�
1þ e�ðk2

?=2eBÞðk23A3�AT
2 Þ

ðk23þk2
?Þ

�
;

(3.48)

where A3 � A0
3 þ AT

3 . Using the expression (3.33), A3 and

AT
2 can be simplified

A3 ¼ � M2
�

3m2
C1ðm�;�Þ; and

AT
2 ¼ M2

�ð1� 2C1ðm�;�ÞÞ;
(3.49)

where C1ðz; �Þ is defined in (3.34). Performing now the
integration over k3 2 ½0; m�, we get first

17The same method is also used in [20]. Here, we have matched
the asymptotics at k3 ¼ m.
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VIR limit=strong
ring jk2

3
�m2�eB

� � mT

8�2

Z 1

0
dðk2

?Þ ln
�
1� e�ðk2

?=2eBÞðAT
2 �m2A3Þ

k2
? þm2

�
þ J;

(3.50)

where

J � þ T

4�2

Z 1

0
dðk2

?Þ
ffiffiffiffiffiffiffi
k2
?

q
arctan

�
mffiffiffiffiffiffiffi
k2
?

q �
þO

�
mffiffiffiffiffiffi
eB

p
�
:

(3.51)

Here, an expansion in the orders of mffiffiffiffiffi
eB

p is performed, as we

are in a regimewherem2 � eB. To perform the integration
over the first term in (3.50), we use the identity

Z 1

0
dy ln

�
1� e�ðy=xÞ

yþ z

�
¼ xLi2

�
� 1

z

�
; (3.52)

where the dilogarithm is defined by

Li 2ðzÞ � �
Z z

0

lnð1� zÞ
z

dz ¼ �
Z z

0
lnð1� zÞ d

dz
lnzdz:

Choosing now yðAT
2 �m2A3Þ � k2

?, xðAT
2�

m2A3Þ � 2eB, and zðAT
2 �m2A3Þ � m2 in (3.52), the

ring contribution in the first regime k23 � m2 � eB in

the LLL reads

VIR limit=strong
ring jk2

3
�m2�eB

� �mTeB

4�2
Li2

�
�ðAT

2 �m2A3Þ
m2

�
þ J; (3.53)

where AT
2 �m2A3 can be simplified using (3.49) and reads

AT
2 �m2A3 ¼ M2

�

�
1� 5

3
C1ðm�;�Þ

�
: (3.54)

As it turns out, the second term on the r.h.s. of (3.53)
vanishes with the ring potential corresponding to the sec-
ond regime m2 � k23 � eB in the LLL.

2. Ring potential in the second regime m2 � k23 � eB of
the LLL

As for the second regime m2 � k23 � eB, we have to

determine IT2 , I
0
3 , and I

T
3 from (3.40). Taking� from (3.45),

we get

IT2 � ��eB

2�
e�ðk2

?=2eBÞ
Z 1

�1
dv

X1
‘¼1

ð�1Þ‘ð‘�Þ2

�
Z 1

0

du

u2
e�ðð1�v2Þ=4Þuk2

3
�ð‘2=4uT2Þ � e�ðk2

?=2eBÞBT
2

I03 � ��eB

4�
e�ðk2

?=2eBÞ
Z 1

�1
dvð1� v2Þ

�
Z 1

0
due�ðð1�v2Þ=4Þuk2

3 ¼ � 2�eB

�k23
e�ðk2

?=2eBÞ

� �e�ðk2
?=2eBÞ M

2
�

k23
;

IT3 � ��eB

2�
e�ðk2

?=2eBÞ
Z 1

�1
dvð1� v2ÞX1

‘¼1

ð�1Þ‘

�
Z 1

0
due�ðð1�v2Þ=4Þuk2

3
�ð‘2=4uT2Þ � e�ðk2

?=2eBÞ B
T
3

k23
;

(3.55)

where M2
� � 2�eB

� , and

BT
2 ¼ BT

3 � �M2
�

Z þ1

�1
dv

X1
‘¼1

ð�1Þ‘
�
‘�k3
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p �

� K1

�
‘�k3
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p �
: (3.56)

Plugging (3.55) in (3.43), the contribution from BT
2 and BT

3

cancel and we are left with

V
IR limit=strong
ring jm2�k23�eB

� � T

8�2

Z 1

0
dðk2

?Þ
Z 1

m
dk3 ln

�
1� e�ðk2

?=2eBÞM2
�

ðk23 þ k2
?Þ

�
:

(3.57)

Here, the integration over k3 can be performed and we
arrive first at

V
IR limit=strong
ring jm2�k23�eB � W

IR=nonpert
ring þ V

IR=pert
ring � J;

(3.58)

where W
IR=nonpert
ring is the nonperturbative, V

IR=pert
ring is the

perturbative part of V
IR limit=strong
ring , and J is given in (3.50).

The nonperturbative part of the ring potentialW
IR=nonpert
ring is

given by

W
IR=nonpert
ring ¼ mT

8�2

Z 1

0
dðk2

?Þ ln
�
1� e�ðk2

?=2eBÞM2
�

ðk2
? þm2Þ

�

¼ mTeB

4�2
Li2

�
�M2

�

m2

�
: (3.59)

To evaluate this integral we have used (3.52) with yM2
� �

k2
?, xM

2
� � 2eB, and zM2

� � m2. As for the perturbative

part of the ring potential, VIR=pert
ring , it is given by the sub-
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stitution z � k2
?

eB . It reads

VIR=pert
ring � TeB

ffiffiffiffiffiffi
eB

p
8�

Z 1

0

� ffiffiffi
z

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z� 2�

�
e�ðz=2Þ

s �
dz

¼ �TeB
ffiffiffiffiffiffiffiffiffi
2eB

p

8�3=2
þOð�2Þ: (3.60)

Here, we have expanded the integrand in the orders of �
and eventually performed the integration over z.

3. QED Ring potential in the LLL: The IR limit

At this stage we are able to give the ring potential in the
limit of the strong magnetic field at finite temperature. It is
determined by adding the contribution from the first regime
(3.53) with the contribution from the second regime (3.58).
It consists of a perturbative and a nonperturbative part

V
IR limit=strong
ring ¼ V

IR=pert
ring þ V

IR=nonpert
ring : (3.61)

The perturbative part, VIR=pert
ring , is given by (3.60) and the

nonperturbative part, VIR=nonpert
ring , is given by adding up the

ring contribution (3.53) and (3.59) from the first and second
regimes of the LLL, respectively. It is given by

V
IR=nonpert
ring ¼ �mTeB

4�2

�
Li2

�
�M2

�

m2

�
1� 5

3
C1ðm�;�Þ

��

� Li2

�
�M2

�

m2

��
: (3.62)

Here, we have replaced AT
2 �m2A3 in (3.53) by its value

from (3.54). It is interesting to examine the behavior of the
ring potential in the high temperature limit. To do this we
use the asymptotic expansion of the dilogarithm

Li 2ð�xÞ !x!1 � �2

6
� 1

2
ðlnðxÞÞ2 þ 1

x
þO

�
1

x2

�
; (3.63)

and expand (3.62) in the orders of x � eB
m2 and then in the

orders of t � m� to get

VIR=nonpert
ring jðeB=m2Þ!1;m�!0

� � 35m4�ð3Þ
192�3�

�
1þ 2�

�

eB

m2
ln

�
2�

�

eB

m2

��
ðm�Þ

þO
�

m4

ðeBÞ2 ; ðm�Þ2
�
; (3.64)

where C1ðt; �Þ ¼ 7t2�ð3Þ
8�2 þOðt4Þ is also used. Together

with the perturbative contribution to the effective potential,
(3.60), the most dominant part of the ring potential in the
limit eB

m2 ! 1 is given by

V
IR limit=strong
ring ��35m4�ð3Þ

192�3�

�
1þ 2�

�

eB

m2
ln

�
2�

�

eB

m2

��
ðm�Þ

þ�TeB
ffiffiffiffiffiffiffiffiffi
2eB

p

8�3=2
þO

�
m4

ðeBÞ2 ;�
2; ðm�Þ2

�
:

(3.65)

The same result will arise when we keep eB
m2 in (3.62) fixed

and after replacing m ! t
� expand the resulting expression

in the orders of t. This means that the two limits eB ! 1,
m� ! 0, and m� ! 0 and eB ! 1 yield the same result.

C. Ring potential of QED in the LLL in the static limit:
A comparison with the IR limit

Let us now compare the above results in the IR limit
(k0 ! 0) with the ring potential in the static limit (k0 ! 0
and k ! 0). In this case, the ring potential (3.43) is only
determined by 
2ð0; 0Þ ¼ IT2 ð0; 0Þ

Vstatic limit
ring ¼ �T

2

Z d3k

ð2�Þ3 ln

�
1� 
2ð0; 0Þ

k23 þ k2
?

�

¼ � T

8�2

Z 1

0
dðk2

?Þ
Z 1

0
dk3 ln

�
1� IT2 ð0; 0Þ

k23 þ k2
?

�
:

(3.66)

As we have seen in the previous paragraphs, in the strong
magnetic field limit the integration over k3 must be sepa-
rated into a regime where k23 � m2 � eB and a regime

with m2 � k23 � eB. As for IT2 in the first regime k23 �
m2 � eB, it is given in (3.46) with AT

2 from (3.49)

IT2 ð0; 0Þjk23�m2�eB ¼ ��eB

2�

Z 1

�1
dv

X1
‘¼1

ð�1Þ‘ð‘�Þ2

�
Z 1

0

du

u2
e�um2�ð‘2=4uT2Þ

¼ AT
2 ¼ M2

�ð1� 2C1ðm�;�ÞÞ:
(3.67)

Note that the only difference between the static and the

previous IR limit is a factor e�ðk2
?=2eBÞ that appears in

IT2 ð0;k � 0Þ in (3.46). This factor vanishes in the static
limit where we take the limit k0 ! 0 and k ! 0. In the
second regime m2 � k23 � eB, IT2 ð0;k � 0Þ is given in

(3.55) with BT
2 from (3.56). In the static limit for k ! 0, it

is, however, given by

IT2 ð0; 0Þjm2�k2
3
�eB ¼ �lim

"!0

�eB

2�

Z 1

�1
dv

X1
‘¼1

ð�1Þ‘ð‘�Þ2

�
Z 1

0

du

u2
e�u"�ð‘2=4uT2Þ; (3.68)

where " is an IR cutoff. Using now the definition of the
Bessel function (3.8), we get
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IT2 ð0; 0Þjm2�k23�eB ¼ �lim
"!0

2M2
�

X1
‘¼1

ð�1Þ‘ð‘ ffiffiffi
"

p
�ÞK1ð‘

ffiffiffi
"

p
�Þ ¼ M2

�: (3.69)

Here, we have used (3.33) and also the fact that C1ð
ffiffiffi
"

p
; �Þ from (3.34) vanishes for " ! 0. Plugging now (3.67) and (3.69)

in (3.66), the ring potential in the static limit and in the presence of the strong magnetic field is given by

V
static limit=strong
ring ¼ � T

8�2

Z 1

0
dðk2

?Þ
�Z m

0
dk3 ln

�
1� IT2 ð0; 0Þjk23�m2�eB

k23 þ k2
?

�
þ

Z 1

m
dk3 ln

�
1� IT2 ð0; 0Þjm2�k2

3
�eB

k23 þ k2
?

��

¼ � T

8�2

Z 1

0
dðk2

?Þ
�Z m

0
dk3 ln

�
1�M2

�ð1� 2C1ðm�;�ÞÞ
k23 þ k2

?

�
þ

Z 1

m
dk3 ln

�
1� M2

�

k23 þ k2
?

��
: (3.70)

Following now the same steps as in the previous paragraph,
the ring potential in the static limit can be decomposed into
a perturbative and a nonperturbative part

Vstatic limit=strong
ring ¼ Vstatic=pert

ring þ Vstatic=nonpert
ring

þ cutoff dependent terms: (3.71)

The perturbative part is given, as in the previous case, by

the substitution z ¼ k2
?

eB . It reads

V
static=pert
ring ¼ TeB

ffiffiffiffiffiffi
eB

p
8�

Z �

0
dz

� ffiffiffi
z

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z� 2�

�

s �

¼ �TeB
ffiffiffiffiffiffi
eB

p
4�

ffiffiffiffi
�

p
þOð�2Þ: (3.72)

Here, we have first expanded the integrand in the orders of
� and then performed the integration over z. Comparing to
the perturbative part in the IR limit (3.60), Vstatic=pert

ring di-
verges for � ! 1. This is due to the lack of a factor e�z=2

in the second term of the integrand. This factor arises only
in the IR limit where k � 0 and damps the integral. The
perturbative part (3.60) in the IR approximation remains,
therefore, convergent and yields a finite contribution to the
perturbative loop potential.

As for the nonperturbative part of Vstatic=strong
ring (3.71), it is

given by

Vstatic=nonpert
ring ¼ mT

8�2

�
ðm2 �M2

�Þ ln
�
1þ 2M2

�C1

m2 �M2
�

�

� 2C1M
2
�

�
þ cutoff dependent terms:

(3.73)

In the high temperature expansion m� ! 0, the most
dominant term of the potential (3.73) for eB

m2 ! 1 is given

by

V
static=nonpert
ring jm�!0;ðeB=m2Þ!1

¼ 49m4ð�ð3ÞÞ2
256�6

�
1þ 2�

�

eB

m2

�
ðm�Þ3 þO

�
m4

ðeBÞ2 ; ðm�Þ4
�
:

(3.74)

The same result will arise if we expand (3.73) first in the
orders of eB

m2 ! 1 for fixed m� and then take the limit

m� ! 0. Together with the perturbative contribution to the
effective potential, (3.72), the most dominant part of the
ring potential in the limit eB

m2 ! 1 is given by

Vstatic limit=strong
ring � 49m4ð�ð3ÞÞ2

256�6

�
1þ 2�

�

eB

m2

�
ðm�Þ3

þ cutoff dependent terms: (3.75)

This result can be compared with (3.65) where, in the order
m�, a novel term proportional to 2

�
eB
m2 lnð2�� eB

m2Þ appears.
D. A second possibility to determine the ring potential

in the static limit: The strong limit

In III C, we have determined the ring potential in the
static limit using I2 from (3.40), where we have first taken
the limit eB ! 1. This means that a transition to the LLL
has occurred before the ring potential is calculated. Once
we are in the LLL, it is necessary to distinguish between
two different dynamical regimes in the LLL: k23 � m2 �
eB andm2 � k23 � eB, and separate, consequently, the k3
integration interval k3 2 ½0;1½ into two parts, k3 2 ½0; m�
and k3 2 ½m;1�. As we have seen in (3.70) the integrands
are also different in these two dynamical regimes.
Mathematically, in the LLL, the three-dimensional inte-
gration over k ¼ ðk1; k2; k3Þ in (3.66) and (3.70) is sepa-
rated into two integrals over k3 and a symmetric integral
over the k1 � k2 plane, which is perpendicular to the
direction of the external magnetic field.18 Physically, this
can be viewed as a consequence of the dimensional reduc-
tion which is one of the well-known properties of the LLL
dynamics [20].
In this section, we will point out that a second approach

is also possible to determine the static ring potential in the
limit eB ! 1. In this approach, one starts directly from the
ring potential (3.13) and takes the limit eB ! 1 after-

18In other words, the integrations over k ¼ ðk1; k2; k3Þ in (3.66)
and (3.70) are to be performed over a cylinder with the basis in
the k1 � k2 plane and the height in the k3 direction.
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ward.19 Doing this, one arrives at

Vstrong limit
ring ¼ T

12�
ð�00ð0; 0ÞÞ3=2

¼ T

12�
ðIT2 ð0; 0ÞÞ3=2

!eB!1 T

12�
½M2

�ð1� 2C1ðm�;�ÞÞ�3=2; (3.76)

where �00ð0; 0Þ ¼ ��44ð0; 0Þ ¼ IT2 ð0; 0Þ from (2.33) and

IT2 ð0; 0Þ ¼ AT
2 ¼ �2M2

�

X1
‘¼1

ð�1Þ‘ð‘m�ÞK1ð‘m�Þ

¼ M2
�ð1� 2C1ðm�;�ÞÞ;

from (3.47) are used. In the next section, the ring potential
(3.62), (3.73), and (3.76), will be used to study the dynami-
cal chiral symmetry breaking of QED in the LLL.

IV. DYNAMICAL CHIRAL SYMMETRY
BREAKING OF QED IN THE LLL

For a given one-loop effective potential Vð1Þ, the gap
equation is given by [see Appendix B for the derivation of
the gap equation at T ¼ 0 and Appendix C for a general-
ization to the T � 0 case]

@Vð1Þðm; eB;TÞ
@h �c c i ¼ Gm; (4.1)

where G is an appropriate coupling andm is the dynamical

mass.20 Using the identity h �c c i � @Vð1Þ
@m , the above equa-

tion is given by

@Vð1Þðm; eB;TÞ
@m

¼ Gm
@2Vð1Þðm; eB;TÞ

@m2
: (4.2)

In this section, we will use (4.2) to determine the dynami-
cal mass and critical temperature of the dynamical chiral
symmetry breaking of QED at finite temperature and in the
presence of a strong magnetic field. To determine the gap
equation of this theory, the ring improved effective poten-
tial including the one-loop and the ring contributions will
be considered. To fix our notations and at the same time to
check our procedure, we will first determine in Sec. IVA,
the dynamical mass mðTÞ and the critical temperature Tc

arising from (3.39), the one-loop effective potential of the
theory.21 In the strong magnetic field limit eB � m2 and in
the high temperature limit m� ! 0, our results indeed
coincide with the results from [30,41].22

In the rest of this section, we will examine the possible
effects of the ring contribution to the ring improved (one-
loop) effective potential on the dynamical mass and critical
temperature of QED at finite temperature and in the LLL.
To this purpose, we will use the ring potentials in the IR,
static, and strong magnetic field limits that are calculated in
the previous sections. As it is mentioned before, the ring
potential arises only in the finite temperature field theory
and reflects the infrared behavior of the theory at T � 0
[see Sec. I A]. Its contribution to the one-loop effective
potential has various effects. In [6], for instance, the phase
transition of a simple scalar field theory is considered using
the ring improved effective potential, including the one-
loop and the ring contributions. It is shown that the addi-
tion of the ring to the one-loop effective potential has
indeed two effects: First, in the ring contributions there
are terms that cancel certain imaginary terms arising from
the one-loop effective potential, and second, the order of
the phase transition changes from second to first order. The
same effect happens also in [7], where, in particular, it is
shown that after adding the ring contribution to the one-
loop effective potential of the electroweak SM, the critical
temperature of electroweak symmetry breaking decreases
from its value arising from the one-loop effective potential
of the theory. It is the purpose of this section to show that
the critical temperature of the dynamical chiral symmetry
breaking of QED at finite temperature and in the LLL
approximation is indeed affected by the contribution
from the ring potential. To show this, we will consider in
Sec. IVB the ring potential in the improved IR limit,
(3.62), and calculate the dynamical mass and the critical
temperature in the strong magnetic field limit eB � m2

19Note that mathematically in (3.13), there is no difference
between k3 and k? ¼ ðk1; k2Þ integration. Both the integrand
and the integration interval are spherically symmetric over a
three-sphere, once we introduce a sharp momentum cutoff � to
calculate the integral.
20In this section, we will omit the subscript dyn in mdyn from
Appendices A–C.

21Note that (3.39) is determined using the worldline formalism
[34], which is supposed to lead to the same one-loop effective
potential arising from the well-known Schwinger proper-time
formalism [20,21,27]. For the exact definition of the one-loop
effective potential in the LLL approximation see Appendix A.
22In [41] the dynamical mass and the critical temperature of an
effective Nambu-Jona-Lasinio model at finite temperature are
determined using the one-loop effective potential of the theory in
the presence of an external chromomagnetic field. In [30], the
same quantities are determined by solving the SD equation of
QED in the presence of a strong magnetic field using a ladder
approximation. The common result in these two papers is the
well-known relation Tð1Þ

c ¼ Cmð1ÞðT ¼ 0Þ, where Tð1Þ
c is the

critical temperature arising from the one-loop effective poten-
tial/solution of the SD equation in the ladder approximation and
mð1ÞðT ¼ 0Þ is the corresponding dynamical mass at zero tem-
perature, and C is a numerical factor. This relation seems to be
model independent. In this section, using the one-loop effective
potential of QED in the presence of the strong magnetic field,
(3.39), and following the procedure described in Sec. IVA, we
arrive at the same result Tð1Þ

c � mð1ÞðT ¼ 0Þ [see (4.11)].
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and high temperature limit m� ! 0. Then, in Secs. IVC
and IVD, the ring potential in the static limit, (3.73), and
the strong limit, (3.76), will be considered separately and
the corresponding dynamical mass and critical temperature
will be determined. Whereas adding the ring potential in
the improved IR and strong limits to the one-loop effective
potential decreases the critical temperature arising from
the one-loop effective potential, the ring potential in the

static limit does not change Tð1Þ
c . In Sec. IVE, we will

finally consider the ratio Tð1Þ
c =T c, where T c is the ring

improved critical temperature arising from the ring im-
proved effective potential including the one-loop and the
ring potential. Further, we will define an efficiency factor
� ¼ 1� u�1. In this way we will be able to compare
numerically the effect of the ring potential in the IR limit
with the effect of the ring potential in the strong limit in

changing Tð1Þ
c . As it turns out, compared to the strong limit,

the IR limit is more efficient in decreasing the critical
temperature arising from the one-loop effective potential.
This is indeed a promising result in view of the baryo-
genesis problem in the electroweak SM, when the ring
potential in the improved IR limit is considered to calculate
the critical temperature of the electroweak SM in the
presence of the strong magnetic field.23

A. Dynamical mass and critical temperature arising
from QED one-loop effective potential

Let us start from QED one-loop effective potential

Vð1Þ=strongðm; eB; �; TÞ in the strong magnetic field limit
(3.39). It consists of a temperature dependent and a tem-
perature independent part. Whereas the temperature de-
pendent part is renormalization free, the temperature
independent part depends explicitly on a sharp momentum
cutoff �.24 In the strong magnetic field limit, where QED
dynamics is described by an effective field theory in the

LLL, the momentum cutoff � can be replaced by �B �ffiffiffiffiffiffi
eB

p
. In this section, using (3.39) with � ! �B, we will

determine the dynamical mass and the critical temperature
of the dynamical chiral phase transition arising from the
QED one-loop effective potential. The results will then be
compared with the corresponding results in [30,41]. We
will show that in the strong magnetic field limit,m2 � eB,
and in the high temperature limit, m� ! 0, our results
coincide with the results from [30,41].

To start, let us replace the potential V in (4.2) by (3.39)
which is given by

Vð1Þ=strongðm; eB;TÞ ¼ � eB

8�2

�
m2�

�
�1;

m2

�2
B

�

þ 8m

�

X1
n¼1

ð�1Þn
n

K�1ðnm�Þ
�
:

We arrive first at

@Vð1Þ=strong

@m
�Gm

@2Vð1Þ=strong

@m2

¼ eBm

4�2

�
ð1�GÞ�

�
0;
m2

�2
B

�
þ 2G�

�
1;
m2

�2
B

�

þ 4ð1�GÞ X1
n¼0

ð�1ÞnK0ðnm�Þ

þ 4G
X1
n¼1

ð�1Þnðnm�ÞK1ðnm�Þ
�
¼ 0: (4.3)

The above equation will be simplified as follows. First, we
take the high temperature limitm� ! 0 in the temperature
dependent part of (4.3) which is given in the third and
fourth lines of the above expression. Using (3.31) and
(3.33), it turns out that the term proportional to
ðnm�ÞK1ðnm�Þ behaves as � Oð1Þ, whereas the term
proportional to K0ðnm�Þ is proportional to � lnðm�Þ.
Keeping only the logarithmic divergent terms in the limit
m� ! 0, the term proportional to ðnm�ÞK1ðnm�Þ can
therefore be neglected in this limit. Next, in the tempera-
ture independent part of (4.3) which is given in the first line
of the above expression, we take the strong magnetic field

limit, z � m2

eB � 1. Using the relation

�ð0; zÞ!z!0 � �� lnz; and �ð1; zÞ!z!0
1;

where � is the Euler-Mascheroni constant, we arrive, there-
fore, at the gap equation

ln
m

�B

¼ ��

2
þ G

1�G
þ 2

X1
n¼1

ð�1ÞnK0ðnm�Þ; (4.4)

where m � mðG;TÞ is the temperature dependent dynami-
cal mass, which is given by

mðG;TÞ ¼ �B exp

�
��

2
þ G

1�G

þ 2
X1
n¼1

ð�1ÞnK0ðnm�Þ
�
: (4.5)

At T ¼ 0 we have

mðG0;T ¼ 0Þ ¼ �B exp

�
��

2
þ G0

1�G0

�
: (4.6)

This is a general structure for the dynamical mass as a
function of the effective coupling G0 at zero temperature

23In [8,9] the standard electroweak symmetry breaking is
considered in the presence of a strong hypermagnetic field. To
determine the ring potential in the strong magnetic field limit,
first the ring integral is calculated and then the eB ! 1 limit is
taken, as in (3.76). Our calculation shows that the results in [8,9]
may be improved, if in place of the strong limit, the improved IR
limit is used [42].
24The temperature independent part of the one-loop effective
potential is also called ’’the renormalized effective potential’’
[33].
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(see Appendices B and C for an exact definition of G0 at
zero temperature as well asG at finite temperature). As it is

shown in (B5), in the lowest order of � correction, Gð1Þ
0

receives contributions from diagrams shown in Fig. 2 of the
order � (only the T ¼ 0 part of these diagrams are relevant

for Gð1Þ
0 ). In higher orders of � expansion G0 receives

contributions from the temperature independents parts of
all diagrams shown in Fig. 1 and (1.7) (ring diagrams) at
zero temperature.

As we have mentioned in Sec. II A, the dynamically
generated fermion mass in the lowest order of � correction
at zero temperature is calculated in [20,30] in the ladder
LLL approximation.25 It is given by (2.16). Comparing to
the exact result, mðG0; T ¼ 0Þ from (4.6), this first correc-

tion to the dynamical mass can be indicated as: mð1Þ
dyn �

mð1ÞðGð1Þ
0 ;T ¼ 0Þ. As it is shown in Appendix B, the result

from (4.6) is indeed comparable with the dynamical mass

mð1ÞðGð1Þ
0 ;T ¼ 0Þ (2.16), provided Gð1Þ

0 , in the lowest order

of � correction, is fixed as in (B12), i.e., by Gð1Þ
0 ¼ 1=ð1�ffiffiffi

�
�

p Þ � 1þ ffiffiffi
�
�

p
. Plugging this result in (4.6), we get

mð1ÞðGð1Þ
0 ;T ¼ 0Þ ¼ Cm�B exp

�
�

ffiffiffiffi
�

�

r �
;

with Cm ¼ e��=2 ¼ 0:749 306:

(4.7)

Next, let us determine the critical temperature of chiral
symmetry breaking of QED in the LLL approximation. To
do this we use the gap Eq. (4.4), and replace [see (3.31)]

X1
n¼1

ð�1ÞnK0ðnm�Þ ! 1

2

�
�þ ln

m�

4�

�
þ C0ðm�;�Þ:

The critical temperature arising from the one-loop effec-
tive potential (3.39), TcðG;TÞ, can now be determined from
the condition mðTcÞ ¼ 0. It is given as a function of G by
[see Appendix C for an exact definition of G]

TcðG;TÞ ¼ �B exp

�
�

2
þ G

1�G
þ 2 ln2

�
: (4.8)

Here, we have used the expansion of C0ðt; �Þ

C0ðt; �Þ ¼ ln2� 7t2�ð3Þ
16�2

þOðt4Þ; (4.9)

at t ¼ 0. The critical temperature as it is given in (4.8)
includes all orders of � correction through the definition of
G from (C6). All diagrams contributing to G are to be
considered at finite temperature. In the lowest order of �

correction, Gð1Þ receives contributions from diagrams
shown in Fig. 2 of order �. This fact allows us to compare

(4.8) in the lowest order of � correction, i.e., Tð1Þ
c , with the

critical temperature arising from the SD equation including
the contributions from the same two diagrams in Fig. 2,

that are relevant in determining mð1ÞðGð1Þ
0 ;T ¼ 0Þ [30].

Doing this Gð1Þ is again fixed to be Gð1Þ ¼ Gð1Þ
0 ¼ 1=ð1�ffiffiffi

�
�

p Þ � 1þ ffiffiffi
�
�

p
. Plugging this expression in (4.8), we arrive

at

Tð1Þ
c ðGð1Þ;TÞ ¼ CT�B exp

�
�

ffiffiffiffi
�

�

r �
;

with CT ¼ ��1e�=2 ¼ 0:156 277;

(4.10)

which is comparable with the result from [30]. Comparing

to mð1Þð0Þ from (4.7), we arrive at the well-known relation

Tð1Þ
c ¼ ��1e�mð1Þð0Þ ¼ 0:424 806mð1Þð0Þ: (4.11)

The same relation arises in [41] between the critical tem-

perature Tð1Þ
c and the dynamical mass mð1ÞðT ¼ 0Þ in the

effective Nambu-Jona-Lasinio model in the presence of a
constant chromomagnetic field. Note that in higher orders
of � correction, the critical temperature TcðG;TÞ receives
contributions from the higher-loop diagrams through the
definition of G from (C6).
Next, we will determine the gap equation, the dynamical

mass, and the critical temperature for the ring improved
effective potential including the one-loop effective poten-
tial (3.39) and the ring potential in the IR, static, and strong
limits [see (3.62), (3.73), and (3.76), respectively].

(a) (b)

FIG. 2. Two-loop diagrams contributing to �2 in (A1). In the
ladder LLL approximation, solid lines correspond to the free
fermion propagator in the LLL with m ¼ mdyn from (2.6)–(2.8),

and wavy lines correspond to the free photon propagator Dð0Þ
��

from (2.17). Diagram (a) is the same diagram appearing in (1.7)
and can be regarded as the diagram corresponding to N ¼ 1 in
the ring potential (3.9) at zero and nonzero temperature. It is

denoted by �R1 in (A6) and as
P

n�R
ðnÞ
1 in (C4).

25Note that in [30], apart from the ladder approximation, a
constant mass approximation is also used. In this approximation,
one neglects the fermion mass structure in the solution of the
corresponding SD equation [43]. In other words the momentum
dependence of self-energy in the gap equation is neglected in this
approximation. As it is shown in [44], this turns out to be a
reliable approximation in QED (with only one coupling con-
stant) in the presence of a strong magnetic field limit, although
there is no general principle that guarantees the validity of this
approximation for the whole range of physical coupling. In other
theories with more than one coupling constant, due to the rich-
ness of the parameter space, the reliability of a constant mass
approximation is questionable and should be investigated in
detail (see Elizalde et al. in [43]).
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B. Full dynamical mass and the critical temperature of
QED in the IR limit

1. Full dynamical mass in the IR limit

As in (4.2), the general structure of the gap equation
corresponding to the ring improved effective potential (see

Appendix C for more details), ~V � Vð1Þ þ Vring, is given

by

@ ~V

@ ~m
¼ ~G ~m

@2 ~V

@ ~m2
: (4.12)

In ~V, Vð1Þ and Vring denote the one-loop effective potential

and the ring contribution to the effective potential, respec-
tively. Here, comparing to the effective couplingG in (4.1),

the modified coupling ~G is given by26

G ¼ ~G� 1

~m

@Vringð ~m; eB;TÞ
@h �c c i :

Using the gap equation arising from the ring improved
effective potential, including the one-loop effective poten-
tial and the ring potential and following the same proce-
dure as was described in Sec. IVA, the full dynamical mass

~mð ~G; TÞ reads
~mð ~G;TÞ ¼mð ~G;TÞ

� exp

�
þ 2�2

eB ~mð1� ~GÞ
�
@Vring

@ ~m
� ~G ~m

@2Vring

@ ~m2

��
:

(4.13)

On the r.h.s. of this expression mðG;TÞ is given by the
dynamical mass arising from the one-loop effective poten-

tial (4.5) with G replaced by ~G. Here, to determine the full
dynamical mass in the IR limit, ~mIR, we will replace Vring

on the r.h.s. of (4.13) by the ring contribution of the LLL
ring potential in the IR limit (3.62),27 and arrive first at

2�2

eB ~mð1� ~GÞ
�@VIR=nonpert

ring

@ ~m
� ~G ~m

@2VIR=nonpert
ring

@ ~m2

�

¼ þ 2

~m�ð1� ~GÞ
� ~Gz2

ð1þ z2Þ �
~Gz2ð6� 10C1 þ 5 ~m�C0

1Þ2
36ð1� 5

3C1Þð1þ z2ð1� 5
3C1ÞÞ

þ ð1� ~GÞ
2

�
lnð1þ z2Þ � ln

�
1þ z2

�
1� 5

3
C1

���

þ 1

4

�
Li2ð�z2Þ � Li2

�
�z2

�
1� 5

3
C1

���
� 5 ~m�ðð1� 2 ~GÞð3� 5C1ÞC0

1 � 5 ~G ~m�C02
1 � ~G ~m�ð3� 5C1ÞC00

1 Þ
36ð1� 5

3C1Þ2

� ln

�
1þ z2

�
1� 5

3
C1

���
: (4.14)

Here, ~G ¼ ~GIR and ~m ¼ ~mIR.28 Further, z2ð ~mÞ � M2
�

~m2 ¼
2�
�

eB
~m2 . Using (4.9), the expansion of C0ðt; �Þ in the orders

of t � ~m�, and the relations

C1ðt; �Þ ¼ 7t2�ð3Þ
4�2

þOðt3Þ;

C0
1ðt; �Þ ¼

7t�ð3Þ
4�2

þOðt3Þ;

C00
1 ðt; �Þ ¼

7�ð3Þ
4�2

� 279t2�ð5Þ
16�4

þOðt3Þ;

(4.15)

the full dynamical mass in the IR limit is given by

~m IRð ~GIR;TÞ � mð ~GIR;TÞð1þ ð ~mIR�ÞEIRÞ; (4.16)

where

EIR � þ 35�ð3Þ
24�2

ð1� 5 ~GIRÞ
ð1� ~GIRÞ

�
�
1� 3

2

ð1� 2 ~GIRÞ
ð1� 5 ~GIRÞ ln

�
2�

�

eB

~m2
IR

��
þO

�
~m4
IR

ðeBÞ2
�
:

(4.17)

2. Full critical temperature in the IR limit

Using the gap equation (4.12) with the ring improved
effective potential ~V, and following the same procedure
described in Sec. IVA to determine the critical temperature
arising from the one-loop effective potential, we arrive first
at the following general expression for the full critical
temperature

~Tcð ~G;TÞ ¼ Tcð ~G;TÞ exp
�
þ 2�2

eB ~mð1� ~GÞ
�

�
@Vring

@ ~m
� ~G ~m

@2Vring

@ ~m2

���������� ~mðTcÞ¼0
: (4.18)

Here, Tcð ~G;TÞ is given in (4.8) by replacing G by ~G. To
determine the full critical temperature ~Tc of the dynamical

26See Appendix C 3 for an exact definition of ~G.
27The perturbative part of the ring potential in the IR limit from
(3.60) is mass independent and has therefore no contribution to
the gap equation, the dynamical mass, and the critical tempera-
ture. We will therefore omit this mass independent contribution
in this section.
28See (C14) in Appendix C for the difference between ~G and
~GIR.
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chiral symmetry restoration in the IR limit, we have to
recalculate the ring potential, (3.43), for a fixed, tempera-
ture independent mass cutoff m0.

29 To do this we separate
the integral over k3 2 ½0;1� in (3.43) into two regimes
½0; m0� and ½m0;1� and follow the same procedure which
led from (3.43) to (3.62). We arrive at the relevant non-
pertubative part of the ring potential in the IR limit

VIR
ringðeB;m0;TÞ ¼ �m0TeB

4�2

�
�
Li2

�
�M2

�

m2
0

�
1� 5

3
C1ðm�;�Þ

��

� Li2

�
�M2

�

m2
0

��
: (4.19)

Replacing (4.19) on the r.h.s. of (4.18), we get first

2�2

eB ~mð1� ~GÞ
�@VIR

ring

@ ~m
� ~G ~m

@2VIR
ring

@ ~m2

�

¼ � 5m0�

6ð1� 5
3C1Þð1� ~GÞ

�
5

3
C02
1
~G

�
z20

ð1þ z20ð1� 5
3C1ÞÞ

� lnð1þ z20ð1� 5
3C1ÞÞ

1� 5
3C1

�

þ
��

C0
1

~m�
� C00

1
~G

�
ln

�
1þ z20

�
1� 5

3
C1

����
: (4.20)

Here, ~G ¼ ~GIR and ~m ¼ ~mIR. Further, z20 � z2ðm0Þ ¼
M2

�

m2
0

¼ 2�
�

eB
m2

0

. Using now the definitionmðTcÞ ¼ 0 and using

(4.9) as well as (4.15) to determine Ci, i ¼ 0, 1, C0
1, and C

00
1

at m ¼ 0, we arrive at the full critical temperature of QED
in the IR limit

~TIR
c ð ~GIR;TÞ ¼ Tcð ~GIR;TÞ

� exp

�
� 35�ð3Þ

24�2
ðm0

~�IR
c Þ lnð1þ z20Þ

�
:

(4.21)

Here, Tð1Þ
c is given in (4.8) and ~�IR

c � 1= ~TIR
c .

C. Full dynamical mass and critical temperature of
QED in the static limit

In Secs. III C and III D, we have presented two different
approaches leading to the ring contribution to the effective
potential in the static limit ðk0;kÞ ¼ ð0; 0Þ for a strong
magnetic field. First, using the method presented in III C,
we arrived at the nonperturbative part of the ring potential
(3.73). In a second approach in III D, we started from the
ring potential (3.13) and took the limit eB ! 1. This leads
to the ring potential (3.76). Although it seems that these
two approaches are physically equivalent, according to our
arguments in Sec. III D, they are indeed different.30 In this
section, we will determine the full dynamical mass and
critical temperature using the ring potential in the static
limit. In the next section, these quantities are calculated
using the ring potential in the strong limit.31

1. Full dynamical mass in the static limit

Let us consider first the nonperturbative part of the LLL
ring potential in the static limit (3.73)

V
st=nonpert
ring ¼ mT

8�2

�
ðm2 �M2

�Þ ln
�
1þ 2M2

�C1

m2 �M2
�

�

� 2C1M
2
�

�
; (4.22)

where we have omitted the irrelevant mass independent

terms. The full dynamical mass ~mð ~G;TÞ, arising from the
one-loop and ring contributions to the effective potential is
given in (4.13), where Vring is to be replaced by (4.22).

Doing this, we arrive first at

2�2

eB ~mð1� ~GÞ
�@Vstatic=nonpert

ring

@ ~m
� ~G ~m

@2Vstatic=nonpert
ring

@ ~m2

�

¼ � ~mT

4eBð1� ~GÞ
�
2z2½ ~m�ðð1� 2 ~GÞC0

1 � ~m� ~GC00
1 Þ þ C1� � 4z4ð2C1 � ~m�ð1� z2ÞC0

1Þ2
ð1� z2Þð1� z2 þ 2z2C1Þ2

� ½3ð1� 2 ~GÞ � z2� ln
�
1þ 2z2C1

1� z2

�
þ 2z2½2ð1� 3 ~GÞC1 � ~m�ð1� z2Þðð1� 2 ~GÞC0

1 � ~m� ~GC00
1 Þ�

ð1� z2 þ 2z2C1Þ
�
: (4.23)

29m0 plays the role of an IR regulator.
30In the first approach, we take first the limit eB ! 1 and then calculate the ring integral. In the second approach, however, we
calculate first the ring integral and then take the limit eB ! 1. As it turns out, the limit eB ! 1 and the integration over k3 in the LLL
are not commutative. Physically, this can viewed as a direct consequence of dimensional reduction, which is one of the well-known
properties of the LLL dynamics.
31Although we believe that in the LLL the first approach (static limit) is more reliable, we will present the results corresponding to the
strong limit in Sec. IVD. This is just to compare them with the result from IR limit in Sect. IVB.
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Here, ~G ¼ ~Gst and ~m ¼ ~mst. Using (4.9) and (4.15) to
expand Ci, i ¼ 0, 1, as well as C0

1 and C00
1 in the order of

m�, the full dynamical mass in the static limit is given by

~m stð ~Gst;TÞ � mð ~Gst;TÞð1þ ð ~mst�Þ3EstÞ; (4.24)

where mð1ÞðTÞ is given in (4.5) and

E st � þ 245�ð�ð3ÞÞ2
64�5

ð1� 4 ~GstÞ
ð1� ~GstÞ þO

�ð ~mstÞ4
ðeBÞ2

�
: (4.25)

This result can be compared with (4.16) and (4.17) from the
improved IR limit. Whereas ~mIR in (4.17) consists of a ln�
in the leading order of eB ! 1 and m� ! 0 limits, ~mst in
(4.24) and (4.25) has no contribution in the order ~m�.
Thus, in the high temperature limit m� ! 0, we have
practically ~mst � ~m. As it will be shown below, the ring
potential in the static limit does not change the full critical
temperature in this limit too.

2. Full critical temperature in the static limit

Here, as in the previous part, the critical temperature of
the dynamical chiral symmetry breaking can be deter-
mined only after recalculating the ring potential (3.66)
for a fixed, temperature independent mass cutoff m0. We
separate the interval ½0;1� of the integration over k3 in
(3.66) into two intervals ½0; m0� and ½m0;1� and follow the
same steps leading from (3.66) to (3.73)as the relevant
nonperturbative part of the ring potential. We arrive there-
fore at

Vstatic limit
ring ðeB;m0;TÞ ¼ m3

0Tð1� z20Þ
8�2

ln

�
1þ 2C1z

2
0

1� z20

�

�m3
0z

2
0TC1

4�2
: (4.26)

Replacing (4.26) on the r.h.s. of (4.18) we get first

2�2

eB ~mð1� ~GÞ
�@Vst

ring

@ ~m
� ~G ~m

@2Vst
ring

@ ~m2

�

¼ � M2
�m0�

2eBð1� ~GÞ
��

C0
1

~m�
� C00

1
~G

��
1� ð1� z20Þ

ð1� z20ð1� 2C1ÞÞ
�

� 2 ~GC02
1 z

2
0

� ð1� z20Þ
ð1� z20ð1� 2C1ÞÞ2

��
: (4.27)

Here, ~G ¼ ~Gst and ~m ¼ ~mst. Using now the definition
mðTcÞ ¼ 0 and (4.9) as well as (4.15) to determine Ci, i ¼
0, 1, C0

1, and C00
1 at m ¼ 0, it turns out that the full critical

temperature of QED receives no contribution from the ring
potential in the static limit, i.e.,

~T st
c ð ~Gst;TÞ ¼ Tcð ~Gst;TÞ; (4.28)

where Tcð ~Gst;TÞ can be read from (4.8) by replacing G

with ~Gst.

D. Full dynamical mass and the critical temperature of
QED in the strong limit

1. Full dynamical mass in the strong limit

To determine the full dynamical mass in the strong limit,
we use (4.13) and replace Vring by (3.76)

V
strong
ring ¼ T

12�
½M2

�ð1� 2C1ðm�;�ÞÞ�3=2: (4.29)

Here, we have neglected the cutoff dependent terms. The
full dynamical mass ~mðTÞ, arising from the one-loop ef-
fective potential (3.39) and the ring contribution to the
effective potential is given in (4.13), where Vring is to be

replaced by (4.29). Doing this, we arrive first at

2�2

eB ~mð1� ~GÞ
�@Vstrong

ring

@ ~m
� ~G ~m

@2Vstrong
ring

@ ~m2

�

¼ �M3
���ð1� 2C1Þ1=2
2eBð1� ~GÞ

�
C0
1

~m�
� C00

1
~Gþ

~GC2
1

ð1� 2C1Þ
�
:

(4.30)

Here, ~G ¼ ~Gstr and ~m ¼ ~mstr. In the high temperature limit
m� ! 0 and for the strong magnetic field, the dynamical
mass behaves as

~m strðTÞ � mð1þ ð ~mstr�ÞEstrongÞ; with

Estrong � � 7�ð3Þ�
2�2

�
2�

�

eB

ð ~mstrÞ2
�
1=2

:
(4.31)

This result is in contrast to EIR from (4.16) and (4.17),
where a novel term proportional to ln� appears.
Additionally, it is in contrast to (4.24) and (4.25), where
the first nonvanishing coefficient in them� ! 0 expansion
is of the order ðm�Þ3 and can be practically neglected at
very high temperatures.

2. Full critical temperature in the strong limit

To determine the critical temperature corresponding to
the ring improved effective potential, (4.18) has to be used.
Replacing (4.29) in the exponent of (4.18), we arrive, as it
is shown above, at (4.30).32 Setting m ¼ 0 in (4.30) and
using (4.9) as well as (4.15), we arrive at

~Tstrong
c ð ~Gstrong;TÞ ¼ Tcð ~Gstrong;TÞ

� exp

�
� 7�ð3Þ�

4�2
ðm0

~�
strong
c Þz0

�
:

(4.32)

Here, the temperature independent mass m0 is introduced
by hand. This enables us to compare this result with the

32Note that here, in contrast to the previous two cases, no
constant mass cutoff m0 is necessary to calculate the ring
potential leading to the critical temperature.
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previous results from the IR limit (4.21) and the static limit
(4.28).

In the next section, we study the effect of the ring
contribution to the effective potential in decreasing the
critical temperature arising only from the one-loop effec-
tive potential.33 To this purpose, we compare numerically
the critical temperature of the chiral symmetry restoration
in three different approximations: Tc from (4.21) in the IR
limit, Tc from (4.28) in the static limit and finally Tc from
(4.32) in the strong limit.

E. Numerical analysis of Tc

In Secs. (IV B)–(IV D), we have determined the ring
improved critical temperature of QED in the LLL using the
ring potential from the IR, static, and strong limits. They
are given in (4.21), (4.28), and (4.32), respectively. Note
that, according to our arguments in Appendix C, these
results are indeed exact (full in quantum corrections).
They include all quantum correction through the coupling
~GfIR;st;strongg [see (C13) for a mathematically rigorous defi-

nition of ~G@, @ ¼ fIR; st; strongg]. In this section, we will
study the effect of the ring diagram in decreasing the
critical temperature that arises from the lowest order of �

correction (ladder approximation), i.e., Tð1Þ
c ðGð1Þ;TÞ from

(4.10).34 To do this let us consider Tcð ~GfIR;st;strongg;TÞ, the
factors behind the ring contribution on the r.h.s. of (4.21),

(4.28), and (4.32). Now consider Tcð ~GfIR;st;strongg;TÞ, only in
the lowest order of � correction and denote the resulting

expression by Tcð ~Gð1Þ=fIR;st;strongg;TÞ. Next, use the follow-
ing approximation, which is only reliable in the high
temperature limit m� ! 0 and for eB � m2,35

Tcð ~Gð1Þ=IR;TÞ � Tcð ~Gð1Þ=st;TÞ � Tcð ~Gð1Þ=strong;TÞ
� Tð1Þ

c ðGð1Þ;TÞ: (4.33)

Using this approximation, we will be now able to compare
the effect of the ring potential in different limits, the IR, the

static, and the strong limits in decreasing Tð1Þ
c . To do this,

let us first define the ring improved critical temperature by

T c � Tð1Þ
c exp

�
�m0


T c

�
: (4.34)

The argument in the exponent is the nonperturbative con-
tribution from the ring potential. Comparing (4.34) with
the critical temperature arising from the ring potential in
the IR, static, and strong limits from (4.21), (4.28), and
(4.32), respectively, and using the approximation (4.33),
we get


IR ¼ 35�ð3Þ
24�2

lnð1þ z20Þ; (4.35)

for the IR limit,


static ¼ 0; (4.36)

for the static limit, and


strong ¼ 7�ð3Þ�
4�2

z0; (4.37)

for the strong limit. Then, solving (4.34) as a function of
T c, the ring improved critical temperature T c in all three
cases can be determined as a function of the one-loop

critical temperature in the ladder approximation, Tð1Þ
c , the

temperature independent mass, m0, and the parameter 
.
Doing this, we get

T c ¼ � m0


Wð� m0

Tð1Þ
c


Þ ; (4.38)

where the Lambert-function WðzÞ, is a function that sat-
isfies [45]

WðzÞeWðzÞ ¼ z:

To have a quantitative first estimate on the effect of the ring
potential on decreasing the one-loop critical temperature

Tð1Þ
c , we define further

u � Tð1Þ
c

T c

¼ Wð�a
Þ
�a


with a � m0

Tð1Þ
c

; (4.39)

using (4.38) and the efficiency factor

� � 1� 1

u
: (4.40)

In Table I the values of u and� for various choices of eB 2
½10�8; 1� GeV2 and for fixed a ¼ 2 are listed.
The results are also drawn in the graphs of Fig. 3. Here,

eB is in GeV2 (1 GeV ¼ 109 eV) which is equivalent to

33As it is known from [7], the ring contribution to the effective
potential of the SM without the magnetic field decreases the
critical temperature arising from the one-loop effective potential.
The same phenomenon is shown to be true in the presence of a
magnetic field [8,9] in the static limit ðk0;kÞ ¼ ð0; 0Þ.
34Ring contributions lead to the nonperturbative correction to
the critical temperature Tð1Þ

c .
35Note that according to our descriptions in Appendix C 4, for
different approaches to the ring potential @ ¼ fIR; static; strongg,
the quantity 	T@

c ¼ T@
c ð ~Gð1Þ=@;TÞ � Tð1Þ

c ðGð1Þ;TÞ vanishes only
in the high temperature and strong magnetic field limits, (m� !
0) and (eB � m2), respectively. Thus the above approximation
(4.33) is only reliable in these limits. To check this for the IR
limit, for instance, let us consider Gð1Þ and ~Gð1Þ=IR from (C6) and
(C17), respectively. In the lowest order of � correction Gð1Þ �
~Gð1Þ=IR ¼ � 1

mdyn�
@

@h �c c i ð�Rðn¼0Þ
N¼1 Þ. This is a term that arises

from the two-loop diagram (a) in Fig. 2 (N ¼ 1) and includes
only zero Matsubara frequencies (n ¼ 0). As it turns out, in the
limit of eB � m2, this term leads to a term proportional to
ðm�Þ�1. Adding this contribution to the gap equation arising
from the one-loop effective potential (4.3), this contribution can
indeed be neglected in the high temperature limit m� ! 0
compared to the logarithmic divergent term included in
K0ðnm�Þ in the m� ! 0 limit [see our descriptions in the
paragraph following (4.3)].
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B ¼ 1:691� 1020 in Gauß.36 The above range corre-
sponds, therefore, to B 2 ½1:7� 1012; 1:7� 1020� Gau�,
which is phenomenologically relevant in the astrophysics
of neutron stars, where it is believed that the strength of the
magnetic field is of the order 1013–1015 Gau�. It is also
relevant in the heavy ion experiments, for example, in
RHIC, where it is believed that the magnetic field in the

center of the gold-gold collision is 102–103 MeV2 corre-
sponding to B� 1016–1017 Gau� (Here, the center of mass
energy is �200 GeV per nucleon pair) [26]. Defining
further m0 as the zero temperature mass, i.e., m0 � mð0Þ,
the above choices for a are indeed justified by the fact that
the dynamical mass at zero temperature mð0Þ is propor-

tional to the critical temperature Tð1Þ
c with a proportionality

factor a ¼ Oð1Þ [30,41]. To determine z20 ¼ 2�
�

eB
m2

0

, we

have fixed � ¼ 1
137 and chosen m0 ¼ 0:5 MeV, the elec-

tron mass at zero temperature.
As it can be seen in Table I, for every given value of m0

and a, there is always a certain value of ðeBÞ?, for which u
is imaginary and � cannot be defined. This is due to the
fact that the Lambert W function, WðzÞ in (4.39), has a
branch cut discontinuity in the complex z plane running
from z ¼ �1 to z ¼ �1=e. Here, e is the Euler number.
Using (4.39), this threshold can be determined for the IR

TABLE I. The values of u and the efficiency factor � for different values of eB and different limits (IR, static, and strong limits).

Here a, the proportionality factor between m0 and Tð1Þ
c , is chosen to be a ¼ 2. The efficiency factor � increases by increasing the

strength of the magnetic field. For a given value of eB, the IR limit is more efficient in decreasing the critical temperature from its value

arising from the one-loop effective potential Tð1Þ
c .

eB in GeV2 B in Gauß uIR �IR in % ustatic �static in % ustrong �strong in %

10�8 1:7� 1012 1.00007 0.01% 1. 0% 1.00004 0.004%

10�7 1:7� 1013 1.00066 0.07% 1. 0% 1.0001 0.01%

10�6 1:7� 1014 1.01 0.65% 1. 0% 1.0004 0.04%

10�5 1:7� 1015 1.07 6.26% 1. 0% 1.0013 0.13%

3:2� 10�5 5:3� 1015 1.22 18.19% 1. 0% 1.0024 0.24%

5:0� 10�5 8:5� 1015 1.38 27.60% 1. 0% 1.0030 0.30%

7:9� 10�5 1:3� 1016 1.77 43.39% 1. 0% 1.0038 0.38%

8:9� 10�5 1:5� 1016 2.07 50.17% 1. 0% 1.0040 0.40%

9:8� 10�5 1:6� 1016 2.67 62.62% 1. 0% 1.0042 0.42%

10�4 1:7� 1016 2:65� 0:45i - 1. 0% 1.0043 0.43%

10�1 1:7� 1019 �0:14� 0:7i - 1. 0% 1.1699 14.53%

1 1:7� 1020 �0:16� 0:5i - 1. 0% 2:13� 1:24i -
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FIG. 3. (a) Fixing a ¼ 2, the ratio u � Tð1Þ
c =T c for the IR and the strong limit is considered versus log10eB (eB in GeV2). The effect

of the ring potential in the strong limit in decreasing Tð1Þ
c is minimal comparing to the effect of the ring potential in the IR limit. (b) For

�, the efficiency factor, log10� is considered versus log10eB for the improved IR and the strong limit. The efficiency factor � increases
with increasing eB. (c) The difference of the efficiency factor between the improved IR and strong limits, 	� � �IR � �strong, is
considered versus log10eB. 	� increases with increasing eB. The maximum 	�? is� 62% for B � 1:6� 1016 Gau�. Note that u for
the static limit is ustatic ¼ 1.

36In this paper, we have worked in Planck units, where @ ¼
c ¼ 1. In these units eB has the dimension of energy, i.e., Joule
(J) and will be denoted eB as ½eB�J. To get a relation between
½eB�J and B in Gauß, we have to convert eB into SI units, where
we get eB ¼ ½eB�J

@c2
. Having in mind that @ ¼ 1:054� 10�34 Js,

e ¼ 1:602� 10�19 C, and c ¼ 2:998� 108 m=s, we get B ¼
6:589� 1035ð½eB�JÞ2 Tesla ¼ 6:589� 1039ð½eB�JÞ2 in Gauß,
providing ½eB�J is in Joule. Choosing, for instance, eB ¼
1 GeV2, which is equivalent to ð½eB�JÞ2 ¼ 2:567� 10�20 J2,
we get B ¼ 1:691� 1020 in Gauß. Here, we have used 1 J ¼
6:241� 109 GeV.
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and the strong limits as

ðeBÞIR limit
? ¼ �m2

0

2�

�
�1þ exp

�
24�2

35ae�ð3Þ
��
;

ðeBÞstrong limit
? ¼ 8�5m2

0

49a2e2�3ð�ð3ÞÞ2 :
(4.41)

For a ¼ 2 and m0 ¼ 0:5 MeV, we get therefore

ðeBÞIR limit
? ¼ 9:77� 10�5 GeV2 or

BIR limit
? ¼ 1:65� 1016 Gau�:

(4.42)

The corresponding efficiency factor �IR
? � �IRððeBÞ?Þ ¼

63:21%. This means a variation from the corresponding
efficiency factor in the strong limit 	� � �IR � �strong ¼
62:79%. We conclude, therefore, that the IR limit, com-
pared to the static and the strong limits, leads to the
maximum efficiency factor � for a given value of eB
(see Fig. 3).

V. CONCLUSION

In the first part of this paper, using the vacuum polar-
ization tensor ���ðk0;kÞ in the IR limit k0 ! 0, the gen-

eral structure of the plasmon (ring) potential of QED is
determined in a constant magnetic field B. Then, taking the
limit of weak and strong magnetic fields, the ring improved
effective potential including the one-loop and the ring
potentials is determined. In the weak magnetic field limit,

the effective potential consists of a T4�5=2 term, in addition

to the expected T4�3=2 contribution arising in the static
(k0 ! 0, k ! 0) limit. The additional corrections are po-
tentially relevant for the study of electroweak phase tran-
sition in the presence of a weak magnetic field [12]. Note

that similar terms of the order �3=2
s and �5=2

s appear also in
the QCD effective potential at finite temperature and with-
out a magnetic field. They are calculated using the hard
thermal loop expansion [17] (see also [18] and the refer-
ences therein). It would be interesting to develop the same
program for QED and QCD at finite temperature and in the
presence of weak/strong magnetic fields.

Next, the QED ring potential is calculated in the strong
magnetic field limit. In this limit, QED dynamics is domi-
nated by the LLL and the chiral symmetry of the theory is
broken as a result of a dynamically generated fermion
mass. To study this well-known phenomenon of magnetic
catalysis for QED at finite temperature in the LLL, the ring
improved effective potential of the theory is determined in
the strong magnetic field limit. In particular, the ring
potential is determined in the IR, k0 ! 0, as well as the
static limit, (k0 ! 0, k ! 0). In the IR limit, it includes a
novel term consisting of a dilogarithmic function
ðeBÞLi2ð� 2�

�
eB
m2Þ. A similar term in the form g4s lngs ap-

pears also in the QCD ring potential at finite temperature
and the zero magnetic field [19]. As for the static limit in

the presence of a strong magnetic field, there are indeed
two different approaches leading to different ring poten-
tials in this limit [see III C and III D for more details. Here,
these two limits are indicated by static and strong limits].
Physically, the difference between these two results lies in
the dimensional reduction as one of the consequences of
the LLL dynamics.
In the second part of this paper, using the ring improved

effective potential in the IR, static, and strong limits, the
gap equation, the dynamical mass, and the critical tem-
perature Tc of the chiral symmetry restoration of QED are
determined. Note that the critical temperature could only
be determined by choosing a temperature independent IR
cutoff m0 in the integrals leading to the ring potential.
Concerning the two different ring potentials in the static
and strong limits, we note that according to our arguments
in Secs. III C and III D, once we consider QED in the LLL
at finite temperature, we have to determine the full dy-
namical mass and critical temperature using the ring po-
tential in the static limit. We have presented, nevertheless,
the results arising from the ring potential in the strong limit
in Sec. IVD and compared the results from Secs. (IV B)–
(IV D) in Sec. IVE.
To have an estimate on the efficiency of the IR limit in

decreasing the critical temperature from its value arising

from the one-loop effective potential, Tð1Þ
c , we have nu-

merically determined u ¼ Tð1Þ
c =T c for various magnetic

fields and as a function of m0. Here, T c is the ring
improved critical temperature defined in (4.33). Further,
to compare the IR limit with the static and strong limits, we
have defined an efficiency factor � ¼ 1� u�1 for the IR,
static, and strong limits. As it turns out, for a given value of
eB, the IR limit, compared to the static and the strong
limits, is more efficient in decreasing the critical tempera-

ture Tð1Þ
c . The maximum efficiency factor in the IR limit is

�IR � 63% for B � 1:6� 1016 Gau�.
Apart from its importance in the framework of magnetic

catalysis, the above conclusion can be regarded as a prom-
ising result concerning the problem of the EWPT in the
electroweak SM in the presence of a strong hypermagnetic
field. There, one is looking for a possibility to decrease the
critical temperature of the EWPT in order to improve the

baryogenesis condition hvi
Tc

> 1–1:5, where hvi is the Higgs
mass [10,12]. Note that the existence of the baryon number
violation in the SM is realized by means of its vacuum
structure through sphaleron mediated processes. The spha-
leron transition between different topological distinct va-
cua is associated to a baryon number violation and can
either induce or wash out a baryon asymmetry. In order to
satisfy the baryon asymmetry condition during the baryo-
genesis process the rate of baryon violating transitions
between different topological vacua must be suppressed
in the broken phase, when the Universe returns to thermal
equilibrium. In other words, the sphaleron transition must
be slower than the expansion of the Universe and this in
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turn translates into the condition hvi
Tc

> 1–1:5 [12]. Using

the improved ring potential in the IR limit in determining
the critical temperature of the EWPT in the SM may
improve the results of [8,9,12,13] as one of the possible
solutions of the baryon asymmetry problem within the
minimal SM [42].
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APPENDIX A: RING IMPROVED EFFECTIVE
POTENTIAL OF QED IN THE LLL AT T ¼ 0

In this appendix, using the composite effective action
based on the Cornwall-Jackiw-Tomboulis approach [32],
we will define the ring improved effective potential of
QED at zero temperature in the LLL approximation. This
fixes, at the same time, the notations used in the following
appendices, where the gap equation of QED at zero and
nonzero temperature are derived. The latter is used in
Sec. IV to determine the dynamical mass and critical
temperature of QED in the LLL approximation.

Let us start with the composite effective action of QED
(see [32,46] for more details)

�½G;D��� ¼ �iTr lnG�1 � iTrðS�1GÞ þ �2ðG;D��Þ
þF ½D���: (A1)

Here, S is the free propagator of massless fermions.
Further, G is the full fermion and D�� is the full photon

propagator. As it is described in [32], the composite effec-
tive action (A1) includes the sum of two- and higher-loop
two-particle irreducible (2PI) diagrams. Note that �2 on the
r.h.s. of (A1) includes the contribution of diagrams which
are two-particle irreducible with respect to fermion lines
only. In the two-loop order, the diagrams included in �2 are
shown in Fig. 2.

Replacing the full fermion propagator G in (A1) by the
fermion propagator �SLLL of massive fermions in the LLL
approximation with mass m ¼ mdyn, from (2.6)–(2.9), and,

the full photon propagator, D�� by the free photon propa-

gator Dð0Þ
�� from (2.17), the composite effective action

��LLL � �½ �SLLL; Dð0Þ
��� in the ladder LLL approximation

reads37

��LLL ’ �~Vðmdyn; eB;T ¼ 0Þ � iTrðS�1
LLL

�SLLLÞ
þ ~�ð1Þ

2 ½ �SLLL; Dð0Þ
��� þF ½Dð0Þ

���: (A2)

Here, the free fermion propagator of massless fermions
SLLL is given in (2.6)–(2.8) with m ¼ 0. In (A2), the ring
improved (one-loop) effective potential ~Vðmdyn; eB;T ¼
0Þ in the ladder LLL approximation is introduced.
It is defined by the one-loop effective potential

Vð1Þðmdyn; eB;T ¼ 0Þ and the ring potential

Vringðmdyn; eB;T ¼ 0Þ,
~Vðmdyn:; eB;T ¼ 0Þ � Vð1Þðmdyn; eB;T ¼ 0Þ

þ Vringðmdyn; eB;T ¼ 0Þ: (A3)

The one-loop effective potential in the LLL approximation
is defined by the first term in (A1) withG replaced by �SLLL,

Vð1Þðmdyn; eB;T ¼ 0Þ � �i��1 Tr ln �S�1
LLL: (A4)

In a constant magnetic field, (A4) is calculated in [33]
using the method of worldline formalism. In the LLL
approximation, it is given by

Vð1Þðm; eB;T ¼ 0Þ ¼ � eB

8�2

Z 1

1=�2

ds

s2
e�sm2

¼ � eBm2

8�2
�

�
�1;

m2

�2

�

!�!1 eBm2

8�2

�
ln
m2

�2
þOðm0Þ

�
; (A5)

[see also (3.38) for T � 0 case]. Here m is a general

nonvanishing mass. On the last line of (A5), �ð0; zÞ !z!0

� lnz� � is used. Here, � is the Euler-Mascheroni
constant.
As for the ring potential, Vring from (A3), it receives

contribution from the ring diagrams in (1.7) and Fig. 1.
These diagrams are already included in �2 from (A1).38 At
zero temperature, the ring potential of QED is given by

Vringðmdyn; eB;T ¼ 0Þ

� ��1
X1
N¼1

�NRN½ �SLLL; Dð0Þ
���

¼ � 1

2

Z d4k

ð2�Þ4
X1
N¼1

ð�1ÞN
N

½Dð0Þ
��ðkÞ���ðkÞ�N;

¼ � 1

2

Z d4k

ð2�Þ4 lnð1þDð0Þ
��ðkÞ���ðkÞÞ: (A6)

37In the definition of effective potential we have used � ¼ �V,
where � is the effective action, V is the effective potential, and�
is the four-dimensional space-time volume.

38Using the fermion gap equation 
�½ �SLLL;SLLL;Dð0Þ�

 �SLLL

¼ 0, it can be

shown that �NRN½ �SLLL; Dð0Þ
��� from (A6) leads, up to a constant

factor, to the same �N correction in the resulting SD equation,

that arises from 
�½GLLL ;SLLL ;DLLL�

GLLL

¼ 0 where the full photon

propagator D�� is used. In this sense, ring diagrams are already
included in a composite effective action, where instead of free
photon propagators, as in (A6), full photon propagators are used.
Other �N corrections arising from quantum corrections of the
full fermion propagator in the LLL, GLLL, are included in

��ð1Þ
2 in

(A2).
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[see also (3.9) for the T � 0 case]. Here, RN denotes the
contribution of the Nth diagram in the ring series in Fig. 1,
where N vacuum polarization tensors��� are inserted in a

photon loop. Note that in the LLL ladder (rainbow) ap-
proximation, the vacuum polarization tensor in (A6) is
determined using the free propagator �SLLL of massive
fermions in the LLL approximation with mass m ¼ mdyn

from (2.6)–(2.8).39 As we have mentioned above, ring
diagrams are already included in �2 from (A1). Thus
~�ð1Þ
2 in (A2) is defined by

~�ð1Þ
2 ½ �SLLL; Dð0Þ

��� � �2½ �SLLL; Dð0Þ
���

��Vringðmdyn; eB;T ¼ 0Þ: (A7)

Here, the subscript 1 in ~�ð1Þ
2 means that infinitely many

ring diagrams are subtracted from �2 in (A1).

APPENDIX B: THE GAP EQUATION OF QED AT
ZERO TEMPERATURE

1. The gap equation from the one-loop effective
potential at zero temperature

In the LLL, once the dynamical mass is generated via
the mechanism of magnetic catalysis, the chiral symmetry
of the originally massless QED breaks spontaneously. This
leads to the formation of a chiral condensate h �c c i. For a
nonvanishing fermion mass, m, the nonvanishing chiral
condensate can be most easily calculated by (see [27]
and Eq. (19) in [20] for more details)

h �c c i � �lim
x!y

trð �SLLLðx; y;mÞÞ ’ eBm

4�2

�
ln
m2

�2
þOðm0Þ

�
:

(B1)

Here, � is a large momentum cutoff. Comparing now the
value of the chiral condensate (B1) with the one-loop
effective potential (A5), we arrive at40

h �c c i ¼ @Vð1Þðm; eB;T ¼ 0Þ
@m

: (B2)

The above chiral condensate can be used to determine the
gap equation of QED from composite effective action. To
do this in the LLL approximation, let us consider the

composite effective action ��LLL from (A2) and use the

fermion gap equation 
 ��LLL=
 �SLLL ¼ 0, to arrive at

@ ��LLL

@h �c c i ¼
Z

d4x tr

�

 ��LLL


 �SLLLðxÞ
@ �SLLLðxÞ
@h �c c i

�
¼ 0: (B3)

Using now the gap equation @ ��LLL

@h �c c i ¼ 0 and the definition of

��LLL from (A2), we arrive at the gap equation of QED
arising from the one-loop effective potential (A4) [see also
(4.1)]

@Vð1Þðmdyn; eB;T ¼ 0Þ
@h �c c i � G0mdyn: (B4)

Here, the ‘‘effective coupling’’ of QED in the LLL domi-
nant regime, G0, is defined by

G0 � � 1

mdyn�

@

@h �c c i ð�iTrðS�1
LLL

�SLLLÞ

þ �R1½ �SLLL; Dð0Þ
��� þ ~�ð1Þ

2 ½ �SLLL; Dð0Þ
��� þF ½Dð0Þ

���Þ;
(B5)

where the definition of ��LLL from (A2) is used. In general
G0 is a complicated function of � (see below). It can be
determined order by order in � by computing the r.h.s. of
(B5). In the lowest order of � correction, for instance, it
receives contributions from �R1 [diagram (a) in Fig. 2].
To determine G0 in the lowest order of � correction, let us
first give the gap equation (B4) in a more appropriate form
by making use of the identity

@

@h �c c i ¼
�
@2Vð1Þ

@m2
dyn

��1 @

@mdyn

; (B6)

that can be derived from @Vð1Þ
@m ¼ h �c c i. As for the gap

equation (B4), it is given by

@Vð1ÞðeB;mdyn;T ¼ 0Þ
@mdyn

¼G0mdyn

@2Vð1ÞðeB;mdyn;T ¼ 0Þ
@m2

:

(B7)

The above gap equation (B7) can now be used to ‘‘fix’’ G0

order by order as a function in �. To show this, let us
consider the one-loop effective potential from (A5) with
m ¼ mdyn and plug it into (B7). We arrive at

ð1�G0Þ�
�
0;
m2

dyn

�2

�
þ 2G0�

�
1;
m2

dyn

�2

�
¼ 0: (B8)

Setting � ¼ �B � ffiffiffiffiffiffi
eB

p
and assuming that mdyn � �B,

the � functions on the r.h.s. of (B8) can be expanded as

�ð0; zÞ!z!0 � �� lnz; and �ð1; zÞ!z!0
1: (B9)

Plugging these relations into (B8), we arrive at the follow-
ing gap equation

ln
mdyn

�B

¼ ��

2
þ G0

1�G0

; (B10)

that leads to

39The ring potential Vring from (A6) for the zero external
magnetic field and in the static limit, i.e., for ��� � ���ðk ¼
0Þ in (A6), is previously calculated by Akhiezer et al. [47]. It
leads apart from cutoff dependent terms to nonperturbative
�2 ln� corrections to the effective action.
40Relation (B2) can generally be derived for eB ¼ 0 using the
definition of the one-loop effective action [41].
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mdynðG0;T ¼ 0Þ ¼ C�B exp

�
G0

1�G0

�
; with C¼ e��=2:

(B11)

This is indeed a general structure of the dynamical mass as
a function of G0. The latter includes all higher-loop con-
tributions through its definition from (B5). To determine
G0 in the lowest order of � correction, we use the result of

the dynamical massmð1Þ
dyn in the ladder approximation from

(2.16) and compare (B11) with it. Thus, the ‘‘effective
coupling of QED in the LLL’’, G0, can be ‘‘fixed’’ in this
lowest order of � correction as

Gð1Þ
0 � 1

1� ffiffiffi
�
�

p � 1þ
ffiffiffiffi
�

�

r
: (B12)

Here, similar to mð1Þ
dyn the superscript (1) denotes that Gð1Þ

0

receives contributions from two-loop diagrams of the order
� that are shown in Fig. 2. These diagrams contribute to the
composite effective action as it can be checked from (A2).
It would be interesting to perform a bottom-up calculation

of Gð1Þ
0 from its definition (B5) in the one-loop level.

Calculating the expression in the parentheses in (B5) up
to order � and replacingmdynðG0;T ¼ 0Þ from (B11) leads

to a nontrivial equation for G0, whose solution leads to an

expression for G0 that can be compared with Gð1Þ
0 from

(B12) in the lowest order of � correction.41

2. The gap equation from the ring improved effective
potential at zero temperature

To determine explicitly the contribution of ring dia-
grams to the dynamical mass and critical temperature, we
will use in Sec. IVB an alternative gap equation. It arises
from the ring improved effective potential ~VðeB;mdyn;T �

0Þ at finite temperature. At zero temperature, the ring
improved effective potential is given in (A3). The corre-
sponding ring improved gap equation reads then

@ ~Vðmdyn; eB;T ¼ 0Þ
@h �c c i ¼ ~G0mdyn; (B13)

where

~G 0 ¼ � 1

mdyn�

@

@h �c c i ð�iTrðS�1
LLL

�SLLLÞ

þ ~�ð1Þ
2 ½ �SLLL; Dð0Þ

��� þF ½Dð0Þ
���Þ: (B14)

Comparing to G0 from (B5) we get

G0 ¼ ~G0 � 1

mdyn

@Vringðmdyn; eB;T ¼ 0Þ
@h �c c i ; (B15)

where Vring is given in (A6).

APPENDIX C: THE GAP EQUATION OF QED AT
FINITE TEMPERATURE

1. Composite effective action in the LLL approximation
at finite temperature

Let us consider the ladder LLL composite effective
action (A2) at zero temperature. Its generalization to finite

temperature is indicated as ��T � �LLL½ �SLLL; Dð0Þ
��;T�,

which is defined as

�� T
LLL � ��1 ~Vðmdyn; eB;TÞ � iTrðS�1

LLL
�SLLLÞT

þ ~�ð1Þ
2 ½ �SLLL; Dð0Þ

��;T� þF ½Dð0Þ
��;T�: (C1)

Here, mdyn � mdynðTÞ is the temperature dependent dy-

namical mass. The ring improved effective potential,
~Vðmdyn; eB;TÞ, is defined as

~Vðmdyn; eB;TÞ ¼ Vð1Þðmdyn; eB;TÞ þ Vringðmdyn; eB;TÞ:
(C2)

Here, the one-loop effective potential at finite temperature
is defined as in (A4) by

Vð1Þðmdyn; eB;TÞ � �i��1 Tr ln �STLLL; (C3)

and the ring potential is given as in (A6) by

Vringðmdyn; eB;TÞ �
X1

n¼�1
�NRðnÞ

N ½ �SLLL; Dð0Þ
��;T�: (C4)

In (C3) the bare fermion propagator in the LLL is the
generalization of (2.6)–(2.8) to finite temperature. For a
general nonzero mass, the free fermion propagator at finite
temperature including the contribution of all Landau levels
is given by (2.19). The ring potential in (C4) is defined in
(3.9), where the contribution of all diagrams in Fig. 1 and
the diagram in (1.7) at finite temperature42 is taken into
account. As it can be seen in (3.9) to determine the ring
potential, we have to add over all n 2� �1;1½ that label
the Matsubara frequencies !n. The summation over n in
(C4) denotes the same summation over n of Matsubara

frequencies and RðnÞ
N is the corresponding contribution of

the Nth ring diagram to the nth Matsubara frequency.

2. The gap equation from the one-loop effective
potential at finite temperature

In Sec. IVA, the gap equation arising from the one-loop
effective potential is used to determine the dynamical mass
(4.5) and the critical temperature (4.8) at finite temperature.
The gap equation from the one-loop effective potential at
finite T is given by

@Vð1Þðmdyn; eB;TÞ
@h �c c i � Gmdyn: (C5)

41This calculation will be performed elsewhere [48]. 42This is the N ¼ 1 term in (3.9).
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It is indeed a generalization of (B4) and (B5) to finite
temperature. Using the ladder LLL composite effective
action (C1), the effective coupling of QED in the LLL
dominant regime at finite temperature,G, can be defined as

G � � 1

mdyn

@

@h �c c i ð�iTrðS�1
LLL

�SLLLÞT

þ �R1½ �SLLL; Dð0Þ
��;T� þ ~�ð1Þ

2 ½ �SLLL; Dð0Þ
��;T�

þF ½Dð0Þ
��;T�Þ: (C6)

In Sec. IVA, we will use this gap equation to determine the

dynamical mass mð1Þ
dynðG;TÞ and the critical temperature

Tð1Þ
c ðGÞ in the lowest order of � correction in the ladder

(rainbow) LLL approximation [see (4.5) for the dynamical
mass and (4.10) for the critical temperature].

3. The gap equation from the ring improved effective
potential at finite temperature

The gap equation arising from the ring improved effec-
tive potential at finite temperature can be given most easily
as a generalization of (B13) and (B14) to finite tempera-
ture. It is given by

@ ~Vðmdyn; eB;TÞ
@h �c c i ¼ ~Gmdyn; (C7)

where ~G is defined by

~G ¼ � 1

mdyn�

@

@h �c c i ð�iTrðS�1
LLL

�SLLLÞT

þ ~�ð1Þ
2 ½ �SLLL; Dð0Þ

��;T� þF ½Dð0Þ
��;T�Þ: (C8)

Comparing to G from (C6) we get

G ¼ ~G� 1

mdyn

@Vringðmdyn; eB;TÞ
@h �c c i : (C9)

4. Gap equations used in sections (IV B)–(IV D)

The general form of the gap equations (C7) and (C8) are
not exactly the gap equations that are used in Secs. (IV B)–
(IV D) to determine the full dynamical mass and critical
temperature of QED in the ladder LLL approximation.
There, we have used the ring potential in three different
approaches @ ¼ fIR; static; strongg. To give the general
definition of the gap equation corresponding to all these
three approaches, we will indicate the ring potential in the
@ approach by V@

ringðmdyn; eB;TÞ and use the separation

Vringðmdyn; eB;TÞ � V@
ringðmdyn; eB;TÞ

þ �V@
ringðmdyn; eB;TÞ: (C10)

In Secs. (IV B)–(IV D), wewill use the superscript @ ¼ IR,
@ ¼ static and @ ¼ strong, respectively. We define further
the ring improved effective potential corresponding to the
@ approach by the one-loop effective potential (C2) and the
ring potential in the @ approach

~V @ðmdyn; eB;TÞ ¼ Vð1Þðmdyn; eB;TÞ þ V@
ringðmdyn; eB;TÞ:

(C11)

The gap equation in the corresponding @ approach is,
therefore, given by

@ ~V@ðmdyn; eB;TÞ
@h �c c i ¼ ~G@mdyn; (C12)

where mdyn ¼ m@
dyn and the corresponding coupling, ~G@ is

given by

~G@ ¼ � 1

mdyn�

@

@h �c c i f�iTrðS�1
LLL

�SLLLÞT

þ��1 �V@
ringðmdyn; eB;TÞ þ ~�ð1Þ

2 ½ �SLLL; Dð0Þ
��;T�

þF ½Dð0Þ
��;T�g: (C13)

We have, therefore,

~G ¼ ~G@ � 1

mdyn

@V@
ringðmdyn; eB;TÞ

@h �c c i : (C14)

Let us finally give an example to clarify the above notation.
In Sec. IVB for instance, we have used the ring potential in
the IR limit. In particular, this is determined by n ¼ 0 in
(C4). Using the definitions

VIR
ringðmdyn; eB;TÞ � ��1

X1
N¼1

�NRðn¼0Þ
N ½ �SLLL; Dð0Þ

��;T�;

�VIR
ringðmdyn; eB;TÞ � ��1

X1
n¼�1
n�0

X
N¼1

�NRðnÞ
N ½ �SLLL; Dð0Þ

��;T�;

(C15)

to separate zero and nonzero Matsubara frequencies, the
gap equation in the IR approach is given by

@ ~VIRðmdyn; eB;TÞ
@h �c c i ¼ ~GIRmdyn; (C16)

where the corresponding coupling is given by

~GIR ¼ � 1

mdyn�

@

@h �c c i f�iTrðS�1
LLL

�SLLLÞT

þ��1 �VIR
ringðmdyn; eB;TÞ þ ~�ð1Þ

2 ½ �SLLL; Dð0Þ
��;T�

þF ½Dð0Þ
��;T�g: (C17)
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