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The four-dimensional model with topological mass generation that was found by Dvali, Jackiw, and Pi

has recently been generalized to any even number of dimensions (2n dimensions) in a nontrivial manner in

which a Stückelberg-type mass term is introduced [S. Deguchi and S. Hayakawa, Phys. Rev. D 77, 045003

(2008)]. The present paper deals with a self-contained model, called here a modified hybrid model,

proposed in this 2n-dimensional generalization and considers the canonical formalism for this model. For

the sake of convenience, the canonical formalism itself is studied for a model equivalent to the modified

hybrid model by following the recipe for treating constrained Hamiltonian systems. This formalism is

applied to the canonical quantization of the equivalent model in order to clarify observable and

unobservable particles in the model. The equivalent model (with a gauge-fixing term) is converted to

the modified hybrid model (with a corresponding gauge-fixing term) in a Becchi-Rouet-Stora-Tyutin-

invariant manner. Thereby it is shown that the Chern-Pontryagin density behaves as an observable massive

particle (or field). The topological mass generation is thus verified at the quantum-theoretical level.

DOI: 10.1103/PhysRevD.78.125014 PACS numbers: 11.10.Ef, 03.70.+k, 11.10.Kk

I. INTRODUCTION

Various mass-generation mechanisms have been studied
in classical and quantum field theories. Some of these
mechanisms can be described in topological terms, in
which topological entities play essential roles. For in-
stance, in the topologically massive gauge theory in three
dimensions [1], a Chern-Simons term included in the ac-
tion makes gauge fields massive. In the four-dimensional
analogue of this theory [2–4], a topological entity called
BF term plays a role of the Chern-Simons term in generat-
ing masses of gauge fields. The topologically massive
gauge theories thus describe mass-generation phenomena
of vector fields.

A four-dimensional model with mass generation that is
recently presented by Dvali, Jackiw, and Pi [5] is also
formulated in topological terms using topological entities:
Chern-Pontryagin density P and Chern-Simons current
C�, P ¼ @�C�. Dvali et al. found their model as a partial,

four-dimensional generalization of the (bosonized)
Schwinger model [6] reformulated in terms of P and C�

in two dimensions. Unlike the topologically massive gauge
theories, the Dvali-Jackiw-Pi (DJP) model describes mass
generation of a pseudoscalar degree of freedom. In addi-
tion, the DJP model needs the presence of the chiral
anomaly to generate a mass gap. Also, the action of the
DJP model contains higher dimensional terms with respect
to gauge fields. Therefore the DJP model is essentially
different from the topologically massive gauge theories,
although they share common topological terms.

Recently, the DJP model in four dimensions has been
generalized to any even number of dimensions (or simply
2n dimensions) [7]. There, it was demonstrated that the

topological mass generation studied by Dvali et al. is valid
in 2n dimensions with no essential changes. As in the four-
dimensional model, the presence of the chiral anomaly is
crucial to this mass-generation mechanism. In Ref. [7],
another 2n-dimensional model with topological mass gen-
eration was also proposed. In this model, a Stückelberg-
type mass term gives rise to mass generation of a pseudo-
scalar degree of freedom in a gauge invariant manner. In
addition, a hybrid of the 2n-dimensional models men-
tioned above was considered, in which generating a mass
is caused by both the Stückelberg-type mass term and the
presence of the chiral anomaly. Because the hybrid model
involves the Stückelberg-type model and the DJP model as
particular cases, it is sufficient to examine only the hybrid
model.
The hybrid model, as well as the DJP model, is, how-

ever, not self-contained in the sense that the presence of the
chiral anomaly is a priori assumed in the model without
specifying its origin. For this reason, it is difficult to
investigate definite properties of the hybrid model in its
present form. By making some modification of the hybrid
model, it becomes possible to derive the chiral anomaly
within the framework of the hybrid model, without setting
extra assumptions (see Sec. 5 of Ref. [7]). In this way, the
hybrid model is promoted to a self-contained model. The
modified model consists of a pseudoscalar field, �, and an
antisymmetric pseudotensor field, p��, together with the
topological entities P and C� in 2n dimensions. The
Lagrangian of this model is given in Eq. (2.7) below. It is
remarkable that the Yang-Mills fields constituting P and
C� appear in the equations of motion in the modified
hybrid model only through P and C�.
In this paper, we investigate particle contents of the

modified hybrid model, clarifying observable and unob-
servable particles. To this end, we consider the canonical*deguchi@phys.cst.nihon-u.ac.jp
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formalism of a model equivalent to the modified hybrid
model. The equivalent model is governed by a Lagrangian
that has the same form as the Lagrangian of the modified
hybrid model, but does not contain the constituent Yang-
Mills fields [see Eq. (2.12) below]. The Chern-Simons
current C� in the modified hybrid model can be treated
there as a fundamental field. For this reason, it is possible
to make the investigation using the equivalent model.

The equivalent model possesses an Abelian gauge sym-
metry with a tensorial gauge parameter, and hence it is
necessary to carry out gauge fixing for this symmetry to
study the quantum-mechanical properties of the model.
Although the gauge symmetry in question is Abelian, we
adopt the gauge-fixing procedure based on the Becchi-
Rouet-Stora-Tyutin (BRST) invariance principle (or sim-
ply BRST gauge-fixing procedure) [8,9]. The BRST in-
variance principle is useful not only for determining gauge-
fixing and Faddeev-Popov (FP) ghost terms but also for
converting the equivalent model into the modified hybrid
model in a BRST-invariant manner. In fact, the equivalent
model becomes the modified hybrid model by adding a
BRST-coboundary term to the Lagrangian of the equiva-
lent model.

After carrying out the gauge fixing in the equivalent
model, we consider the canonical formalism of this model
by following the recipe for treating constrained
Hamiltonian systems [10–12]. On detailed analysis of the
constraints in phase space, it is shown that the equivalent
model (with a gauge-fixing term), which originally con-
tains antisymmetric pseudotensor fields, can be described
only in terms of pseudoscalar fields supplemented with a
modified Poisson bracket. The canonical quantization of
the equivalent model is performed on the Hamiltonian
system consisting only of the pseudoscalar fields. These
fields are quantized with the canonical (anti-)commutation
relations based on the modified Poisson bracket. In accor-
dance with the BRST transformation rules of the pseudo-
scalar fields, each of the fields is classified into a BRST
singlet or quartet field, and only the BRST-singlet fields are
recognized to be genuinely physical in the sense of the
Kugo-Ojima criterion [9,13]. Noting the commutation re-
lations concerning the BRST-singlet fields, we see that the
only massive pseudoscalar field which can be observed
with finite probability is present in the equivalent model.
From the aspect of the modified hybrid model, the presence
of a massive pseudoscalar field is understood as a topo-
logical mass-generation phenomenon. In fact, the Chern-
Pontryagin density P is shown to behave as an observable
massive field.

This paper is organized as follows. Section II introduces
the topological entities and provides a brief review of the
modified hybrid model. The equivalent model is also pre-
sented there. Section III treats the gauge and BRST sym-
metries of the equivalent model. The BRST gauge-fixing
procedure is also considered after setting an appropriate

gauge-fixing condition. Section IV studies the canonical
formalism of the equivalent model by following the recipe
for treating constrained Hamiltonian systems. Section V
performs the canonical quantization of the equivalent
model by utilizing the results obtained in Sec. IV and
investigates particle contents of the model. Section VI
presents a BRST-invariant procedure for converting the
equivalent model into the modified hybrid model and
makes sure of the topological mass generation at the
quantum-theoretical level. Section VII is devoted to a
summary and discussion.

II. A 2n-DIMENSIONAL MODELWITH
TOPOLOGICAL MASS GENERATION AND ITS

EQUIVALENT MODEL

Let A� be a (Hermitian) Yang-Mills field on

2n-dimensional Minkowski space, M2n, with Cartesian
coordinates ðx�Þ. The field A� is assumed to take values

in a compact semisimple Lie algebra g, and hence A� can

be expanded as A� ¼ gAa
�Ta. Here, g is a coupling con-

stant with mass dimension (2� n), fTag are Hermitian
basis of g satisfying the commutation relations ½Ta; Tb� ¼
ifab

cTc and the normalization conditions TrðTaTbÞ ¼ �ab.

The Chern-Pontryagin density, P 2n, and the Chern-
Simons current, C�2n, on M2n are essential to the
2n-dimensional models with topological mass generation.
The Chern-Pontryagin density P 2n is defined by

P 2n � 1

2n
gnha1���an�

�1�2����2n�1�2nFa1
�1�2 � � �Fan

�2n�1�2n ;

(2.1)

where ha1���an � TrðTa1 � � �TanÞ, and Fa
�� is the field

strength of Aa
�: F

a
�� ¼ @�A

a
� � @�A

a
� þ gfbc

aAb
�A

c
�. The

Chern-Simons current C�2n is related to P 2n as follows:

P 2n ¼ @�C
�
2n: (2.2)

The existence of the Chern-Simons current is guaranteed
by Poincaré’s lemma.
Under the (infinitesimal) gauge transformation

�!A
a
� ¼ D�!

a; (2.3)

with D�!
a � @�!

a þ gfbc
aA�

b!c, P 2n remains invari-

ant, while C�2n transforms as

�!C�2n ¼ @�U
��
2n : (2.4)

Here,U��
2n is an antisymmetric tensor that is a polynomial

in ðAa
�; F

a
��;!

aÞ and linear in !a. The variation of C�2n is

found to be

�C�2n ¼ W��
2n;a�A

a
� þ @�V

��
2n ; (2.5)

where

SHINICHI DEGUCHI PHYSICAL REVIEW D 78, 125014 (2008)

125014-2



W��
2n;a �

n

2n�1
gnha1���an�1a�

�1�2����2n�3�2n�2��

� Fa1
�1�2 � � �Fan�1

�2n�3�2n�2 ; (2.6)

andV��
2n is an antisymmetric tensor that is a polynomial in

ðAa
�; F

a
��; �A

a
�Þ and linear in �Aa

�. [For further details of

Eqs. (2.4) and (2.5), see the Appendix of Ref. [7].]
The models with topological mass generation are con-

structed from the topological entities P 2n and C�2n and
some additional fields and currents [5,7]. Among these
models, the one that we have called the modified hybrid
model is self-contained in the sense that the chiral anomaly
is incorporated in the model. The modified hybrid model is
governed by the Lagrangian [7]

Ltop
2n ¼ 1

2P
2
2n � 1

2m
2ðC�2n � @�p

��ÞðC2n;� � @�p��Þ
�M�P 2n þ 1

2@��@
��; (2.7)

where m andM are constants with mass dimension, p�� is
an antisymmetric pseudotensor field, and � is a pseudo-
scalar field. [The Lagrangian (35) in Ref. [7] is reproduced

by the replacement M �
ffiffiffiffi
N

p
�, � � �0.] If m ¼ 0, Ltop

2n

reduces to the 2n-dimensional generalization of a

Lagrangian proposed by Dvali et al. [5]. If M ¼ 0, Ltop
2n

is identical to the Lagrangian of the Stückelberg-type
model accompanied by a massless pseudoscalar field �
[7]. The gauge transformation rules

�!p
�� ¼ U��

2n ; (2.8a)

�!� ¼ 0 (2.8b)

are imposed on p�� and � so that the Lagrangian Ltop
2n can

be gauge invariant. Using Eq. (2.5), variation of the action

Stop2n ¼ R
Ltop

2n dx with respect to Aa
� is readily calculated,

yielding the equation of motion

f@�ðP 2n �M�Þ þm2ðC2n;� � @�p��ÞgW ��
2n;a

�m2@�ðC2n;� � @�p��Þ�V
��
2n

�Aa
�

¼ 0: (2.9)

Variation of S2n with respect to p
�� and� yields the Euler-

Lagrange equations

@�ðC2n;� � @�p��Þ � @�ðC2n;� � @�p��Þ ¼ 0; (2.10a)

h�þMP 2n ¼ 0; (2.10b)

whereh � @�@
�. By virtue of Eq. (2.10a), the second line

of Eq. (2.9) vanishes. Also, we can strip away W ��
2n;a in

Eq. (2.9) using the identity W ��
2n;aF

a
�� ¼ 2�

�
�P 2n. As a

result, provided P 2n � 0, Eq. (2.9) reduces to

@�ðP 2n �M�Þ þm2ðC2n;� � @�p��Þ ¼ 0: (2.11)

Conversely, Eq. (2.9) can be reproduced from Eqs. (2.10a)
and (2.11). For this reason, it is concluded that Eq. (2.11) is
equivalent to Eq. (2.9) with the aid of Eq. (2.10a).

Now we consider the axial vector current defined by
J 5

� � @��. In terms of J 5
�, Eq. (2.10b) can be written as

@�J 5
� ¼ �MP 2n. This shows that the current J 5

� is not

conserved due to an anomalous divergence. (IfM ¼ 0, J 5
�

is conserved.) In this sense, the modified hybrid model
involves its own chiral anomaly without setting extra con-
ditions, and consequently is recognized as a self-contained
model with the chiral anomaly.
It should be noted that Eq. (2.11) follows immediately

from varying C�2n, rather than A
a
�, in the action S

top
2n . That is,

Eq. (2.11) can be derived from Stop2n without passing through

Eq. (2.9). In this simple way of deriving Eq. (2.11), C�2n is

treated as a fundamental field; it is not necessary to con-
sider the concrete form of C�2n written in terms of Aa

�. The

only relation crucial for the simple derivation is Eq. (2.2).
From this fact, we see that the modified hybrid model is
equivalent to the model governed by the Lagrangian

L2n ¼ 1
2ð@�K�Þ2 � 1

2m
2ðK� � @�p

��ÞðK� � @�p��Þ
�M�@�K

� þ 1
2@��@

��: (2.12)

Here, K� is understood as a fundamental pseudovector
field on M2n with no constituents such as Aa

�. If K
� is

identified with C�2n, Eq. (2.12) becomes Eq. (2.7) by means

of Eq. (2.2). The LagrangianL2n is left invariant under the
gauge transformation

��K
� ¼ @��

��; (2.13a)

��p
�� ¼ ���; (2.13b)

��� ¼ 0; (2.13c)

where ��� is a pseudotensorial gauge parameter with the
antisymmetric property ��� ¼ ����.
The Lagrangian L2n can be rewritten as

L 0
2n ¼ �1

2P
2 � 1

2m
2ðK� � @�p

��ÞðK� � @�p��Þ
� K�@�ðP�M�Þ þ 1

2@��@
�� (2.14)

up to a total derivative term. Here, P is an auxiliary
pseudoscalar field satisfying

��P ¼ 0: (2.15)

Under the gauge transformation ��, the Lagrangian L0
2n

remains invariant up to a total derivative. The equivalence
betweenL2n andL0

2n can be shown via the use of the field
equation

P ¼ @�K
� (2.16)

or via the path integration over P in the generating func-
tional with the Lagrangian L0

2n. [Equation (2.16) corre-
sponds to Eq. (2.2); if K� ¼ C�2n, it follows that P ¼ P 2n.]

CANONICAL FORMALISM FOR A 2n-DIMENSIONAL . . . PHYSICAL REVIEW D 78, 125014 (2008)

125014-3



III. BRST SYMMETRYAND A GAUGE-FIXING
TERM

In this section, we consider a gauge-fixing procedure
aiming at studying quantum-theoretical aspects of the
equivalent model governed by the Lagrangian L0

2n. For
the sake of convenience in later studies, we apply the
BRST gauge-fixing procedure [8,9] to the equivalent
model, although it is Abelian. To this end, we introduce
the FP ghost field C��, the FP antighost field �C��, and the
Nakanishi-Lautrup field B��, all of which are assumed to
be antisymmetric pseudotensor fields on M2n. It is also
assumed that C�� and �C�� are anticommutative fields,
while the other fields are commutative fields. The BRST
transformation rules of K� and p�� are defined by replac-
ing ��� in Eqs. (2.13) by C��, while � and P are assumed
to be BRST invariant in accordance with Eqs. (2.13c) and
(2.15):

�K� ¼ @�C
��; (3.1a)

�p�� ¼ C��; (3.1b)

�� ¼ 0; (3.1c)

�P ¼ 0: (3.1d)

The BRST transformation rules of C��, �C��, and B�� are
defined by

�C�� ¼ 0; (3.2a)

� �C�� ¼ iB��; (3.2b)

�B�� ¼ 0; (3.2c)

in such a way that the nilpotency property �2 ¼ 0 is valid
for all the fields.

Now we adopt the gauge-fixing (GF) condition K�� �
	B�� ¼ 0 in order that the gauge invariance of L0

2n (up to

a total derivative) can be broken. Here, K�� � @�K� �
@�K�, and 	 is a gauge parameter. In the BRST gauge-

fixing procedure, the condition K�� � 	B�� ¼ 0 is incor-

porated in the sum of gauge-fixing and FP ghost terms (or
simply the gauge-fixing term)

L GF ¼ � i

2
�

�
�C��

�
K�� � 	

2
B��

��
: (3.3)

The BRST invariance of LGF is guaranteed by the nilpo-
tency of �. In contrast, the BRST invariance ofL0

2n (up to a
total derivative) is clear from its gauge invariance (up to a
total derivative). Carrying out the BRST transformation
contained in the right-hand side of Eq. (3.3) and adding the
resultant to Eq. (2.14), we have the (total) Lagrangian

L̂2n ¼ � 1

2
P2 � 1

2
m2ðK� � @�p

��ÞðK� � @�p��Þ

� K�@�ðP�M�Þ þ 1

2
@��@

��� K�@�B��

� 	

4
B��B

�� � i@� �C��@�C��: (3.4)

Here, a total derivative has been removed.

From the Lagrangian L̂2n, the Euler-Lagrange equations
for K�, p��, �, P, B��, �C��, and C�� are derived, re-
spectively, as

@�ðP�M�Þ þm2ðK� � @�p��Þ þ @�B�� ¼ 0; (3.5a)

@�ðK� � @�p��Þ � @�ðK� � @�p��Þ ¼ 0; (3.5b)

h�þM@�K
� ¼ 0; (3.5c)

@�K
� � P ¼ 0; (3.5d)

@�K� � @�K� � 	B�� ¼ 0; (3.5e)

@�@
�C�� � @�@

�C�� ¼ 0; (3.5f)

@�@
� �C�� � @�@

� �C�� ¼ 0; (3.5g)

where h � @�@
�. Using Eqs. (3.5a) and (3.5b), we can

show that

@�@
�B�� � @�@

�B�� ¼ 0: (3.6)

This can also be derived from the BRST transformation of
Eq. (3.5g). Combining Eqs. (3.5b) and (3.5e) gives

@�@
�p�� � @�@

�p�� � 	B�� ¼ 0: (3.7)

With Eq. (3.5d), Eq. (3.5c) reads

h�þMP ¼ 0: (3.8)

Taking the divergence of Eq. (3.5a) and using Eqs. (3.5d)
and (3.8), we obtain, due to antisymmetry of p�� and B��

in their indices,

ðhþM2 þm2ÞP ¼ 0: (3.9)

Taking the divergence of Eq. (3.5e) gives

hK� � @�P� 	@�B�� ¼ 0; (3.10)

which, together with Eq. (3.6), leads to

hK�� ¼ 0: (3.11)

Taking the divergence of Eqs. (3.7), (3.6), (3.5f), and (3.5g)
yields

h@�p�� � 	@�B�� ¼ 0; (3.12a)

h@�B�� ¼ 0; (3.12b)

h@�C�� ¼ 0; (3.12c)

h@� �C�� ¼ 0: (3.12d)

In the remaining sections, we mainly study the canonical
formalism of the equivalent model and its application to
the quantization of this model. Based on this study, we
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investigate particle contents of the equivalent model and of
the modified hybrid model.

IV. CANONICAL FORMALISM

For a while, we treat the fields introduced above as
canonical coordinates and collectively express them as
ð
IÞ � ðK�; P;�; p��; B��; C��; �C��Þ, where I stands
for space-time indices. With the Lagrangian (3.4), the
canonical momentum conjugate to 
I is defined by

�

I � @L̂2n

@ _
I
; (4.1)

where _f � @f=@t. For the anticommutative fields C�� and
�C��, the derivative in Eq. (4.1) is understood as the left
derivative. We can readily find
EQ-TARGET;temp:intralink-;d4.2,d4.2a,d4.2b,d4.2c,d4.2d,d4.2e,d4.2f,d4.2g,d4.2h,d4.2i,d4.2j,d4.2k ;52;557

�K
� ¼ 0; (4.2a)

�P ¼ �K0; (4.2b)

�� ¼ MK0 þ _�; (4.2c)

�p
0j ¼ �m2ð _p0j � @ipij � KjÞ; (4.2d)

�p
ij ¼ 0; (4.2e)

�B
0j ¼ �Kj; (4.2f)

�B
ij ¼ 0; (4.2g)

�C
0j ¼ ið _�C0j � @i �CijÞ; (4.2h)

�C
ij ¼ 0; (4.2i)

�
�C
0j ¼ �ið _C0j � @iCijÞ; (4.2j)

�
�C
ij ¼ 0: (4.2k)

The Hamiltonian density is obtained from Eqs. (3.4) and
(4.2):

H 2n � _K��K
� þ _P�P þ _��� þ 1

2
ð _p���p

�� þ _B���B
�� þ _C���C

�� þ _�C
��
�

�C
��Þ � L̂2n

¼ 1

2
ðM2 þm2Þð�PÞ2 þ 1

2
P2 þ 1

2
ð��Þ2 þ 1

2
@j�@j�þM�P�� þ�P@jðm2p0j � B0jÞ þ 1

2m2
�p

0j�
p
0j

þ 1

2
m2@ip0i@jp0j þ�p

0j�
B
0j ��p

0j@ipij þ�B
0jð@jP�M@j�� @iBijÞ � 	

4
ð2B0jB0j � BijBijÞ � i�

�C
0j�

C
0j

þ i@i �C0i@jC0j þ�
�C
0j@i

�Cij þ�C
0j@iCij: (4.3)

The Poisson bracket of two arbitrary monomial functions
of the canonical variables, F ¼ Fð
I;�


J Þ and G ¼
Gð
I;�


J Þ, is defined by

fF;Gg ¼
Z

d2n�1x

�
ð�1ÞjFjj
I j @F

@
Iðt; xÞ
@G

@�

I ðt; xÞ

� ð�1ÞjGjðj
I jþjFjÞ @G

@
Iðt; xÞ
@F

@�

I ðt; xÞ

�
(4.4)

in such a way that it reduces to the following Poisson
brackets:

fK�ðt; xÞ; �K
� ðt; yÞg ¼ �

�
� �ðx� yÞ; (4.5a)

fPðt; xÞ; �Pðt; yÞg ¼ �ðx� yÞ; (4.5b)

f�ðt; xÞ; ��ðt; yÞg ¼ �ðx� yÞ; (4.5c)

fp��ðt; xÞ; �p
��ðt; yÞg ¼ ���

���ðx� yÞ; (4.5d)

fB��ðt; xÞ; �B
��ðt; yÞg ¼ �

��
���ðx� yÞ; (4.5e)

fC��ðt; xÞ; �C
��ðt; yÞg ¼ ��

��
���ðx� yÞ; (4.5f)

f �C��ðt; xÞ; � �C
��ðt; yÞg ¼ ��

��
���ðx� yÞ; (4.5g)

where ���
�� � ��

���
� � ��

��
�
� . The symbol jFj takes the

value 0 or 1 according as F is an even or odd power with
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respect to the anticommutative canonical variables. The
Poisson bracket (4.4) satisfies fF;Gg ¼ �ð�1ÞjFjjGjfG;Fg.

Equations (4.2), except Eqs. (4.2c), (4.2d), (4.2h), and
(4.2j), are read as the primary constraints

�1 � �K
0 � 0; (4.6a)

�2
i � �K

i � 0; (4.6b)

�3 � �P þ K0 � 0; (4.6c)

�4
0j � �B

0j þ Kj � 0; (4.6d)

�5
ij � �p

ij � 0; (4.6e)

�6
ij � �B

ij � 0; (4.6f)

�7
ij � �C

ij � 0; (4.6g)

�8
ij � �

�C
ij � 0; (4.6h)

where the symbol ‘‘�’’ denotes the weak equality. Now we
apply the Dirac formulation for constrained Hamiltonian
systems [10–12] to the present model. Introducing the
Lagrange multipliers va

I ¼ va
I ðt; xÞ (a ¼ 1; 2; � � � ; 8), we

define the total Hamiltonian density

Ĥ 2n � H 2n þ v1�1 þ v2
i �

2
i þ v3�3 þ v4

0j�
4
0j

þ 1
2ðv5

ij�
5
ij þ v6

ij�
6
ij þ v7

ij�
7
ij þ v8

ij�
8
ijÞ (4.7)

and the total Hamiltonian

Ĥ 2n �
Z

d2n�1xĤ 2n: (4.8)

With this Hamiltonian, the canonical equation for F is
given by

_F ¼ fF; Ĥ2ng: (4.9)

The primary constraints (4.6) must be preserved in time so
that they can be consistent with the equations of motion.
Hence, if we take F in Eq. (4.9) to be one of�a

I , we should

have _�a
I ¼ f�a

I ; Ĥ2ng � 0. The consistency conditions
_�1 � 0, _�2

i � 0, _�3 � 0, and _�4
0j � 0 determine the

Lagrange multipliers v3, v4
0j, v

1, and v2
i , respectively, as

v3 � 0; (4.10a)

v4
0j � 0; (4.10b)

v1 � P� @j�
B
0j; (4.10c)

v2
i � @i�

P � 	B0i: (4.10d)

The consistency conditions _�5
ij � 0, _�6

ij � 0, _�7
ij � 0,

and _�8
ij � 0 give rise to the secondary constraints

�9
ij � @i�

p
0j � @j�

p
0i � 0; (4.11a)

�10
ij � @i�

B
0j � @j�

B
0i þ 	Bij � 0; (4.11b)

�11
ij � @i�

C
0j � @j�

C
0i � 0; (4.11c)

�12
ij � @i�

�C
0j � @j�

�C
0i � 0; (4.11d)

respectively. We can also evaluate the time evolutions of
�9

ij,�
11
ij , and�

12
ij using Eq. (4.9), and see that the equations

_�9
ij ¼ 0, _�11

ij ¼ 0, and _�12
ij ¼ 0 are identically satisfied.

For �10
ij , its time evolution is found to be

_�10
ij ¼ 	ðv6

ij � @iB0j þ @jB0iÞ: (4.12)

If 	 � 0, the condition _�10
ij � 0 determines the Lagrange

multiplier v6
ij as

v6
ij � @iB0j � @jB0i: (4.13)

If 	 ¼ 0, _�10
ij identically vanishes: _�10

ij ¼ 0. In both the

cases 	 � 0 and 	 ¼ 0, no further secondary constraints
are derived, and thus the derivation of constraints is com-
pleted at present. The constraints that we need to consider
are therefore�â

I � 0 (â ¼ 1; 2; � � � ; 12) stated in Eqs. (4.6)
and (4.11).
When 	 � 0, using the Poisson brackets (4.5), it can be

shown that the constraints �1 � 0, �2
i � 0, �3 � 0,

�4
0j � 0, �6

ij � 0, and �10
ij � 0 are classified into second

class, while the other six constraints are classified into first
class. Accordingly, the Lagrange multipliers v1, v2

i , v
3,

v4
0j, and v6

ij are determined to be zero or to be what is

written in terms of the canonical variables, as can be seen
in Eqs. (4.10) and (4.13). The other multipliers v5

ij, v
7
ij, and

v8
ij remain arbitrary. When 	 ¼ 0, it can be shown that

only the constraints�1 � 0,�2
i � 0,�3 � 0, and�4

0j � 0

are classified into second class, while the other eight con-
straints are classified into first class. Accordingly, only the
Lagrange multipliers v1, v2

i , v
3, and v4

0j are determined to

be zero or to be what is written in terms of the canonical
variables; the other multipliers v5

ij, v
6
ij, v

7
ij, and v8

ij remain

arbitrary. As regards a pair of the constraints �6
ij � 0 and

�10
ij � 0, its treatment in the case 	 � 0 is thus different

from that in the case 	 � 0. In what follows, we consider
only the case 	 ¼ 0 for the sake of simplicity, although the
case 	 � 0 can be discussed with no difficulties.
Now, we impose the gauge-fixing conditions


1
ij � pij � 0; (4.14a)


2
ij � Bij � 0; (4.14b)


3
ij � Cij � 0; (4.14c)


4
ij � �Cij � 0; (4.14d)

to make the first-class primary constraints Eqs. (4.6e)–
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(4.6h) second class. From Eqs. (4.5d)–(4.5g), it follows that

f�a0þ4
ij ðt; xÞ; 
a0

ij ðt; xÞg ¼ ��ð0Þ � 0 (a0 ¼ 1, 2, 3, 4).

(Here, no summation over i and j is taken.) These relations
guarantee that Eqs. (4.14) function as gauge-fixing condi-

tions, and thus the �a0þ4
ij � 0 and 
a0

ij � 0 are together

classified into second class. The gauge-fixing conditions
must be preserved in time so that they can be consistent

with the equations of motion; hence, we should have _
a0
ij ¼

f
a0
ij ; Ĥ2ng � 0. These consistency conditions determine

the Lagrange multipliers va0þ4
ij (a0 ¼ 1, 2, 3, 4) as

va0þ4
ij � 0: (4.15)

Up to here, all the Lagrange multipliers va
I have been

determined as in Eqs. (4.10) and (4.15). This implies that
the gauge degrees of freedom are now completely fixed.

Using �a
I � 0 (a ¼ 1; 2; � � � 8) and 
a0

ij � 0, which con-

stitute second-class constraints, we define the Dirac
bracket:

fF;GgD ¼ fF;Gg �
Z

d2n�1x

�
fF;�1ðt; xÞgf�3ðt; xÞ; Gg

� fF;�2
i ðt; xÞgf�4

0iðt; xÞ; Gg

� 1

2

X4
a0¼1

fF; 
a0
ij ðt; xÞgf�a0þ4

ij ðt; xÞ; Gg

� ð�1ÞjFjjGjðF $ GÞ
�
: (4.16)

Because fF;�a
I gD ¼ fF; 
a0

ij gD ¼ 0 is valid for any F, the

primary constraints (4.6) and the gauge-fixing conditions
(4.14) can be set equal to zero even before evaluating Dirac
brackets. That is, with the Dirac bracket (4.16), Eqs. (4.6)
and (4.14) can be treated as strong equations, and may be

expressed as �a
I ¼ 0 and 
a0

ij ¼ 0. From the Hamiltonian

density (4.3), we define the reduced Hamiltonian

~H 2n �
Z

d2n�1xH 2nð
a0
ij ¼ 0; 	 ¼ 0Þ

¼
Z

d2n�1x

�
1

2
ðM2 þm2Þð�PÞ2 þ 1

2
P2 þ 1

2
ð��Þ2

þ 1

2
@j�@j�þM�P�� þ�P@jðm2p0j � B0jÞ

þ 1

2m2
�p

0j�
p
0j þ

1

2
m2@ip0i@jp0j þ�p

0j�
B
0j

þ�B
0jð@jP�M@j�Þ � i�

�C
0j�

C
0j þ i@i �C0i@jC0j

�
:

(4.17)

Owing to the consistency conditions _�a
I � 0 and _
a0

ij � 0,

the weak equality fF; Ĥ2ng � fF; Ĥ2ngD is valid for any F.

Using this equality and fF; Ĥ2ngD ¼ fF; ~H2ngD, the canoni-
cal equation (4.9) can be written

_F � fF; ~H2ngD: (4.18)

So far the secondary constraints (4.11) have been left
first class. Because the primary constraints (4.6) are now
treated as strong equations by virtue of the Dirac bracket,
the weak equalities in Eqs. (4.11) should be reconsidered as
strong equalities, with replacing the symbol ‘‘�’’ by ‘‘¼ .’’
Noting this fact, we solve Eqs. (4.11), including Eq. (4.11b)
with 	 ¼ 0, in terms of pseudoscalar functions in the sense
of strong equations:

�p
0j ¼ @j�

p; (4.19a)

�B
0j ¼ @j�

B; (4.19b)

�C
0j ¼ @j�

C; (4.19c)

�
�C
0j ¼ @j�

�C; (4.19d)

where �p and �B are commutative functions, while �C

and �
�C are anticommutative functions. Equations (4.19)

are valid at least in a local region of the phase space. In this
way, the secondary constraints (4.11) have completely
been solved in terms of the pseudoscalar functions �p,

�B, �C, and �
�C, and consequently we do not need to

consider gauge-fixing conditions for these constraints.
Now, consider the Poisson bracket fp0iðt; xÞ;

�p
0jðt; yÞg ¼ ��ij�ðx� yÞ given from Eq. (4.5d).

Because of f�a
I ðt; xÞ; �p

0jðt; yÞg ¼ f
a0
ikðt; xÞ; �p

0jðt; yÞg ¼
0, the corresponding Dirac bracket takes the same
form: fp0iðt; xÞ; �p

0jðt; yÞgD ¼ ��ij�ðx� yÞ. Substituting
Eq. (4.19a) into this bracket and taking the divergence of
p0i in the bracket, we have

@

@yj
fpðt; xÞ; �pðt; yÞgD ¼ @

@yj
�ðx� yÞ; (4.20)

with

p � @ip0i: (4.21)

Integrating Eq. (4.20) over ðyjÞ leads to
fpðt; xÞ; �pðt; yÞgD ¼ �ðx� yÞ þ fðt; xÞ, where f is a
smooth function on Minkowski space M2n. To maintain
the locality in the system, we must set the condition f ¼ 0,
and hence obtain

fpðt; xÞ; �pðt; yÞgD ¼ �ðx� yÞ: (4.22)

Following the procedure used in deriving Eq. (4.22) from
Eq. (4.5d), we can derive from Eqs. (4.5e)–(4.5g) the
following Dirac brackets:

fBðt; xÞ; �Bðt; yÞgD ¼ �ðx� yÞ; (4.23a)

fCðt; xÞ; �Cðt; yÞgD ¼ ��ðx� yÞ; (4.23b)

f �Cðt; xÞ; � �Cðt; yÞgD ¼ ��ðx� yÞ; (4.23c)

with
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B � @iB0i; (4.24a)

C � @iC0i; (4.24b)

�C � @i �C0i: (4.24c)

Having obtained Eqs. (4.22) and (4.23), we can regard p,B,
C, and �C as canonical coordinates, while �p, �B, �C, and

�
�C as the momenta conjugate to p, B, C, and �C,

respectively.
With the Dirac bracket (4.16), it is sufficient to consider

only the pseudoscalar fields P, �, p, B, C, and �C as
canonical coordinates. We collectively express them as
ð�Þ � ðP;�; p; B; C; �CÞ. The canonical momenta conju-

gate to ð�Þ are collected to be ð��Þ ¼
ð�P;��;�p;�B;�C;�

�CÞ. On the phase space submani-
fold, S, with local coordinates ð�;��Þ, the Dirac bracket
(4.16) is equivalent to the modified Poisson bracket

fF;Gg� ¼
Z

d2n�1x

�
ð�1ÞjFjj�j @F

@�ðt; xÞ
@G

@��ðt; xÞ
� ð�1ÞjGjðj�jþjFjÞ @G

@�ðt; xÞ
@F

@��ðt; xÞ
�
:

(4.25)

In fact, this provides the Poisson brackets equivalent to
Eqs. (4.22) and (4.23). Also, Eq. (4.25) involves the
Poisson brackets (4.5b) and (4.5c) which can be identified
with their corresponding Dirac brackets. As expected, the
reduced Hamiltonian (4.17) can be written in terms of the
canonical variables ð�;��Þ:

~H 2n ¼
Z

d2n�1x

�
1

2
ðM2 þm2Þð�PÞ2 þ 1

2
P2 þ 1

2
ð��Þ2

þ 1

2
@j�@j�þM�P�� þ�Pðm2p� BÞ

þ 1

2m2
@j�

p@j�
p þ 1

2
m2p2 þ @j�

p@j�
B

þ @j�
B@jðP�M�Þ � i@j�

�C@j�
C þ i �CC

�
:

(4.26)

Then, the canonical equation (4.18) reads

_F ¼ fF; ~H2ng�; (4.27)

where F is understood as a function of ð�;��Þ. Here, the
weak equality symbol in Eq. (4.18) has been replaced by
the usual one, because the right-hand side of Eq. (4.27) is a
Poisson bracket valid on the phase space submanifold S
and no constraints are involved in Eq. (4.27).

The canonical equations for the canonical coordinates
ð�Þ are found from Eq. (4.27) to be

_P ¼ ðM2 þm2Þ�P þM�� þm2p� B; (4.28a)

_� ¼ �� þM�P; (4.28b)

_p ¼ ��ðm�2�p þ�BÞ; (4.28c)

_B ¼ ��ð�p þ P�M�Þ; (4.28d)

_C ¼ i��
�C; (4.28e)

_�C ¼ �i��C; (4.28f)

where � � @i@i. Similarly, the canonical equations for the
momenta ð��Þ are found to be

_�P ¼ �Pþ ��B; (4.29a)

_�� ¼ �ð��M�BÞ; (4.29b)

_�p ¼ �m2ð�P þ pÞ; (4.29c)

_�B ¼ �P; (4.29d)

_�C ¼ i �C; (4.29e)

_�
�C ¼ �iC: (4.29f)

Combining Eqs. (4.28) and (4.29) yields the equations

ðhþM2 þm2ÞP ¼ 0; (4.30a)

h�þMP ¼ 0; (4.30b)

hp ¼ 0; (4.30c)

hB ¼ 0; (4.30d)

hC ¼ 0; (4.30e)

h �C ¼ 0: (4.30f)

Here, we have used h � @�@
� ¼ @2=@t2 ��. Equa-

tions (4.30a) and (4.30b) are identical to Eqs. (3.9) and
(3.8), respectively. Equations (4.30c)–(4.30f) are consis-
tent with the � ¼ 0 components of Eqs. (3.12a)–(3.12d),
respectively. These facts imply that we have given a correct
treatment of the present Hamiltonian system. The consis-
tency of our procedure can also be seen in the BRST
transformation rules below. The canonical formalism
studied in this section is applied in the next section to
quantize the fields ð�Þ.
From the Lagrangian (3.4), we can derive the BRST

current, a Noether current associated with the BRST trans-
formation �. The BRST charge, QB, is defined as the
volume integral of the time component of the BRST cur-
rent and can be written in terms of some of the canonical
variables ð�;��Þ:

QB ¼
Z

d2n�1x½Cð�p þ P�M�Þ þ iB�
�C�: (4.31)

Using Eqs. (4.28) and (4.29), we can readily show the
conservation law _QB ¼ 0. The BRST charge QB generates
the BRST transformation in the following manner:
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�P ¼ �fQB; Pg� ¼ 0; (4.32a)

�� ¼ �fQB; �g� ¼ 0; (4.32b)

�p ¼ �fQB; pg� ¼ C; (4.32c)

�B ¼ �fQB; Bg� ¼ 0; (4.32d)

�C ¼ �fQB; Cg� ¼ 0; (4.32e)

� �C ¼ �fQB; �g� ¼ iB: (4.32f)

These are consistent with the transformation rules (3.1) and
(3.2). In this way, the BRST symmetry is maintained in the
reduced Hamiltonian system expressed in terms of the
canonical variables ð�;��Þ. With the aid of Eqs. (4.28d)
and (4.28e), QB can be written

QB ¼
Z

d2n�1x

�
�C

1

�
_Bþ B

1

�
_C

�
: (4.33)

This expression is utilized in the next section.

V. CANONICAL QUANTIZATION

In this section, we study quantum-mechanical properties
of the reduced model characterized by the Hamiltonian
(4.26). The study proceeds on the basis of the canonical
formalism developed in the previous section. In accor-
dance with Dirac’s quantization rule, we introduce the
operators Fop and Gop corresponding to the functions F

and G, respectively, and set the (anti-)commutation rela-
tion

½Fop; Gop�� � FopGop � ð�1ÞjFjjGjGopFop ¼ ifF;Gg�op:
(5.1)

Here, fF;Gg�op is the operator corresponding to the modi-

fied Poisson bracket fF;Gg�. The subscript ‘‘�’’ takes
‘‘�’’ if jFjjGj ¼ 0, and ‘‘þ’’ if jFjjGj ¼ 1. The
quantum-mechanical analogue of the canonical equation
(4.27) is the Heisenberg equation

_Fop ¼ �i½Fop; ~H2nop��: (5.2)

Hereafter, the subscript ‘‘op’’ is omitted for conciseness
unless confusion occurs.

From Eqs. (4.25) and (5.1), we have the canonical (anti-)
commutation relations:

½Pðt; xÞ; �Pðt; yÞ�� ¼ i�ðx� yÞ; (5.3a)

½�ðt; xÞ; ��ðt; yÞ�� ¼ i�ðx� yÞ; (5.3b)

½pðt; xÞ; �pðt; yÞ�� ¼ i�ðx� yÞ; (5.3c)

½Bðt; xÞ; �Bðt; yÞ�� ¼ i�ðx� yÞ; (5.3d)

½Cðt; xÞ; �Cðt; yÞ�þ ¼ �i�ðx� yÞ; (5.3e)

½ �Cðt; xÞ; � �Cðt; yÞ�þ ¼ �i�ðx� yÞ: (5.3f)

The other canonical (anti-)commutation relations vanish.
Using Eqs. (4.28) and (4.29), which are now understood as

the Heisenberg equations, and the relations (5.3), we can
calculate the equal-time (anti-)commutation relations be-
tween the canonical coordinates and their time derivatives.
Among them, all the nonvanishing relations are enumer-
ated as follows:

½Pðt; xÞ; _Pðt; yÞ�� ¼ iðM2 þm2Þ�ðx� yÞ; (5.4a)

½Pðt; xÞ; _�ðt; yÞ�� ¼ iM�ðx� yÞ; (5.4b)

½�ðt; xÞ; _Pðt; yÞ�� ¼ iM�ðx� yÞ; (5.4c)

½�ðt; xÞ; _�ðt; yÞ�� ¼ i�ðx� yÞ; (5.4d)

½pðt; xÞ; _pðt; yÞ�� ¼ � i

m2
��ðx� yÞ; (5.4e)

½pðt; xÞ; _Bðt; yÞ�� ¼ �i��ðx� yÞ; (5.4f)

½Bðt; xÞ; _pðt; yÞ�� ¼ �i��ðx� yÞ; (5.4g)

½Cðt; xÞ; _�Cðt; yÞ�þ ¼ ���ðx� yÞ; (5.4h)

½ �Cðt; xÞ; _Cðt; yÞ�þ ¼ ��ðx� yÞ: (5.4i)

All the equal-time (anti-)commutation relations between
the time derivatives of the canonical coordinates vanish.
To find out physical degrees of freedom in the model, we

need to investigate particle contents of the model. Before
starting the investigation, we define a pseudoscaler field ’
by

’ � �� M

M2 þm2
P: (5.5)

Then, from Eqs. (4.30a) and (4.30b), it follows that

h’ ¼ 0: (5.6)

The transformation rules (4.32a) and (4.32b) guarantee

�’ ¼ 0: (5.7)

Using the commutation relations (5.4a)–(5.4d), we can
readily show that

½’ðt; xÞ; _’ðt; yÞ�� ¼ im2

M2 þm2
�ðx� yÞ: (5.8)

All the equal-time commutation relations containing either
’ or _’ vanish. In what follows, we consider ’ to be more
fundamental than �, because ’ satisfies the massless
Klein-Gordon equation and simple commutation relations.
The Klein-Gordon equations (4.30a), (5.6), and (4.30c)–

(4.30f) can be solved in terms of the plane-wave basis set
feik�xg:
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PðxÞ ¼ 1

ð2�Þð2n�1Þ=2
Z d2n�1kffiffiffiffiffiffiffiffi

2k0
p fPðkÞe�ikxþPyðkÞeikxg;

(5.9a)

’ðxÞ ¼ 1

ð2�Þð2n�1Þ=2
Z d2n�1kffiffiffiffiffiffiffiffi

2k0
p f’ðkÞe�ikx þ’yðkÞeikxg;

(5.9b)

pðxÞ ¼ 1

ð2�Þð2n�1Þ=2
Z

d2n�1k

ffiffiffiffiffi
k0
2

s
fpðkÞe�ikx þpyðkÞeikxg;

(5.9c)

BðxÞ ¼ 1

ð2�Þð2n�1Þ=2
Z

d2n�1k

ffiffiffiffiffi
k0
2

s
fBðkÞe�ikx þByðkÞeikxg;

(5.9d)

CðxÞ ¼ 1

ð2�Þð2n�1Þ=2
Z

d2n�1k

ffiffiffiffiffi
k0
2

s
fCðkÞe�ikxþCyðkÞeikxg;

(5.9e)

�CðxÞ ¼ 1

ð2�Þð2n�1Þ=2
Z

d2n�1k

ffiffiffiffiffi
k0
2

s
f �CðkÞe�ikxþ �CyðkÞeikxg;

(5.9f)

where kx � k0t� k � x. Here, k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2 þm2

p
for

P, and k0 ¼ jkj for’, p, B,C, and �C. Evidently, P is a field

with the mass m̂ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þm2

p
, while the remainder are

massless fields. Using the (anti-)commutation relations
(5.4) and (5.8), we can derive the (anti-)commutation rela-
tions between the undetermined coefficients contained in
Eqs. (5.9). Among them, all the nonvanishing relations are
enumerated as follows:

½PðkÞ; PyðlÞ�� ¼ ðM2 þm2Þ�ðk� lÞ; (5.10a)

½’ðkÞ; ’yðlÞ�� ¼ m2

M2 þm2
�ðk� lÞ; (5.10b)

½pðkÞ; pyðlÞ�� ¼ m�2�ðk� lÞ; (5.10c)

½pðkÞ; ByðlÞ�� ¼ �ðk� lÞ; (5.10d)

½BðkÞ; pyðlÞ�� ¼ �ðk� lÞ; (5.10e)

½CðkÞ; �CyðlÞ�þ ¼ �i�ðk� lÞ; (5.10f)

½ �CðkÞ; CyðlÞ�þ ¼ i�ðk� lÞ: (5.10g)

Equations (5.10) are regarded as (anti-)commutation rela-
tions between the creation and annihilation operators for
the relevant fields. Now we arrange the annihilation opera-
tors ð�Þ ¼ ðP;’; p; B; C; �CÞ and the creation operators
ð�yÞ ¼ ðPy; ’y; py; By; Cy; �CyÞ in the column and the
row of a matrix, respectively. Then the (anti-)commutation
relations (5.10), together with the associated vanishing
relations, can be summarized in a matrix form:

ð½�ðkÞ; �yðlÞ��Þ

¼

M2 þm2 0 0 0 0 0

0 m2

M2þm2 0 0 0 0

0 0 m�2 1 0 0

0 0 1 0 0 0

0 0 0 0 0 �i

0 0 0 0 i 0

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
� �ðk� lÞ:

(5.11)

This matrix is identified with the metric matrix of the Fock
subspace spanned by the one-particle basis vectors
f�yðkÞj0ig.
Substituting Eqs. (5.9d) and (5.9e) into Eq. (4.33), we

rewrite the BRST charge QB in terms of the creation and
annihilation operators:

QB ¼ �i
Z

d2n�1kfCyðkÞBðkÞ � ByðkÞCðkÞg: (5.12)

By this procedure, QB is promoted to an operator. With
Eq. (5.12), it is easy to verify that QB generates the BRST
transformation of the creation and annihilation operators:

½iQB; PðkÞ�� ¼ 0; ½iQB; P
yðkÞ�� ¼ 0; (5.13a)

½iQB; ’ðkÞ�� ¼ 0; ½iQB; ’
yðkÞ�� ¼ 0; (5.13b)

½iQB; pðkÞ�� ¼ CðkÞ; ½iQB; p
yðkÞ�� ¼ CyðkÞ;

(5.13c)

½iQB; BðkÞ�� ¼ 0; ½iQB; B
yðkÞ�� ¼ 0; (5.13d)

½iQB; CðkÞ�þ ¼ 0; ½iQB; C
yðkÞ�þ ¼ 0; (5.13e)

½iQB; �CðkÞ�þ ¼ iBðkÞ; ½iQB; �C
yðkÞ�þ ¼ iByðkÞ:

(5.13f)

These are precisely the BRST transformation rules repre-
sented at the quantum-theoretical level. As easily seen, the
BRST charge QB satisfies the nilpotency property

Q2
B ¼ 1

2½QB; QB�þ ¼ 0; (5.14)

and the Hermiticity condition

Qy
B ¼ QB: (5.15)

The transformation rules (5.13) show that P and ’ belong
to BRST-singlet representations of the BRST algebra [14],
while each of the pairs ðp;CÞ and ð �C;BÞ belongs to a
BRST-doublet representation of this algebra. Considering
structure of the matrix (5.11), we see that the two doublets
ðp;CÞ and ð �C;BÞ constitute a BRST quartet.
Using Eqs. (5.11), (5.13), (5.14), and (5.15), we can

prove the following theorem: hfjgi ¼ hfjPð0Þjgi is valid
for arbitrary state vectors jfi and jgi satisfying QBjfi ¼
QBjgi ¼ 0 [9,13]. Here, Pð0Þ is the projection operator onto
the Fock space H phys spanned by the BRST-singlet basis
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vectors

fPyðk1Þ � � �PyðkaÞ’yðl1Þ � � �’yðlbÞj0iga;b¼0;1;...: (5.16)

This theorem states that in the physical subspace V phys

specified by the subsidiary condition

QBjfi ¼ 0; (5.17)

the BRST-quartet particles p, C, �C, and B are always
produced only in zero-norm combinations and can never
be observed with finite probability. In this way, the quartet
particles appearing in V phys are completely confined and

the Kugo-Ojima quartet mechanism is confirmed in the
present model. Because the basis vectors (5.16) satisfy the
condition (5.17), it follows thatH phys 	 V phys. Hence the

BRST-singlet particles P and ’ are recognized to be
physical particles. In contrast to the quartet particles, the
singlet particles may be observed with finite probability. To
ascertain the observable particles, we investigate the fol-
lowing three cases separately:

A. Case M � 0, m ¼ 0

In this case, the (3, 3)th entry of the matrix (5.11)
diverges, so that the matrix (5.11) is not well-defined.
This is merely an apparent difficulty, giving rise to no
troubles. In fact, we can avoid the difficulty by making
the replacement ðp; B; C; �CÞ � ðm�1p;mB;m�1C;m �CÞ
before taking m to be zero. It should be noted that under
this replacement, the essential properties (5.13), (5.14), and
(5.15) do not change at all, while only the (3, 3)th entry of
the matrix (5.11) changes from m�2 to 1 By virtue of the
replacement, the 4-by-4 submatrix in Eq. (5.11),

m�2 1 0 0
1 0 0 0
0 0 0 �i
0 0 i 0

0
BBB@

1
CCCA;

becomes nonsingular, and accordingly the theorem stated
above is valid for the present case. Hence, the quartet
particles are confined as usual owing to the quartet
mechanism.

The commutation relations (5.10a) and (5.10b) in the
present case take the following forms: ½PðkÞ; PyðlÞ�� ¼
M2�ðk� lÞ, ½’ðkÞ; ’yðlÞ�� ¼ 0. These relations imply
that among the basis vectors in Eq. (5.16), the vectors
with ’y have zero norm and only the basis vectors
fPyðk1Þ � � �PyðkaÞj0iga¼0;1;... have positive norm. For this

reason, the massless singlet particle ’, as well as the
quartet particles, can never be observed with finite proba-
bility and only the singlet particle P with the mass M can
be observed. In other words, it can be said with Eq. (5.5)
that the massless mode of � is not observable, while the
massive mode of � is observable. From this, it follows that
� behaves as a pseudoscalar field with the mass M.

B. Case M ¼ 0, m � 0

In this case, the quartet particles are, of course, confined
due to the quartet mechanism. Because the right-hand sides
of Eqs. (5.10a) and (5.10b) are together positive, all the
basis vectors in Eq. (5.16) have positive norm. For this
reason, both the massless particle ’ and the particle Pwith
the mass m can be observed. As seen from Eq. (5.5), � in
this case is identical with ’. Hence, � behaves as a mass-
less pseudoscalar field.

C. Case M � 0, m � 0

This case is a hybrid of the above two cases in a sense.
The quartet particles are confined due to the quartet mecha-
nism. Because the right-hand sides of Eqs. (5.10a) and
(5.10b) are positive as in the caseM ¼ 0,m � 0, it follows
that both the massless particle ’ and the particle Pwith the

mass m̂ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þm2

p
can be observed. This implies that �

can behave as a massive pseudoscalar field with the mass
m̂ [7].
In all the three cases, the particle P is recognized to be

the only massive particle that can be observed with finite
probability. The massless particle ’ is recognized to be an
observable particle if and only if m � 0.

VI. CONVERTING TO THE MODIFIED HYBRID
MODEL

The BRST transformation rule of the Yang-Mills fields
Aa
� is defined by replacing the parameters !a in Eq. (2.3)

by the FP ghost fields ca:

�Aa
� ¼ D�c

a: (6.1)

Here, ca are, of course, anticommutative fields. The
nilpotency property �2 ¼ 0 is maintained by setting the
transformation rule �ca ¼ 1

2gfbc
acbcc. The BRST trans-

formation rule of the Chern-Simons current C�2n is found

from Eq. (2.4) to be

� C�2n ¼ @�C
��
2n ; (6.2)

where C��
2n is defined by replacing !a included in U��

2n by

ca: C��
2n � U��

2n j!a¼ca . The BRST transformation rule of
C��
2n is determined to be

� C��
2n ¼ @�C

���
2n ; (6.3)

where C���
2n is a rank-3 totally antisymmetric tensor that is

a polynomial in ðAa
�; F

a
��; c

aÞ and quadratic in ca. Using

Eq. (6.3) and the antisymmetry property of C���
2n in its

indices, it can be shown that �2C�2n ¼ 0. Equations (6.2)
and (6.3) are precisely constituents of the chain of descent

equations �C
�1����p

2n ¼ @�C
��1����p
2n (p ¼ 1; 2; . . . ; 2n), with

C��1����2n

2n ¼ 0 [15]. Here, C
�1����p

2n is a rank-p totally anti-

symmetric tensor. The relation �2C
�1����p

2n ¼ 0 is valid by

virtue of antisymmetry of C
�1����pþ2

2n in its indices. In this
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way, the nilpotency of � is guaranteed with the chain of
descent equations.

Now, let us introduce an anticommutative vector field
��� and a commutative vector fieldB� that obey the BRST

transformation rules

� ��� ¼ iB�; (6.4a)

�B� ¼ 0: (6.4b)

Obviously, these satisfy the nilpotency property �2 ¼ 0.
We consider a BRST-coboundary term

L KC ¼ i�½ ���ðK� � C�2nÞ�; (6.5)

which can be written, after the use of Eqs. (3.1a), (6.2), and
(6.4a), as

L KC ¼ �B�ðK� � C�2nÞ � i ���@�ðC�� � C��
2n Þ: (6.6)

Adding LKC to Eq. (3.4), we have the new Lagrangian

~L2n � L̂2n þLKC

¼ � 1

2
P2 � 1

2
m2ðK� � @�p

��ÞðK� � @�p��Þ

� K�@�ðP�M�Þ þ 1

2
@��@

��� K�@�B��

� 	

4
B��B

�� � i@� �C��@�C�� �B�ðK� � C�2nÞ
� i ���@�ðC�� � C��

2n Þ: (6.7)

From ~L2n, the Euler-Lagrange equations for P,B�, and
���

are found to be

P ¼ @�K
�; (6.8a)

K� ¼ C�2n; (6.8b)

@�C
�� ¼ @�C

��
2n : (6.8c)

Combining Eqs. (6.8a) and (6.8b) leads to P ¼ @�C
�
2n ¼

P 2n, and therefore the field P can be identified with the
Chern-Pontryagin density P 2n. Using Eqs. (6.8), the fields
P, K�, and @�C

�� can be eliminated from Eq. (6.7); after

the elimination, ~L2n is equivalently written as

~Ltop
2n ¼ 1

2
P 2

2n �
1

2
m2ðC�2n � @�p

��ÞðC2n;� � @�p��Þ

�M�P 2n þ 1

2
@��@

��� C�2n@
�B��

� 	

4
B��B

�� � i@� �C��@�C
��
2n (6.9)

up to a total derivative term. This is precisely the
Lagrangian (2.7) supplemented with a sum of gauge-fixing

and FP ghost terms. Evidently, the Lagrangian ~Ltop
2n is

BRST invariant. The equivalence between ~L2n and ~Ltop
2n

can also be proven at the quantum-theoretical level via the

path integrations over P, B�, and
��� in the generating

functional with the Lagrangian ~L2n. Thus, the equivalent
model [with the gauge-fixing term (3.3)] is converted to the
modified hybrid model (with a corresponding gauge-fixing
term) by incorporating the BRST-coboundary term LKC
into the equivalent model. Because the Lagrangians of the

two models, L̂2n and ~L2n, are connected via a BRST-

coboundary term in such a manner that ~L2n ¼
L̂2n þLKC, the two models are considered to be equiva-
lent in the BRST-cohomological sense. As a result, the two
models are classified into the same cohomology class.
With the identification P ¼ P 2n, we can conclude from

the fact stated in the last part of Sec. V that the Chern-
Pontryagin density P 2n behaves as an observable pseudo-
scalar particle (or field) with the mass m̂. This is consistent
with a result of the classical analysis made in Ref. [7]. The
topological mass generation in the modified hybrid model
is thus verified at the quantum-theoretical level. Another
relevant BRST-singlet field is the massless pseudoscalar
field

’ � �� M

M2 þm2
P 2n: (6.10)

If m � 0, ’, as well as P 2n, can be observed with finite
probability. If m ¼ 0, ’ can never be observed and only
P 2n can be observed. It should be stressed here that the
possibility of observation of P 2n and ’ can be examined
only in the quantum-theoretical framework; it cannot be
discussed at the classical level. In Ref. [5], Dvali et al.
considered, at the classical level, a model with the axial
vector current J 5

� ¼ @��. In terms of the current formu-

lation, this model is read as the case m ¼ 0 in four dimen-
sions. At present, it is clear that P 4 is the only observable
in their model.

VII. SUMMARYAND DISCUSSION

We have studied the canonical formalism for the modi-
fied hybrid model, aiming at clarifying particle contents of
the model. To avoid treating the constituent Yang-Mills
fields, the canonical formalism itself was considered for a
model that is equivalent to the modified hybrid model but
does not contain the constituent Yang-Mills fields. The
equivalence here was established owing to the fact that
the Lagrangian of the equivalent model, Eq. (2.12), has the
same form as that of the modified hybrid model, Eq. (2.7).
The equivalent model possesses an Abelian gauge sym-

metry with a pseudotensorial gauge parameter. To fix the
gauge of this symmetry, the BRST gauge-fixing procedure
was adopted for convenience. After that, the canonical
formalism of the equivalent model was considered, in
which the Dirac formulation of constrained Hamiltonian
systems was applied to dealing with the constraints arising
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in the model. The constraints were treated as strong equa-
tions using the Dirac bracket, and some of them, Eq. (4.11),
were solved in terms of canonical momenta of the pseu-
doscalar type. The Hamiltonian system was simply de-
scribed by using these momenta and their conjugate
pseudoscalar fields. In fact, the reduced Hamiltonian took
the simple form of Eq. (4.26).

The canonical quantization of the equivalent model was
performed on this Hamiltonian system in accordance with
Dirac’s quantization rule. Thereby the particle contents of
the equivalent model were clarified, and each of the parti-
cles was classified into a BRST singlet or quartet particle.
It was shown that the two BRST-singlet particles P and ’,
which are massive and massless, respectively, are present
in the model as genuinely physical particles. From the
commutation relations of the BRST-singlet particles, it
was found that P can be observed with finite probability,
provided that the mass parameters M and m do not vanish
simultaneously. It was also found that the massless particle
’ can be observed with finite probability if and only if
m � 0.

The equivalent model [with the gauge-fixing term (3.3)]
was converted to the modified hybrid model (with a cor-
responding gauge-fixing term) in a BRST-invariant manner
by incorporating the BRST-coboundary term (6.5) into the
equivalent model. Through this procedure, the equivalence
of the two models was established in the BRST-
cohomological sense. Also, the massive particle P in the
equivalent model was identified with the Chern-Pontryagin
density P 2n in the modified hybrid model. As a result, P 2n

was recognized to be an observable pseudoscalar particle
(or field) with the mass m̂. In this way, the topological mass
generation studied in Refs. [5,7] was shown for the modi-
fied hybrid model at the quantum-theoretical level.

It has been stated in Ref. [7] that the modified hybrid
model in four dimensions should have a close connection

with the effective Lagrangian approach [16] to the U(1)
problem in quantum chromodynamics (QCD). In fact, the
modified hybrid model with m ¼ 0, or rather the equiva-
lent model with m ¼ 0, was considered before in the
effective Lagrangian approach in order to phenomenolog-
ically describe the generation of a large �0 mass. In this
approach, the field equation @�J 5

� ¼ �MP (J 5
� � @��)

derived from Eq. (2.14) is understood as the hadronic
analogue to the anomalous conservation law of the axial
vector current consisting of the quark fields. The field P is
then identified with the Chern-Pontryagin density P 4.
Considering P 4 as a composite state of the Yang-Mills
fields Aa

� that represent gluons, we can interpret P as the

pseudoscalar glueball field [17]. Correspondingly, the
equivalent model with m ¼ 0 can be regarded as a phe-
nomenological model that treats the pseudoscalar glueball
as well as the �0 meson. Now, recall that the identification

P ¼ P 4 is involved in the Lagrangian ~L4, namely,
Eq. (6.7) with n ¼ 2. Noting this remarkable fact, we can

consider ~L4 to be appropriate for describing the �0 mass
generation in the QCD inspired model.
The modified hybrid model with m � 0 was first pro-

posed in Ref. [7] and has not been applied to phenomenol-
ogy yet. It seems that the existence of the observable
massless particle ’ causes some difficulties in phenome-
nological applications of the modified hybrid model with
m � 0. Such difficulties would be overcome by introduc-
ing an extra gauge field, because the massless field ’ may
be absorbed into the extra gauge field in a manner similar
to the Higgs mechanism. Details of this possibility should
be discussed in the future.
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