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In previous works, we have constructed a refined version of the Gribov-Zwanziger action in 4

dimensions, by taking into account a novel dynamical effect. In this paper, we explore the 3-dimensional

case. Analogously to 4 dimensions, we obtain a ghost propagator behaving like 1=p2 in the infrared, while

the gluon propagator reaches a finite nonvanishing value at zero momentum. Simultaneously, a clear

violation of positivity by the gluon propagator is also found. This behavior of the propagators turns out to

be in agreement with the recent numerical simulations.
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I. INTRODUCTION

Lately, the infrared behavior of the gluon and the ghost
propagator in SUðNÞ Yang-Mills theories has been exhaus-
tively investigated by many research groups. The low
energy behavior of these propagators is of great interest
as it might provide helpful information on various aspects
of color confinement, which is still far from being under-
stood. Previous results on the gluon and ghost propagators
in the Landau gauge have reported an enhanced behavior
for the ghost and a suppressed gluon propagator vanishing
at zero momentum. This behavior was supported by both
numerical simulations [1,2] and analytical studies [3–11].

Nevertheless, recent lattice data on bigger volumes point
towards a ghost propagator which is no longer enhanced
and a gluon propagator which attains a finite value at zero
momentum [12–15]. Recently, several analytical ap-
proaches [16–20] have been worked out, being in agree-
ment with these new data.

Among these approaches, we have settled for a frame-
work within the Gribov-Zwanziger approach, successfully
employed in the study of the propagators in 4D [17,18] in
the Landau gauge, which is defined as @�A� ¼ 0. We

recall here that this condition does not uniquely fix the
gauge freedom, as there can be configurations A0

�, gauge

equivalent to A�, which also fulfill @�A
0
� ¼ 0 [7]. The

Gribov-Zwanziger action allows for a (partial) resolution
of this problem of gauge (Gribov) copies in a local and
renormalizable setting [7–9].

Our refined framework was constructed as follows. We
have added two extra terms to the ordinary Gribov-
Zwanziger action, without destroying the renormalizability
of the action. Let us already recall here that these addi-
tional terms precisely correspond to extra, yet unexplored,
dynamical effects associated with the Gribov-Zwanziger
action [17,18]. The first extra term corresponded to the
introduction of a novel mass operator, while the second
term represented an additional vacuum energy term which
was required in order to remain within the Gribov region
�. This region is defined as the set of field configurations
fulfilling the Landau gauge condition, @�A

a
� ¼ 0, and for

which the Faddeev-Popov operator,

M ab ¼ �@�ð@��ab þ gfacbAc
�Þ; (1)

is strictly positive, namely,

� � fAa
�; @�A

a
� ¼ 0;Mab > 0g: (2)

This region is bounded by the horizon, @�, where the first
vanishing eigenvalue of Mab appears. Doing so, a large
number of gauge copies are already excluded, as their
appearance is precisely related to the existence of zero
modes for Mab [7]. So far, we have only worked out the
4-dimensional case. The implementation of the Gribov-
Zwanziger approach in 3D has not yet been carried out.
The 3D case is also conceptually different from the 4D case
due to the super-renormalizability, and there is no running
of the coupling constant g2. Hence, it is useful to study the
3D case in detail and make a comparison with the 4D case
as well as with the available 3D lattice data.
Also in lattice simulations, one has to deal with the

existence of gauge copies in the Landau gauge when study-
ing the propagators. The Landau gauge is numerically
implemented by minimizing the functional

R
d3xA2 over

its gauge orbit. Notice that the Gribov region � corre-
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sponds, in fact, to the set of all relative minima of
R
d3xA2.

An ideal implementation of the Landau gauge would
correspond to finding the absolute minima of that func-
tional. Even numerically, this is an extremely hard task
to achieve, let alone to do it in the continuum formulation.
Nevertheless, the gauge field configurations employed in
the numerical evaluation correspond to relative minima of
the functional

R
d3xA2, so they belong to the region�. Let

us also mention that, at present, it is unknown how to re-
strict in the continuum the path integration to gauge fields
corresponding to absolute minima of

R
d3xA2. That set of

absolute minima forms a subset of the Gribov region �,
known as the fundamental modular region�,� � �. This
means that � itself is still plagued by additional gauge
copies [21–23]. Albeit it has been argued in [24] that these
additional copies should not contribute to the correlation
functions, so that there should be no difference between the
regions� and �, we point out that the restriction to� via
the local and renormalizable Gribov-Zwanziger approach
is the best one can do for now in the continuum. Summar-
izing, both in the lattice and continuum studies of the gauge
theory, one is looking at the same objects, e.g. gluon and
ghost propagators (see Appendix C and Sec. V), in such a
way that the issue of gauge copies has been at least par-
tially handled. We refer to e.g. [12–15,25] for lattice works.

For the benefit of the reader, we review the original
construction of the Gribov-Zwanziger action in Sec. II.
Section III presents a detailed motivation of why we should
include effects of a mass term like S �’’ ¼ M2

R
d3xð �’’�

�!!Þ to the Gribov-Zwanziger action SGZ. Also, the renor-
malizability of SGZ þ S �’’ is discussed. The requirement of

renormalizability/consistency with the symmetries of the
model puts rather severe restrictions on the possible addi-
tional operators which can be introduced in the theory. We
also provide some details on the breaking of the Becchi-
Rouet-Stora-Tyutin (BRST) symmetry. In Sec. IV we dis-
cuss the need for the inclusion of an extra vacuum term

Sen ¼ M2
R
d3x 2ðN2�1Þ

g2N
&�2. Again, we prove the renorma-

lizability of the total action Stot ¼ SGZ þ S �’’ þ Sen. In

Sec. V, we investigate in detail the gluon and ghost propa-
gators, and already show that forM2 � 0, the ghost propa-
gator is not enhanced and the gluon propagator is finite at
zero momentum, in accordance with the lattice data of [12–
15]. In Sec. VI a variational technique is scrutinized in
order to determine the value of M2. This mass parameter
M2 is thus not added by hand to the original Gribov-
Zwanziger action, but is determined in a self-consistent
way. Using this variational technique, we shall also inves-
tigate the one loop ghost propagator in the full momentum
range. Finally, our conclusion is given in Sec. VII.

II. THEORIGINALGRIBOV-ZWANZIGER ACTION

We summarize the construction of the Gribov-
Zwanziger action in d dimensions, where it is understood

that we actually work in dimensional regularization, with
d ¼ 3� 2". We start from the following action [9]:

Sstart ¼ SYM þ SLandau

� �4g2
Z

ddxfabcAb
�ðM�1ÞadfdecAe

�; (3)

where

SYM ¼ 1

4

Z
ddxFa

��F
a
�� (4)

is the classical Yang-Mills action and

SLandau ¼
Z

ddxðba@�Aa
� þ �ca@�D

ab
� cbÞ (5)

denotes the Landau gauge fixing and the ghost part. The
part of expression (3) proportional to the Gribov mass
parameter � is the nonlocal horizon function, which imple-
ments the restriction to the first Gribov region, with the
proviso that this � is not free, but subject to the horizon
condition [9]

hhðxÞi ¼ dðN2 � 1Þ; (6)

where hðxÞ is the so-called horizon function

hðxÞ ¼ g2fabcAb
�ðM�1ÞadfdecAe

�: (7)

This nonlocal horizon function has also received attention
from the lattice community; see for example [26], where a
lattice formulation of the horizon function can be found.
In order to find a manageable local quantum field theory,

one adds extra fields ð �’ac
� ; ’ac

� ; �!ac
� ;!ac

� Þ to localize the

nonlocal part of the action (3). Doing so, the Gribov-
Zwanziger action becomes [9,27]

SGZ ¼ S0 �
Z

ddxð�2gfabcAa
�’

bc
� þ �2gfabcAa

� �’bc
�

þ dðN2 � 1Þ�4Þ; (8)

with

S0 ¼ SYM þ
Z

ddxðba@�Aa
� þ �ca@�ðD�cÞaÞ

þ
Z

ddxð �’a
i @�ðD�’iÞa � �!a

i @�ðD�!iÞa

� gð@� �!a
i ÞfabmðD�cÞb’m

i Þ; (9)

whereby ð �’ac
� ; ’ac

� Þ are a pair of complex conjugate bo-

sonic fields, whereas ð �!ac
� ;!ac

� Þ are anticommuting ghost

fields. Based on a global UðfÞ symmetry, f ¼ dðN2 � 1Þ,
with respect to the composite index i ¼ ð�; cÞ of the addi-
tional fields ð �’ac

� ; ’ac
� ; �!ac

� ;!ac
� Þ, we have introduced a

more convenient notation ð �’ac
� ; ’ac

� ; �!ac
� ;!ac

� Þ ¼
ð �’a

�; ’
a
i ; �!

a
i ; !

a
i Þ. Notice that for d ¼ 3, dimðg2Þ ¼ 1 and

dimð�2Þ ¼ 3=2. Defining the quantum effective action �
by means of
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e�� ¼
Z

d�e�S; (10)

where � is shorthand for all the fields, then it is easily
shown that the horizon condition (6) is in fact equivalent to
the requirement that

@�

@�2
¼ 0 (11)

is fulfilled for �2 � 0, or

hgfabcAa
�ð’bc

� þ �’bc
� Þi ¼ �2dðN2 � 1Þ�2: (12)

This means that � will become fixed in terms of the natural
scale of the theory which, in 3D, is provided by the
coupling itself. We thus expect to find �2 / g3.

As it has been shown in [9,27,28], the action (8) is
renormalizable to all orders, and is thus suitable for quan-
tum computations.

III. THE GRIBOV-ZWANZIGER ACTION
COMPLEMENTED WITH A NEW OPERATOR

A. Proposal

As carried out in the 4-dimensional case [17,18], we
introduce the local composite operator (LCO) �’’ into the
action (8). We shall couple this mass term to the action
using a source J, and for renormalization purposes, we
have to add this term in a BRST invariant way. Therefore,
we shall see that the ! sector must gain the same mass.
Hence, we consider the following action:

S0 ¼ SGZ þ S �’’; S �’’ ¼
Z

ddx½�Jð �’a
i ’

a
i � �!a

i !
a
i Þ�;
(13)

with SGZ the original Gribov-Zwanziger action (8). The
new source J has the dimension of a mass squared.
Therefore, we shall often use the notation M2 ¼ J.

B. Motivation

Let us briefly repeat the motivation for adding an extra
term to the Gribov-Zwanziger action. As pointed out in
[17], the fields ð �’ac

� ; ’ac
� ; �!ac

� ;!ac
� Þ introduced to localize

the horizon function appearing in (3) are interacting fields
corresponding, in fact, to the nonlocal dynamics associated
with the horizon function. Therefore, these fields will
develop their own quantum dynamics. We draw attention
to the fact that the A and ’ fields are intimately entangled,
since there is a quadratic A’-mixing term present in the
tree-level action (8), namely, g�2fabcAa

�ð’bc
� þ �’bc

� Þ.
Hence, we expect that any effect in the ’ sector will
immediately reflect in the gluon sector, altering, in particu-
lar, the behavior of the gluon propagator at zero momen-
tum. This is nothing more than saying that the horizon
strongly influences the gluon dynamics.

On top of the previous argument, we can give a second
argument for why one should add the LCO ð �’’� �!!Þ to
the action. The horizon condition corresponds to

hgfabcAa
�ð’bc

� þ �’bc
� Þi ¼ �2dðN2 � 1Þ�2; (14)

i.e. to a condensate proportional to �2. One might then also
expect that ð �’’� �!!Þ will be nonvanishing too when
�2 � 0. Hence, one is almost obliged to incorporate the
effects related to the operator ð �’’� �!!Þ. To make this
argument more explicit, let us compute the perturbative
value of the condensate h �’’� �!!i. We start from

h �’’� �!!ipert ¼ � @WðJÞ
@J

��������J¼0
; (15)

with WðJÞ the generating functional defined in our case as

e�WðJÞ ¼
Z
½d��e�S0 (16)

and with S0 the extended Gribov-Zwanziger action given in
(13). At lowest order, one finds

WðJÞ ¼ �dðN2 � 1Þ�4 þ N2 � 1

2
ðd� 1Þ

�
Z ddq

ð2�Þd ln

�
q4 þ q2

2g2N�4

q2 þ J

�
: (17)

Making use of

Z ddq

ð2�Þd ln

�
q4 þ q2

2g2N�4

q2 þ J

�

¼
Z ddq

ð2�Þd lnðq4 þ q2J þ 2g2N�4Þ

�
Z ddq

ð2�Þd lnðq2 þ JÞ

¼
Z ddq

ð2�Þd lnðq2 þ!2þÞ þ
Z ddq

ð2�Þd lnðq2 þ!2�Þ

�
Z ddq

ð2�Þd lnðq2 þ JÞ (18)

with

!2� ¼ J � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 � 4�4

p

2
; (19)

where �4 ¼ 2g2N�4, and after employing a standard in-
tegral in dimensional regularization,

Z dd‘

ð2�Þd lnð‘2 þm2Þ ¼ � ðm2Þd=2
ð4�Þd=2 �ð�d=2Þ; (20)

we find the following ultraviolet finite result:

WðJÞ ¼ �3ðN2 � 1Þ �4

2g2N
þN2 � 1

6�
ð�!3þ �!3� þ J3=2Þ:

(21)
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Using this explicit expression, we can easily obtain the
perturbative value of the condensate (15), reading

h �’’� �!!ipert ¼
ffiffiffi
2

p N2 � 1

8�
� � 0:056ðN2 � 1Þ�; (22)

where � is the nonzero solution of @�ð�Þ
@� ¼ 0. Since at one

loop

�ð�Þ ¼ �dðN2 � 1Þ �4

2Ng2
þ N2 � 1

2
ðd� 1Þ

Z ddq

ð2�Þd
� lnðq4 þ �4Þ

¼ �3ðN2 � 1Þ �4

2g2N
þ

ffiffiffi
2

p
6�

ðN2 � 1Þ�3; (23)

we find that

� ¼
ffiffiffi
2

p
12�

g2N; (24)

with

Evac ¼ g6
N3ðN2 � 1Þ
10 368�4

> 0: (25)

We notice that the one loop vacuum energy corresponding
to the Gribov-Zwanziger action is positive. The same
feature was also observed in the one loop 4D case [18].

Besides this perturbative value of the condensate (22), it
could also be possible that another, nonperturbative, value
emerges. However, to calculate this nonperturbative value,
one should calculate the Legendre transformation of the
generating functional WðJÞ to obtain the effective action
�ð�Þ, where the absolute minimum configuration �� 	
�’’� �!! would correspond to the true, energetically
favored, vacuum. Here, we limit ourselves to observe
that, similar to what was encountered in 4D [18], no such
value has been found at one loop, meaning that higher
order contributions have to be taken into account. For the
interested reader, we have written down the corresponding
details in Appendix A.

C. Renormalizability

To prove the renormalizability, let us start from the
following action,

S00 ¼ S0 þ SLCO; SLCO ¼
Z

ddx�g2J; (26)

with S0 the action proposed in (13), and with the LCO
parameter � a new dimensionless quantity. This term in �
is, in principle, needed to take into account potential
divergences proportional to g2J, which are allowed by
power counting and by the symmetries of the action.1

This term would ensure multiplicative renormalizability
of the functionalWðJÞ. However, although this term cannot
be ruled out at the level of the algebraic analysis, an

analogous proof as in 4D can be written down allowing
us to consistently set � ¼ 0 [18].
To study the renormalizability of the Gribov-Zwanziger

action, it is highly useful to embed it in an extended action,
which reduces to the original model in a specific limit [9].
Doing so, we may have a larger number of Ward identities
at our disposal, which are powerful tools to construct the
most general possible counterterm. Therefore, proceeding
as in the 4D case [18], we shall start with the following
action:

� ¼ S0 þ Ss þ Sext þ S �’’ þ SLCO; (27)

with S0 given in (8), S �’’ in (13), and

Ss ¼ s
Z

ddxð�Uai
� ðD�’iÞa � Vai

� ðD� �!iÞa �Uai
�V

ai
� Þ;

¼
Z

ddxð�Mai
� ðD�’iÞa � gUai

�f
abcðD�cÞb’c

i

þUai
� ðD�!iÞb � Nai

� ðD� �!iÞa � Vai
� ðD� �’iÞa

þ gVai
� fabcðD�cÞb �!c

i �Mai
�V

ai
� þUai

�N
ai
� Þ;

Sext ¼
Z

ddx

�
�Ka

�ðD�cÞa þ 1

2
gLafabccbcc

�
: (28)

We introduced new sourcesMai
� , V

ai
� ,Uai

� ,N
ai
� ,K

a
�, and L

a,

which are necessary to analyze the renormalization of the
corresponding composite field operators in a BRST invari-
ant fashion. The BRST operator s is defined through

sAa
� ¼ �ðD�cÞa; sca ¼ 1

2gf
abccbcc;

s �ca ¼ ba; sba ¼ 0; s’a
i ¼ !a

i ;

s!a
i ¼ 0; s �!a

i ¼ �’a
i ; s �’a

i ¼ 0;

sUai
� ¼ Mai

� ; sMai
� ¼ 0; sVai

� ¼ Nai
� ;

sNai
� ¼ 0; sKa

� ¼ 0; sLa ¼ 0; sJ ¼ 0;

(29)

so that s is nilpotent, s2 ¼ 0. One can easily see that the
action � is indeed BRST invariant, s� ¼ 0. We underline
the fact that the mass operator itself, �’’� �!!, is also
BRST invariant. In Table I, we have summarized for all the
fields and sources their mass dimension, ghost number, and
Qf charge, which is defined by means of the diagonal

generator Uii of the global UðfÞ symmetry. We have
chosen these mass dimensions such that, in any case, the
action of the BRST transformation s raises the dimension
by 1=2.
At the end, we can give the sources the following

physical values:

Mab
��jphys ¼ Vab

��jphys ¼ �2�ab���;

Uai
� jphys ¼ Nai

� jphys ¼ Ka
�jphys ¼ Lajphys ¼ 0;

(30)

in order to recover the physically relevant action S00, given
in (26). If the action � is renormalizable for any value of
the sources, it will of course be for the specific values (30).
This is an example of the fact that it can be highly useful to

1We refer to [29] for more details concerning the LCO formal-
ism and the precise role of the LCO parameter.
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use a slightly more general version than the original action,
whereby a more powerful set of Ward identities can be
invoked to prove e.g. the renormalizability of S0. We have
collected the details of the algebraic renormalization
analysis in Appendix B. The main conclusion drawn is
that the action � (27) is multiplicatively renormalizable to
all orders of perturbation theory.

It is important to notice here that it is the Ward identities
defining the extended Gribov-Zwanziger action (27) which
dictate which terms can be added to the action, without
jeopardizing the symmetry content, in general, and the
renormalizability, in particular. From this perspective, the
mass term (13) displays remarkable features. In fact, its
introduction turns out to be compatible with both Ward
identities and renormalizability, as originally proposed in
[17].

D. The breaking of the BRST symmetry

We would like to draw attention to the fact that the
actions S and S0 are BRST invariant if �2 ¼ 0, since then
the extra fields can be integrated out, and we are left with
the original Yang-Mills action in the Landau gauge.
Evidently, we then have �’’� �!! ¼ �sð �!’Þ ¼ 0. It is
only when �2 � 0 that we can have such a nonvanishing
condensate, since in that case the BRST symmetry gener-
ated by s is no longer preserved, since sS0 � 0. More
precisely, the ‘‘horizon terms’’ / �2 in Eq. (8) are not
BRST invariant. It is an important observation that the
Gribov-Zwanziger action is not BRST invariant: the
BRST symmetry is explicitly broken by soft terms 	�2.
Nevertheless, it is worth emphasizing that this breaking
can be kept under control at the quantum level [18]. In
particular, the introduction of the local sources U, V, M,
and N (see also [30]) nicely allows one to embed the action
into the larger BRST invariant action, thereby allowing one
to prove the renormalizability. When the sources attain
their physical values, Eqs. (30), the exact Slavnov-Taylor
identities of the larger action induce the corresponding
softly broken identities for the physical action S00. The
operators coupled to these sources are exactly those rele-
vant for the discussion of the broken Slavnov-Taylor iden-
tity; see a similar discussion in [30].

The introduction of the horizon function thus explicitly
breaks the BRST invariance of the Landau gauge fixed
Yang-Mills action. In particular, in [18], it has been shown
that the origin of this breaking is deeply related to the
restriction to the Gribov region �. More precisely, it turns

out that infinitesimal gauge transformations of field con-
figurations belonging to the Gribov region � give rise to
configurations lying outside of �. The appearance of the
BRST breaking looks thus rather natural, when we keep in
mind that the BRST transformation of the gauge field is
inherited from its infinitesimal gauge transformation. Let
us elaborate a bit on this here. The starting point is that we
must restrict the domain of path integration to the region
�. Let us consider the full set of fields present, A�, c, �c, b,

and other potential fields. These fields can be seen as the
coordinates of a space F . We can define a manifold over
F , by means of the action functional,

S: A�; c; �c; b; . . . 2 F ! SðA�; c; �c; b; . . .Þ 2 R: (31)

To be more precise, we must restrict ourselves to�, so we
must consider the functional

Srestricted: A�; c; �c; b; . . . 2 F jA� 2 �

! SðA�; c; �c; b; . . .Þ 2 R: (32)

In a pictorial way, we can imagine this as some kind of
‘‘cylinder’’ in F with� as a ground surface, and the other
unrestricted fields ðc; �c; . . .Þ describing the height. Notice
that we do not say what the action S precisely is; we only
assume that it is BRST invariant. Now, we consider a
particular point ðA�

�; c
�; �c�; b�; . . .Þ very close to the bound-

ary of the cylinder; thus A�
� is located very close to the

inner boundary of �, and @�A
�
� ¼ 0. We can decompose

A�
� as

A�
� ¼ a� þ C�; (33)

with C� 2 @�; thus C� lies on the Gribov horizon. The

shift a� is a small (infinitesimal) perturbation. Obviously,

@�C� ¼ @�a� ¼ 0. We then find

~A� ¼ C� þ a�|fflfflfflfflffl{zfflfflfflfflffl}
A�
�

þD�ðCÞ!þ . . . (34)

for the gauge transformed field. Since C� 2 @� and set-

ting ! equal to the zero mode corresponding to C� yields

@� ~A� ¼ @�D�ðCÞ! ¼ 0: (35)

In addition, ~A� also lies very close to the boundary @�, but

on the other side of this boundary, as shown by Gribov in
[7]. Let us now consider the infinitesimal BRST shift of the
coordinate set ðA�

�; c
�; . . .Þ, which is given by

TABLE I. Quantum numbers of the fields.

Aa
� ca �ca ba ’a

i �’a
i !a

i �!a
i Uai

� Mai
� Nai

� Vai
� Ka

� La J

Dimension 1=2 0 1 3=2 1=2 1=2 1 0 1 3=2 2 3=2 2 5=2 2

Ghost number 0 1 �1 0 0 0 1 �1 �1 0 1 0 �1 �2 0

Qf charge 0 0 0 0 1 �1 1 �1 �1 �1 1 1 0 0 0
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A�
� ! A�

� þ 	D�c
� (36)

for the gauge field, with 	 a Grassmann number. We did not
specify yet the choice of our particular ghost coordinate.

We take c� ¼ 	0
		0 !, with 	0 another Grassmann number,2

and! the zero mode. Since the BRSTwas supposed to be a
symmetry of the cylinder, the transformed coordinate set of
ðA�

�; c
�; . . .Þ should still be located within the cylinder.

However, by construction of A�
� and c�, we do end up

outside of the cylinder. This contradiction means that
maintaining the BRST symmetry is not possible when
restricting to �.

One can also imagine a configuration A��
� 2 � not

located close the boundary @�; thus @�A
��
� ¼ 0 and

�@�D�ðA��Þ> 0. If we are to assume that the BRST

transformation of A��
� ,

A��
� þ 	D�c

��; (37)

with c�� arbitrary, would remain within�, we are forced to
conclude that @�D�½A���ð	c��Þ ¼ 0; thus 	c�� would then
be a zero mode, again in contradiction with the hypothesis
that A��

� is not located on (or close to) the boundary @�,

meaning that there are no such zero modes.
An interesting property worth mentioning is that, despite

the loss of the BRST symmetry, one can still use the
associated broken Slavnov-Taylor identity to derive rela-
tions amongst several Green functions. This has exhaus-
tively been studied in [18], and can be easily transported to
the 3D case. We therefore refer the reader to [18] for any
detail concerning the BRST breaking and its consequen-
ces. In particular, in [18] we have algebraically motivated
that the (controlled) BRST breaking allows the Gribov
parameter � to become a physical parameter. If the
BRST symmetry is preserved, � would merely play a
role akin to that of an unphysical gauge parameter.

We emphasize here that the soft breaking of the BRST is
introduced in such a way that one keeps the nilpotency of
the BRSToperator. This is an important point, as it enables
one to make use of the notion of the BRST cohomology.
Indeed, as discussed earlier in this section, the proof of the
renormalizability of the action is exactly possible by mak-
ing use of the BRST cohomology in the extended model
(27), which enjoys the BRST symmetry. In fact, one can
define the physical operators in the Gribov-Zwanziger
model as those obtained from the physical operators
Ophys in the extended model (27), upon taking the physical

limit (30) of these operatorsOphys, which are nothing more

than the cohomology classes of the nilpotent BRST opera-
tor. The latter are precisely given by the gauge invariant
singlet operators constructed with the field strength and its
covariant derivative. In other words, due to the form of the
BRST operator, the physical operator content of the theory

is left unchanged, being identified with the colorless gauge
invariant operators. As a consequence, both gluons and
ghosts are excluded from the physical spectrum.
Moreover, due to the presence of the Gribov parameter �
and of the massM, the behavior of the correlation function
of gauge invariant operators will also get modified in the
infrared region, as it can be inferred from the expression of
the resulting gluon propagator. For instance, although the
gluon propagator turns out to exhibit positivity violations
[see Sec. V, Eq. (50)], one might expect that the correlation
functions of gauge invariant operators, like e.g.
hF2ðxÞF2ðyÞi, could display a real pole in momentum
space, which would be related to the mass of a glueball
bound state. This topic is currently under study. At asymp-
totically large momenta, one can neglect the soft BRST
breaking term, in which case we are reduced to the normal
Yang-Mills physical modes. The degrees of freedom cor-
responding to the fields ’, �’, !, and �! will decouple from
the physical spectrum, as these fields form BRST doublets
[see (29)], and it is well known that these become trivial in
the BRST cohomology [31].

E. A few more words about the intricacies of 3D gauge
theories: Infrared problems and ultraviolet finiteness

In the previous subsection, we mentioned the case �2 ¼
0. Strictly speaking, the 3D theory will not be well defined
in that case. In the absence of an infrared regulator, the
perturbation theory of a super-renormalizable 3D gauge
theory is ill defined due to severe infrared instabilities [32].
This can be intuitively understood, as the coupling constant
g2 carries the dimension of a mass. In the absence of an
infrared regulator, the effective expansion parameter will
look like g2=p with p a certain external momentum or
combination of external momenta. For p 
 g2, very good
ultraviolet behavior is apparent, but for p � g2, infrared
problems emerge. The presence of a dynamical mass scale
(s)m / g2 could ensure a sensible perturbation series, even
for small p, as a natural expansion parameter is then
provided by g2=m. From this perspective, a nonvanishing
Gribov mass �2 could also serve as an infrared cutoff. This
feature is also explicitly seen from Eq. (24), from which an
effective dimensionless expansion parameter can be de-
rived as

g2N

ð4�Þ3=2� ¼ 3

2
ffiffiffiffiffiffiffi
2�

p � 0:6; (38)

a quantity which is at least smaller than 1. The inverse

factor ð4�Þ3=2 is the generic loop integration factor gen-
erated in 3D.
Although this is not the main concern of this paper, it

might be interesting to perform higher order computations
to effectively find out whether all infrared divergences are
absent when �2 � 0.
In fact, it is possible to couple the regulating mass term

1
2m

2A2 to the Gribov-Zwanziger action. We did not con-2Notice that 		0 is a normal number; thus we can divide by it.
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sider this in the current paper, but in 4D this has been
discussed in full detail in [18]. All Ward identities and
relations between renormalization constants are main-
tained. Moreover, the form of the propagators is only
quantitatively influenced by this additional mass m2,
whereby the main consequences of the mass related to
�’’� �!! are preserved (see below) [18]. In the presence
of 12m

2A2, all Z factors are 1, or said otherwise, there are no

ultraviolet divergences when computing Green functions
[33,34]. Having a look at the relations (B18) and (B19),
this also means that any other Z factor is 1, and hence the
Gribov-Zwanziger theory is completely ultraviolet finite,
including the vacuum functional, since there is no inde-
pendent renormalization for it: the potential divergences
related to �4 are killed by the already available Z factors,
which are themselves trivial, and we already know that
there are no divergences related to g2J. It is understood
that, if needed, the mass related to A2 is brought back to
zero, as the other mass parameters are expected to cure the
theory in the infrared. This should be checked case by case.
For the purposes of this paper, we shall later see that
everything works out fine without a mass coupled to A2.

IV. THE GRIBOV-ZWANZIGER ACTION
SUPPLEMENTED BYAN EXTRAVACUUM TERM

A. Proposal

We propose to add an extra vacuum term to the action
(13), i.e.

Sen ¼ 2
dðN2 � 1Þffiffiffiffiffiffiffiffiffiffiffiffi

2g2N
p Z

ddx&�2J; (39)

where the prefactor 2 dðN2�1Þffiffiffiffiffiffiffiffi
2g2N

p is chosen for later

convenience.

B. Motivation

We shall now explain the need for the inclusion of this
vacuum term. So far, we have altered the original Gribov-
Zwanziger action by adding a mass operator to the action.
However, we have to be careful that with this addition we
are not leaving the Gribov region when performing calcu-
lations. Initially, staying inside the Gribov horizon was
assured by the horizon condition (11). This condition is
equivalent to demanding that the Faddeev-Popov operator
defined in (1) is positive, i.e.�@�D

ab
� > 0. In turn, looking

at the Landau gauge fixing (5), this is equivalent to de-
manding the positivity of the inverse ghost propagator,
which can be deduced from Fig. 1, giving

Gabðk2Þ ¼ �abGðk2Þ

¼ �ab

�
1

k2
þ 1

k2

�
g2

N

N2 � 1

Z d4q

ð2�Þ4
ðk� qÞ�k�
ðk� qÞ2

� hAa
�A

a
�i
�
1

k2

�
þOðg4Þ

¼ �ab 1

k2
ð1þ �ðk2ÞÞ þOðg4Þ; (40)

with

�ðk2Þ ¼ N

N2 � 1

g2

k2

Z d4q

ð2�Þ4
ðk� qÞ�k�
ðk� qÞ2 hAa

�A
a
�i; (41)

and with hAa
�A

a
�i the gluon propagator (see below). We can

now rewrite the ghost propagator by performing a resum-
mation as

G ðk2Þ ¼ 1

k2
1

1� �ðk2Þ þOðg4Þ (42)

as we are only working up to order g4. This corresponds to
the usual resummation of a set of connected diagrams into
the inverse of the one loop 1-particle-irreducible (1PI)
ghost self-energy. We can therefore write the inverse ghost
propagator as

G �1ðk2Þ ¼ k2ð1� �ðk2ÞÞ þOðg4Þ: (43)

Demanding the previous expression to be positive can be
translated in the so-called Gribov no-pole condition [7],

�ðk2Þ � 1; (44)

which is the key point of this investigation. Without the
inclusion of this extra vacuum term, we shall demonstrate
that it is impossible to satisfy the no-pole condition. We
recall that this no-pole condition was the basis of the
original Gribov paper [7].
We have introduced a new parameter & which is still free

and needs to be determined. We notice that this vacuum
term is, in a sense, comparable to the vacuum term already
present in the action (8), i.e. �R

ddxdðN2 � 1Þ�4. In fact,

in the original Gribov-Zwanziger formulation, this term
was also necessary to stay within the horizon. Analogously,
as � is fixed by a gap equation, we shall introduce a second
gap equation to determine &. Proceeding as in the 4D case,
we shall impose that

@�ð0Þ
@M2

��������M2¼0
¼ 0; (45)

which assures a smooth limit to the original Gribov-
Zwanziger case when M2 ! 0.FIG. 1. The one loop corrected ghost propagator.
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C. Renormalizability

The renormalizability of the following action,

Stot ¼ S0 þ Sen

¼ SGZ þM2
Z

ddx

�
�ð �’a

i ’
a
i � �!a

i !
a
i Þ

þ 2
dðN2 � 1Þffiffiffiffiffiffiffiffiffiffiffiffi

2g2N
p &�2

�
; (46)

can be proven analogously to [18]. The vacuum term Sen
will not give rise to any additional counterterms; hence,

&0�
2
0J0

g0
¼ &�2J

g
; (47)

and consequently, adding this extra term does not give rise
to a new renormalization factor,

Z& ¼ ZgZ
�1
�2 Z

�1
J : (48)

V. THE GLUON AND GHOST PROPAGATORS

We shall use the following conventions for the gluon and
the ghost propagator,

hAa
�ð�pÞAb

�ðpÞi ¼ �abDðp2ÞP��ðpÞ;
hcað�pÞ �cbðpÞi ¼ �abGðp2Þ; (49)

where P��ðpÞ ¼ ��� � p�p�

p2 is the transverse projector.

A. The gluon propagator

The tree-level gluon propagator corresponding to the
action (26) is given by

D ðp2Þ ¼ p2 þM2

p4 þM2p2 þ �4
; (50)

with

�4 ¼ 2g2N�4: (51)

This particular propagator (50) displays the following
properties already at tree level:

(i) Dðp2Þ is infrared suppressed due to the presence of
the mass scales M2 and �4.

(ii) Dð0Þ ¼ M2

�4 , i.e. the gluon propagator does not van-
ish at zero momentum if M2 is different from zero.

These properties seem to be in qualitative accordance with
the lattice data [12–14]. We also want to stress that the
mass term related to �’’� �!! plays a crucial role in
having Dð0Þ � 0, since in the standard Gribov-
Zwanziger scenario, the gluon propagator necessarily
goes to zero.

It is instructive to determine the one loop value of the
gluon propagator near zero momentum in order, for ex-
ample, to produce a numerical estimate to compare with
other methods. Again, this calculation is similar to that

performed in 4D and we record those features which are
different for our 3-dimensional analysis. First, we note that
for this exercise we will follow [35], where the form of the
gluon and ’ field two-point mixing term is defined differ-
ently. For this intermediate calculation, here it is appro-
priate to use the conventions and method of [35] since they
have been demonstrated to be consistent with the gluon
suppression and ghost enhancement of the original Gribov

analysis at two loops in MS in 4D. At the end, we have
been careful in converting back to the main conventions of
this article in deriving the one loop freezing value of the
gluon propagator. Our method involves computing the
matrix of two-point functions comprising the gluon-’ field

sector at one loop in theMS scheme and then inverting this
at one loop to determine the quantum corrections to the tree
propagators. However, as we are ultimately only interested
in the zero momentum limit, we restrict ourselves to eval-
uating the two-point functions in the zero momentum limit
from the outset using the vacuum bubble expansion. In this
way, all 14 contributing Feynman diagrams are expanded
in powers of the external momentum p2 but truncated at
Oððp2Þ2Þ. Unlike in 4D all the diagrams are ultraviolet
finite and the renormalization of all the parameters is
trivial. In other words, one simply replaces bare quantities
by their corresponding renormalized ones. In effect, this is

a trivial MS renormalization. In addition, the basic one
loop vacuum bubble integral is simple to compute and is
given by differentiating (20) with respect to m2. To deter-
mine the freezing value of the gluon propagator, we have
adapted the computer programme used for the 4-
dimensional computation [18], written in the symbolic
manipulation language FORM [36], to the 3-dimensional
case. As indicated already, this is the main reason for
adopting the conventions of [35] here, and it requires the
replacement of the basic one loop 4-dimensional integrals
by their 3-dimensional counterparts in the FORM pro-
gramme. While this may seem a trivial exercise, there is
an important aspect to note. In performing automatic
Feynman diagram computations, where the graphs are
generated electronically with the QGRAF package [37],
one always has to ensure the correctness of the result.
Paradoxically an ultraviolet divergent 4-dimensional cal-
culation is easier to check than a finite 3-dimensional one.
The reason for this resides in the fact that for the former the
correct nontrivial renormalization constants have to
emerge, and in the case of a gauge theory, these have to
satisfy the Slavnov-Taylor identities. In a finite calculation
the luxury of this check is absent. However, in the present
case the adaptation of a verified programme with minor
changes gives us confidence in the eventual value we will
derive. Moreover, a reasonable degree of consistency with
other results, such as lattice methods, adds to our confi-
dence in the result, as will become evident later.
For completeness, the Landau gauge propagators we use

are, for an arbitrary color group,
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hAa
�ðpÞAb

�ð�pÞi ¼ �abðp2 þM2Þ
½ðp2Þ2 þM2p2 þ CA�

4�P��ðpÞ; hAa
�ðpÞ �’bc

� ð�pÞi ¼ � fabc�2ffiffiffi
2

p ½ðp2Þ2 þM2p2 þ CA�
4�P��ðpÞ;

h’ab
� ðpÞ �’cd

� ð�pÞi ¼ � �ac�bd

ðp2 þM2Þ
�� þ fabefcde�4

ðp2 þM2Þ½ðp2Þ2 þM2p2 þ CA�
4�P��ðpÞ; (52)

where fabc are the color group structure constants and the appearance of 1=
ffiffiffi
2

p
derives from the conventions of [35]. We

formally define the matrix of one loop corrections to the two-point functions as

p2�ac ��2facd

��2fcab �ðp2 þM2Þ�ac�bd

� �
þ X�ac Ufacd

Nfcab Q�ac�bd þWfacefbde þ Rfabefcde þ SdabcdA

� �
g2 þOðg4Þ; (53)

in the f 1ffiffi
2

p Aa
�;’

ab
� g basis where the common tensor P��ðpÞ has been removed, dabcdA is defined by [38]

dabcdA ¼ 1
6 TrðTa

AT
ðb
A Tc

AT
dÞ
A Þ (54)

and ðTa
AÞbc ¼ �ifabc is the adjoint representation of the color group generators. Given the set of formal one loop two-point

functions, it is easy to invert the matrix to one loop and formally derive the corresponding matrix of propagators as

ðp2þM2Þ
½ðp2Þ2þM2p2þCA�

4��
cp � �2

½ðp2Þ2þM2p2þCA�
4� f

cpq

� �2

½ðp2Þ2þM2p2þCA�
4� f

pcd � 1
ðp2þM2Þ�

cp�dq þ �4

ðp2þM2Þ½ðp2Þ2þM2p2þCA�
4� f

cdrfpqr

0
@

1
A

þ A�cp Cfcpq

Efpcd G�cp�dq þ Jfcpefdqe þ Kfcdefpqe þ LdcdpqA

� �
g2 þOðg4Þ: (55)

We refer to Sec. 3 in [35] for a detailed discussion about the
color structures emerging in this matrix.

As we are specifically interested in the gluon propagator,
the only quantity of importance here is A, and it is formally
the same as in [18]. In other words,

A ¼ � 1

½ðp2Þ2 þM2p2 þ CA�
4�2 �

�
ðp2 þM2Þ2X

� CA�
2ðN þUÞðp2 þM2Þ

þ CA�
4

�
Qþ CARþ 1

2
CAW

��
: (56)

This concludes the derivation of the formal aspects of the
computation of the one loop propagator corrections. The
actual values of the two-point function contributions now
need to be inserted from the vacuum bubble expansion.

Let us point out here that we are looking at the connected
gluon two-point function, which is the relevant quantity,
also measured on the lattice. The reader might notice that
the lowest order part of the gluon propagator in (55) can
also be obtained by integrating out the additional ð �’;’Þ
fields in the quadratic approximation and can construct the
tree-level gluon propagator in this fashion. In the case
M2 ¼ 0, this also corresponds with the result for the gluon
propagator from the original semiclassical approach by
Gribov [7]. It is worth mentioning that this particular
kind of propagator has been used frequently as an ansatz
for a long time to do lattice fits; see e.g. [2].

A key difference in evaluating the relevant 14 Feynman
diagrams derives from the dimensionality of the basic
d-dimensional integral defined by

Ið�Þ ¼
Z ddk

ð2�Þd
1

ðk2 þ�2Þ (57)

for a generic mass �. On dimensional grounds Ið�Þ has
mass dimensions of ðd� 2Þ. In 4 dimensions this of course
corresponds to a mass dimension of 2. By contrast, in 3
dimensions this drops to 1. However, in each of the tree
propagators there is a denominator factor which is qua-
dratic in p2 which gives two roots. In 4D this leads to a
very simple partial fraction into two terms and hence the
simple evaluation of the basic vacuum integral Ið�Þ. In 3D
the situation is more complicated. The same partial frac-
tion emerges, but one has to choose the sign of the square
root of the mass term appearing as �2 for the evaluation of
the integral in terms of an object of mass dimension 1. In
principle, this could lead to several analyses depending on
the choice of sign in the square root. Another way of
viewing this is to realize that in 3 dimensions one has to

consider the common propagator factor as quartic in
ffiffiffiffiffiffi
p2

p
and find four roots. For completeness, these are

m�þ ¼ � 1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ 2

ffiffiffiffiffiffi
CA

p
�2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � 2

ffiffiffiffiffiffi
CA

p
�2

q �

m�� ¼ � 1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ 2

ffiffiffiffiffiffi
CA

p
�2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � 2

ffiffiffiffiffiffi
CA

p
�2

q �
:

(58)

In the limit where M ! 0, one recovers the four more
recognizable poles of the usual Gribov propagator,

lim
M!0

m�þ ¼ �1
2ð1þ iÞ�; lim

M!0
m�� ¼ �1

2ð1� iÞ�:
(59)

To resolve which is the correct choice of sign for the
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integral, we recall that the gap equation for the Gribov
mass derives from a one loop calculation which also in-
volves the basic integral Ið�Þ. Examining that calculation
in order to have a nontrivial solution with a positive cou-
pling constant, one has to takemþþ andmþ�. Interestingly, in
our calculation the only square root which remains in the
leading order vacuum bubble expansion relevant for the

gluon propagator freezing is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ 2

ffiffiffiffiffiffi
CA

p
�2

p
, which is

always real. So there are no issues concerning the relative
sizes of M2 and �2, which could have led to a complex
value in the square roots of (58). Given these considera-
tions and being careful to revert to our general conventions,
we finally find

D ð0Þ ¼ M2

�4
þ g2N

4�

M4

�8

�
M4

�4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ 2�2

p
�M5

�4
�M2

�2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ 2�2

p
� 17

12
M2�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ 2�2

p

M4 � 4�4

þ 13

4
�4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ 2�2

p

M4 � 4�4
� 5

3
�6M2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ 2�2

p

ðM4 � 4�4Þ2

þ 10

3
�8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ 2�2

p

ðM4 � 4�4Þ2 þ
7

4
M� 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ 2�2

p �
:

(60)

From the previous expression, we can still conclude that,
for a nonzero value of M2, Dð0Þ � 0.

B. The ghost propagator

We have found that the one loop corrected ghost propa-
gator can be written as

G ðk2Þ ¼ 1

k2
1

1� �ðk2Þ ; (61)

where �ðk2Þ is the following momentum dependent func-
tion:

�ðk2Þ ¼ g2N
k�k�

k2

Z d3q

ð2�Þ3
1

ðk� qÞ2

� q2 þM2

q4 þM2q2 þ �4
P��ðqÞ: (62)

Calculating this integral explicitly, we find

�ðk2Þ ¼ Ng2

32k3�

�
1

M2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4 � 4�4

p
�
1þ M2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M4 � 4�4
p

�� ffiffiffi
2

p
k3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4 � 4�4

pq
� kffiffiffi

2
p

�
M2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4 � 4�4

p �
3=2

� k4�þ 1

2
ð2k2 þM2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4 � 4�4

p
Þ2 arctan

ffiffiffi
2

p
kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4 � 4�4

pp
�
þ 1

M2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4 � 4�4

p
�
1� M2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M4 � 4�4
p

�

�
� ffiffiffi

2
p

k3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4 � 4�4

pq
� kffiffiffi

2
p ðM2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4 � 4�4

p
Þ3=2 � k4�

þ 1

2
ð2k2 þM2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4 � 4�4

p
Þ2 arctan

ffiffiffi
2

p
kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4 � 4�4

pp
�	
: (63)

In order to find the behavior of the ghost propagator near
zero momentum, we take the limit k2 ! 0 in Eq. (62),

�ð0Þ ¼ g2N
2

3

Z d3q

ð2�Þ3
1

q2
q2 þM2

q4 þM2q2 þ �4

¼ g2N

6�

M2 þ �2

�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ 2�2

p ; (64)

which can of course be obtained by taking the limit k2 ! 0
in expression (63). Similarly, one can check that � ! 0 for
k2 ! 1 and/or M2 ! 1.

Before drawing any conclusions, we still need to have a
look at the gap equations, which shall fix �2 as a function
of M2.

C. The gap equations

We begin with the first gap equation (11) in order to
express � as a function of M2. The effective action at one
loop order is given by

�ð1Þ
� ¼ �dðN2 � 1Þ�4 þ 2

dðN2 � 1Þffiffiffiffiffiffiffiffiffiffiffiffi
2g2N

p &�2M2 þ ðN2 � 1Þ
2

� ðd� 1Þ
Z ddq

ð2�Þd ln
q4 þM2q2 þ 2g2N�2

q2 þM2
: (65)

With �4 ¼ 2g2N�4, we rewrite the previous expression,
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E ð1Þ ¼ �ð1Þ
�

N2 � 1

2g2N

d

¼ ��4 þ 2&�2M2 þ g2N
d� 1

d

Z ddq

ð2�Þd

� ln
q4 þM2q2 þ �4

q2 þM2
; (66)

and apply the gap equation (11),

0 ¼ �1þ &
M2

�2
þ g2N

d� 1

d

Z ddq

ð2�Þd
1

q4 þM2q2 þ �4
:

(67)

In 3 dimensions, the integral in this gap equation is finite,
resulting in

0 ¼ �1þ &
M2

�2
þ g2N

6�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ 2�2

p : (68)

This expression will fix �2 as a function ofM2, i.e. �2ðM2Þ,
once we have found an explicit value for &.

This explicit value for & will be provided by the second
gap equation (45). From expression (62), one finds

�ð0Þ ¼ g2N
d� 1

d

Z ddq

ð2�Þd
1

q2
q2 þM2

q4 þM2q2 þ �4

¼ g2N
d� 1

d

Z ddq

ð2�Þd
1

q4 þM2q2 þ �4

þM2g2N
d� 1

d

Z ddq

ð2�Þd
1

q2
1

q4 þM2q2 þ �4
:

(69)

Therefore, we can rewrite the first gap equation (67) as

0 ¼ �ð0Þ � 1�M2 d� 1

d
g2N

Z ddq

ð2�Þd
1

q2

� 1

q4 þM2q2 þ �4
þ &

M2

�2
: (70)

The second gap equation can then subsequently be ob-
tained by acting with @

@M2 on the previous expression and

setting M2 ¼ 0. Doing so, we find

� d� 1

d
g2N

Z ddq

ð2�Þd
1

q2
1

q4 þ �4ð0Þ þ &
1

�2ð0Þ ¼ 0

(71)

by keeping (45) in mind. Setting M2 ¼ 0 in (68) yields

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�2ð0Þ

q
¼ g2N

6�
: (72)

Proceeding with Eq. (71), we find the following simple
solution for &,

& ¼ 1

12�

2ffiffiffi
2

p g2N

�ð0Þ ¼ 1: (73)

In summary, the following expression,

g2N

6�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ 2�2

p ¼ 1�M2

�2
; (74)

fixes �2ðM2Þ.

D. The ghost propagator at zero momentum

At this point, we have all the information we need to take
a closer look at the ghost propagator at zero momentum.
From Eqs. (64) and (74), we find

�ð0Þ ¼
�
M2

�2
þ 1

��
1�M2

�2

�
¼ 1�M4

�4
: (75)

From this expression we can make several observations.
First, when M2 ¼ 0, we find that �ð0Þ ¼ 1, which is ex-
actly the result obtained in the original Gribov-Zwanziger
action [7,9]. Consequently, the ghost propagator (61) is
enhanced and behaves like 1=k4 in the low momentum
region. Second, for anyM2 > 0, �ð0Þ is smaller than 1. By
contrast, without the inclusion of the extra vacuum term,
�ð0Þ would always be bigger than 1, which can be ob-
served from expression (70). Therefore, it is absolutely
necessary to include this term. With �ð0Þ smaller than 1,
the ghost propagator is not enhanced and behaves as 1=k2.

VI. STUDY OF THE DYNAMICAL EFFECTS
RELATED TO M2

A. Variational perturbation theory

In this section, we shall rely on variational perturbation
theory in order to find a dynamical value for the hitherto
arbitrary mass parameter M2. Specifically, we follow
[18,39] and introduce M2 as a variational parameter into
the theory by replacing the action (46) by

SGZ þ ð1� ‘kÞM2
Z

ddx

�
�ð �’a

i ’
a
i � �!a

i !
a
i Þ

þ 2
dðN2 � 1Þffiffiffiffiffiffiffiffiffiffiffiffi

2g2N
p &�2

�
; (76)

where ‘ serves as the loop counting parameter, and for-
mally ‘ ¼ 1 at the end [18]. In this fashion, it is clear that
the original starting action SGZ has not been changed. We
have in fact added the terms in M2, and subtracted them
again at k orders higher in the loop expansion. We shall set
k ¼ 2, as we are working up to one loop. Taking k ¼ 1
would destroy the effect of the vacuum term Sen, which
would be inconsistent as explained before.
We shall discuss a possible option to fixM2. For this, we

can expand any quantity QðnÞ (which is evaluated to a
certain order n) in powers of ‘, cut this series to the order

n, and set ‘ ¼ 1. We can then require that @Q
@M2 ¼ 0, i.e. the

principle of minimal sensitivity [40]. This latter require-
ment can be well motivated since an exact calculation ofQ
using the action (76), taking the full nonperturbative nature
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of the theory into account, would lead to an
M2-independent result, since ‘ ¼ 1 after all. At a finite
order in ‘ however, some residual M2 dependence will
enter the result. In this way, we hope to capture some
relevant nontrivial information yet at finite order, encoded
in the parameter M2. We then mimic the independence on

M2 of the exact result just by imposing @Q
@M2 ¼ 0 and

thereby fixing M2. If, however, no optimal value for M2

is found, one can impose that @2Q
ð@M2Þ2 ¼ 0 [40].

B. The ghost propagator

In order to obtain a dynamical value for the ghost
propagator in the presence of M2, we shall now utilize
the variational procedure outlined in the previous subsec-
tion. We start with the expression (62) for �ðk2Þ and re-
place g2 with ‘g2 and M2 with ð1� ‘2ÞM2, expand up to
order ‘, and set ‘ ¼ 1. Doing so, we recover again the
same expression (62). Following an analogous procedure
for the gap equations also results in the same expression
(74). This latter equation determines �2ðM2Þ, which can be
plugged into the expression of �ðk2Þ, thereby making
�ðk2Þ only a function of M2, next to the momentum
dependence.

First, let us investigate �ðk2Þ at zero momentum, which
is the key point of this paper. Figure 2 displays �ð0Þ as a
function of M2. We observe that �ð0Þ is indeed smaller
than 1 for all M2 > 0 as already shown analytically in the
previous section. We also find a smooth limit of �ð0Þ for
M2 ! 0 required by the second gap equation (45), as can
be seen from the left figure. According to the principle of
minimal sensitivity, we have to search for an extremum, i.e.
@�ð0Þ
@M2 ¼ 0. Unfortunately, there is no such extremum

present. Nevertheless, we do find a point of inflection,
@2�ð0Þ
ð@M2Þ2 ¼ 0 at M2 ¼ 0:185ðg2N6� Þ2. Taking this value for M2,

we find

�ð0Þ ¼ 0:94; (77)

which is indeed smaller than 1 and results in a nonen-
hanced behavior of the ghost propagator. This value needs
to be compared with the lattice value of �ð0Þ ¼ 0:79,
which can be extracted from the data in [15].
Second, let us have a look at this point of inflection,

when ‘‘turning on’’ the momentum k2. As shown in
Table II, we observe thatM2 will decrease, until it vanishes
at k2 � 0:55. The corresponding �ðk2Þ is displayed in
Fig. 3. We thus see that we find some kind of a momentum
dependent effective massM2ðk2Þ, which disappears when k
grows. This could have been anticipated, as we naturally
expect that the deep ultraviolet sector should hardly be
affected. Let us also notice here that �ðk2Þ is a decreasing
function, as can be explicitly checked from Fig. 3. This of
course means that we are staying within the horizon for any
value of the momentum.
To compare our results with available lattice data, we

must make the conversion to physical units of GeV. In [41]
a continuum extrapolated value for the ratio

ffiffiffiffi
�

p
=g2 was

given for several gauge groups; in particular,
ffiffiffiffi
�

p
=g2 �

0:3351 for SUð2Þ. Further, ffiffiffiffi
�

p
stands for the square root of

the string tension. For this quantity, we used the input value
of

ffiffiffiffi
�

p ¼ 0:44 GeV as in [2]. Therefore, for SUð2Þ, we find�
g2N

6�

�
2 � 0:0194 GeV2: (78)

In Fig. 4, we have plotted the lattice as well as our ana-
lytical result for the ghost dressing function, k2Gðk2Þ, in
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0.6

0.7
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0.9

1.0

2 4 6 8 10 12 14
M 2

0.2
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0.6

0.8

1.0

FIG. 2 (color online). �ð0Þ as a function of M2 in units of g2N
6� ¼ 1.

TABLE II. Some M2
min for different k2 in units of g2N

6� ¼ 1.

k2 0 0.05 0.1 0.15 0.2 0.25 0.30 0.35 0.40 0.45 0.50 0.55

M2
min 0.19 0.16 0.14 0.12 0.10 0.08 0.06 0.04 0.03 0.02 0.01 0
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units of GeV. We used the numerical data of [15,42],
adapted to our needs. We observe that for sufficiently large
k2, the lattice data and our analytical results converge. In
this case, the novel mass M2 becomes zero as advocated
earlier, meaning that we are back in the usual Gribov-
Zwanziger scenario. For smaller k2, we found it more
instructive to compare the lattice estimate of �ðk2Þ with
our value, as the errors on k2Gðk2Þ ¼ 1

1��ðk2Þ become large

when looking at�ðk2Þ close to 1. Figure 5 displays�ðk2Þ in
units of g2N

6� ¼ 1 up to k2 ¼ 1� ðg2N6� Þ2 ¼ 0:0194 GeV2.

We see that both results are in reasonable agreement,
especially if we keep in mind that we have only calculated
�ðk2Þ in a first order approximation.

C. The gluon propagator

We can apply an analogous procedure for the gluon
propagator. This propagator at zero momentum, Dð0Þ, is
displayed in Fig. 6. We immediately see that there is an

extremum at M2 ¼ 0:33ðg2N6� Þ2, resulting in

D ð0Þ ¼ 0:24

ðg2N6� Þ2
: (79)

Doing the conversion to physical units again, we find for
SUð2Þ,

D ð0Þ � 12

GeV2
: (80)

This value can be compared with the bounds derived from
a partially numerical and partially analytical derivation
[14]:

1:2

GeV2
<Dð0Þ< 12

GeV2
: (81)

We recall that our value Dð0Þ ¼ 12=GeV2 is a first order
approximation and is only of qualitative nature.
Nevertheless, this value is still consistent with the bounda-
ries of the lattice data set in [14].

0.2 0.4 0.6 0.8
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FIG. 3 (color online). The optimal �ðk2Þ as a function of k2 in

units of g2N
6� ¼ 1.
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FIG. 4 (color online). The optimal k2Gðk2Þ as a function of k2

in units of GeV. The lattice (our analytical) results are indicated
with triangles (dots). The error bars on the lattice data are
roughly the size of the triangles.
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FIG. 5 (color online). The optimal �ðk2Þ as a function of k2 in

units of g2N
6� ¼ 1. The lattice (our analytical) results are indicated

with triangles (dots).
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FIG. 6 (color online). Dð0Þ in units of g2N
6� ¼ 1.
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D. Violation of positivity

We shall investigate if a gluon propagator of the type
(50) displays a violation of positivity, another fact which is
reported by the lattice data [2]. Following the analysis of
[2], the Euclidean gluon propagator can be expressed by a
Källen-Lehmann representation as

D ðp2Þ ¼
Z þ1

0
dM2 �ðM2Þ

p2 þM2
; (82)

whereby the spectral density �ðM2Þ should be positive to
make possible the interpretation of the fields in term of
stable particles. One can define the temporal correlator [2]

C ðtÞ ¼
Z þ1

0
dM�ðM2Þe�Mt; (83)

which is certainly positive for positive �ðM2Þ. However, if
CðtÞ becomes negative for certain t, �ðM2Þ cannot be
positive for all M2, indicating that the gluon is not a stable
physical excitation. Since CðtÞ can be rewritten as

C ðtÞ ¼ 1

2�

Z þ1

�1
e�iptDðp2Þdp; (84)

we must in fact calculate the 1D Fourier transformation of
Dðp2Þ. In Fig. 7 the Fourier transforms, Cðt;M2Þ, are
shown for different t in units of fm.

To determineM2, we again rely on the variational setup.
We observe that for small t, there is no real extremum.
However, for a certain t	 1, an extremum emerges at
M2 	 0. This extremum starts to grow for increasing t,
but at the same time, the curve flattens out. Therefore,
starting from t	 2:6, the extremum disappears again.
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(a) t = 1
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FIG. 7 (color online). Cðt;M2Þ for a few values of t as a function of M2 in units of fm.
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FIG. 8 (color online). CðtÞ in terms of t in units of fm in the
refined GZ case.
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FIG. 9 (color online). CðtÞ in terms of t in units of fm in the
pure GZ case.
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Hence, we have taken3 M2 ¼ 0 for t < 1, and M2 ¼ 0:18
for t > 2:6. The resulting temporal correlator is displayed
in Fig. 8. We clearly observe a violation of positivity, which
is in agreement with the lattice data (see Fig. 4 of [2]).
Although this agreement is only at a qualitative level, the
shape of CðtÞ is very similar.

It would be interesting to have a look at the temporal
correlator in the pure Gribov-Zwanziger case (M2 ¼ 0).
Therefore, CðtÞ is displayed in Fig. 9. We can conclude that
this plot is grosso modo the same as in the refined Gribov-
Zwanziger setup.

VII. CONCLUSION

In this paper, we have extended the 4D analysis of the
Gribov-Zwanziger scenario to 3D. The motivations for our
work were to include an additional nonperturbative con-
tribution to the Gribov-Zwanziger action, related to a
dynamical mass generation effect, and the recent lattice
data of [12,14]. Two of the most striking features of these
simulations were a finite nonzero value of the gluon propa-
gator at zero momentum and the nonenhancement of the
ghost, in both 3D and 4D cases.

We have started from the following renormalizable ac-
tion,

SGZ þM2
Z

ddx

�
�ð �’a

i ’
a
i � �!a

i !
a
i Þ þ 2

dðN2 � 1Þffiffiffiffiffiffiffiffiffiffiffiffi
2g2N

p &�2

�
;

(85)

which is an extension of the ordinary Gribov-Zwanziger
action SGZ. Next to the local composite operator �’’�
�!!, we have also added an extra vacuum term, necessary
to ensure the restriction to the Gribov region �. In addi-
tion, the two parameters � and & are determined by the
following gap equations,

@�

@�2
¼ 0;

@�ð0Þ
@M2

��������M2¼0
¼ 0: (86)

Before fixing M2, we have written down the explicit
expression for the ghost and the gluon propagator. First, the
one loop ghost propagator Gðk2Þ is given by

G ðk2Þ ¼ 1

k2
1

1� �ðk2Þ ; (87)

with �ðk2Þ given by expression (63). At zero momentum,
�ð0Þ is given by

�ð0Þ ¼ 1�M4

�4
; (88)

already after applying the gap equations. We see that for
M2 � 0, �ð0Þ is smaller than 1, resulting in a nonenhanced
ghost propagator. Second, the tree-level gluon propagator

Dðp2Þ yields
D ðp2Þ ¼ p2 þM2

p4 þM2p2 þ �4
; (89)

with �4 ¼ 2g2N�4. Therefore, already at tree level, we

find that Dð0Þ ¼ M2

�4 , which is nonzero for M2 � 0. We

have also presented the one loop gluon propagator at zero
momentum in Eq. (60).
In the last part of this paper, we have discussed a varia-

tional method in order to obtain an explicit value forM2 in
the Gribov-Zwanziger model, which has provided a value
for the zero momentum ghost propagator [or equivalently
�ð0Þ] and the gluon propagator. With this method, we have
found

�ð0Þ ¼ 0:94; Dð0Þ ¼ 12

GeV2
: (90)

Both values are in qualitative agreement with the lattice
data. With this variational method, we also demonstrated
the positivity violation of the gluon propagator, which is
also confirmed by lattice data.
Let us also spend a few moments on the applicability of

a weak coupling expansion. The reader will appreciate that
we are no longer perturbing around a trivial vacuum, but
are in fact considering a perturbative expansion around a
nonperturbative vacuum characterized by a nonvanishing
Gribov mass �, and additionally M2 � 0 in our refined
framework. These parameters ensure that the no-pole con-
dition (44) is fulfilled, which puts a nonperturbative re-
striction on the theory. Obviously, we do not claim that we
have all the relevant nonperturbative dynamics enclosed in
this formalism, but at least the results we have do qualita-
tively match the available lattice data. The validity of a
systematic perturbative expansion around this vacuum
state is reflected in a coupling constant which should be
sufficiently small; see e.g. (38). This reasoning also applies
to the 4D case; see [18].
In summary, we have presented a framework, which

consistently accounts for the recent large volume lattice
data in the infrared region in 3D and 4D. The question is
what happens in 2D, as the most recent data in 2D keep
predicting an enhanced ghost in combination with a van-
ishing zero momentum gluon propagator, contrasting with
the higher-dimensional cases [14,15,43]. Details of the
Gribov-Zwanziger framework in 2D shall be presented
elsewhere, as the situation is rather different there [44].
Previous studies on the infrared behavior of the gluon

and ghost propagators within the Schwinger-Dyson for-
malism in 4D, which were in compliance with the lattice
data, can be found in [45–47]. In particular, we observe that

in [47] a gluon propagator fit was given as Dðp2Þ ¼
p2þm2

0

p4þm2
0
p2þm4

0

, while the ghost propagator almost behaved

like 1
p2 . It is interesting to notice that this kind of gluon

propagator is of the same type as the one found here, in a
completely different way. Finally, let us also mention that

3M2 	 0:18 is the maximal extremal value, corresponding to
t	 2:6.
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similar research in the maximal Abelian gauge [48] also
gave results in qualitative agreement with the available
lattice data in that gauge; see [49].
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APPENDIX A: CONSTRUCTION OF THE
EFFECTIVE ACTION �ð�Þ FROM THE
GENERATING FUNCTIONAL WðJÞ

1. General framework

We define the classical field�ðxÞ conjugate to the source
JðxÞ as follows4:

�ðxÞ ¼ �WðJÞ
�JðxÞ ; (A1)

with WðJÞ the generating functional defined in (16). The
effective action �ð�Þ is then obtained in the usual way by a
Legendre transformation

�ð�Þ ¼ WðJÞ �
Z

ddxJðxÞ�ðxÞ; (A2)

where JðxÞ is understood to be a functional of �ðxÞ. It is
easily derived that

��

��ðxÞ ¼ �JðxÞ: (A3)

The original theory is recovered when the source J again
attains a zero value. A source is nothing more than a tool to
probe the theory. In our case, we are incorporating the
effects induced by the operator �’’� �!!. At the end, a
source should always become zero. Equation (A3), for
example, corresponds to the quantum version of the clas-
sical equation of motion when J ¼ 0.

In what follows, we shall limit ourselves to constant J
and �, as we are mainly interested in the (space time
independent) vacuum expectation value of the operator
coupled to the source J. The remaining task is to obtain
the functional form of � in terms of �. Usually, this is done

using the background field formalism of Jackiw [50], when
an effective potential �ð�cÞ associated with an elementary
field �ðxÞ is determined, whereby it is understood that

�ðxÞ ¼ �c þ ~�ðxÞ. The quantity ~�ðxÞ represents the
quantum fluctuations around the vacuum expectation value

of �ðxÞ, i.e. h�ðxÞi ¼ �c, h ~�ðxÞi ¼ 0. Unfortunately,
when a composite operator is considered, this procedure
is less useful, as there is no elementary field associated to
the operator to begin with. Sometimes, techniques are at
one’s disposal to introduce such a field, e.g. by employing a
Hubbard-Stratonovich transformation [29].
Let us thus proceed by explicitly performing the

Legendre transformation, along the lines of [51,52]. The
generating functional WðJÞ will be obtained as a series in
the coupling constant,

WðJÞ ¼ W0ðJÞ þ g2W1ðJÞ þ . . . : (A4)

As a consequence, we may write

�ðJÞ ¼ �0ðJÞ þ g2�1ðJÞ þ . . . ; with �nðJÞ ¼ @Wn

@J
:

(A5)

This last series can be inverted to give J as a function of �,
Jð�Þ ¼ J0ð�Þ þ g2J1ð�Þ þ . . . : (A6)

As a trivial consequence,

� � �ðJð�ÞÞ ¼ �ðJ0Þ þ g2ðJ1�0
0ðJ0Þ þ �1ðJ0ÞÞ þ . . . :

(A7)

Since the field � is supposed to be independent of the
coupling constant at the level of the inversion,5 we find an
iterative inversion procedure,

� ¼ �0ðJ0Þ ) J0 ¼ J0ð�0Þ;

0 ¼ J1�
0
0ðJ0Þ þ �1ðJ0Þ ) J1 ¼ ��1ðJ0Þ

�0
0ðJ0Þ

;

..

.
(A8)

In this fashion, every term in the series for J can be
expressed in terms of J0, which itself is a function of �0.
Summarizing, everything can be written in terms of �0.
Doing so, we can calculate the right-hand side of (A2) up to
the desired order in g2 by simply substituting the corre-
sponding expressions for Ji in the left-hand side.
Once the inversion is performed, we must fix �0, which

corresponds to the condensate of the operator coupled to J,
by demanding that

@f�0ð�0Þ þ �1ð�0Þ þ . . .g
@�0

¼ 0 , J0ð�0Þ þ J1ð�0Þ þ . . .

¼ 0: (A9)

4To avoid any confusion, this classical field �ðxÞ has obviously
nothing to do with the one loop correction to the ghost form
factor �ðk2Þ first defined in Eq. (40).

5Only after imposing the gap equation, @�@� ¼ 0, will � collect a
g2 dependence.
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2. Application to the LCO �’’� �!!

We shall now employ the previous method on the 3D Gribov-Zwanziger action, in the presence of the LCO �’’� �!!.
The action we use is given by (26). Using (A5) and (A8) yields

�0ðJ0Þ ¼ N2 � 1

6�

8><
>:
3

2

ffiffiffiffiffi
J0

p � 3

4

�J0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J20 � 4�4

q
2

��
1þ J0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

J20 � 4�4
q

�
� 3

4

�J0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J20 � 4�4

q
2

��
1� J0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

J20 � 4�4
q

�9>=
>;: (A10)

Defining ~� � 6�
N2�1

�0, we found six different branches for the inverse function J0ð~�Þ. However, only one of these was real
valued and gave rise to a solution of the gap equation, so we focus our attention on this particular solution,

J0ð~�Þ ¼ 36�2 ~�2� ~�4

27~�2
þ 1

432
ffiffiffiffiffiffiffiffiffi
2~�23

p
�
~�4½8192~�8þ 442368�2 ~�6þ 6469632�4 ~�4þ 20901888�6 ~�2þ 45349632�8

þ 186624
ffiffiffi
3

p
�5ð9�2þ 4 ~�2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
243�2þ 8~�2

p
�
	
1=3þ 256~�8þ 9216�2 ~�6þ 51840�4 ~�4

21622=3 ~�2

�
~�4½8192~�8þ 442368�2 ~�6

þ 6469632�4 ~�4þ 20901888�6 ~�2þ 45349632�8þ 186624
ffiffiffi
3

p
�5ð9�2þ 4~�2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
243�2þ 8 ~�2

p
�
	
1=3

:

We have displayed a plot of J0=�
2 in terms of ~�=� in

Fig. 10. Solving the gap equation J0ð~�Þ ¼ 0 numerically
leads to

�0 � 1:06
N2 � 1

6�
� � 0:056ðN2 � 1Þ�: (A11)

This numerical solution is consistent with the analytically
derived solution (22). Let us now determine the Gribov
mass �. Therefore, we first compute the effective action
using its definition (A2). We did not write down the even-
tual result in terms of � and ~�, as the expression is quite
lengthy. We subsequently solved the gap equation (horizon
condition) @�

@� ¼ 0 (see Fig. 11) numerically in the case
N ¼ 3, and we found

� � 0:113g2; (A12)

which is also consistent with the analytical result (24). The
corresponding vacuum energy is given by

Evac � 0:000 214g6; (A13)

again equivalent to (25).
The gap equation derived from the effective action

�ð�0; �Þ should of course give back this perturbative solu-
tion, next to a potential nonperturbative solution, which
can never be discovered by simply using (15). The whole
point of the inversion (Legendre transformation) is just that
there might be multiple solutions to the equation J ¼ 0,
next to the perturbative one. In our case, the situation is
interesting because there is already a nontrivial scale in the
game, namely, the Gribov mass �. This allows us to obtain
a nonvanishing value for the condensate already at the
perturbative level.

1 2 3 4 5

σ

λ

1

2

3

4

J0

λ2

FIG. 10 (color online). A plot of J0
�2 in terms of ~�

� .
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λ

0.010
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dV dλ

FIG. 11 (color online). The horizon function @�
@� for N ¼ 3 in

units of g2 ¼ 1.
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APPENDIX B: THE RENORMALIZABILITY OF
THE EXTENDED GRIBOV-ZWANZIGER ACTION:

ALGEBRAIC ANALYSIS

1. The Ward identities

The action (27) exhibits several Ward identities which
we have listed below.

(i) The global UðfÞ invariance:
Uij� ¼ 0;

Uij ¼
Z

ddx

�
’a

i

�

�’a
j

� �’a
j

�

� �’a
i

þ!a
i

�

�!a
j

� �!a
j

�

� �!a
i

�
: (B1)

(ii) The Slavnov-Taylor identity:

Sð�Þ ¼ 0;

Sð�Þ ¼
Z

ddx

�
��

�Ka
�

��

�Aa
�

þ ��

�La

��

�ca

þ ba
��

� �ca
þ �’a

i

��

� �!a
i

þ!a
i

��

�’a
i

þMai
�

��

�Uai
�

þ Nai
�

��

�Vai
�

�
: (B2)

(iii) The Landau gauge condition and the antighost equa-
tion:

��

�ba
¼ @�A

a
�; (B3)

��

� �ca
þ @�

��

�Ka
�

¼ 0: (B4)

(iv) The ghost Ward identity:

Ga� ¼ �a
cl;

Ga ¼
Z

ddx

�
�

�ca
þ gfabc

�
�cb

�

�bc
þ ’b

i

�

�!c
i

þ �!b
i

�

� �’c
i

þ Vbi
�

�

�Nci
�

þUbi
�

�

�Mci
�

��
;

�a
cl ¼ g

Z
ddxfabcðKb

�A
c
� � LbccÞ: (B5)

Notice that �a
cl is a classical breaking, since it is

linear in the quantum fields.
(v) The linearly broken local constraints:

��

� �’ai
þ @�

��

�Mai
�

¼ gfabcAb
�V

ci
� þ J’a

i ; (B6)

��

�!ai
þ @�

��

�Nai
�

� gfabc �!bi ��

�bc

¼ gfabcAb
�U

ci
� þ J �!a

i ; (B7)

��

� �!ai
þ @�

��

�Uai
�

� gfabcVbi
�

��

�Kc
�

¼ �gfabcAb
�N

ci
� � J!a

i ; (B8)

��

�’ai þ @�
��

�Vai
�

� gfabc �’bi ��

�bc
� gfabc �!bi ��

� �cc

� gfabcUbi
�

��

�Kc
�

¼ gfabcAb
�M

ci
� þ J �’a

i : (B9)

(vi) The exact Rij symmetry:

Rij� ¼ 0;

Rij ¼
Z

ddx

�
’a

i

�

�!a
j

� �!a
j

�

� �’a
i

� Vai
�

�

�Naj
�

þUaj
�

�

�Mai
�

�
: (B10)

We shall now follow the algebraic renormalization pro-
cedure [31], according to which the most general allowed
invariant counterterm �c is an integrated local polynomial
in the fields and sources with dimension bounded by 3,
with vanishing ghost number andQf-charge, and subject to

the following constraints:

Uij�
c ¼ 0; B��

c ¼ 0;
��

� �ca
þ @�

��

�Ka
�

¼ 0;
��c

�ba
¼ 0; Ga�c ¼ 0;

��c

�’ai þ @�
��c

�Vai
�

� gfabc �!bi ��
c

� �cc
� gfabcUbi

�

��c

�Kc
�

¼ 0;
��c

� �!ai þ @�
��c

�Uai
�

� gfabcVbi
�

��c

�Kc
�

¼ 0;

��c

�!ai þ @�
��c

�Nai
�

¼ 0;
��

� �’ai þ @�
��

�Mai
�

¼ 0; Rij�
c ¼ 0:

(B11)
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The operator B� is the nilpotent linearized Slavnov-Taylor
operator,

B� ¼
Z

d4x

�
��

�Ka
�

�

�Aa
�

þ ��

�Aa
�

�

�Ka
�

þ ��

�La

�

�ca

þ ��

�ca
�

�La þ ba
�

� �ca
þ �’a

i

�

� �!a
i

þ!a
i

�

�’a
i

þMai
�

�

�Uai
�

þ Nai
�

�

�Vai
�

�
;

B�B� ¼ 0: (B12)

One can show that �c does not depend on the Lagrange
multiplier ba, and that the antighost �ca and the i-valued
fields ’a

i , !
a
i , �’a

i , �!a
i can only enter through the combi-

nations [9]

~K a
� ¼Ka

�þ@� �c
a�gfabc ~Ubi

�’
ci�gfabcVbi

� �!ci;

~Uai
� ¼Uai

� þ@� �!ai; ~Vai
� ¼ Vai

� þ@�’
ai;

~Nai
� ¼Nai

� þ@�!
ai; ~Mai

� ¼ Vai
� þ@� �’ai:

(B13)

Imposing the previous constraints arising from the Ward
identities, the most general counterterm can be brought in
the following compact form:

�c ¼ a0SYM þ a1
Z

ddx

�
Aa
�

�SYM
�Aa

�

þ ~Ka
�@�c

a

þ ~Vai
�
~Mai
� � ~Uai

�
~Nai
�

�
þ a2

Z
ddx�g2J; (B14)

with a0, a1, and a2 three arbitrary parameters. It is an
impressive feature of the action � that only three indepen-
dent parameters can enter the counterterm, despite the
presence of many fields and sources.

2. Stability of the action and the renormalization
constants

As the most general counterterm�c compatible with the
Ward identities has now been constructed, it still remains to
be checked whether the starting action � is stable, i.e. that
�c can be reabsorbed into � through a renormalization of
the parameters, fields, and sources appearing in �.

According to expression (B14), �c contains three pa-
rameters a0, a1, and a2, which correspond to a multiplica-
tive renormalization of the gauge coupling constant g, the
parameter �, the fields � ¼ ðAa

�; c
a; �ca; ba; ’a

i ; !
a
i ;

�’a
i ; �!

a
i Þ, and the sources � ¼ ðKa�; La;Mai

� ; N
ai
� ; V

ai
� ;

Uai
� ; JÞ, according to

�ðg; �;�;�Þ þ 
�c ¼ �ðg0; �0; �0;�0Þ þOð
2Þ:
(B15)

This is possible, provided that we define the bare quantities
in terms of the renormalized quantities as

g0 ¼ Zgg; �0 ¼ Z��; �0 ¼ Z1=2
� �; �0 ¼ Z��;

(B16)

with

Zg ¼ 1þ 

a0
2
; Z1=2

A ¼ 1þ 


�
a1 � a0

2

�
;

Z� ¼ 1þ 
ða2 � a1 � a0Þ:
(B17)

These are the only independent renormalization constants.
For the rest of the fields, we have

Zc ¼ Z �c ¼ Z’ ¼ Z �’ ¼ Z! ¼ Z �! ¼ Z�1
g Z�1=2

A ; (B18)

while for the renormalization of the sources
ðMai

� ; N
ai
� ; V

ai
� ;Uai

� ; JÞ,
ZM ¼ ZN ¼ ZV ¼ ZU ¼ Z�1=2

g Z�1=4
A ; ZJ ¼ ZgZ

1=2
A :

(B19)

We see thus that the LCO �’’� �!! does not renormalize
independently, as is evident from (B19). The only new
parameter entering the game corresponds to the renormal-
ization of the vacuum functional, expressed by � and its
renormalization factor Z�. As discussed in the main body

of this paper, this parameter turns out to be equal to zero
anyhow.

APPENDIX C: PROPAGATORS IN LATTICE AND
CONTINUUM FORMULATION

For the benefit of the reader, in this appendix we discuss
how our results compare with the corresponding lattice
data in the case of the gluon propagator. The quantity
which is evaluated in both cases is the gluon propagator,
namely, the connected gluon two-point function
hAa

�ðxÞAb
�ðyÞi, where the gauge field configurations Aa

�

are restricted to the Gribov region �. We shall also show
that the gluon and the ghost propagators are color diagonal.

1. Continuum formulation

In the continuum formulation, the gluon propagator is
given by the connected gluon two-point function, and
expressible by means of

hAa
�ðxÞAb

�ðyÞi ¼ �2ZcðJÞ
�Ja�ðxÞ�Jb�ðyÞ

��������J¼0
; (C1)

with ZcðJÞ the generating functional of the connected
gluon n-point functions, which in our case will read

e�ZcðJÞ � e�ZcðJ;J’;J �’Þ

¼
Z
½d��e�ðStotþ

R
d4xðJa�Aa

�þJab’;�’
ab
� þJab�’;� �’ab

� ÞÞ;

(C2)

where Stot is the improved Gribov-Zwanziger action (46).
This amounts to considering the Landau gauge fixing, such
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that the relevant gluon configurations belong to the Gribov
region; i.e. these are (local) minima of

R
d3xA2 along the

gauge orbit.
As proven in [18], the gluon propagator (C1) is trans-

verse. In a condensed notation, one shall find

e�ZcðJ;J’;J �’Þ

¼ e

�ðJ J’ J �’ ÞM

J

J’

J �’

0
BB@

1
CCAþhigher order terms in J;J’;J �’

;

(C3)

whereM is the matrix propagator, as written down in (55)
up to first order. The upper left corner of this matrix M
corresponds precisely to the gluon propagator, as is appar-
ent by taking the second derivative with respect to the
source Ja�.

If one is interested in the 1PI two-point functions, one
should look at the corresponding generator, which is the
effective action �½A�;’; �’�. As is well known, the corre-

sponding 1PI two-point function will be the inverse of the
connected two-point function (or propagator). Said other-
wise, the corresponding matrices will be each other’s
inverse. This is also explained in the main body of the
text, with the 1PI two-point function matrix written down
in (53), again up to first order.

As we have already stressed earlier in the paper, the
extra fields ð �’ac

� ; ’ac
� ; �!ac

� ;!ac
� Þ are introduced in order to

obtain a local, manageable field theory that is capable of
restricting the gauge field configurations to the Gribov
region, which is a rather nontrivial operation in the con-
tinuum. In principle, one could opt to work in an effective
field theory fashion by again integrating out the extra
fields. Clearly, this will give rise to a very complicated
(nonlocal) action, written solely in terms of the original
Yang-Mills fields. In this formulation, the gluon propagator
is directly related to the inverse of the 1PI two-point
function, due to the absence of mixing. Anyhow, the result
for the propagator itself will be the same as the one already
obtained before in the preferable local and manifestly
renormalizable formulation with the extra fields, when
looking at the same order in g2. This can be easily checked
at tree level: integrating out the auxiliary fields in (46)
leads to the following quadratic (nonlocal) effective action,

Squad ¼
Z

d3x

�
1

4
ð@�Aa

� � @�A
a
�Þ2 þ 1

2�
ð@�Aa

�Þ2

� N�4g2Aa
�

1

@2 �M2
Aa
� þ . . .

�
; (C4)

where the limit � ! 0 is understood in order to recover the
Landau gauge, and where we skipped the irrelevant con-
stant terms. The tree-level gluon propagator in momentum
space is, in this case, 1=Q2, with Q2 the quadratic form
appearing in (C4), when expressed in momentum space.

Clearly, this leads back to the lowest order approximation
in the upper left corner of (55).
Concerning the ghost propagator, a similar formalism

applies.
Let us discuss the issue of color diagonality. The global

color symmetry guarantees us that the gluon and the ghost
propagators are color diagonal. This property is encoded in
the global SUðNÞ Ward identity, which reads at the classi-
cal level

Z
ddx

�
ð�b

adjA
a
�Þ ���Aa

�

þX
�

ð�b
adj�Þ ��

��

�
¼ 0; (C5)

with � the classical action and � all the other fields. In
particular,

�b
adjA

a
� ¼ fabcAc

�; (C6)

and similar relations for the other fields �. Therefore, we
find

Z
ddx

�
fabcAc

�

��

�Aa
�

þ . . .

�
¼ 0: (C7)

This identity can be upgraded to the quantum level,6

Z
ddx

�
fabcAc

�

��

�Aa
�

þ . . .

�
¼ 0; (C8)

with � the generator of 1PI correlators. Performing the
Legendre transformation leads to the analogous Ward
identity for the generator Zc of connected correlators,

Z
ddx

�
fabcJa�

�Zc

�Jc�

�
¼ 0: (C9)

We shall concentrate on the gluon sector, so we have
already set all other sources equal to zero. Taking a deriva-
tive with respect to Jd
ðyÞ leads to

fdbc
�Zc

�Jc
ðyÞ þ
Z

ddx

�
fabcJa�ðxÞ �2Zc

�Jc�ðxÞ�Jd
ðyÞ
�
¼ 0:

(C10)

Next, taking a derivative with respect to J‘�ðzÞ and setting
J ¼ 0 at the end gives the following relationship,

fdbc
�2Zc

�J‘�ðzÞ�Jc
ðyÞ
��������J¼0

þf‘bc
�2Zc

�Jc�ðzÞ�Jd
ðyÞ
��������J¼0

¼ 0;

(C11)

or equivalently

fdbchAc

ðyÞA‘

�ðzÞi þ f‘bchAd

ðyÞAc

�ðzÞi ¼ 0: (C12)

This relation expresses nothing more than the fact that the
gluon propagator is an SUðNÞ invariant rank-two tensor.
Therefore,

6We refer to [31] for the explicit proof.
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hAc

ðyÞA‘

�ðzÞi / �c‘; (C13)

since �c‘ is the unique invariant rank-two tensor.
Obviously, all available explicit loop results obtained

with the (modified) Gribov-Zwanziger action are compat-
ible with the general proof. Notice also that the proof is the
same as the one we would use in the case of normal SUðNÞ
gauge theories.

An analogous result can be derived for the ghost
propagator.

2. Lattice formulation

In a lattice formulation, one also calculates the con-
nected two-point function, by taking the Monte Carlo av-
erage of the discrete version of the operator hAa

�ðxÞAb
�ðyÞi.

The statistical weight for this simulation is given by the
exponential of the discretized version of the Yang-Mills

gauge action, e.g. the Wilson action. The Landau gauge
fixing is numerically implemented by minimizing a suit-
able functional along the gauge orbits, which corresponds
to minimizing

R
d3xA2 in the continuum. As we have

already explained in the Introduction, this amounts to
numerically selecting a gauge configuration within the
Gribov region, equivalent to what we did in the continuum.
We refer the interested reader to Sec. 2 of [53] for the
explicit expressions of the discrete action, gauge fields, and
minimizing functional. In particular, we refer to Sec. 2.4 in
which the continuum and lattice versions of the gluon
propagator are written down. The lattice gluon propagator
also turns out to be transverse. Moreover, both the gluon
and ghost propagators are found to be color diagonal.
We emphasize that lattice simulations thus never di-

rectly calculate any 1PI two-point function, but, we repeat,
do calculate the (connected) two-point correlator, i.e. the
propagator itself.
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