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(Received 29 October 2008; published 10 December 2008)

We study the quantization of the electromagnetic sector of the Myers-Pospelov model coupled to

standard fermions. Our main objective, based upon experimental and observational evidence, is to

construct an effective theory which is a genuine perturbation of QED, such that setting the Lorentz

invariance violation parameters to zero will reproduce it. To this end we provide a physically motivated

prescription, based on the effective character of the model, regarding the way in which the model should

be constructed and how the QED limit should be approached. This amounts to the introduction of an

additional coarse-graining physical energy scale M, under which we can trust the effective field theory

formulation. The prescription is successfully tested in the calculation of the Lorentz invariance violating

contributions arising from the electron self-energy. Such radiative corrections turn out to be properly

scaled by very small factors for any reasonable values of the parameters and no fine-tuning problems are

found. Microcausality violations are highly suppressed and occur only in a spacelike region extremely

close to the light cone. The stability of the model is guaranteed by restricting to concordant frames

satisfying 1� jvmaxj> 6:5� 10�11.

DOI: 10.1103/PhysRevD.78.125011 PACS numbers: 12.20.�m, 04.60.Cf, 11.30.Cp, 11.30.Qc

I. INTRODUCTION

The Myers-Pospelov (MP) model [1] is an effective field
theory that incorporates scalars, fermions, and photons in a
particle (active) Lorentz invariance violating (LIV) theory.
It includes dimension five operators, together with the
presence of a fixed timelike direction n� selecting a pre-
ferred frame. Such direction is assumed to arise from a
spontaneous Lorentz symmetry breaking in an underlying
theory and endows the model with covariance under ob-
server (passive) Lorentz transformations. The modified
free Lagrangian density is

LMP ¼ ���ð@2 þm2Þ�þ i
�
~M
��ðn�@�Þ3�

� 1

4
F��F

�� þ �

2 ~M
ðn�F��Þðn�@�Þðn�����	F�	Þ

þ ��ði
�@� �mÞ�þ 1
~M

��ðn�
�Þð�1 þ �2
5Þ
� ðn�@�Þ2�; (1)

to which we add the electromagnetic interaction via the
standard minimal coupling. Such an effective theory is
interpreted here as a model to describe the imprints at
standard model energies of active LIV, codified by the
dimensionless parameters �, �, �1, and �2, which is
produced by drastic modifications of the space-time struc-
ture at a fundamental scale �M, as suggested by some
phenomenological models inspired upon developing quan-
tum gravity theories [2–4] and string theories [5].
Nevertheless, up to now there is no systematic derivation
of a semiclassical approximation starting from a funda-
mental quantum gravity theory, for example, that could

determine the exact nature of the possible corrections
arising from such space granularity. This situation has
prompted the construction and analysis of effective field
theory models which capture the basic ingredients that we
expect to survive at standard model energies.
The additional Lorentz violating terms in (1) are unique

according to the following criteria: (i) quadratic in the
same field, (ii) one more derivative than the corresponding
kinetic term, (iii) being gauge invariant, (iv) being Lorentz
invariant, except for the appearance of n�, (v) not reduc-

ible to the lower dimension by the equations of motion, and
(vi) not reducible to a total derivative [1]. The model has
recently been generalized to the non-Abelian case includ-
ing interactions arising from the fields associated to the
standard model [6]. As such, it could be considered as a
dimension-five-operator generalization of the standard
model extension [7]. In this work, we will concentrate
upon the simpler version of Ref. [1], particularly upon
the proposed modified electrodynamics in its quantized
version. The corresponding classical model has been thor-
oughly studied in relation to synchrotron radiation in
Ref. [8]. Also, the self-energy corrections of the model
have been recently analyzed in [9]. Radiative corrections to
LIV theories have been studied in Ref. [10] and fine-tuning
problems have been discussed in Refs. [9,11].
The point of view adopted in this work is to consider the

quantum effective MP model (1) plus the electromagnetic
interaction as a perturbation of the Lorentz invariant the-
ory, in the precise sense that after making zero the LIV
parameters encoding the corrections we must recover stan-
dard QED. Moreover, since all experimental and observa-
tional evidence point to negligible LIV [12], the radiative
corrections arising from LIV should be accordingly very
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small. As we will see in the sequel, this basic idea provides
a guideline in the way one gives a meaning to the model,
particularly in regard to its quantization and to the limiting
procedure necessary to recover QED.

Generally speaking, the dimension five operators make
the theory of the higher order time-derivative (HOTD)
type. This fact shows up in the Lagrangian (1) by the
presence of third order time derivatives for the scalars,
second order time derivatives for the fermions, and third
order time derivatives for the photons. It is well-known that
HOTD theories pose many difficulties for their implemen-
tation [13,14], the most representative ones being the in-
crease in the number of degrees of freedom with respect to
the standard ones, together with the appearance of
Hamiltonians which are not positive definite being un-
bounded from below. In this way, if one requires to treat
the additional HOTD terms as a perturbation, a careful
strategy is required. Fortunately, a systematic approach to
carry out this task already exists in the literature [15,16].

In view of the above considerations, a general strategy to
define the quantum field theory extension of the MP model
would be the following: (i) As usual, the starting point is
the classical version of it given in Ref. [1]. (ii) Next, the
application of the procedure in Ref. [16] to the classical
HOTD MP model would reduce it to a modified effective
theory of the same time-derivative character as classical
electrodynamics. The procedure leads to field redefinitions
plus additional contributions to the interactions.
(iii) Finally, this resulting classical theory would be con-
sidered as the correct starting point for quantization, which
would be carried along the standard lines. The resulting
quantum theory would then provide the basis for the cal-
culation of interacting processes using the perturbative
scheme of quantum field theory. Some of these steps
have been already carried out in Refs. [17], for the case
of the scalar and fermion fields.

Perhaps we should emphasize at this stage that we are
dealing with two different classes of perturbations: the first
one concerns only the LIV parameters, occurs at the clas-
sical level and serves to define the correct starting point for
quantization. Once the resulting theory is quantized, the
usual quantum field theory interacting processes can be
calculated, corresponding to the second class of perturba-
tions. Both approximations should be made consistent
when predicting a result to a given order in any of the
LIV parameters. In this sense it is clear that we are not
producing a quantum version of the full MP model, but
only one which is adapted to our basic requirement of
describing the LIV corrections as perturbations to QED.

Since the model respects observer (passive) Lorentz
transformations we consider the parameters �, �, �1, �2,
and �M, to be invariant under them. Nevertheless, the
general form of the four-vector describing the preferred

frame is n� ¼ 
ð1; vÞ, with 1=
 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p
, so that highly

boosted systems will greatly amplify the values of the LIV

parameters which are strongly constrained in earth-based
reference frames. Thus we also restrict the observer
Lorentz transformations to concordant reference frames
which move nonrelativistically with respect to Earth [18].
In the sequel, we will give a quantitative characterization
of such allowed observers. A further simplification is in-
troduced by taking into account that the parameters �, �,
�1, and �2 are independent. In this way we set the field �
together with the parameters �, �1, and �2 equal to zero.
Then we deal with a minimal LIV extension of standard
QED.
The paper is organized as follows. In Sec. II, we discuss

the classical MP modifications to electrodynamics. There
we construct the corresponding Hamiltonian formulation
in terms of canonically transformed fields that guarantee
the appropriate normalization of the momentum squared
terms in the Hamiltonian density, that includes the identi-
fication of the interacting sector. Section III deals with the
quantization of the model in terms of standard creation-
annihilation operators. The modified dispersion relations
are identified and the Hamiltonian is shown to be positive
definite for momenta k such that jkj< �M=ð2j�jÞ. In
Sec. IV, we construct the modified photon propagator in
the Coulomb gauge which is subsequently written in four
dimensional notation by incorporating the static Coulomb
contribution appearing in the Hamiltonian. Section V con-
tains the physical motivation and specific proposal for our
prescription that allows to understand the quantum MP
model as a tiny perturbation of QED, according to the
experimental and observational evidence of highly sup-
pressed LIV. A coarse-graining mass scale M � �M is
further introduced in the problem, dictated by the effective
character of the model, and signaling the onset of the
modifications in the space-time structure. In Sec. VI, we
set up the general structure the electron self-energy calcu-
lation including only the modified photon propagator
ð� � 0Þ interacting with standard fermions ð�1 ¼ �2 ¼
0Þ. The scale M is taken into account via a factor of the
Pauli-Villars type, designed to act as the appropriate regu-
lator in the QED limit. Also we perform a power expansion
of the self-energy in terms of the external momentum and
identify those terms to be subjected to scrutiny regarding
their suppressed character and good QED limit in the next
section. The general strategy for their calculation is pre-
sented in Sec. VII and all the LIV contributions to order �2

are accordingly obtained. One of such calculations is pre-
sented in full detail, while we only write the results for the
remaining ones. In Sec. VIII, we present a preliminary
study of the microcausality violation in the model by
identifying the spacelike region where it occurs, together
with an estimation of the magnitude of such violation. The
final Sec. IX contains a summary of the work. The notation
and conventions are stated in Appendix A which, together
with Appendix B, contain information relevant for the
specific calculations in the paper. In Appendix C, the
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relationship between the modified photon propagator in
different gauges is established. The last Appendix, (D)
includes the definitions of the LIV contributions which
calculation is not fully developed in the text.

II. THE MODEL

With the simplifications stated above, we consider the
modified photon sector

L
 ¼ � 1

4
F��F

�� þ �

2 ~M
ðn�F��Þðn�@�Þðn�����	F�	Þ

� J�A�; (2)

where the electromagnetic current J� will be subsequently
realized in terms of unmodified spin 1=2 fermions, accord-
ing to the choice �1 ¼ �2 ¼ 0. Our general strategy will
be first to quantize the photons and subsequently to con-
sider the interaction, via the standard minimal coupling,
with the unmodified quantum fermions.

The equations of motion in the Lorentz gauge are

ð��	@2 � 2gðn � @Þ2n�����	@�ÞA	 ¼ J�: (3)

In order to get a better control of the LIV modifications,
we find it convenient to work in the Hamiltonian scheme,
so that we switch to a 3þ 1 canonical formulation of the
problem. Taking advantage of the remaining observer
Lorentz invariance of the model, we choose to work in
the rest frame n� ¼ ð1; 0Þ, where the free modified photon
contribution is

L
 ¼ 1

2
ð _Ai þ @iA

0Þ2 � 1

4
FijF

ij þ g�ijk _Ai@j _A
k � J�A�;

g ¼ �
~M
: (4)

This choice has the advantage that, up to a total derivative,
the resulting system is not of the HOTD type. Nevertheless,
it exhibits in a simpler setting most of the questions asso-
ciated to the quantization of the full MPmodel. In addition,
let us emphasize that wewill carry the quantization without
any approximation in the parameter g.

The canonical approach gives the following momenta

�0 ¼
@L


@ _A0

¼ 0;

�i ¼
@L


@ _Ai
¼ _Ai þ @iA

0 þ 2g�ijk@j _A
k;

(5)

together with their Poisson brackets,

fAiðt;xÞ;�jðt; yÞg ¼ 
i
j


3ðx� yÞ: (6)

The next step is to construct the Hamiltonian density
H C ¼ �i

_Ai �L, which is

H C ¼ �i
_Ai � 1

2ð _Ai þ @iA
0Þ2 þ 1

4FijF
ij � g�ijk _Ai@j _A

k

þ J�A�: (7)

In order to write the velocities in terms of the momenta, it
is convenient to consider the combination �i � @iA

0 to-
gether with the operator

Mik ¼ ð
ik þ 2g�ijk@jÞ; (8)

in the second part of Eq. (5). To solve for the velocities, we
need the inverse of the operator Mik for which we obtain
the exact nonlocal expression

ðM�1Þij ¼ 1

ð1þ 4g2r2Þ ð

ij � 2g�irj@r þ 4g2@i@jÞ: (9)

In this way we solve

_A i ¼ ðM�1Þijð�j � @jA
0Þ; (10)

which we substitute in Eq. (7). The result is

H C ¼ 1
2ð�p � @pA

0ÞðM�1Þprð�r � @rA
0Þ � 1

2ð@iA0Þ2
þ 1

4FijF
ij þ J�A�: (11)

Integrating by parts and using some of the properties for
ðM�1Þij written in Appendix A, we arrive at

H C ¼ 1
2�pðM�1Þpr�r þ ð@p�p þ J0ÞA0 þ 1

4FijF
ij

� JiAi: (12)

It can be verified that the corresponding Hamilton equation
of motion reproduces the correct expression (10) for _Ai.
The canonical variables can be written in the convenient

form

�T
i ¼ _Ai

T þ 2g�ijk@j _A
k
T; �L

i ¼ _Ai
L þ @iA

0;

Ai
L ¼ 1

r2
@ið@kAkÞ;

(13)

where we are using the standard definition for a transverse
(T) and longitudinal (L) decomposition of a vector field
U ¼ UT þ UL, where r � UT ¼ 0, r� UL ¼ 0. In the
case of the velocities the separation leads to

_Ai
T ¼ 1

W2
ð
ij � 2g�irj@rÞ�T

j ;

_Ai
L ¼ 1

W2
�L

i þ @i

�
4g2

W2
@j�

L
j � A0

�
;

(14)

with the notation W ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4g2r2

p
. As in the usual case,

A0 is a Lagrange multiplier leading to the Gauss law as a
secondary constraint

� ¼ @i�i þ J0 ¼ 0; (15)

which can also be understood as arising from the time-

derivative _�0 of the primary constraint �0 � 0. The evo-

lution _� � 0 leads to current conservation in such a way
that we have only two first class constraints as in the
standard case. In terms of transverse and longitudinal
variables the Gauss law is written as
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@i�
L
i þ J0 ¼ 0: (16)

The equation of motion

@iFi0 ¼ þJ0;

yields

A0 ¼ � 1

r2
ðJ0 þ @0@iA

iÞ: (17)

At this stage we select the Coulomb gauge by choosing

A0 ¼ � 1

r2
J0; �0 ¼ 0;

@kA
k ¼ 0 ! Ai

LðxÞ ¼ 0; �L
i ¼ � 1

r2
@iJ

0:

(18)

The dynamical variables are contained only in the trans-
verse modes

�T
i ¼ _Ai

T þ 2g�ijk@j _A
k
T; Ai

TðxÞ; (19)

which satisfy the Dirac brackets

fAi
Tðt;xÞ;�T

mðt; yÞg ¼
�

im � @ix@

m
x

r2
x

�

3ðx� yÞ: (20)

Using repeated integration by parts in the Hamiltonian,
together with the transversality condition, we arrive at

HC ¼
Z

d3x

�
1

2
�T

pðM�1Þpr�T
r þ 1

2
J0
�
� 1

r2

�
J0

þ 1

4
FijF

ij � JiAi
T

�
: (21)

Our final goal is to express the dynamical fields in terms
of creation-annihilation operators, corresponding to modi-
fied frequency modes, satisfying standard bosonic commu-
tation relations that will reproduce the field commutation
relations arising from the correspondence principle applied
to the respective Dirac brackets. To this end it is necessary
that the relation � ¼ _A holds, which is equivalent to
require that the kinetic term of the Hamiltonian density
be normalized as 1

2�
2. In order to achieve this we perform

the canonical transformation ðAT ! �AT;�
T ! ��TÞ given

by

Ai
T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þW

p
ffiffiffi
2

p
W

�

iq � 2g

ð1þWÞ �
imq@m

�
�Aq
T;

�T
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þW

p
ffiffiffi
2

p
�

rq þ 2g

ð1þWÞ �
rmq@m

�
��T
q :

(22)

The nonzero transverse Dirac brackets for the variables �Ai
T

and ��T
j are the same as in Eq. (20) in virtue of the

canonical character of the transformation. Rewriting the
Hamiltonian (21) in terms of the new variables leads to

HC ¼
Z

d3x

�
1

2
��T
p
��T
p þ 1

2
�Ar
T

�
� r2

W2

�
½
rp � 2g�rnp@n� �Ap

T

þ 1

2
J0
�
� 1

r2

�
J0 � JiAi

Tð �ATÞ
�
: (23)

Let us emphasize that in the last interaction term Ai
T is a

functional of the dynamical field �Aj
T . In this sense, the

electromagnetic vertex will be modified with respect to
the latter field but will retain the usual structure with
respect to the former. In this way, some care is required
when implementing the perturbation theory starting from
the zeroth order Hamiltonian written in terms of �Ai

T and
��T
j .

III. THE QUANTUM THEORY

Now we have the basic ingredients to proceed with the
quantization of the modified photon field. We start from the
usual plane wave expansion of the operator �Ai

TðxÞ

�Ai
TðxÞ ¼

Z d3kffiffiffiffiffiffiffiffiffiffiffiffið2�Þ3p X
	¼�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2!	ðkÞ

s
½a	ðkÞ"ið	;kÞe�ikð	Þ�x

þ ay	ðkÞ"i�ð	;kÞeþikð	Þ�x�; (24)

in terms of creation-annihilation operators ay	ðkÞ, a	ðkÞ,
respectively. The notation is

½kð	Þ�� ¼ ð!	ðkÞ;�kÞ; kð	Þ � x ¼ !	ðkÞx0 � k � x;
(25)

where the modified normal frequencies will be consistently
determined. The properties of the polarization vectors
"ið	;kÞ; 	 ¼ �1, chosen in the circularly polarized (he-
licity) basis, are collected in Appendix B. The momenta
are given by

��T
i ðxÞ ¼

Z d3kffiffiffiffiffiffiffiffiffiffiffiffið2�Þ3p X
�	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2!	ðkÞ

s
½ð�i!	Þa	ðkÞ"ið	;kÞ

� e�ikð	Þ�x þ ði!	Þay	ðkÞ"i�ð	;kÞeþikð	Þ�x�: (26)
Assuming the standard creation-annihilation commutation
rules

½a	ðkÞ; ay	0 ðk0Þ� ¼ 
		0
3ðk� k0Þ (27)

and starting from (24) and (26) we recover the basic field
commutator at equal times

½ �Ai
Tðt;xÞ; ��T

j ðt; yÞ� ¼ i

�

ij � @xi@xj

r2

�

3ðx� yÞ; (28)

which is the expected result after the canonical transfor-
mation. The corresponding equations of motion are

�� T
q ¼ @0 �A

q
T;

_�T
r ¼ r2

W2
½
rp � 2g�rnp@n� �Ap

T: (29)

Going to the momentum space we can obtain the modified
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dispersion relations from

!2 �ATðkÞ ¼ jkj2
1� 4g2jkj2 ½

�ATðkÞ � 2gik� �ATðkÞ�; (30)

which reduces to the diagonalization

ik� ! 	jkj; AT ! A	
T; (31)

when the vector potential is expressed in the helicity basis.
In this way

!2
	
�A	
T ¼

� jkj2
1� 4g2jkj2

�
½1� 2	gjkj� �A	

T; (32)

yielding the modified energy-momentum relation

!2
	ðkÞ ¼

jkj2
½1þ 2	gjkj� ; (33)

which is exact in g. With no loss of generality we assume
from now on that g > 0. Let us notice that the four-vector
½kð	 ¼ þ1Þ�� is spacelike, while ½kð	 ¼ �1Þ�� is time-

like. At this stage we are confronted with two problems
that arise rather frequently in LIV theories: (i) On one
hand, the frequency !�ðkÞ will become imaginary when
jkj> 1=ð2gÞ and diverges when jkj ¼ jkjmax ¼ 1=ð2gÞ.
From an intuitive point of view, we consider 1=ð2gÞ as the
analogous of the value jkjmax ¼ 1 in the standard case and
we will cut all momentum integrals at this value. The
introduction of the coarse-graining scale M � �M, ex-
plained in more detail in Sec. V, effectively produces the
more stringent and smooth cutoff

gjkj< gM � 1: (34)

(ii) On the other hand, since ½kð	 ¼ þ1Þ�� is spacelike, we

can always perform an observer Lorentz transformation
such that !þðkÞ becomes negative thus introducing stabil-
ity problems in the model. For a given momentum k this

occurs for 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2gjkjp

< jvj< 1. Then, the condition
(34) leads to the requirement that the allowed concordant
frames in which the quantization will remain consistent are
such that 
 < 1=

ffiffiffiffiffiffiffiffiffiffi
2gM

p
, with respect to the rest frame.

Our next step is to verify that the resulting free (J� ¼ 0)
Hamiltonian is in fact positive definite and has the ex-
pected expression in terms of the previously introduced
creation-annihilation operators. Let us begin with the ki-
netic term

HKE ¼ 1

2

Z
d3x ��T

i
��T
i ; (35)

which leads to

HKE ¼ 1

2

Z
d3k

X
	

��
�!	ðkÞ

2

�
a	ðkÞa	ð�kÞe�i2!	ðkÞt

þ!	ðkÞ
2

ay	ðkÞa	ðkÞ þ H:c:

�
; (36)

in terms of the creation-annihilation operators.
The potential term contribution is

HPOT ¼ 1

2

Z
d3x �Ar

T

�
� r2

W2

�
½
rp � 2g�rnp@n� �Ap

T; (37)

which analogously reduces to

HPOT ¼ 1

2

Z
d3k

X
�	

��
!	ðkÞ

2

�
½a	ðkÞa	ð�kÞ�e�i2!	ðkÞt

þ!	ðkÞ
2

ay	ðkÞa	ðkÞ þ H:c:

�
: (38)

Here we have made use of the dispersion relations (33),
together with Eqs. (B3) and (B4). This leads to the ex-
pected final expression ðH ¼ HKE þHPOTÞ.

H ¼ 1

2

Z
d3k

X
	

½a	ðkÞay	ðkÞ þ ay	ðkÞa	ðkÞ�!	ðkÞ;

(39)

arising from the cancellation of the time dependent terms
and including the modified frequencies (33). Thus the
Hamiltonian is Hermitian as far as the frequencies remain
real, which is the case in the region jkj< 1=ð2gÞ.

IV. THE PHOTON PROPAGATOR

In this section, we calculate the free modified photon
propagator starting from the definition

i ��ijðx; yÞ 	 h0jTð �AT
i ðxÞ �AT

j ðyÞÞj0i
¼ �ðx0 � y0Þh0j �AT

i ðxÞ �AT
j ðyÞj0i þ �ðy0 � x0Þ

� h0j �AT
j ðyÞ �AT

i ðxÞj0i; (40)

where ��ijðx; yÞ ¼ ��ijðx� yÞ as can be seen from the ex-

pression

h0j �AT
i ðxÞ �AT

j ðyÞj0i ¼
Z d3k

ð2�Þ3
X
	

1

2!	ðkÞ e
�iðx�yÞ�kð	Þ

� "ið	; k̂Þ"�j ð	; k̂Þ: (41)

Here we introduce the notation

Fijð	; k̂Þ ¼ "ið	; k̂Þ"�j ð	; k̂Þ; (42)

which leads to the second vacuum expectation value in (40)

h0j �AT
j ðyÞ �AT

i ðxÞj0i ¼
Z d3k

ð2�Þ3
X
	

1

2!	ðkÞe
iðx�yÞ�kð	ÞFjið	; k̂Þ:

(43)

We are interested in expressing the propagator
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�� ijðzÞ ¼
Z d4k

ð2�Þ4 e
�ik�z�ijðkÞ; (44)

with z� ¼ x� � y�, in momentum space. To this end, we
start from the expression

i ��ijðzÞ ¼
Z d3k

ð2�Þ3 e
þik�z

�
�ðz0Þ

X
�	

e�i!	z0
1

2!	ðkÞFijð	; k̂Þ

þ �ð�z0Þ
X
�	

ei!	z0
1

2!	ðkÞFjið	;�k̂Þ
�
; (45)

and introduce the standard representation

�ðz0Þ ¼ ilim
�!0

Z 1

�1
d�

2�

e�i�z0

�þ i�
; (46)

in order to calculate the corresponding Fourier transform.
The result is

�� ijðkÞ ¼
X
	

� "ið	; k̂Þ"�j ð	; k̂Þ
2!	ðk0 �!	 þ i"Þ

� "jð	;�k̂Þ"�i ð	;�k̂Þ
2!	ðk0 þ!	 � i"Þ

�
: (47)

Using Eqs. (B5) and (B6), we rewrite the propagator in the
form

�� ijðkÞ ¼ 1

2

X
	

1

ðk20 � ð!	 � i"Þ2Þ
��


ij �
kikj

jkj2
�

þ i	

�
�ijm

km
jkj

��
: (48)

After performing the summations according to (B8)–(B10)
we arrive at the following expression for the modified
photon propagator in the Coulomb gauge

��ijðkÞ ¼ 1

ððk2Þ2 � 4g2jkj2k40Þ
�
ðk2 � 4g2jkj2k20Þ

�
�

ij �

kikj

jkj2
�
� 2gjkj2�ijmikm

�
: (49)

Let us verify the correct limits when g ¼ 0, where !þ ¼
!� ¼ ! ¼ jkj. In this case the first sum in the right-hand
side of Eq. (48) gives the standard transverse propagator,
while the second sum cancels out.

We would like now to extend the above propagator,
which is defined in the transverse sector, to the whole
four dimensional space in such a way that the current-
current interaction is described by

1

2

Z
d4kJ�ð�kÞ ����ðkÞJ�ðkÞ: (50)

This is achieved by incorporating in Eq. (48) the Coulomb
term appearing in (23) in a manner analogous to that
described in Ref. [19]. The final result is

���� ¼ � 1

2

X
	

1

ðk20 �!2
	 þ i�Þ

�
��� þ

�
!2

	

jkj2 � 1

�

�0
�0

� i	n����
�� k�

jkj
�
; (51)

where we have reinserted the vector n� ¼ ð1; 0Þ.
The last step in the construction is to perform the sums

over 	 in (51) using the corresponding expressions in
Appendix B. The result is

�� �� ¼ � 1

ððk2Þ2 � 4g2jkj2k40Þ
½���ðk2 � 4g2jkj2k20Þ

þ 4g2jkj2k20
�0
�0 þ 2gn����
��ðik�Þjkj2�:

(52)

The propagator obtained directly from the equations of
motion (3) in the Lorentz gauge is

���ðkÞ ¼ 1

ððk2Þ2 � 4g2jkj2k40Þ
�

�
�k2��� þ 2igk20�

lmrkm�l��r�

� 4g2k40
k2

klkr

l
�


r
� þ 4g2k40jkj2

k2
�0��0�

�
: (53)

In Appendix C, we have calculated the propagator �ij

corresponding to the fields Ai
T starting from ��ij given by

(49) and performing the canonical transformation (22).
Moreover, the subsequent inclusion of the Coulomb term
in �ij leads exactly to the four dimensional propagator

��� in (53). It is important to emphasize that the

Hamiltonian (23) has a noninteracting sector described

by the fields �Ai
T ,

��T
j but induces an interaction density

given by JiA
i
T ! N½J�A��, where A� propagates accord-

ing to (53).

V. THE PRESCRIPTION DEFINING THE
EFFECTIVE QUANTUM MODEL

The main goal of this work is to study the possibility of
defining the MP model as a perturbative extension of
standard QED, that is to say as a model which continuously
interpolates between a LIV theory and a Lorentz preserv-
ing one. This is to a large extent motivated by the very
stringent experimental and observational limits set upon
the parameters that codify such LIV. A construction exhib-
iting this interpolating characteristic has been already pre-
sented in Ref. [20], but there the LIV was codified by a
dimensionless parameter, as opposed to the situation here.
As we will explain in the sequel, the effective character of
the model requires the introduction of an additional mass
scale M that provides the analogous dimensionless pa-
rameter (gM).
Another point that requires attention is the upper limit

jkjmax ¼ 1=ð2gÞ set by the modified dispersion relations

C.M. REYES, L. F. URRUTIA, AND J. D. VERGARA PHYSICAL REVIEW D 78, 125011 (2008)

125011-6



(33), which guarantees the absence of imaginary frequen-
cies together with that of a non-Hermitian Hamiltonian.
We consider these facts as indications of the effective
character of the model. Assuming for a moment that 1=g �
EQG � MPlanck, the above upper limit would mean that one

is probing distances of the order of the Planck length,
where we expect quantum gravity effects to be so impor-
tant that the continuum properties of space might be no
longer valid, thus invalidating the use of an standard ef-
fective field theory. This means that we need to introduce
an additional coarse-graining scale M under which we can
safely consider space as a continuum and apply effective
field theory methods. Thus we require

M � 1

g
: (54)

In this way, the upper limit jkjmax ¼ 1=ð2gÞ can be con-
sidered as a mathematical limitation in our model, analo-
gous to jkjmax ¼ 1 in the standard case. The physical
limitation of the model is settled by the scale M and
requires to be imposed by an adequate smooth regulariza-
tion procedure that cuts down the corresponding degrees of
freedom over this scale, which occurs a long way before
energies of the order � 1=g are reached. In this manner,
the relation (54) imposes a definite prescription to recover
standard QED: (i) first set g ! 0 for fixed M and (ii) then
set M ! 1. Let us emphasize that at the level of the
effective model, the theory is finite and certainly will
have an explicit dependence upon the physical parameters
g andM. Now comes the question on how do we introduce
the scaleM. Intuitively, we think ofM as the parameter that
will regularize the divergent integrals that will appear in
the limit g ! 0 describing standard QED. This suggests
that we introduce this parameter via a Lorentz covariant
smooth function IðkÞ, of the Pauli-Villars type, for ex-
ample, with the same characteristics that one would require
in order to regulate standard QED. A natural choice for
IðkÞ in our calculation of the electron self-energy is

1

k2 �m2 þ i�
IðkÞ ¼ 1

k2 �m2 þ i�
� 1

k2 �M2 þ i�

¼ 1

k2 �m2 þ i�

�
M2

M2 � k2 � i�

�
;

M 
 m: (55)

In this way we are also imposing no additional LIV besides
that arising from the original modifications to the dynamics
encoded in the parameter g.

VI. THE ELECTRON SELF-ENERGY

As a first step in testing the proposed construction, we
consider the calculation of the electron self-energy with the
dynamical modifications introduced only via the LIV pho-
ton propagator. Let us recall that the perturbation theory
based upon the Hamiltonian (23) indicates that the photon

propagates with ��� given by (53). Moreover, we will

focus upon the LIV contributions that could produce
fine-tuning problems associated to the would be divergent
contributions arising in the limit g ! 0.
The starting point is

�gðpÞ ¼ �ie2
Z d4k

ð2�Þ4 

�

� ð
ðp� kÞ þmÞ
ððp� kÞ2 �m2 þ i�Þ

�

� 
����ðkÞIðkÞ�
�
1

2g
� jkj

�
; (56)

where we have introduced the scale M via

I ðkÞ ¼ M2

M2 � k2
: (57)

The � function is there to guarantee the reality of the
frequencies !	ðjkjÞ entering the calculation of the photon
propagator in Sec. IV. Let us observe that the expression
(56) is finite.
Next we find it convenient to expand the self-energy in

powers of the external momentum

�gðpÞ ¼ �g
p¼0 þ

�
@�g

@p�

�
p¼0

p� þ 1

2

�
@2�g

@p�@p�

�
p¼0

p�p�

þOðp3Þ; (58)

where each coefficient in the expansion is a matrix written
in terms of some elements of the basis in the 4� 4 space of
the Dirac matrices. We have considered up to second
derivatives in the external momentum because the addi-
tional corrections to the numerator of the photon propaga-
tor (53) of order gk and ðgkÞ2 make those derivatives power
counting divergent, as opposed to the QED case. The fact
that we are violating Lorentz transformations in the boost
sector, while maintaining rotational invariance would natu-
rally split the above expansion into a time plus space
structure. The expansion of the above coefficients in the
gamma matrix basis will be denoted by

�g
p¼0 ¼ Wg

C�
C;

�
@2�g

@p�

�
p¼0

¼ Wg
f�gC�

C;

�
@�g

@p�@p�

�
p¼0

¼ Wg
f��gC�

C;

(59)

where we use the standard basis

�C: �4 ¼ I; �� ¼ 
�; ��� ¼ ���;

�5 ¼ 
5 ¼ i
0
1
2
3; �5;� ¼ 
5
�:
(60)

This allows us to rewrite the self-energy as

�gðpÞ ¼
�
Wg

C þ p�Wg
f�gC þ 1

2p
�p�Wg

f��gC

�
�C þOðp3Þ:

(61)

In order to deal with the calculation of such coefficients it
is convenient to separate the modified photon propagator
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(53) into its even and odd parts

���ðkÞ ¼ �even
�� ðkÞ þ �odd

�� ðkÞ; (62)

and rewrite them in the more compact form

�even
�� ðkÞ ¼ ���F1 þ F2ðjkj2�0��0� � klkr


l
�


r
�Þ

¼ �even
�� ðkÞ ¼ �even

�� ð�kÞ; (63)

�odd
�� ðkÞ ¼ iF3kr�

lmr��l��m ¼ ��odd
�� ð�kÞ ¼ ��odd

�� ðkÞ;
(64)

where

F1 ¼ � k2

ððk2Þ2 � 4g2jkj2k40Þ
;

F2 ¼ 4g2k40=k
2

ððk2Þ2 � 4g2jkj2k40Þ
;

F3 ¼ � 2gk20
ððk2Þ2 � 4g2jkj2k40Þ

;

(65)

are even functions of k and k0.
From the general expressions for the contributions in

(58), together with the symmetry properties of the propa-
gator plus the symmetrical integration over the three-
momenta it is possible to determine that the nonzero con-
tributions to �gðpÞ are

�gðpÞ ¼ AI þ i ~A
i
j
k�ijk þ p0B
0

� piðC
i � i ~C
j
k�ijkÞ
þ 1

2ðp0Þ2ðDI þ i ~D
i
j
k�ijkÞ
þ 1

2p
2ðEI þ i ~E
i
j
k�ijkÞ

þ i ~Fp0pið
0
j
k�ijkÞ þOðp3Þ: (66)

We will be interested in analyzing only those terms that
could give rise to a finite and possibly unsuppressed LIV
contribution when g ! 0. In this limit we should recover
QED, which is parity conserving so that we know that the
electron self-energy must have the form

�g¼0ðpÞ ¼ W0I þW1ðp�
�Þ þW3

2
p�p

�I þOðp3Þ:
(67)

From this perspective, all parity violating terms ~A, ~C, ~D,
and ~E in (66) are subject to scrutiny and they should be
finally suppressed. On the other hand, the parity conserving
contributions can be rearranged in the following way

�g
þðpÞ ¼ AI þ ðB� CÞp0
0 þ Cðp�
�Þ

þ ðDþ EÞ
2

ðp0Þ2I � E

2
p�p

�I þOðp3Þ; (68)

so that according to our prescription we expect

lim
g!0

ðB� CÞ ¼ 0; lim
g!0

ðDþ EÞ ¼ 0;

lim
g!0

ðA;C;�EÞ ¼ ðW0; W1; W3Þ:
(69)

The general strategy to evaluate the required integrals is
the following. The structure of the denominators D enter-
ing in them is of the form

D ¼ ½ðk2Þ2 � 4g2jkj2k40 þ i��½k2 �m2 þ i��; (70)

which can be rewritten

D ¼ ð1� 4g2jkj2Þ½k02 � ð!2�ðkÞ � i�Þ�
� ½k02 � ð!2þðkÞ � i�Þ�½k02 � ðE2ðkÞ � i�Þ�: (71)

Within the region of integration (jkj< 1=ð2gÞ), the poles
in the complex k0 plane have the form

k01 ¼ EðjkjÞ � i�; k02 ¼ �EðjkjÞ þ i�; (72)

with EðjkjÞ> 0. Here EðjkjÞ stands for any of the involved
energies !�ðkÞ and EðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
. In this way, it is

always possible to perform a Wick rotation to the
Euclidean signature such that k0 ¼ ik4. Because of the
remaining rotational symmetry, together with the symmet-
rical integration over k, one is finally left with only two
integration variables which are k4 and jkj that can be
conveniently rewritten in polar form.

VII. THE LIV CONTRIBUTIONS

In this section, we present a detailed calculation of the
corrections Wg

f�gC to the electron self-energy arising from

the even sector of the photon propagator ��� correspond-

ing to the (B� C) term in Eq. (68). The calculation of the
remaining contributions goes along similar lines and we
only give the final results.

A. General structure of the contributions

As a first step, it is convenient to split them into the
following temporal and spatial pieces

�
@�

@p0

�
p¼0

¼ Wf0gM�M

¼ �ie2
Z d4k

ð2�Þ4 

�

�

0

½k2 �m2 þ i��

þ 2k0ðm� 
kÞ
½k2 �m2 þ i��2

�

����ðkÞJ ðkÞ; (73)
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�
@�

@pi

�
p¼0

¼ WfigM�M

¼ ie2
Z d4k

ð2�Þ4 

�

�

i

½k2 �m2 þ i��
� 2kiðm� 
kÞ

½k2 �m2 þ i��2
�

����ðkÞJ ðkÞ; (74)

and further separate each contribution according to the
even and odd pieces of the photon propagator ���ðkÞ. To
simplify the notation we have introduced

J ðkÞ ¼ IðkÞ�
�
1

2g
� jkj

�
: (75)

Taking the even part of the photon propagator in (73),
the temporal component of the derivative is�

@�

@p0

�
even

p¼0
¼ Weven

f0gM�
M

¼ �i
0e2
Z d4k

ð2�Þ4
�

1

ðk2 �m2 þ i�Þ

� 2k20
ðk2 �m2 þ i�Þ2

�
ð�2F1ÞJ ðkÞ; (76)

where we have used


�
0
��even
�� ¼ �2
0F1: (77)

The function F1 was introduced in Eq. (65) and from (76)
we see that the only contribution is given by the component
Weven

f0g0 . Let us define the quantity

Weven
f0g0 	 B

¼ �2ie2
Z d4k

ð2�Þ4
�

1

ðk2 �m2 þ i�Þ

� 2k20
ðk2 �m2 þ i�Þ2

�
k2

ððk2Þ2 � 4g2jkj2k40Þ
J ðkÞ:

(78)

The spatial contribution is (no sum over i)�
@�

@pi

�
even

p¼0
¼ Weven

figM�M

¼ �ie2
Z d4k

ð2�Þ4
�

1

ðk2 �m2 þ i�Þ
þ 2ðkiÞ2

ðk2 �m2 þ i�Þ2
�
ð
�
i
��even

�� ÞJ ðkÞ;
(79)

where we use


�
i
��even
�� ¼ 2
ið�F1 þ ðk2i � jkj2ÞF2Þ: (80)

The rotational invariance of the three-momentum integra-

tion leads to

Weven
figi 	 �C

¼ 2ie2
Z d4k

ð2�Þ4
�

1

ðk2 �m2 þ i�Þ

þ 2jkj2=3
ðk2 �m2 þ i�Þ2

� �
k2 � 8g2jkj2k4

0

3k2

�
ððk2Þ2 � 4g2jkj2k40Þ

J ðkÞ:
(81)

B. Calculation of the (B� C) contribution

From Eqs. (78) and (81), we have

B� C ¼ 4ie2
Z d4k

ð2�Þ4

� ðk20 þ 1
3k

2Þk2 � 4g2

3k2
jkj2k40½k2 �m2 þ 2

3k
2�

ðk2 �m2 þ i�Þ2ððk2Þ2 � 4g2jkj2k40Þ
� J ðkÞ: (82)

In order to calculate the noncovariant integrals of the above
type, together with those in Appendix D, we give some
details of the procedure sketched at the end of the previous
section. Basically we implement the following steps.

(i) First, we perform a Wick rotation to a Euclidean
signature, such that

k0 ¼ ik4; k2 ¼ �ðk24 þ k2Þ ¼ �k2E;

d4kE ¼ i4�jkj2dk4djkj:
(83)

(ii) Second, since we are maintaining rotational invari-
ance we are left with only two variables

�1< k4 <þ1; 0< jkj< 1

2g
: (84)

In this two-dimensional space we introduce the following
polar coordinates

k4 ¼ r cos�; jkj ¼ r sin�; (85)

where k2E ¼ r2. Next we have to integrate over the rectan-
gular strip defined by (84) and we choose first to integrate
over r and subsequently over �. In this way we have

Z
d4k ¼ i

Z
d4kE ¼ i4�

Z �

0
d�sin2�

Z 1=ð2g sin�Þ

0
r3dr:

(86)

Applying the above procedure to Eq. (82) we have
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B� C ¼ �4e2
Z d4kE

ð2�Þ4
½k2Eðk24 � 1

3k
2Þ þ 4g2

3k2E
jkj2k44ð�k2E �m2 þ 2

3 jkj2Þ�
ðk2E þm2Þ2ððkE2Þ2 � 4g2jkj2k44Þ

M2

ðM2 þ k2EÞ
�

�
1

2g
� jkj

�
: (87)

Introducing the polar coordinates (85) yields

B� C ¼ � e2

�3

Z �

0
d�sin2�

Z 1=ð2g sin�Þ

0
r3dr

½ðcos2�� 1
3 sin

2�Þ þ 4
3 g

2sin2�cos4�ð�r2 �m2 þ 2
3 r

2sin2�Þ�
ðr2 þm2Þ2ð1� 4g2r2sin2�cos4�Þ

M2

ðM2 þ r2Þ :
(88)

The required radial integrals are

K1ð�Þ ¼
Z 1=ð2g sin�Þ

0

r3

ðr2 þm2Þ2ð1� r2c2ð�ÞÞ
M2

ðM2 þ r2Þ dr; (89)

K2ð�Þ ¼
Z 1=ð2g sin�Þ

0

r5

ðr2 þm2Þ2ð1� r2c2ð�ÞÞ
M2

ðM2 þ r2Þ dr; (90)

which can be exactly calculated, yielding

K1 ¼ M2

2

�ðc2m4 þM2Þ
�2ð�2Þ2 ln

�
�2

m

m2

�
� M2

ð�2Þ2� ln

�
�2

M

M2

�
þ c2 lnð1� c2b2Þ

�2�
þ b2

��2
m�

2

�
; (91)

K2 ¼ M2

2

�
�ð2m2M2 þm4ðc2M2 � 1ÞÞ

�2ð�2Þ2 ln

�
�2

m

m2

�
þ M4

ð�2Þ2� ln

�
�2

M

M2

�
� lnð1� c2b2Þ

�2�
� b2m2

��2
m�

2

�
: (92)

The notation is

� ¼ 1þm2c2ð�Þ; � ¼ 1þM2c2ð�Þ;
�2 ¼ m2 �M2; cð�Þ ¼ 2g sin�cos2�;

�2
m ¼ m2 þ b2ð�Þ; �2

M ¼ M2 þ b2ð�Þ;

bð�Þ ¼ 1

2g sin�
:

(93)

In order to simplify the results by including only the
dominant terms, we will expand the above expressions in
powers of g2. This is justified since the expressions (91)
and (92) are free of poles. Up to order g2, the remaining
integrals over � will be of the form

sinp�cosq�; sinp�cosq� lnð1� cos4�Þ;
sinp�cosq� lnðsin�Þ; (94)

with q, q integers. These integrals contribute only with
finite numerical factors, which are not very relevant in
order to establish the correct QED limit of the LIV terms
and only the final numerical results will be presented.
Nevertheless, we will isolate the exact g2 independent
contribution and we will show that the angular integration
produces a zero contribution, thus eliminating any indica-
tion of fine-tuning. In all the remaining contributions pro-
portional to g2, we will further expand in powers of m=M
and retain only the dominant terms. In this way we will
need the approximate expressions

K1 ¼
�

M4

ðm2 �M2Þ2 ln

�
M

m

�
þ M2

2ðm2 �M2Þ
�

þ 2ðgmÞ2sin2�cos4�ð1þ 4 lnð2gm sin�ÞÞ

� 2ðgMÞ2sin2�
�
1þ cos4�ð2 lnð2gM sin�Þ

� cos4� lnð1� cos4�ÞÞ
�
; (95)

g2K2 ¼ �ðgMÞ2ðlnð2Mg sin�Þ þ 1
2 lnð1� cos4�ÞÞ

þ ðgmÞ2ð2 lnð2gm sin�Þ þ 1
2Þ: (96)

It is important to observe that the exact g2 independent
term, contained in the first bracket of Eq. (95) gives a zero
contribution in virtue of the angular integral factorZ �

0
sin2�

�
cos2�� 1

3
sin2�

�
d� ¼ 0: (97)

Performing numerically, the remaining angular integra-
tions in the proposed approximation we obtain

B� C ¼ e2

�2

�
ðgMÞ2ð�0:070þ 0:010 lnðgMÞÞ � ðgmÞ2

�
�
0:016þ 0:021 lnðgmÞ þ 0:031 ln

�
m

M

���
:

(98)

The remaining contributions from the even sector are
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A ¼ e2m

�2

�
M2

2ðm2 �M2Þ ln
�
M

m

�
þ ðgMÞ2ð0:75þ 0:047 lnðgMÞÞ
� ðgmÞ2ð0:014þ 0:047 lnðgmÞÞ

�
; (99)

Dþ E ¼ � e2

8�2
ðg2mÞ

�
ln

�
m

M

�
� 3

4

�
: (100)

Finally, the odd contributions are

~A ¼ e2

6�2
gðM2ð0:018þ 0:063 lnðgMÞÞ

�m2ð0:026þ 0:063 lnðgmÞÞÞ;
~C ¼ e2

48�2
ðgmÞ

�
ln

�
m

M

�
þ 1

2

�
;

(101)

~D ¼ ~F ¼ 5ge2

48�2

�
ln

�
M

m

�
þ 4

5

�
;

~E ¼ ge2

12�2

�
13

24
ln

�
M

m

�
þ 17

32

�
:

(102)

The results obtained above, in the framework of our pre-
scription to recover QED, have precisely the expected
property that reduce to zero when we turn off the LIV
correction parametrized by g, keeping M fixed. Also, the
results are consistent with the fact that the unsuppressed
contribution which we still expect to diverge even after we
set g ¼ 0 and subsequently M ! 1, comes in the term A
written in Eq. (99). This term corresponds precisely to the
mass renormalization contribution in standard QED.

VIII. MICROCAUSALITY VIOLATION

In this section we provide an estimation of the micro-
causality violation associated to our model. A comprehen-
sive study of such violations is out of the scope of the
present work. Microcausality violation has been previously
studied in the fermionic sector of the extended standard
model[18].

We work directly in the Coulomb gauge associated to
our reference system where n� ¼ ð1; 0Þ. We only consider
points x and x0 which produce a spacelike interval ðx�
x0Þ2 < 0. Unfortunately, we cannot perform a passive
Lorentz transformation to reach the system where x0 �
x00 ¼ 0, which might simplify the calculation. This is be-

cause such transformation will change n� ¼ ð1; 0Þ into
n0� ¼ 
ð1; vÞ and then our system will turn out to be
manifestly of the HOTD type, thus requiring the applica-
tion of the perturbative process of Ref. [16], which we have
avoided in our particular reference frame.

Even in the standard QED case, there is a drawback
when working in the Coulomb gauge, which is basically
due to the apparent causality violation of the theory arising

from the instantaneous character of the scalar potential.

When dealing with the commutator ½Ai
TðxÞ; Aj

Tðx0Þ�, which
is the naive starting point to test microcausality, this prob-
lem shows up because this commutator is proportional to

ð
ij � @i@j

r2 ÞDðx� x0ÞwhereDðx� x0Þ is a function that has
support only in the light cone. Nevertheless, the operator
1=r2, which is just a shorthand for the Green function
1=jr� r0j, acting uponDðx� x0Þ produces nonzero results
outside the light cone, thus yielding an apparent violation
of microcausality. The canonical way of dealing with this
problem is to calculate the commutators of the gauge
invariant fields E and B for spacelike separation. We will
follow the same route here and we will discuss only the
commutator

½ ��T
i ðxÞ; ��T

j ðx0Þ� ¼ �@20½Dijðx� x0Þ� 	 	ijðx� x0Þ;
(103)

which is the analogue of the electric fields commutator in

standard QED, with ��T
i ðxÞ being gauge invariant. Here

Dijðx� x0Þ ¼ ½ �Ai
TðxÞ; �Aj

Tðx0Þ�: (104)

A direct calculation starting from Eq. (32) leads to

Dijðx� x0Þ ¼
Z d3k

ð2�Þ3
X
	

1

2!	ðkÞ
� ð"ið	;kÞ"j�ð	;kÞe�ikð	Þ�ðx�x0Þ

� "i�ð	;kÞ"jð	;kÞeikð	Þ�ðx�x0ÞÞ; (105)

and we denote z� ¼ ðx� � x�0Þ in the sequel. Using the
relations (B5) and (B6) from Appendix B we arrive at

DijðzÞ ¼ X
	

Z d3k

ð2�Þ3
1

2!	ðkÞ
�
1

2

�

ij � kikj

jkj2
�

� i	

2

�
�ijm

km

jkj
��

e�ið!	z0�k�zÞ

�X
	

Z d3k

ð2�Þ3
1

2!	ðkÞ
�
1

2

�

ij � kikj

jkj2
�

þ i	

2

�
�ijm

km

jkj
��

eið!	z0�k�zÞ; (106)

which can be rewritten as

DijðzÞ ¼
�

ij � @i@j

jrj2
�
1

2

X
	

Z d3k

ð2�Þ3
1

2j!	ðkÞj
� ½e�ið!	z0�k�zÞ � eið!	z0�k�zÞ�

� �ijm@m
1

2

X
	

Z d3k

ð2�Þ3
	

2jkjj!	ðkÞj
� ½e�ið!	z0�k�zÞ � eið!	z0�k�zÞ�: (107)

Let us remark that this expression contains the correct limit
when g ¼ 0. In this case, !þ ¼ !þ ¼ jkj, so that the
contributions of each term in the

P
	 are the same. After
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the summation, the first line of (107) reproduces the defi-
nition of the standard functionDðx� x0Þ, while the second
line is proportional to

P
		 ¼ 0.

Starting from (103) yields

	ijðzÞ ¼ �½
ij@20 � @i@j� 1
2

X
	

Z d3k

ð2�Þ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2	gjkjp

2jkj
� ½e�ið!	z0�k�zÞ � eið!	z0�k�zÞ�

�
�
g@i@j þ 1

2
�ijm@m

�
1

2

X
	

Z d3k

ð2�Þ3

�
�

	ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2	gjkjp �

½e�ið!	z0�k�zÞ � eið!	z0�k�zÞ�;

(108)

where we have rearranged the above expression in such a
way that the first and second lines of (108) recover the
standard QED result in the limit g ! 0, while the third and
fourth lines are equal to zero. In this way, the microcau-
sality violation is encoded in the functions

V1ðzÞ ¼ 1

2

X
	

Z d3k

ð2�Þ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2	gjkjp

2jkj
� ½e�ið!	z0�k�zÞ � eið!	z0�k�zÞ�; (109)

V2ðzÞ ¼ 1

2

X
	

Z d3k

ð2�Þ3
�

	ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2	gjkjp �

� ½e�ið!	z0�k�zÞ � eið!	z0�k�zÞ�; (110)

which are now acted by local operators only.
Since we expect microcausality violations, we will esti-

mate their impact arising only from the function V1. Notice
that V1ðzÞ ¼ �V1ð�zÞ as can be seen from the expression
(109). After performing the angular integrations we obtain

V1 ¼ 1

2ð2�Þ2
1

ir

X
	

Z 1=2g

0
dk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2	gk

p
2

� ½e�iðk=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2	gk

p
Þz0 � eiðk=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2	gk

p
Þz0�½eikr � e�ikr�;

(111)

where k ¼ jkj and we have enforced the upper limit 1=2g
in order to have real frequencies !	ðkÞ according to
Eq. (33). The spacelike character of the interval is written
as �r < z0 < r. To proceed, we introduce the phases


1	ðkÞ ¼ k

�
r� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2	gk
p z0

�
;


2	ðkÞ ¼ k

�
rþ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2	gk
p z0

�
;

(112)

in terms of which we rewrite V1 as

V1 ¼ 1

2ð2�Þ2
1

ir

1

2

X
	

Z 1=2g

0
dk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2	gk

p
� ½ei
1	 þ e�i
1	 � ei
2	 � e�i
2	�: (113)

In order to make an estimate of the region where micro-
causality violations occur, we concentrate in the calcula-
tion of the momentum integrals appearing in Eq. (113). We
apply the stationary phase method to the generic integral

I	 ¼
Z 1=2g

0
dkf	ðkÞe�i
	ðkÞ; f	ðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2	gk

p
;

(114)

where the relevant phases are given in Eq. (112). The
general result for such an integral is

I	 ¼ f	ð �kÞe�i
	ð �kÞ
Z 1=2g

0
dkeð�ið1=2Þ½d2
=dk2�k¼ �kÞðk� �kÞ2 ;

(115)

where �k is the momenta that makes the phase stationary
within the interval ½0; 1=2g�.
We illustrate the calculation for the case of 
1	. The

remaining cases are completely similar and only the final
results are written. The exact expression for the momentum
�k that extremizes 
1	 is given by the equation

r

z0
¼ 1þ 	g �k

ð1þ 2	g �kÞ3=2 : (116)

Observe that �k appears always in the combination g �k so
that the solution will be of the form

�k ¼ 1

g
x

�
r

z0

�
; (117)

where xð rz0Þ solves the corresponding equation obtained

from (116). This is a complicated function of r
z0

and to

make some analytical progress the following approxima-
tion is made. We found that in the range of r

z0
¼ 1þ � with

� � 1, the exact curve xð rz0Þ is well approximated by the

straight line

�k 1	 ¼ � 	

2g

�
r

z0
� 1

�
;

r

z0
> 1; (118)

resulting from the expansion of the phase to order k2 in
Eq. (112), which is


1	ðkÞ ¼ kr� ðk� k2	gÞz0: (119)

This means that we are considering a spacelike region
close to the light cone such that

ð1� �Þr < jz0j< r: (120)

A posteriori we will verify that our results in fact fall
within the range of the approximation. For this purpose,
it is convenient to rewrite the condition (120) by stating

that the maximum allowed fractional deviation j �z0r j has to
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satisfy ���������z0r
��������<�: (121)

From now on it is convenient to separate the cases accord-
ing to the sign of z0. For z0 > 0 the extremum (118) has to
satisfy the condition

0< �k1	 ¼ � 	

2g

�
r

z0
� 1

�
<

1

2g
: (122)

We observe that we have no solution for 	 ¼ þ1. The
choice 	 ¼ �1 requires

r

2
< z0: (123)

In this way we have

�k 1� ¼ 1

2g

�
r

z0
� 1

�
; 
1�ð �k1�Þ ¼ ðr� z0Þ2

4gz0
;

r

2
< z0 < r;

(124)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2	g �k1�

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� r

z0

s
;

�
d2
1�ðkÞ

dk2

�
k¼ �k1�

¼ �2gz0:

(125)

The case z0 < 0 produces


1	ðkÞ ¼ krþ ðk� k2	gÞjz0j; (126)

with

�k 0
1	 ¼ 	

2g

�
r

jz0j þ 1

�
;

r

jz0j> 1: (127)

The condition

0< �k01	 ¼ 	

2g

�
r

jz0j þ 1

�
<

1

2g
(128)

cannot be satisfied neither for 	 ¼ �1, nor for 	 ¼ þ1.
The former leads to negative �k01	, while the latter requires
r

jz0j < 0. In other words there is no solution for z0 < 0.

The case of 
2	ðkÞ has a solution only for z0 < 0 and
	 ¼ �1. The results are

�k2� ¼ 1

2g

�
r

jz0j � 1

�
; 
2�ð �k2�Þ ¼ ðr� jz0jÞ2

4gjz0j ;

r

2
< jz0j< r; z0 < 0; (129)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2	g �k2�

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� r

jz0j
s

;

�
d2
2�ðkÞ

dk2

�
k¼ �k2�

¼ �2gjz0j:
(130)

Substituting in (113) yields

V1ðzÞ ¼ 1

4ð2�Þ2
1

ir
�ðz0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2z0 � r

z0

s �
eiððr�z0Þ2=4gz0Þ

Z 1=2g

0
dke�igz0ðk� �k1�Þ2

�

þ 1

4ð2�Þ2
1

ir
�ðz0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2z0 � r

z0

s �
e�iððr�z0Þ2=4gz0Þ

Z 1=2g

0
dkeþigz0ðk� �k1�Þ2

�

� 1

4ð2�Þ2
1

ir
�ð�z0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2z0 þ r

z0

s �
e�iððrþz0Þ2=4gz0Þ

Z 1=2g

0
dkeþigz0ðk� �k2�Þ2

�

� 1

4ð2�Þ2
1

ir
�ð�z0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2z0 þ r

z0

s �
eþiððrþz0Þ2=4gz0Þ

Z 1=2g

0
dke�igz0ðk� �k2�Þ2

�
; (131)

where we can verify that V1ðzÞ ¼ �V1ð�zÞ. Though this
will not be relevant for our estimation of the microcausality
violations, we can go one step further and estimate the
remaining integrals in the following way. Introducing the
change of variables u ¼ ffiffiffi

g
p ðk� �k1�Þ we obtain

I1� ¼
Z 1=2g

0
dke�igz0ðk� �k1�Þ2

¼ 1ffiffiffi
g

p
Z ffiffi

g
p ðð1=2gÞ� �k1�Þ

� ffiffi
g

p �k1�
due�iz0u

2
: (132)

Substituting the value of �k1� results in

I1� ¼ 1ffiffiffi
g

p
Z ð1=2 ffiffi

g
p Þð2�r=z0Þ

�ð1=2 ffiffi
g

p Þððr=z0Þ�1Þ
due�iz0u

2

’ 1ffiffiffi
g

p
Z 1

�1
due�iz0u

2 ¼
ffiffiffiffiffiffiffiffiffiffi
�

2gz0

s
ð1� iÞ: (133)

The expression for

I2� ¼
Z 1=2g

0
dke�igz0ðk� �k2�Þ2 ¼

Z 1=2g

0
dke�igjz0jðk� �k2�Þ2

(134)

can be obtained from (133) changing z0 by jz0j, so that we
obtain
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I2� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�

2gjz0j
s

ð1� iÞ: (135)

Then we have

V1ðzÞ ¼ 1

4ð2�Þ2
1

ir
�ðz0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2z0 � r

z0

s ffiffiffiffiffiffiffiffiffiffi
�

2gz0

s

� ½eiððr�z0Þ2=4gz0Þð1� iÞ þ e�iððr�z0Þ2=4gz0Þð1þ iÞ�

� 1

4ð2�Þ2
1

ir
�ð�z0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2z0 þ r

z0

s ffiffiffiffiffiffiffiffiffiffiffiffiffi
�

2gjz0j
s

� ½e�iððrþz0Þ2=4gz0Þð1� iÞ þ eþiððrþz0Þ2=4gz0Þð1þ iÞ�:
(136)

Next we analyze the regions where microcausality is
violated and provide an estimation of the amount of such
violation. In our approximation, such violations occur

when the functions e�iððr�jz0jÞ2=4gz0Þ do not oscillate rapidly
enough to make V1ðzÞ equal zero in the spacelike region.
Thus we take the condition for having microcausality
violations to be the region where the phases change slowly,
that is to say where

ðr� jz0jÞ2
4gjz0j

< 1; (137)

in which case the oscillations are very much suppressed.
Let us concentrate now in the case z0 > 0 (the case z0 < 0
can be discussed in a similar way). We first examine the
curves that limit the region of interest by considering the
equality in Eq. (137). For a given r, the solutions of such an
equation are

z0þ ¼ rþ 2gþ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ gr

q
;

z0� ¼ rþ 2g� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ gr

q
:

(138)

We observe that z0þ is always above the line z0 ¼ r, while
z0� is always below. Also notice that both curves tend to
the light cone when g ! 0. The condition (137) is satisfied
when

r�
�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ gr

q
� 2g

�
< z0 < r; (139)

because this region includes the case z0 ! r which clearly
satisfies (137). That is to say, (139) determines the space-
like region where V1ðzÞ is not zero, thus leading to micro-
causality violations. For a given r, the range of z0 within
that region is given by �z0 ¼ r� z0�. Then we can quan-
tify the maximum time interval for which such violations
occur by

�z0
jz0j ’ �z0

r
¼ 1

r

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ gr

q
� 2g

�
: (140)

The expression in the right-hand side of (140) is a mono-
tonically decreasing function of r with the following end

points �
�z0
r

�
r!0

¼ 1;

�
�z0
r

�
r!1

¼ 0: (141)

That is to say, for the whole region r > r0 we can guarantee
that

�z0
r

<

�
�z0
r

�
r¼r0

: (142)

Recall that g ¼ �= �M, where � is bounded by 10�10 when
we choose �M ¼ MP ¼ 1019 GeV ðLP ¼ 10�33 cmÞ [21].
Thus, taking g ¼ 10�43 cm and always considering the
region r 
 g, where we can trust the effective theory, we
make some numerical estimations of the relation (142),
which are given in Table I. The third and fourth values of
Table I correspond to distances given by r0 ¼ 1011LP and
r0 ¼ 106LP, which set a lower limit beyond which space
becomes granular, according to the models considered in
Refs. [4,22], respectively. The calculated microcausality
violations in Table I fall comfortably within the range
determined by (121) required for the approximation to
order k2 in the phases to be correct.

IX. FINAL REMARKS

In this work we have proposed a consistent quantization
of the electromagnetic sector of the MP model, [1] coupled
to standard fermions, such that it can be realized as a
perturbative correction of standard QED. By this we
mean that in the limit where the LIV parameter g ¼
�= ~M goes to zero one should recover the same quantum
corrections arising in QED. Even though this sector of the
MP model is not of the higher order time-derivative type,
up to a total derivative, some subtleties appear in the
quantization of the photon field. The correct perturbative
prescription is achieved by recognizing the effective char-
acter of the model via the introduction of a coarse-graining
scaleM � 1=g, under which we assume that space retains
the usual attributes which allow the construction of a
standard effective field theory. Such cutoff scale is incor-
porated, in a smooth way, by means of a Lorentz covariant
function of the Pauli-Villars type, which plays the role of a
standard regulator in the QED limit and makes sure that all
LIV is codified in the parameter g. The mathematical
translation of this physical picture amounts to the follow-
ing prescription in order to properly recover QED: first

TABLE I. Upper bound on fractional microcausality violation
j�z0j=r for distances r > r0.

r0 cm j�z0j=r<
1 6:3� 10�22

10�10 6:3� 10�17

10�22 6:3� 10�11

10�27 2:0� 10�8

10�33 2:0� 10�5
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take g ¼ 0, for constant M, and subsequently set M ! 1.
The prescription has been tested in the calculation of LIV
contributions arising from the electron self-energy, which
indeed provides the expected results. In this way, the fine-
tuning problems found in Refs. [9,11] disappear and one in
fact recovers the correct zero limit for all the LIV correc-
tions, which are indeed shown to be very small perturba-
tions in accordance with the experimental and
observational evidence.

Some comments regarding the plausibility of the scale
M in relation with the very stringent constraints already
found for LIV are now in order. The combinations of
parameters g ¼ �= �M, �1;2= �M, denoted collectively by

�= �M, appearing in Eq. (1) are considered as remnants of
a more fundamental quantum gravity (QG) theory, which
include effects that make space no longer describable in
terms of a continuum. Such parameters could arise, for
example, in the process of calculating expectation values of
well-defined QG operators in semiclassical states that de-
scribe Minkowski space-time, which would be necessary
to derive the exact nature of the induced corrections to
standard particle dynamics at low energies. Let us empha-
size that what is bounded by experiments or observations is
the ratio�= �M, so that a neat separation of the scale �M and
the correction coefficients �, which could even be zero if
no corrections arise, is not possible until a semiclassical
calculation is correctly performed starting from a full
quantum theory. Initially, the naive expectation was that
taking �M ¼ MPlanck will be consistent with � values of
order one, which is certainly not the case. Nevertheless, we
should not rule out rather unexpected values of � or �M
until the correct calculation is done.

Let us assume that we have identified the correct sepa-
ration in �QG=MQG consistent with the experimental

bounds and arising from a correct semiclassical limit of
the QG theory. Then we will interpret MQG as the scale in

which quantum effects are manifest and where space is
characterized by strong fluctuations forbidding its descrip-
tion as a continuum. Nevertheless, another scale M natu-
rally should arise in this approach, which is the one that
separates the continuum description of space from a foamy
description related to quantum effects. That is to say, for
probe energies E � M we are definitely within the stan-
dard continuum description of space where effective field
theory (EFT) methods should apply. For probe energies
E 
 M we enter the realm of quantum gravity and there
we assume that any EFT has to be replaced by an alter-
native description. It is natural that a very large number of
the basic quantum cells of space characterized by the scale
ð1=MQGÞ3 will contribute to the much larger cells charac-

terizing the onset of a continuum description, so that we
expect M � MQG.

The maximum allowed momenta jkmaxj � MQG=�QG

in the theory will be mathematically dictated by the pos-
itivity of the normal mode’s energies, Eq. (34) in our case,

and certainly constitutes an extrapolation of the EFT that
can be considered as the analogous of taking the maximum
momentum equal to infinity in the standard QED case.
That is to say, we need to introduce an additional suppres-
sion of the excitation modes in our EFT which will be
settled by the scale M, thus defining the effective energy
range of the model. This is required by the EFT description
of excitations in space which demands that the Compton
wavelength 1=jkj of the allowed excitations be larger than
the scale 1=M setting the onset of the continuum. The
implementation of this proposal is directly related with
our demand that the quantum model constructed from the
MP theory be such that it produces a continuous interpo-
lation between those physical results including � � 0
corrections and those predicted by standard QED (� ¼
0). In order to achieve this, we have proposed the prescrip-
tion fully described in Sec. V.
Let us now discuss whether or not an estimate of the

order of magnitude of the scale M in relation to MQG

makes sense. In our specific case the LIV contribution to
the electron self-energy produces an additional dimension
four contribution to the Lagrangian given by

�L ¼ 

e2

�2
��
0i@0�; (143)

arising from the (B� C) term in Eq. (68). Our calculation
leads to a prediction dominated by

j
j � 10�2 � ðgMÞ2j lnðgMÞj; (144)

according to Eq. (98). On the other hand, starting from the
correction (143) together with bounds from the anisotropy
of the inertial mass, the authors of Ref. [9] have established
the experimental bound

j
j< 10�21: (145)

In this way, we expect that the scaleM is bounded in such a
way that the theoretical correction (144) is much less than
the experimental bound (145), that is to say when

gM ¼ �
M
�M
¼ 10�10 M

�M
� 0:65� 10�10;

! M � 0:65 �M: (146)

The above shows that it is safe and consistent with present
observations to define a scale M much below the quantum
gravity scale �M. Proposals for additional scales M signifi-
cantly smaller than �M ¼ MP, that can be understood as
signaling the transition between the standard space-time
and that associated to the quantum gravity phase, already
exists in the literature [4,22].
Next we comment upon the behavior of our result for the

electron self-energy under different momentum routings.
For arbitrary internal momenta, the basic expression (56)
can be rewritten as
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�gðpÞ ¼ �ie2
Z d4k

ð2�Þ4 

�SFðk� þ k�2 Þ
����ð�k� þ k�1 Þ

� Ið�k� þ k�1 Þ�ð1=ð2gÞ � jk1 � kjÞ; (147)

where k�1 � k� (k� þ k�2 ) is the internal photon (electron)
momentum, respectively, with k�1 and k�2 being arbitrary
momenta satisfying the conservation k�2 ¼ p� � k�1 . Here
SFðk�Þ denotes the standard fermion propagator. Since the
integral (147) is finite we are allowed to make the change
of variables k� � k�1 ! k�, which reduces the integral to
the form (56) and shows its invariance under momentum
rerouting.

The stability of the model is guaranteed by restricting
the observer Lorentz covariance to concordant frames
characterized by boosts factors up to 
 ¼ 1=

ffiffiffiffiffiffiffiffiffiffi
2gM

p
.

Using the bound (146), the maximum allowed boost factor
is 
max ¼ 8:8� 104, which corresponds to a maximum
relative velocity such that 1� jvmaxj> 6:5� 10�11. This
condition certainly includes concordant frames that move
nonrelativistically with respect to Earth.

We have made a preliminary estimation of the micro-
causality violations in the model by looking at the commu-
tator of two gauge invariant momentum operators (which
are the extension of the electric field operators in standard
QED) for spacelike separation r > z0. The value of the
corresponding function has been calculated using the sta-
tionary phase approximation and the condition for having
microcausality violations requires that the exponentials
oscillate very slowly. This means that the associated phases
should be of order one or less, which defines a spacelike

region extremely close to the light cone, rapidly approach-
ing to it when the LIV parameter g ! 0. For a given value
of r, the width j�z0j of such a region is calculated. The
fractional value ðj�z0j=rÞmax, which sets the upper limit for
the allowed microcausality violation is subsequently esti-
mated, leading to a typical value of j�z0j=r < 6:3� 10�17

for distances r larger than the Compton wavelength of the
electron.
In this paper, we have studied the construction of the

quantum MP effective model emphasizing the recovering
of the correct QED limit in relation with the absence of
fine-tuning problems. A summary of our results has been
presented in Ref. [23]. Within the restrictions imposed, we
have established the basis of a sound perturbative scheme
to proceed with the calculation of additional radiative
processes. We defer for further work the analysis of the
predictive power of the model in relation to LIV correc-
tions to physical observables.
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APPENDIX A

The conventions used in this work for the Dirac algebra
are those of Ref. [24] and we take @ ¼ c ¼ 1. Also we have

��� ¼ diagð1;�1;�1;�1Þ; 
ij ¼ þ1; i ¼ j; 
ij ¼ 0; i � j;

�0ijk ¼ �ijk; �0123 ¼ �123 ¼ ��123 ¼ þ1;

A ¼ ðAi ¼ �AiÞ; k ¼ ðki ¼ �kiÞ; r ¼
�
@

@xi
¼ @i

�
;

@r , �ikr; @t , �ik0; A � B ¼ AiBi; ðA� BÞi ¼ �ijkAjBk; ðr �BÞi ¼ �ijk@jB
k: (A1)

In addition let us summarize some useful properties of
the operator ðM�1Þik introduced in Sec. II,

ðM�1ÞjiðM�1Þir ¼ 1

ð1þ 4g2r2Þ2 ½ð1� 4g2r2Þ
jr

� 4g�jpr@p þ 4g2ð3þ 4g2r2Þ@j@r�;
(A2)

1

ð1þ 4g2r2Þ2 ½ðM
�1Þpi�ijk@jðM�1Þkr�

¼ ð1� 4g2r2Þ�pjr@j þ 4gð
prr2 � @r@pÞ; (A3)

@i@jðM�1Þij ¼ 1

ð1þ 4g2r2Þ ðr
2 þ 4g2ðr2Þ2Þ ¼ r2;

(A4)

@jðM�1Þij ¼ 1

ð1þ 4g2r2Þ ð1þ 4g2r2Þ@i ¼ @i; (A5)

ðM�1Þij�T
j ¼ 1

ð1þ 4g2r2Þ ð

ij þ 2g�irj@rÞ�T

j : (A6)

APPENDIX B

Here we present the properties of the polarization vec-
tors in the helicity basis (	 ¼ �1), which are used in the
expansion of the photon field in Eq. (24). They satisfy the
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identities

" �ð	; k̂Þ ¼ "ð�	; k̂Þ; k̂ � "ð	; k̂Þ ¼ 0;

k̂� "ð	; k̂Þ ¼ �i	"ð	; k̂Þ;
(B1)

"�ð	; k̂Þ � "ð	0; k̂Þ ¼ 
		0 ; "ð	;�k̂Þ ¼ "ð�	; k̂Þ;
"ð	0;�k̂Þ � ðk� "ð	; k̂ÞÞ ¼ �i	jkj
		0 ; (B2)

"rð	; k̂Þ½
rp þ i2g�rmpkm�"pð	0;�k̂Þ
¼ ½1þ 2g	jkj�
		0 ; (B3)

"r�ð	; k̂Þ½
rp � i2g�rmpkm�"pð	0; k̂Þ
¼ ½1þ 2g	jkj�
		0 : (B4)

The following combinations are useful in the construction
of the corresponding propagator

"ið	; k̂Þ"j�ð	; k̂Þ ¼ 1

2

�

ij � kikj

jkj2
�
� 	

i

2

�
�ijm

km

jkj
�
;

(B5)

"ið	;�k̂Þ"j�ð	;�k̂Þ ¼ 1

2

�

ij � kikj

jkj2
�
þ 	

i

2

�
�ijm

km

jkj
�
;

(B6)

together with the sumsX
	

"ið	; k̂Þ"j�ð	; k̂Þ ¼ X
	

"jð	;�k̂Þ"i�ð	;�k̂Þ

¼ 
ij � kikj

jkj2 : (B7)

The final calculation of the propagator in Eq. (51) requires
the result of the following sums

X
	

1

ðk20 �!2
	 þ i�Þ ¼

2ðk2 � 4g2jkj2k20Þ
ðk2Þ2 � 4g2jkj2k40 þ i�

; (B8)

X
	

!2
	

ðk20 �!2
	 þ i�Þ ¼

2k2k2

ðk2Þ2 � 4g2jkj2k40 þ i�
; (B9)

X
	

	

ðk20 �!2
	 þ i�Þ ¼ � 4gjkj3

ðk2Þ2 � 4g2jkj2k40 þ i�
: (B10)

APPENDIX C

The purpose of this Appendix is to compare the propa-
gator obtained directly from the equations of motion in the
Lorentz gauge and further expressed in the Coulomb
gauge, with the propagator (49) obtained directly in the
Coulomb gauge after the canonical transformation (22) is
made.

From the equations of motion (3) in the Lorentz gauge
we identify the momentum space operator

O��ðkÞ ¼ �k2��� � 2gik20�
0���k�; (C1)

which propagator is

���ðkÞ ¼ 1

ðk2Þ2 � 4g2k40jkj2Þ
�

�
�k2��� þ 2igk20�

pmqkm�p��q�

� 4g2k40
k2

kpkq

p
�


q
� þ 4g2k40jkj2

k2
�0��0�

�
;

(C2)

such that O����� ¼ 
�
�. Separating the instantaneous

Coulomb contribution

Jið�kÞ�ijðkÞJjðkÞ ¼ J�ð�kÞ���ðkÞJ�ðkÞ
� J0ð�kÞ 1

jkj2 J
0ðkÞ (C3)

and using charge conservation [19], we find the corre-
sponding propagator in the Coulomb gauge

�ijðkÞ ¼ 1

jkj2ððk2Þ2 � 4g2k40jkj2Þ
½k2ðjkj2
ij � kikjÞ

þ 2gk20jkj2i�imjkm�: (C4)

The Coulomb gauge propagator corresponding to the ca-
nonical transformation (22) and which was directly con-
structed from its vacuum expectation value definition (40)
leading to the final result Eq. (49) is

��ij ¼ 1

jkj2ððk2Þ2 � 4g2k40jkj2Þ
½ðk2 � 4g2jkj2k20Þ

� ðjkj2
ij � kikjÞ þ 2gjkj4i�imjkm�: (C5)

Here we show the consistency between (C4) and (C5).
The starting points are the defining relations

A ¼ �JT; �A ¼ ��JT; (C6)

where both A and �A are in the Coulomb gauge. Whenever it

is not confusing, we use the compact notation A ¼ �JT ,
Ai ¼ �ijJ

j
T . Moreover, the photon fields are related by the

canonical transformation T such that

A ¼ T �A; Ay ¼ �AyTy: (C7)

The invariant object is basically the electromagnetic en-
ergy written in terms of the transverse current

E ¼ 1

2

Z
d3xd3yJiTðxÞ�ijðx� yÞJjTðyÞ; (C8)

where the sources are real. In momentum space this im-
plies
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ðJiTðkÞÞ� ¼ JiTð�kÞ; (C9)

and Eq. (C8) translates into

E ¼ 1

2

Z
d3kJiTð�kÞ�ijðkÞJjTðkÞ ¼

1

2

Z
d3kJyT�JT:

(C10)

Reality of E further demands

�yðkÞ ¼ �ðkÞ: (C11)

Expressing E in terms of the fields yields

E ¼ 1

2

Z
d3kJyT�JT ¼ 1

2

Z
d3kAyð��1ÞA; (C12)

in such a way that the equivalent description in terms of the
barred quantities requires

E ¼ 1

2

Z
d3k �Ayð ���1Þ �A: (C13)

Inserting the transformation (C7), we obtain the relation
among the two propagators

� ¼ T ��Ty: (C14)

The general structure of a Coulomb gauge propagator in
our parity violating theory can be written as

� ¼ �1K þ �2S; �� ¼ ��1K þ ��2S; (C15)

where we have introduced the Hermitian matrices

K ¼ ½Kij� ¼ ½jkj2
ij � kikj�; S ¼ ½Sij� ¼ ½i�imjkm�;
(C16)

with the following properties

S3 ¼ jkj2S; S2 ¼ K; (C17)

in such a way that each propagator can be written in terms
of the matrix S only.

The canonical transformation T has the form

T ¼ �I þ �S ¼ Ty; (C18)

in momentum space, with real numerical coefficients

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ 4aÞpq
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ 4aÞp ;

� ¼ 2gffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ 4aÞp 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ 4aÞpq ; a ¼ �g2jkj2:

(C19)

Substituting in the relation (C14) and after some algebra
we obtain the following conditions among the components

of the respective propagators

�1 ¼ 1

ð1� 4g2jkj2Þ ½
��1 þ 2g ��2�; (C20)

�2 ¼ 1

ð1� 4g2jkj2Þ ½
��2 þ 2gjkj2 ��1�: (C21)

From the expressions (C4) and (C5) together with the
definition (C15) one can read

�1 ¼ k2

jkj2ððk2Þ2 � 4g2k40jkj2Þ
;

�2 ¼ 2gk20
ððk2Þ2 � 4g2k40jkj2Þ

;

(C22)

��1 ¼ ðk2 � 4g2jkj2k20Þ
jkj2ððk2Þ2 � 4g2k40jkj2Þ

;

��2 ¼ 2gjkj2
ððk2Þ2 � 4g2k40jkj2Þ

;

(C23)

and verify that they satisfy the relations (C20) and (C21).

APPENDIX D

In this Appendix, we write the general form of the
remaining LIV contributions to the electron self-energy,
of which final results are presented in Sec. VII, according
to our general scheme of calculation

A ¼ 4ie2m
Z d4k

ð2�Þ4
ðk2 � 2g2k40jkj2=k2Þ

½k2 �m2�ððk2Þ2 � 4g2jkj2k40Þ
J ðkÞ;
(D1)

~A ¼ 2ie2

3
g
Z d4k

ð2�Þ4
jkj2k20

½k2 �m2�ððk2Þ2 � 4g2jkj2k40Þ
J ðkÞ;
(D2)

~C ¼ 4ie2

3
ðgmÞ

Z d4k

ð2�Þ4

� jkj2k20
ðk2 �m2Þ2ððk2Þ2 � 4g2jkj2k40Þ

J ðkÞ; (D3)

Dþ E ¼ 32ie2m
Z d4k

ð2�Þ4
ðk20 þ jkj2=3Þ
ðk2 �m2Þ3

� ðk2 � 2g2k40jkj2=k2Þ
ððk2Þ2 � 4g2jkj2k40Þ

J ðkÞ; (D4)
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~D ¼ ~F ¼ � 4ie2

3
g
Z d4k

ð2�Þ4
�

1

ðk2 �m2Þ2 �
4k20

ðk2 �m2Þ3
�

� jkj2k20
ððk2Þ2 � 4g2jkj2k40Þ

J ðkÞ; (D5)

~E ¼ 4ige2

3

Z d4k

ð2�Þ4
�

3

ðk2 �m2Þ2 þ
4
3 jkj2

ðk2 �m2Þ3
�

� jkj2k20
ððk2Þ2 � 4g2jkj2k40Þ

J ðkÞ: (D6)
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