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We investigate the 1=N expansion proposed recently as a strategy to include quantum fluctuation effects

in the nonrelativistic, attractive Fermi gas at and near unitarity. We extend the previous results by

calculating the next-to-leading order corrections to the critical temperature along the whole crossover

from Bardeen-Cooper-Schrieffer (BCS) superconductivity to Bose-Einstein condensation. We demon-

strate explicitly that the extrapolation from the mean-field approximation, based on the 1=N expansion,

provides a useful approximation scheme only on the BCS side of the crossover. We then apply the

technique to the study of strongly interacting relativistic many-fermion systems. Having in mind the

application to color superconductivity in cold dense quark matter, we develop, within a simple model, a

formalism suitable to compare the effects of order parameter fluctuations in phases with different pairing

patterns. Our main conclusion is that the relative correction to the critical temperature is to a good

accuracy proportional to the mean-field ratio of the critical temperature and the chemical potential. As a

consequence, it is significant even rather deep in the BCS regime, where phenomenologically interesting

values of the quark–quark coupling are expected. Possible impact on the phase diagram of color-

superconducting quark matter is discussed.
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I. INTRODUCTION

Strongly interacting many-fermion systems have been a
theoretical challenge for decades. While the Bardeen-
Cooper-Schrieffer (BCS), or mean-field (MF), theory pro-
vides an excellent description of conventional metallic
superconductors, it is still inappropriate for a large range
of other systems, from high-temperature superconductors
to nuclear (and more recently, quark) matter.

Great theoretical interest was triggered by the conjecture
that when the interaction strength is increased, BCS-type
superconductivity evolves smoothly to the Bose-Einstein
condensation (BEC) of tightly bound difermion molecules
[1–3]. The crucial observation in this respect was that the
standard BCS superconducting ground state has the same
form as the ground state of a condensed Bose gas once the
composite operator creating a Cooper pair is identified
with that of a bosonic quasiparticle. However, in spite of
the successful unified description of BCS superconductiv-
ity and BEC, a quantitative understanding of the crossover
between the two regimes was missing.

Spectacular progress in this direction has been made in
the past decade thanks to the experiments using ultracold
atomic Fermi gases [4–7]. From the theorists’ point of
view, these provide an ideal tool to test the developing
many-body techniques. In particular, a lot of interest has
been attracted by the transition regime between the BCS

and BEC limits—the unitary Fermi gas. In this case, the
two-body scattering length is much larger (ideally infinite)
than any other characteristic scale of the system such as the
interaction range and interparticle distance. This, on the
one hand, leads to intriguing universal behavior with con-
nections to other branches of physics such as the quark-
gluon plasma or even string theory [8,9]. On the other
hand, it poses a challenging problem due to the lack of a
small expansion parameter.
Several approaches have been suggested to deal with the

Fermi gas at large scattering length, including various self-
consistent resummation techniques for the many-body
Green’s functions [10,11] or the scattering matrix [12],
expansion in the dimensionality of the space [13–15], or
the 1=N expansion [16,17]. An early review of the many-
body approaches to the crossover problem may be found in
Ref. [18]. The predictions of the analytic approximation
schemes as well as the available experimental results are
now being tested by increasingly precise numerical simu-
lations [19–22].
Also in high-energy physics has the mechanism of

Cooper pairing proven extremely fruitful. The Nambu-
Jona-Lasinio (NJL) model [23,24], constructed in direct
analogy with the BCS theory of superconductivity, was one
of the first models of dynamical symmetry breaking. For its
simplicity and generality, it still remains a popular low-
energy effective description of strongly interacting quark
and nuclear matter, this article not being an exception.
While the original NJL model dealt with dynamical

breaking of chiral symmetry by particle-antiparticle corre-
lations, the true Cooper pairing of two relativistic fermions
near their Fermi surface appears in dense quark matter,
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leading to the so-called color superconductivity [25,26]
(see [27] for a recent review). Because of the strong-
interaction nature of quantum chromodynamics (QCD),
quark matter at moderate densities is a typical example
of a relativistic many-fermion system where a departure
from the BCS-like behavior is to be expected. The early
work in this respect focused on the structural change of
Cooper pairs at strong coupling and precursor phenomena
above the critical temperature for the superconducting
phase transition, in particular, the appearance of the pseu-
dogap in the spectrum [28–33].

In principle, the size of the QCD running coupling
depends just on the energy/momentum scale and is thus
fixed by the density of the quark matter. However, in order
to better understand the strong-coupling effects in color
superconductors, one often considers models with variable
coupling strength where the full BCS–BEC crossover can
be studied [34–40]. In the color superconductivity context,
most of the calculations are still done using the MF ap-
proximation. The first attempts to include the fluctuations
of the order parameter have adapted the Nozières-Schmitt-
Rink (NSR) theory [3,34,35] and the pseudogap approxi-
mation [41], commonly used in condensed-matter physics,
and the Cornwall-Jackiw-Tomboulis formalism [42,43],
well known in high-energy physics.

The goal of this paper is to investigate the applicability
of the 1=N expansion to the study of strongly interacting
Fermi gases. In Sec. II, we review the 1=N expansion for
the nonrelativistic Fermi gas developed in Refs. [16,17].
We study the evolution of the next-to-leading-order (NLO)
corrections from the unitarity toward the BCS and BEC
regimes and critically examine the virtues as well as
shortcomings of the method. In Sec. III, we then apply
the technique to relativistic superconductors, using a
class of NJL-type models. In particular, we estimate the
correction to the critical temperature in color-
superconducting quark matter and show that it is signifi-
cant even for realistic values of the coupling strength. Due
to the fact that the fluctuation effects are different for
various competing phases, we propose a modification of
the QCD phase diagram. Finally, in Sec. IV we summarize
and conclude.

II. NONRELATIVISTIC ATTRACTIVE FERMI GAS

We consider here the gas of two nonrelativistic fermion
species (‘‘flavors’’), which will be referred to as c " and c #.
For simplicity they will be assumed to have equal masses
and chemical potentials (and thus also densities).
Nevertheless, the results of the present analysis may be
straightforwardly generalized to the case of a density im-
balance, or, Fermi surface mismatch [17]. At low density,
i.e., low characteristic momentum set by the Fermi scale,
the two-body interaction is completely determined by the
s-wave scattering length a.

A. Formalism

In order to employ the 1=N expansion, one has to gen-
eralize the system by including N copies of the two fer-
mion flavors. Following Refs. [16,17], we write down the
Euclidean Lagrangian in the form

L ¼ XN
i¼1

X
�¼";#

c y
i�

�
@� � r2

2m
��

�
c i�

� g

N

XN
i;j¼1

c y
i"c

y
i#c j#c j": (1)

The sums over repeated indices will from now on be
implicitly assumed. For N ¼ 1 the Lagrangian reduces to
one describing a two-flavor gas with local contact attrac-
tive interaction with strength g [44]. In this extended
version the coupling is rescaled as g ! g=N in order to
ensure that the action scales naturally with N.
Note that the Lagrangian (1) possesses, apart from the

phase invariance generated by the total particle number, a
symplectic symmetry, Spð2NÞ. However, as will become
clear soon, this symmetry remains unbroken by the Cooper
pairing so that it does not give rise to any unwanted
Nambu-Goldstone (NG) bosons and hence does not affect
the low-temperature thermodynamics of the system.
As a next step the theory is bosonized by introducing the

auxiliary field �� g
N c i#c i" and performing the Hubbard-

Stratonovich transformation. The result is the nonlocal
effective action

S ¼ N
Z �

0
d�

Z
d3x

j�ðx; �Þj2
g

� N Tr logG�1½�ðx; �Þ�;
(2)

where G is the Nambu-space fermion propagator in pres-
ence of the pairing field �

G �1 ¼ �@� þ r2

2m þ� �

�� �@� � r2

2m ��

 !
:

Equation (2) can be interpreted as a classical action that
defines a theory of the scalar field � with self-interactions
determined by the expansion of the action in powers of �.
The crucial observation made in Refs. [16,17] is that since
the action is proportional to N, the expansion of the parti-
tion function, or the thermodynamic potential, in powers of
1=N is equivalent to the expansion in loops. Here and in the
following, the term ‘‘loop’’ is used to refer to a bosonic
loop, unless explicitly indicated otherwise. Note that all
loops containing fermions of the original theory (1) are
resummed into the action (2), i.e., are included at the tree
level with respect to bosons.
Obviously, the leading order (LO) of the 1=N expansion

is equivalent to the saddle-point approximation to the
functional integral, that is, the usual MF approximation.
The NLO then incorporates one-loop corrections, or, the
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Gaussian fluctuations around the saddle point [45]. The
1=N expansion thus provides a systematic ordering of the
corrections to the MF approximation. We should never-
theless keep in mind that at the end of the calculation, we
have to set N ¼ 1. The way this extrapolation is performed
is to be understood as a part of the definition of the method,
which distinguishes it from other approaches with formally
equivalent thermodynamic potential [3,45].

In general, one calculates, in a given approximation
scheme, the thermodynamic potential � as a function of
the anticipated vacuum expectation value � of the field �,
and of the chemical potential �. Their actual values in
thermodynamic equilibrium are then determined by a si-
multaneous solution of the gap and number equations

@�

@�
¼ 0;

@�

@�
¼ �n; (3)

where n is the total particle density, related to the Fermi
momentum kF by the usual expression, n ¼ k3F=3�

2. It is
well known that already at one-loop level, an attempt to
solve the equations self-consistently leads to unphysical
results, in particular, the violation of the Goldstone theo-
rem [11]. Veillette et al. [17] suggested to avoid this
problem by an expansion of the gap and chemical potential
simultaneously with the expansion of the thermodynamic
potential that follows from the action (2)

� ¼ N�ð0Þ þ�ð1Þ þ 1

N
�ð2Þ þ � � � ;

� ¼ �ð0Þ þ 1

N
�ð1Þ þ 1

N2
�ð2Þ þ � � � ;

� ¼ �ð0Þ þ 1

N
�ð1Þ þ 1

N2
�ð2Þ þ � � � :

Comparing terms of the same order in the gap and number
Eq. (3), one obtains explicit expressions for the higher-

order corrections to the MF values �ð0Þ, �ð0Þ. In particular,
at NLO we find

�ð1Þ
�ð1Þ

 !
¼ � @���

ð0Þ @���
ð0Þ

@���
ð0Þ @���

ð0Þ

 !�1 @��
ð1Þ

@��
ð1Þ

 !
: (4)

It is essential that all derivatives of the thermodynamic

potential here are evaluated using the MF values �ð0Þ,�ð0Þ.
One thus avoids the problems with self-consistency; in
particular, the NG boson of the spontaneously broken
symmetry is exactly massless [16].

When we merely wish to determine the critical tempera-
ture, the gap in Eq. (3) is fixed to zero, and we solve for the
temperature and chemical potential instead. The identity
(4) then naturally modifies to one for the corrections of the
variables of interest

�ð1Þ
c

Tð1Þ
c

 !
¼ � @���

ð0Þ @�T�
ð0Þ

@���
ð0Þ @�T�

ð0Þ

 !�1
@��

ð1Þ

@��
ð1Þ

 !
: (5)

We will comment later on the ambiguity that arises at this

point, stemming from the fact that we can choose to solve
Eq. (3) for 1=Tc (or any other function of Tc) and accord-
ingly get a different type of 1=N expansion—all deriva-
tives with respect to T in Eq. (5) would simply turn into
ones with respect to 1=T.
Equations (4) and (5) of course have to be supplemented

with an expression for the thermodynamic potential. For
the sake of this section, we will need just the explicit form
of the standard MF part

�ð0Þ ¼ j�j2
g

�
Z d3k

ð2�Þ3 ðEk � �kÞ � 2T

�
Z d3k

ð2�Þ3 logð1þ e��EkÞ; (6)

using the usual notation �k ¼ k2

2m , �k ¼ �k ��, and Ek ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
k þ j�j2

q
. The bare coupling g is related to the physical

scattering length by

1

g
¼ � m

4�a
þ
Z d3k

ð2�Þ3
1

2�k
: (7)

For further details, we refer the reader to the original
literature [16,17], where all necessary formulas are derived
in detail. In Sec. III, we will develop a relativistic formal-
ism from which the present case will follow as a particular
nonrelativistic limit.

B. Numerical results

1. Critical temperature

While differing in other specific directions of investiga-
tion, both Refs. [16,17] addressed the question of special
interest, the calculation of the critical temperature at uni-
tarity. Veillette et al. obtained the result

Tc

�F
¼ 0:4964� 1:31

N
(8)

in units of the Fermi energy, �F ¼ k2F=2m, whereas Nikolić
and Sachdev calculated the correction to the inverse tem-
perature and got

�F
Tc

¼ 2:014þ 5:317

N
: (9)

Both results are formally equivalent to order 1=N in the
expansion, yet they yield dramatically different numbers
when evaluated at N ¼ 1. Indeed, Eq. (8) becomes even
meaninglessly negative and can be merely used to make
the qualitative conclusion that the fluctuations decrease the
critical temperature significantly.
On the other hand, Eq. (9) leads to the critical tempera-

ture Tc ¼ 0:14�F in remarkable agreement with the result
Tc ¼ 0:152ð7Þ�F, obtained by numerical Monte Carlo
simulations [21,22]. However, it should be stressed that
there is no a priori criterion that would tell us which
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observable to choose for the evaluation of the NLO cor-
rection. One may think that it is the Lagrange multiplier
� ¼ 1=T rather than the temperature itself that is the
natural variable of the thermodynamic potential. Still a
deeper physical argument is obviously needed to resolve
this ambiguity. Here we just remark that on the technical
level, it clearly arises from the truncation of the 1=N series
for different observables; one cannot expect the 1=N ex-
pansion to be reliable when the NLO term is larger than the
LO one [46].

In order to further study the size of the 1=N corrections
and the sensitivity to the choice of observable to evaluate
them, we calculated the critical temperature at NLO as a
function of the inverse scattering length, see Fig. 1.

Obviously, the evaluation of the critical temperature
based on Eq. (5) [dotted line in the upper panel] is only
reasonable in the far BCS regime (right end of the plot)
where it roughly coincides with the 1=T-based approxima-
tion (solid line). The 1=T-based value will therefore be
used exclusively in the following and will be referred to
simply as the NLO critical temperature. For comparison
we also show the critical temperature and chemical poten-
tial calculated using the NSR theory (dashed-dotted line).
NSR theory takes the fluctuation effects into account only
in the total particle number, but not in the gap equation. On
the other hand, it then solves Eq. (3) self-consistently [47].

In the BCS regime the critical temperatures calculated
within the two approaches are consistent with each other, at
least qualitatively. Around unitarity, NSR theory predicts a
well-known tiny maximum. On the contrary, the 1=N
expansion gives a monotonic dependence on the inverse
scattering length, with the value at unitarity agreeing very
well with Monte Carlo calculations [21,22], as noted
above. However, as also emphasized there, the 1=N expan-
sion should not be really trusted in this region without an
additional physical insight. Finally, in the BEC limit NSR
theory converges to the expected critical temperature of the
free Bose gas, Tc ¼ 0:218�F. 1=N expansion fails to re-
produce this asymptotic behavior. Although it cannot be
seen in Fig. 1, its critical temperature keeps growing
toward the BEC limit, albeit with a decreasing slope.
Indeed, one cannot really expect to get a constant asymp-
totics from a perturbative expansion around the rapidly
increasing MF value.

In the lower panel of Fig. 1 we also display the results for
the chemical potential at the critical temperature. Here the
most interesting is the evolution in the far BCS region.
While in the MF approximation the chemical potential
approaches its asymptotic value equal to the Fermi energy
with an exponentially decreasing tail, upon including fluc-
tuations the convergence turns into a much slower, power-
law one. This is a purely perturbative effect, as clearly
demonstrated by a comparison with the standard perturba-
tive expansion for the chemical potential in the dilute
Fermi gas [48] (the first- and second-order values are

plotted using dotted lines)

�

�F
¼ 1þ 4

3�
kFaþ 4ð11� 2 log2Þ

15�2
ðkFaÞ2 þ � � � : (10)

Even though this formula holds only in the normal phase
and at zero temperature, the agreement is excellent. The
reason, of course, is that the pairing effects are suppressed
exponentially and finite-temperature effects are also sup-
pressed by the exponentially small value of the critical
temperature in the BCS limit, so that they are both com-
pletely negligible with respect to the perturbative correc-
tions in Eq. (10) [45].
The fact that the NLO in 1=N reproduces the perturba-

tive expansion of the chemical potential up to second order
can also be verified directly on the Feynman graph level. In
Fig. 2 we show the perturbative contributions to the ther-
modynamic potential. In general the 1=N expansion does
not coincide with perturbation series—the diagram (d) is of
second order in the interaction, yet only appears at the
next-to-next-to-leading order in 1=N. Fortunately, it turns
out to vanish at zero temperature so that the 1=N expansion
to NLO indeed contains the full second-order perturbative
correction [49].

FIG. 1. Critical temperature and chemical potential as a func-
tion of the inverse scattering length. Dashed lines: MF approxi-
mation (LO in 1=N). Solid lines: NLO calculation based on
expansion of 1=T. Dotted line in the upper panel: NLO value
based on expansion of T as in Eq. (5). Dashed-dotted lines: Self-
consistent calculation using NSR theory. Dotted lines in the
lower panel: First- and second-order perturbative approxima-
tions to the chemical potential, see Eq. (10).
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2. BCS limit

Since we have concluded that the 1=N expansion is most
reliable on the BCS side of the crossover, let us now
investigate this regime in more detail. The matrix of second

derivatives of �ð0Þ at the critical temperature needed to

evaluate the NLO corrections �ð1Þ and �ð1Þ can be easily
calculated from Eq. (6). One finds

@���
ð0Þ ¼ � 3n

2�F
; @���

ð0Þ ¼ �2nT3

4�2F
;

@�2��
ð0Þ ¼ � 3nT

4�F
;

up to corrections which are exponentially small as kFa !
0� . (Note that we prefer to take the derivative with
respect to �2 instead of �, since at the critical temperature
we have to set � ¼ 0 afterwards.) The last needed coeffi-
cient

@�2��
ð0Þ ¼ 3n

4�2F

�
�

4kFa
� 1

�

is most easily obtained using the exact relation

@�2��
ð0Þ ¼ � 3�nT

16�FkFa
þ�T@�2��

ð0Þ;

which follows from the observation that �ð0Þ can be ex-
pressed in terms of a dimensionless function of the combi-
nation ��.

The coefficient @���
ð0Þ is strongly suppressed by the

third power of the critical temperature so that it may be
neglected and the required matrix of second derivatives [as
in Eq. (5), just with modified variables] becomes

@���
ð0Þ @���

ð0Þ

@�2��
ð0Þ @�2��

ð0Þ

 !�1

� 1

@���
ð0Þ@�2��

ð0Þ

� @�2��
ð0Þ 0

�@�2��
ð0Þ @���

ð0Þ

 !
:

As a result, the leading NLO contribution to the chemical

potential decouples and is solely determined by @��
ð1Þ and

@���
ð0Þ

�ð1Þ
c ¼ � @��

ð1Þ

@���
ð0Þ :

This is not surprising, since we know from Eq. (10) that in
the BCS limit the chemical potential is governed by per-
turbative effects. The expression for the shift of the inverse
critical temperature also simplifies to

�ð1Þ
c ¼ � @�2�ð1Þ þ�ð1Þ

c @�2��
ð0Þ

@�2��
ð0Þ :

Substituting all the analytic expressions listed above as
well as the chemical potential correction from Eq. (10)
we get the final prediction of the 1=N expansion for the
NLO relative shift of the inverse temperature in the BCS
limit

�ð1Þ
c

�ð0Þ
c

¼ 4�F
3n

@�2�ð1Þ þ 1

3

�
1� 9þ 2 log2

5�
kFa

�
;

FIG. 2. Lowest-order perturbative contributions to the thermo-
dynamic potential of the Fermi gas. The free-gas graph
(a) coincides with LO in 1=N. The first-order graph (b) and
the second-order graph (c) appear at NLO in 1=N. The second-
order graph (d) contributes only at NNLO. The dashed line
denotes the bare propagator of the pairing field �, g=N.

FIG. 3. Gap and chemical potential at zero temperature as a
function of the inverse scattering length. Dashed lines: MF
approximation (LO in 1=N). Solid lines: NLO calculation based
on expansion of �2. Dotted lines in lower panel: First- and
second-order perturbative approximations to the chemical po-
tential, see Eq. (10).
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where the only missing ingredient that has to be evaluated

numerically is @�2�ð1Þ.
The point of these considerations is that the slow, per-

turbative convergence of the chemical potential results in a
rather large offset in the critical temperature, which sur-
vives even in the limit kFa ! 0� . This is a consequence

of the fact that @�2��
ð0Þ diverges in the BCS limit; we

regard it an artifact of the expansion of the gap and number
equations, leading to the expression (4).

In addition to the critical temperature, we have also
computed the gap and chemical potential at zero tempera-
ture, see Fig. 3. This has already been done by Veillette
et al. [17], although they did not investigate the asymptotic
behavior in the BCS limit. Our calculation differs from
theirs only in that we have for technical reasons taken �2

instead of � as the variable to make the 1=N expansion.
Since the relative NLO correction to the gap at zero tem-
perature is small, the effect of this change is nearly
negligible.

Figure 3 suggests that the gap also acquires a constant
offset that survives the BCS limit (even though wewere not
able to check this conclusion analytically). However, the
offset is not the same as in the case of the critical tempera-
ture, as is clearly seen from Fig. 4 where we plot the ratio
Tc=�0. Thus, 1=N expansion predicts a departure of this
ratio from the BCS value e	=�. In Sec. III, we will present
a calculation of the critical temperature within a
1=N-inspired high-density approximation, where such ar-
tifacts will be absent.

III. DENSE RELATIVISTIC MATTER

We are now going to apply the 1=N expansion to pairing
in relativistic systems. Physically, this amounts to includ-
ing the antiparticles among the degrees of freedom, and to
modifying the fermion dispersion relation. In particular the

change of dispersion relation affects the ultraviolet struc-
ture of the theory, leading to new divergences that are not
present in the nonrelativistic case [35]. In Sec. III B, we
evade this difficulty by making a suitable approximation,
appropriate in the far BCS regime.

A. NJL-type model

Following closely the notation of Ref. [39], we consider
a class of NJL-type models defined by the Lagrangian

L ¼ �c ði@6 þ�	0 �mÞc þ g

4

X
a

j �c C	5Qac j2; (11)

where c C ¼ C �c T is the standard charge-conjugated Dirac
spinor and the set of matrices Qa, acting on the internal

degrees of freedom, are normalized by TrðQaQ
y
b Þ ¼ 
ab.

Simplified as much as possible, this Lagrangian describes a
system of interacting fermions with equal masses and
chemical potentials. The pairing is assumed to occur in a
spin-zero, positive-parity channel, but its flavor structure,
determined by the matrices Qa, can be arbitrary. Once we
understand in detail the fluctuation effects in this simple
setting, we will move on to more realistic systems in our
future work.
The first task to solve is the generalization of the model

to arbitrary N so that we can subsequently make the
appropriate expansion. With the application to quark mat-
ter in mind, one may think it would be most convenient to
use the color SU(3) symmetry already present in the sys-
tem and extend it to SUðNÞ. We would like to explain here
in detail why this would not work.
As a consequence of the QCD interactions, quarks are

assumed to pair in a color-antisymmetric configuration.
[Symmetry would not make a difference. Important is
that the Cooper pair cannot be a singlet of the symmetry
due to the complex nature of the group SU(3).] Upon the
generalization of the theory the pairs would transform in
the antisymmetric-tensor representation of SUðNÞ.
Disregarding the fact that this would lead to a very large
number, of order OðN2Þ, of collective modes, there is
another, more serious problem.
In Sec. II we saw using the scaling of the thermody-

namic potential that the 1=N expansion reproduces the MF
approximation at the leading order. This may be also
understood in terms of the collective mode propagator. In
the MF approximation, this consists of a geometric series
of graphs in the random-phase approximation (RPA). Now
since the boson is a singlet of the Spð2NÞ symmetry, each
fermion bubble contributes a factor N from the trace over
the flavor space, thus compensating for factors 1=N com-
ing from the coupling g. The point is that when the boson
becomes a tensor of SUðNÞ rather than a singlet, the trace
factors are lost, as is most easily visualized with the help of
the double-line notation, see Fig. 5(a). As a consequence,
addition of each new fermion bubble in the RPA series
suppresses the graph by another factor 1=N from the

FIG. 4. Ratio of the critical temperature to the gap at zero
temperature as a function of the inverse scattering length.
Dashed line: MF approximation. Solid line: NLO calculation
with data taken from Figs. 1 and 3. Horizontal dotted line:
Prediction of the BCS theory.
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coupling so that the full series will not be resummed at any
finite order in 1=N.

Is it then possible to make the coupling scale just as
Oð1Þ? No, because the thermodynamic potential is domi-
nated by the planar diagrams with a single fermion loop
(rather than the RPA ones), which contain the same number
of flavor traces as the coupling factors, see Fig. 5(b). So, in
order that the power of N in Feynman graphs is bounded
from above and the 1=N expansion makes sense at all, the
coupling has to decrease at least as 1=N.

We thus conclude that when the difermion field is de-
fined to be a tensor of the SUðNÞ color group, we will not
get the RPA propagator and hence the pairing instability at
any finite order in 1=N. The 1=N expansion in this case
efficiently resums a different class of diagrams than neces-
sary. To remedy this problem, we introduce a new quantum
number to label the fermion fields, i.e., generalize Eq. (11)
to

L ¼ �c iði@6 þ�	0 �mÞc i þ g

4N

X
a

j �c C
i 	5Qac ij2:

(12)

This has two advantages. First, one does not need to rely on
the presence of the color SU(3). The construction is abso-
lutely general, regardless of the actual physical internal
degrees of freedom. Second, the Cooper pair is a singlet
with respect to the symmetry transformations acting on the
new quantum number so that there are no additional bo-
sonic degrees of freedom introduced by the extension of
the symmetry and no unwanted NG bosons from its spon-
taneous breaking. On the other hand, one has to set, just
like in the nonrelativistic case, N ¼ 1 at the end of the
calculation.

With the above argument in mind, we proceed as in
Sec. II. Upon bosonization of the theory (12) by introduc-
ing a set of auxiliary fields, �a � g

2N
�c C
i 	5Qac i, we arrive

at the effective action

S ¼ N
Z �

0
d�

Z
d3x

j�aðx; �Þj2
g

� N Tr logG�1½�aðx; �Þ�; (13)

with the inverse fermion propagator in the Nambu space
given by

G �1 ¼ i@6 þ 	0��m ��a	5Q
y
a

��
a	5Qa i@6 � 	0��m

� �
:

From the classical action (13) we can generate the LO
(RPA) propagator of the collective bosonic modes by a
second functional derivative. Within this paper, we will for
simplicity restrict our attention to the normal phase; the
extension of the formalism below the critical temperature
will be considered elsewhere. In the normal phase, the LO
boson propagator becomes D0ab ¼ D0
ab

1

N
D�1

0 ði!n;pÞ ¼ 1

g
þ 1

2

Z d3k

ð2�Þ3
��
1þm2 þ kþ � k�

�kþ�k�

�

�
�
fð�kþ þ�Þ þ fð�k� þ�Þ � 1

i!n þ 2�þ �kþ þ �k�

þ 1� fð�kþ ��Þ � fð�k� ��Þ
i!n þ 2�� �kþ � �k�

�

þ
�
1�m2 þ kþ � k�

�kþ�k�

�

�
�
fð�kþ þ�Þ � fð�k� ��Þ
i!n þ 2�þ �kþ � �k�

þ fð�k� þ�Þ � fð�kþ ��Þ
i!n þ 2�þ �k� � �kþ

��
; (14)

where k� ¼ k� p
2 and fðxÞ ¼ 1=ðe�x þ 1Þ is the Fermi-

Dirac distribution function.
Assuming that the order parameter fluctuations do not

change the second order of the phase transition, we can find
the critical temperature using the Thouless criterion [50],
i.e., by requiring that the normal-phase boson propagator
has a pole (pairing singularity) at zero (four-)momentum.
This is equivalent to the gap equation @�=@�2 ¼ 0 at� ¼
0. The expression @�ð1Þ=@�2 that appears in the NLO
formula for the critical point (5), is thus seen to represent
the one-loop boson self-energy at zero momentum.
In a general scalar self-interacting theory the one-loop

self-energy is given by the tadpole diagram with one
quartic interaction vertex. In case of the theory defined
by the action (13), the effective four-boson vertex is gen-
erated by a fermion loop, see Fig. 6. Let us concentrate on
the flavor structure of the diagram. Assuming that the
external scalar legs carry the flavor indices a, b, the com-
plete information about the pairing pattern will be encoded

in the flavor trace 
cd TrFðQaQ
y
bQcQ

y
d Þ, the Kronecker

delta coming from the internal boson propagator. The

combination 
cdQcQ
y
d is the quadratic Casimir operator

of the symmetry group in the representation of the Cooper
pairs, and therefore must be proportional to the unit matrix
as long as this representation is irreducible, i.e., we con-

FIG. 5. (a) RPA propagator of the collective mode in the case it
transforms as an antisymmetric tensor of SUðNÞ, using the
double-line notation. (b) One of the planar diagrams which
dominate the thermodynamic potential in the large-N limit.
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sider a single pairing channel [51]. Writing 
cdQcQ
y
d ¼

C21 and taking the trace, we immediately find that C2 ¼

cd
cd= dimðQÞ, where dimðQÞ denotes the size of the
matrices Qa. To conclude the argument we just note that
this is equal to the number of internal fermionic degrees of
freedom, NF, while 
cd
cd counts the number of bosonic
degrees of freedom, NB. The whole effect of the structure
of the symmetry group will thus be the simple algebraic
prefactor


cdTrFðQaQ
y
bQcQ

y
d Þ ¼

NB

NF


ab:

The full expression for the inverse boson propagator with
one-loop correction then reads

D�1ðPÞ ¼ D�1
0 ðPÞ þ N

NB

NF

XZ
dKdQD0ðQÞ

� Tr½	5G11ðK þ PÞ	5G22ðKÞ	5G11ðK þQÞ
� 	5G22ðKÞ�;

where the subscripts 11 and 22 refer to the matrix structure
of the fermion propagator in the Nambu space. For the sake
of brevity we used the notation for the four-momentum
P ¼ ði!n;pÞ, and the sum integral

XZ
dK ¼ T

X
n

Z d3k

ð2�Þ3 :

For zero external momentum the Matsubara sum in the
fermion loop may easily be done and we arrive at the final
analytic result

D�1ð0Þ ¼ D�1
0 ð0Þ þ N

NB

NF

XZ
dQD0ðQÞ X

e;f¼�

Z d3k

ð2�Þ3
�
1þ ef

m2 þ k � ðkþ qÞ
�k�kþq

�
Iðe�e

k; f�
f
kþq; i�nÞ;

Iða; b; i�nÞ ¼ 1

8a2
tanh�a2 þ tanh�b2 � �acosh�2 �a

2

i�n þ bþ a
þ 1

8a2
tanh�a2 � tanh�b2
i�n þ b� a

þ 1

4a

tanh�a2 þ tanh�b2
ði�n þ bþ aÞ2 ;

(15)

with the usual relativistic notation �k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
, �e

k ¼
�k þ e�. Note that upon taking the nonrelativistic limit,
that is, including only particle degrees of freedom (with
e ¼ f ¼ �), shifting the chemical potential to �NR ¼
��m, and approximating the dispersion relation with
�k ¼ mþ k2

2m , we reproduce the expression for the one-
loop propagator correction given by Nikolić and Sachdev
[16].

B. High-density approximation

The nonrelativistic limit of Eq. (15) may be used directly
to calculate the NLO corrections to the critical temperature
and chemical potential via Eq. (5). To that end, we need to
supplement Eq. (15) with an analogous one-loop correction

to particle density, which in turn yields the term @��
ð1Þ in

Eq. (5). This is how the results presented in Fig. 1 were
obtained.

On the contrary, in the full relativistic description the
one-loop term in Eq. (15) is badly divergent. This is, of
course, no surprise since in a relativistic scalar self-
interacting field theory the one-loop tadpole graph has a
quadratic divergence. Nevertheless, this divergence has
nothing in common with the many-body physics, and can

be removed by renormalizing the parameters of the theory

in the vacuum. In order to avoid this complication and also
the interference of all energy scales from the high-energy
vacuum physics down to the scale of Cooper pairing, we
resort to a high-density approximation [52], which is ap-
propriate in the far BCS region where the pairing energy
scale is well separated from the Fermi scale. This approxi-
mation is at the MF level known to soften the ultraviolet
divergences and give some cutoff-independent predictions

such as the universal BCS ratio of the gap at zero tempera-
ture and the critical temperature [53].
In our one-loop calculation we have to be more careful.

We therefore spell explicitly all simplifying assumptions
that we make. First, we neglect antiparticle contributions.
This can be appropriate even in the ultrarelativistic limit as
long as the pairing gap/critical temperature is much smaller
than the Fermi energy so that the relevant excitations are
the quasiparticles and quasiholes near the Fermi surface. In
a strongly coupled relativistic superconductor, the antipar-
ticle effects may be non-negligible [40] but will not change
our conclusions qualitatively.
Second, we approximate, as usual, the volume measure

for the integral over fermionic momentum by

Z d3k

ð2�Þ3 ! N
Z

d�
Z d�k

4�
;

FIG. 6. One-boson-loop contribution to the collective mode
self-energy. The double-dashed line denotes the resummed LO
boson propagator.
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where � 	 ��
k is the energy with respect to the Fermi level

and N ¼ �kF=2�
2 is the density of states on the Fermi

surface. This brings in one subtlety. In a nonrenormalizable
theory, such as the NJL-model, there is an inherent ambi-
guity in the way we label internal propagators of the
Feynman graphs with momenta that satisfy momentum
conservation in the interaction vertices. For instance, in
the one-loop pairing susceptibility (14) one often labels the
propagators with k, k� p instead of kþ p

2 , k� p
2 used

here, and imposes a cutoff on the loop momentum k. This
ambiguity can be removed by a proper renormalization,
which makes the graph finite. However, once we make the
above introduced replacement of the integration measure
in the high-density approximation, the new measure is no
longer translationally invariant. That is, the result depends
on the momentum assignment to the propagators even in an
otherwise finite loop integral. In Eq. (14) we chose the
symmetric momentum assignment because it reduces cut-
off dependence of the result and also leads to a physically
intuitive suppression of the high-momentum pair modes by
Pauli blocking.

Third and most importantly, in order to retain in the
calculation only the physically relevant degrees of free-
dom, we cut off the � integration at the pairing scale, j�j 

�. In quark matter, such a cutoff is effectively introduced
in terms of the momentum-dependent gap function by
solving the QCD Schwinger-Dyson equations [54]. In
addition, a cutoff much smaller than the Fermi energy is
necessary in order to make the high-density approximation
consistent [52]. In practice, we verify that the results are
not sensitive to a precise value of the cutoff by doing all

calculations for two different values, � ¼ 2Tð0Þ
c and � ¼

4Tð0Þ
c .
Fourth, once we restrict ourselves to the low-energy

excitations about the Fermi surface, we expand the disper-
sion relations in terms of the Fermi velocity and an ‘‘ef-
fective mass’’. This allows us to introduce efficiently
dimensionless variables and treat on the same footing the
nonrelativistic (NR) limit of Sec. II as well as the opposite-
extreme, ultrarelativistic (UR) limit of zero fermion mass
(which is a reasonable approximation for quark matter
composed solely of the u and d flavors). Concretely, taking

the LO critical temperature Tð0Þ
c as a unit for the energy

variables and Tð0Þ
c =vF, where vF is the Fermi velocity, as a

unit for external momentum, the dispersions in the two
opposite limits acquire very similar forms,

�� kþp ¼ ��k þ j �pj cos�þ �p2

4

Tð0Þ
c

�
; NR limit;

��kþp ¼ ��k þ j �pj cos�þ �p2

2

Tð0Þ
c

�
sin2�; UR limit;

where �� ¼ �=Tð0Þ
c and �p ¼ pvF=T

ð0Þ
c , � is the angle be-

tween the vectors k and p, and the nonrelativistic chemical

potential is understood in the first line, without specifying
the subscript NR in the following. Using this procedure, all
integrals would factorize into a product of powers of the
temperature and Fermi velocity and a universal dimension-

less function of the ratio Tð0Þ
c =�, were it not for the cou-

pling g.
The last step in the construction therefore has to be the

renormalization of the bare coupling. In the context of
atomic gases near unitarity it is customary to do this by
fixing the s-wave scattering length at zero momentum in
the vacuum as in Eq. (7). However, in an effective descrip-
tion near the Fermi surface, this is no longer convenient.
We therefore renormalize the bare coupling with the help
of the gap equation at zero temperature, which has the
same divergence structure as the inverse propagator (14).
This is effectively done by the replacement

1� fð�kþÞ � fð�k�Þ
i!n � �kþ � �k�

! 1� fð�kþÞ � fð�k�Þ
i!n � �kþ � �k�

þ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
k þ�2

0

q

in the inverse propagator (14) in the high-density approxi-
mation. Now everything is expressed in terms of the di-

mensionless ratios Tð0Þ
c =� and Tð0Þ

c =�0. The ratio T
ð0Þ
c =� is

used as the input parameter which measures the strength of

the interaction. The ratio Tð0Þ
c =�0 is equal to the BCS value

e	

� � 0:567 in the infinite-cutoff limit. With the explicit

cutoff on the �-integration, we adjust the value of �0

appropriately in order to ensure that the Goldstone theorem
is satisfied and the propagator (14) has an exactly massless
pole.
Because of the explicit cutoff, the loop part of the

inverse propagator (14) drops rapidly for external momenta
larger than the cutoff as a result of Pauli blocking. The
boson propagator approaches a constant value, equal to
g=N. This is natural: At large momentum, pairing fluctua-
tions are suppressed and the auxiliary field propagator
recovers the original contact four-fermion interaction. In
order that we really include just the effect of the fluctua-
tions of the order parameter, we make in the second term of
Eq. (15) the replacement

D 0ðQÞ ! D0ðQÞ � g

N
:

In terms of Feynman graphs, this means removing from the
RPA series of diagrams the first, constant term, keeping all
other terms that involve multiple rescattering of the two
fermions in the pair. Formally, this subtraction can be
justified by observing that the diagram in Fig. 6 may also
be viewed as a fermion loop with the insertion of a one-
loop fermion self-energy, see Fig. 7. The fermion propa-
gator with the insertion of g=N is nothing else than the
first-order perturbative correction by the contact four-
fermion interaction. We can then pick this constant term
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out of the one-boson-loop diagram and add it to the one-
fermion-loop MF graph contributing toD�1

0 ð0Þ, where it is
absorbed in the perturbative renormalization of the Fermi
energy [55].

C. Results

Recalling finally from the BCS theory that at tempera-

ture T different from the MF critical temperature Tð0Þ
c ,

D�1
0 ð0Þ is equal to N logðT=Tð0Þ

c Þ, setting D�1ð0Þ to

zero leads to the following compact formula for the critical
temperature,

Tc ¼ Tð0Þ
c exp

�
�NB

NF

X

�
Tð0Þ
c

�

��
; (16)

where X is a dimensionless function (different in the two
limits), given by the integral in Eq. (15) in the dimension-
less variables introduced above.

Equation (16) constitutes our final result regarding rela-
tivistic superconductors, written in the most general form:
The coupling constant is completely eliminated in favor of

the MF ratio Tð0Þ
c =�. Also, the specific form of the pairing

channel only enters through the algebraic factor NB=NF.
Two comments are in order here. First, Eq. (16) gives the

correction to the critical temperature at fixed chemical
potential; we do not solve the number equation along
with the Thouless criterion to obtain a result at fixed
density. In the context of color-superconducting quark
matter, the (baryon number) chemical potential is usually
treated as a free parameter. In fact, it is a more suitable
parameter than the density itself in the case that the phase
diagram involves first-order phase transitions, where the
density becomes discontinuous.

Second, the 1=N algorithm based on Eq. (5) (reduced to
a one-variable problem by fixing the chemical potential)
would suggest to interpret the exponent in Eq. (16) as the
relative change of the critical temperature, or minus the
relative change of the inverse critical temperature, depend-
ing on the choice of variable. In this section, we used the
1=N expansion to derive Eq. (15) as the one-loop corrected
Thouless criterion, and to evaluate the loop correction at
the MF value of the critical temperature. We now go
slightly beyond the 1=N philosophy in the sense that our
result, Eq. (16), does not need any further expansion and

defines the critical temperature Tc in an unambiguous
manner. The value of Tc thus calculated is always positive,
no matter how large the loop function X is. (Of course, we
would still consider the used approximation unreliable
once X becomes of order one or larger.) In addition, the
temperature correction does not display a finite offset in the
BCS limit, as found in Sec. II and assigned to the 1=N
expansion as an artifact. On the contrary, it drops rapidly

with decreasing ratio Tð0Þ
c =�, as one would naively expect

[56].
To complete the discussion of the results, we show in

Figs. 8 and 9 the numerically calculated values of the
function X in the NR and UR limits, respectively. For

Tð0Þ
c =� smaller than about 0.1 the functions may be very

well approximated by a simple empirical power-law,

XNR

�
Tð0Þ
c

�

�
� 5:2

Tð0Þ
c

�
; XUR

�
Tð0Þ
c

�

�
� 2:8

Tð0Þ
c

�
; (17)

which can be used for a fast rough estimate of the size of
fluctuation effects.

D. Possible impact on QCD phase diagram

Finally, we wish to illustrate a possible impact of fluc-
tuations on the QCD phase diagram. In Fig. 10 we display
the phase diagrams from a simple NJL-model calculation;
the model is the same one as adopted in Ref. [57] with the
diquark coupling Gd chosen such that the CFL gap is
50 MeV at � ¼ 500 MeV in the chiral SU(3) limit.
Figure 10(a) shows the phase diagram at vanishing strange
quark mass, i.e., in the chiral SU(3) limit. The dashed line
is the critical temperature at the leading order in 1=N
expansion, and the suppression of the critical temperature
due to fluctuation effects at NLO is included by means of
the analytic formula (16). Interestingly, because NB=NF ¼
1 in the CFL case while it is just 1=2 in the 2SC phase, we

FIG. 7. Sum of the LO and NLO contributions to the inverse
boson propagator. The asymptotically constant part of the fer-
mion self-energy in the second diagram may be absorbed in a
perturbative renormalization of the Fermi energy.

FIG. 8. Correction to the critical temperature calculated using
the high-density approximation in the nonrelativistic limit. The
calculation was done with the cutoff on fermion energy variable

set to 2Tð0Þ
c (solid line) and 4Tð0Þ

c (dashed line).
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expect a finite region with 2SC pairing below the normal-
phase even in the chiral SU(3) limit.

However, since the approximation which led to Eq. (16)

is only valid in the high-density regime where Tð0Þ
c =� is

small, we have to keep in mind that the estimates are not
quantitative at low density. It is also important to note that
we derived the shift of critical temperature of the CFL
phase, taking into account the fluctuations in the normal-
phase. Now that we know that the 2SC phase interposes
between the normal and CFL phases, it would be more
appropriate to somehow take into account the fluctuations
within the 2SC phase for a more realistic estimate of the
temperature of the phase transition between the CFL and
2SC phases.

Figure 10(b) shows the phase diagram at a finite strange
quark mass, but without quantum fluctuation effects. The
strange quark mass is set to Ms ¼ 200 MeV, and is for

simplicity treated as an external parameter rather than a
dynamical one. Also, the intricate charge neutrality effects
are ignored here because they are not important for our
purposes; we just remark that the charge neutrality con-
straints bring fine splittings to the Tc’s resulting in the
appearance of tiny regions with dSC or uSC pairing
[57,58]. Comparing the two plots, we can see that the
quantum fluctuation effects may play a significant role at
high-density which may be similar to that of the strange
quark mass. This can be understood in a model-
independent way as follows. Within a weak-coupling
Ginzburg–Landau approach, it was shown that the strange
quark mass and charge neutrality result in shifts in the
melting temperatures Ti of the order parameters �i of the
CFL phase of the order [58]


Ti

Tð0Þ
c

�� M2
s

8�2
log

�
�

Tð0Þ
c

�
:

These corrections die rapidly as ðMs=�Þ2 at large �, while

the correction to Tð0Þ
c from order parameter fluctuations

prevails as it behaves asymptotically like Tð0Þ
c =�.

Considering in addition the fact that Ms is a decreasing
function of�whereas the superconducting gap turns out to
increase as � ! 1 [59,60], we conclude that the quantum
fluctuation is more important than the effect of a strange
quark mass at high-density.
In a more realistic situation, there would be another

source of fluctuations from thermal configurations of
gauge fields [61] which makes the superconducting–nor-
mal transition first-order. The shift of the critical tempera-
ture turns out to be positive and is estimated to be
proportional to the QCD coupling g in the weak-coupling
regime [61]. Therefore, in realistic quark matter the order
parameter and gauge field fluctuations will compete each

FIG. 10. (a) Phase diagram at vanishing strange quark mass Ms ¼ 0 but with quantum fluctuation effects. (b) The same phase

diagram for Ms ¼ 200 MeV without fluctuation effects. Tð0Þ
c is the critical temperature at the leading order in 1=N.

FIG. 9. Correction to the critical temperature calculated using
the high-density approximation in the ultrarelativistic limit. The
calculation was done with the cutoff on fermion energy variable

set to 2Tð0Þ
c (solid line) and 4Tð0Þ

c (dashed line).
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other. This issue certainly deserves a further study in
future.

IV. SUMMARYAND CONCLUSIONS

We have investigated the 1=N expansion for strongly
interacting Fermi systems, proposed recently [16,17]. We
first studied in detail the case of nonrelativistic Fermi gas
near unitarity, extending the previous results by the calcu-
lation of the critical temperature off the unitarity. Even
though the 1=N expansion can give a result for the critical
temperature at unitarity, which is very close to the predic-
tion from Monte Carlo simulations [21,22], there is an
inherent ambiguity due to the choice of observable to
generate (and truncate) the 1=N series. This ambiguity
makes the 1=N expansion in the current setting useless
when the corrections to the MF theory are large, in par-
ticular, on the BEC side of the crossover.

We paid particular attention to the evolution of the
fluctuation corrections in the BCS regime, where they are
expected to be small, and the 1=N series thus to converge
fast. We showed that the next-to-leading order in the 1=N
expansion reproduces the well-known perturbative correc-
tion to the chemical potential up to second order. As far as
the critical temperature is concerned, the fluctuation cor-
rection indeed decreases at weak coupling, but leaves a
finite offset in the kFa ! 0� limit. We argued that this is
likely to be an artifact of the 1=N expansion.

In Sec. III we applied the idea to strongly coupled
relativistic superconductors, having in mind, in particular,
color-superconducting dense quark matter. We used a sim-
ple class of NJL-type models and resorted to a high-density
approximation in order to avoid conceptual difficulties
associated with renormalization and entanglement of sev-
eral energy scales. Our results are summarized in Eqs. (16)
and (17) and Figs. 8 and 9. They are physically intuitive in
the sense that the fluctuation corrections are small in the

BCS limit, decreasing linearly with the ratio Tð0Þ
c =�, i.e.,

exponentially with the inverse coupling, and become

large as Tð0Þ
c =� approaches the order of 0.1 and further

grows.
In particular for typical color superconductors, the cor-

rections to critical temperature are expected to be as large
as tens percent. Another important conclusion is that,
within the simple setting used here, the fluctuation correc-
tions are expressed as a universal function of the dimen-

sionless ratio Tð0Þ
c =�. The whole dependence on the

symmetry structure of the pairing is encoded in an alge-
braic prefactor, which counts the number of bosonic and
fermionic degrees of freedom. This makes it straightfor-
ward to compare the effects for different competing super-
conducting phases, and thus estimate the impact of the
order parameter fluctuations on the phase diagram such
as in Fig. 10. Upon this investigation of the fluctuation
corrections within a simple model, we plan, in our future
work, to include the effects of chemical potential mismatch
and color neutrality in order to obtain a more realistic
description of quark matter.
Finally, we would like to stress the conceptual simplicity

of this approach to order parameter fluctuations. We do not
need to solve a complicated set of self-consistent integral
equations like in other techniques going beyond the MF
approximation, such as the Cornwall-Jackiw-Tomboulis
one. Instead, one just has to evaluate a single multidimen-
sional sum integral. We therefore believe that the 1=N
expansion may provide an efficient tool to determine the
fluctuation effects in such strongly coupled systems as, for
instance, the color superconductors.
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