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We present a locally N ¼ 1 supersymmetric model of the dilaton ’ and the two-form tensor (axion)

B�� as compensators without propagation. This is a generalization of our previous model with global

N ¼ 1 supersymmetry to local N ¼ 1 supersymmetry. The dilaton ’ and the axion B�� are, respectively,

absorbed into the vector A� and the three-form tensor C���, where the latter is dual to the ordinary

auxiliary fieldD in the usual vector multiplet. With local N ¼ 1 supersymmetry, we have three multiplets:

the multiplet of supergravity ðe�m; c �Þ, linear multiplet ðB��; �; ’Þ, and the vector multiplet

ðA�; �; C���Þ. We find that the field strengths of B and C need the following particular Chern-Simons

terms for consistency with local supersymmetry: G � 3dB� 6BD’þ 3mBAþmC and H ¼ 4dC�
6BFþ 4GAþ 8CD’� 4mCA. The newly established supergravity couplings provide the supporting

evidence of the consistency of our basic system of the dilaton and axion as compensators.
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I. INTRODUCTION

The two-form antisymmetric tensor field B��, generated

as a moduli field in the Neveu-Schwarz sector in super-
string [1] or naturally present in supergravity (SG) [2,3],
has properties similar to the axion for solving the strong
CP problem in QCD by the Peccei-Quinn mechanism
[4,5]. The decay constant f of axions is constrained to be
1016 GeV & f & 1019 GeV. This poses a serious problem,
because these values deviate from the allowed range on
axion couplings. Astrophysical data suggest f * 109 GeV
[6], implying that the axionlike field B�� must be very light

and extremely weakly coupled. On the other hand, cosmo-
logical considerations on the overclosure of the Universe
yields an upper bound of f & 1012 GeV [7], not compat-
ible with the light and weakly coupling features of the
axion. These discrepancies can be circumvented if the
axion is not a physically propagating field.

The massless dilaton with universal couplings [1,8] also
suffers from a problem similar to the axion, because such a
massless scalar particle in the low-energy spectrum indu-
ces discrepancies with cosmological observations. This is
because such a massless dilaton will couple to many fields
coherently, causing large-scale gravitational phenomena
that are not observed [1].

One way to evade these problems might be to regard the
axion and dilaton as compensators with no physical prop-
agations via Stuckelberg-type mechanism [9,10]. In our
previous paper [11], we have presented an N ¼ 1 globally
supersymmetric model with the linear multiplet (LM) with
fields ðB��; �;’Þ [12] and a vector multiplet (VM)1 with

fields ðA�; �; C���Þ, where C��� is dual to the ordinary

auxiliary field D. In that model [11], the axion2 B�� is

absorbed into the longitudinal components of C���, while

the dilaton ’ is absorbed into the longitudinal component
of the vector A�. To be more quantitative, the original 1

degree of freedom of the dilaton ’ is absorbed into 1
longitudinal component of A�, making it massive, while

1 on-shell (or 3 off-shell) degrees of freedom of B�� is

absorbed into the longitudinal components of C���, which

originally has 0 on-shell (or 1 off-shell) degrees of free-
dom, and acquires 1 on-shell (or 4 off-shell) degrees of
freedom [11].3 The degrees of freedom of the B and C
fields are summarized in Table I.
Since the dilaton and the two-form fields arise as the

low-energy limit of superstring, it is natural to consider
local N ¼ 1 supersymmetry as the next step. It is also
imperative to show that the previously established globally
N ¼ 1 supersymmetric system in [11] can be consistently
coupled to SG, as the first nontrivial confirmation of the
validity of the system. In the present paper, we carry out
this objective, i.e., we couple the LM and the VM to SG,
such that the dilaton and axion become compensators, in a
way consistent with local N ¼ 1 supersymmetry.
The coupling of LM [12] to SG has been formulated in

the past in many different contexts [3,14–17]. Among
others, in the low-energy limit of superstring [1], the
dilaton field should appear in the string effective action
[18] in exponents as ‘‘the string loop-counting factors’’
[1,19]. This becomes transparent in a special frame called
‘‘string frame’’ [18] or ‘‘beta-function-favored constraints
(BFFC)’’ in superspace [20]. However, if we go to the
canonical frame, the dilaton exponential couplings in front
of the scalar curvature is absorbed by Weyl rescaling of the
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1We sometimes call this multiplet dual VM in this paper.

2In this paper, we refer to B�� as axion just for convenience.
3For more analyses for Stuckelberg formalism for general

p-form tensors in general dimensions, see [13].
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metric and other field redefinitions, and the dilaton expo-
nents appear only with the axion, vector, and/or tensor
fields. Explicit results of such effective actions for four-
dimensional (4D) superstring are found in [17].

However, any exponential coupling to a vector field
causes a problem for the following reason. The dilaton
derivative @�’ should be covariantized asD�’ � @�’þ
mA� which is gauge invariant D�’ ! D�’ under the

dilaton shift ’ ! ’�m� with A� ! A� þ @��. For this

purpose, A� should not transform exponentially, such as

A� ! em�ðA� þ @��Þ. In other words, despite the SG

couplings, we should avoid any exponential couplings of
the dilaton to the vector field. However, from the usual
string-based viewpoints [17], it seems impossible to get rid
of the exponential couplings to vector fields in any theory
based on superstring.

In our present paper, due to our objective of locally
supersymmetric generalization of our previous model
[11], we need to get couplings of the dilaton without
exponential couplings to a vector field that absorbs the
dilaton itself, as in the global case [11]. Therefore, we
have to temporarily sacrifice possible links with string
theory [1], and rely on a direct construction of SG cou-
plings for local supersymmetry. Based on this guiding
principle, we show that such couplings of the dilaton to
the VM or SG are indeed possible.

We stress also that the three-form potential should be in
the VM for our mechanism to work. Our formulation,
therefore, differs also from past formulations such as in
[15], where the three-form potential is described by super-

fields � and �� outside the VM. To our knowledge, our
formulation in this paper is the first one, in which the three-
form potential C��� is replacing the usualD auxiliary field

in the VM that is further coupled to SG. The local super-
symmetric generalization of our global case [11] is easy to
say but difficult to perform, and it has not been accom-
plished in the past.

In this paper, we do not seek the stringy origin of our
dilaton couplings, for the reason described above. Instead,
we need the dilaton in the LM, and the special three-form
tensor inside the dual VM, all coupled to the multiplet of
SG, as one generalization of our previous work [11]. In
particular, we should avoid any exponential coupling of the
dilaton to the vector field in the VM. We show below that
such ideal couplings of the LM and VM to the SGmultiplet
really exist, by confirming the locally supersymmetric
invariance of actions.

II. SGþLMþ VM AT m ¼ 0

We first establish the coupling of the multiplet of SG
ðe�m; c �Þ, LM ðB��; �; ’Þ, and VM ðA�; �; C���Þ, when
m ¼ 0. Compared with the works [3,14,16,17] in the past,
the new ingredients are the presence of the three-form field
C��� in the VM, and the absence of the exponential-dilaton

couplings to the vector field in the VM, as explained in the
Introduction.
The Lagrangian L0 for our total action I0 �

R
d4xL0,

thus obtained, is4

e�1L0 ¼�1

4
ðRð!Þ� ð �c ��

���D�ð!Þc �Þ� 1

12
ðG½3�Þ2

� 1

2
ð@�’Þ2� 1

48
ðH½4�Þ2� 1

4
ðF��Þ2

þ 1

2
ð �� 6Dð!Þ�Þþ 1

2
ð �� 6Dð!Þ�Þþ ð �c ��

����Þ@�’

þ 1

6
ð �c ��

½3����ÞG½3� � 1

2
ð �c ��

�����ÞF��

� 1

24
ð �c ��

½4����ÞH½4� � 1

8
ð ���½3��ÞG½3�

� 1

12
ð ���½4��ÞH½4� � 1

24
ð ���½3��ÞG½3�; (2.1)

up to quartic-fermion terms. Note that we have fixed the
SG couplings in such a way that there arises no exponential
coupling of the dilaton ’. The field strengths H, G, and F
are defined by

H���� � þ4@½�C���� � 6B½��F��� þ 4G½���jAj��
þ 8C½���@��’; (2.2a)

G��� � þ3@½�B��� � 6B½��@��’; (2.2b)

F�� � þ2@½�A��; (2.2c)

where H and G are nontrivial. In particular, the three
different Chern-Simons (CS) terms in the H field strength
proportional to BF, GA, and Gd’ are needed for consis-
tency with local supersymmetry and gauge symmetries.
The field strength G��� in (2.2) satisfies the nontrivial

Bianchi identity (BI)

@½�jGj���� � �2G½���j@j��’: (2.3)

Since we are in 4D, there is no such BI’s as @½�jHj���	� �
0.
Our total action I0 is invariant up to quartic-fermion

terms under N ¼ 1 local supersymmetry

TABLE I. Degrees of freedom for B�� and C���.

Degrees of freedom B�� C��� Massive C���

On-shell 1 0 1

Off-shell 3 1 4

4We use the signature ð
��Þ ¼ diag:ð�;þ;þ;þÞ,
Accordingly, ��1...�4�n½n��

½n��1...�4�n ¼ �ð�1Þnðn!Þ½ð4� nÞ!��
e2�½�1

�1 . . .�
�4�n

�4�n�, and �½n�½4�n��½4�n� ¼ þi½ð4� nÞ!��
ð�1Þðn�1Þðn�2Þ=2e�5�

½n�, where ½n� stands for the totally anti-

symmetric n indices ½�1�2 . . .�n�.
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�Qe�
m ¼ �2ð ���mc �Þ; (2.4a)

�Qc � ¼ þD�ð!̂Þ�� 1

12
ð��

½3��ÞĜ½3�; (2.4b)

�QB�� ¼ þð ������Þ þ 2ð ���½�c ��Þ þ 2B��ð�Q’Þ � þ~�QB�� þ 2B��ð�Q’Þ; (2.4c)

�Q� ¼ �ð���ÞD̂�’þ 1

6
ð�½3��ÞĜ½3�; (2.4d)

�Q’ ¼ þð�̂�Þ; (2.4e)

�QA� ¼ þð �����Þ; (2.4f)

�Q� ¼ þ 1

2
ð����ÞF̂�� � 1

24
ð�½4��ÞĤ½4�; (2.4g)

�QC��� ¼ þð�̂�����Þ þ 3B½��jð�QAj��Þ � 3A½�jð~�QBj���Þ þ 2C���ð�Q’Þ; (2.4h)

up to quadratic-fermion terms. The second expression in
(2.4c) defines ��QB�� which is used in (2.4h). As is usual in
SG theories [2], all the hatted field strengths are super-
covariantizations of the unhatted ones:

Ĥ�����H�����4ð �c ½�j�j�����Þ; (2.5a)

Ĝ����G����3ðĉ ½�j�j����Þ�3ð �c ½�j�j�jc j��Þ; (2.5b)

F̂���F���2ð �c ½�j�j���Þ; (2.5c)

D̂�’�@�’�ð �c ��Þ; (2.5d)

and !̂�
rs is the supercovariantized Lorentz connection [2]

!̂mrs � ðĈmrs � Ĉmsr þ ĈsrmÞ=2 with Ĉ��
r � 2@½�e��

r þ
2ð �c ½��rc ��Þ:.

There are certain ambiguities for the coefficients of the
Lagrangian and transformation terms. However, we have
fixed them in such a way that there arise no exponential
factors in the Lagrangian. As explained in the Introduction,
this is crucial for the gauging of the shift symmetry of the
dilaton ’ ! ’þ const. We will come back to this point in
the next section. Another ambiguity is the ð �c ���c �ÞG���

term in the Lagrangian. This is because its ðfermionÞ �
ðbosonÞ2-type variation is of the form cGH. However, the

gamma algebra involved is ��½3���G½3�G��� which is

identically zero, as is easily seen in terms of the dual tensor
~Gm � ð1=6Þ�mnrsGnrs. Since the coefficient of the
ð �c ���c �ÞG��� term is arbitrary by the inspection of the

ðfermionÞ � ðbosonÞ2-type variation, we have taken it to
zero for simplicity.

The general variations of the field strengthsH, G, and F
are easily obtained as

�H���� ¼ þ4@½�jð ��Cj����Þ þ 8G½���jð�Aj��Þ
þ 2H����ð�’Þ � 12F½��jð~�Bj���Þ
� 8ð@½�j’Þð ~�Cj����Þ; (2.6a)

�G��� ¼ þ3@½�jð~�Bj���Þ þ 2G���ð�’Þ
� 6ð@½�j’Þð ~�Bj���Þ; (2.6b)

�F�� ¼ þ2@½�jð�Aj��Þ; (2.6c)

where

~�C��� ¼ �C��� � 3B½��jð�Aj��Þ þ 3A½�jð ~�Bj���Þ
� 2C���ð�’Þ; (2.7a)

~�B�� ¼ �B�� � 2B��ð�’Þ: (2.7b)

As will be mentioned, this general variation rule can be
also restricted to N ¼ 1 local supersymmetry transforma-
tion rule.
As in SG theories in diverse dimensions [2], such as

type IIA theory in ten dimensions (10D) [21], all of these
tilded transformations are fixed in such a way that the
general variations of the field strengths become covariant,
i.e., no bare potential field must arise when written in terms
of the tilded variations, as in (2.6).5 Also, when these
variations are restricted to supersymmetry transformations,
all the tilded transformations should contain only the
fermion-linear terms, but no CS-related terms.
Note that there is no modified supersymmetry trans-

formation for A�. As desired, these terms are all manifestly

gauge covariant. Equation (2.4c) is nothing but the special
case of (2.7b) for local supersymmetry transformation.
We have one remark for the confirmation �QI0 ¼ 0.

Even though most of the cancellation patterns are parallel
to the globally supersymmetric case [11], there are also
certain differences. For example, compared with the global
case [11], there are additional CS terms in the field
strengths (2.2). A typical example is the G@’ term in the
BI (2.3). This term causes a new contribution of the type
�G@’ in �QL0 compared with the global case [11].

However, due to the new term �2G in the Lagrangian, as
well as the G-linear term in �Qc �, they cancel each other

with no problem.

III. GAUGING DILATON-SHIFT SYMMETRY BY
COUPLING CONSTANT m

We have so far coupled to the LM and VM to SGwithout
gauging the dilaton-shift symmetry: ’ ! ’þ const. We
now gauge this symmetry as in the globally supersymmet-

5We will show all the gauge transformations (3.7) through
(3.9) in the case of m � 0 in the next section.
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ric case [11], so that the dilaton’ and the axionB�� will be

absorbed into the longitudinal components of A� and

C���, making the latter fields massive.

The basic relationships are the covariantization of @�’,

and certain nontrivialm-dependent terms added to the field
strengths in (2.2)6:

D�’ � þ@�’þmA�; (3.1a)

G��� � þ3@½�jBj��� � 6B½��jDj��’
þ 3mB½��jAj�� þmC���; (3.1b)

H ���� � þ4@½�jCj���� � 6B��jFj��� þ 4G½���jAj��
þ 8C���jDj��’� 4mC½���jAj��: (3.1c)

The F field strength stays the same as in (2.2c). Under’ !
’�m�ðxÞ, we have the covariance ��ðD�’Þ ¼ 0. Since

�ðxÞ has arbitrary space-time dependence in ’ !
’�m�ðxÞ, the dilaton ’ is completely gauged away. To
put it differently, (3.1a) implies that ’ can be absorbed into
the longitudinal component of A�, and similarly, (3.1b)

implies that axion B�� is absorbed into the longitudinal

component of C���. These are qualitatively the same as in

the globally supersymmetric case [11].
Compared with the m ¼ 0 case (2.2), the new terms in

(3.1) are the m-dependent bilinear terms, such as mCA in
H andmBA inG. Them-linear termmC inH is the same
as in the globally supersymmetric case [11].

Note that the F field strength is notmodified, and there is
no A@’ term in the field strength F. As has been men-
tioned, if there were such a term, it would be an obstruction
to the gauging of the dilaton-shift symmetry ’ !
’�m�ðxÞ. This is because the term of the type A@’
in F can be attributed to the scaling of the gauge field, for

the new frame ~A � Ae�’. Such a term would be an
obstruction against the gauging of the dilaton symmetry,

because the gauge field ~A would not transform as ~A !
~Aþ @�.
All the m-dependent terms in (3.1) are required for

consistency with supersymmetry. To be more specific,
they can be justified due to the covariance of the general
variations

�H ���� ¼ þ4@½�jð~�Cj����Þ þ 8G½���jð�Aj��Þ
þ 2H ����ð�’Þ � 12F½��jð~�Bj���Þ
� 8ðD½�j’Þð~�Cj����Þ; (3.2a)

�G��� ¼ þ3�½�jð~�Bj���Þ þ 2G���ð�’Þ
� 6ðD½�j’Þð~�Bj���Þ þmð~�C���Þ; (3.2b)

�F�� ¼ þ2@½�jð�Aj��Þ; (3.2c)

where ~�C and ~�B are defined by (2.7) as in them ¼ 0 case.
As compared with (2.6), the only explicitly m-dependent

term is the last term in (3.2b) which is by itself covariant.
All other terms are just the replacements of all the field
strengths (2.2) and @�’ andm ¼ 0 by those in (3.1) atm �

0. The only exception is F�� which is not modified, as has

been mentioned. The covariance of each term in (3.2) also
provides the supporting evidence for the total consistency
of our system.
The field strengths G and D’ satisfy nontrivial BI’s:

@½�jGj���� � þ 1

4
mH ���� � 2G½���jDj��’; (3.3a)

@½�jDj��’ � þ 1

2
mF��; (3.3b)

while F satisfies the trivial one @½�jFj��� � 0.

At the Lagrangian level, the m couplings are introduced
by replacing @�’,G���, andH���� respectively byD�’,

G���, and H ���� in L0 (2.1), as well as adding an

m-explicit term mð ���Þ, as in the globally supersymmetric
case [11]. To be more explicit, our total Lagrangian L for
our total action I � R

d4xL is

e�1L¼�1

4
Rð!Þ�ð �c ��

���D�ð!Þc �Þ� 1

12
ðG½3�Þ2

�1

2
ðD�’Þ2� 1

48
ðH ½4�Þ2�1

4
ðF��Þ2þ1

2
ð �� 6Dð!Þ�Þ

þ1

2
ð �� 6Dð!Þ�Þþð �c ��

����ÞD�’

þ1

6
ð �c ��

½3����ÞG½3��1

2
ð �c ��

�����ÞF��

� 1

24
ð �c ��

½4����ÞH ½4� �1

8
ð ���½3��ÞG½3�

� 1

12
ð ���½4��ÞH ½4� � 1

24
ð ���½3��ÞG½3� þmð ���Þ:

(3.4)

Note that the only m-explicit term is the last one.
Accordingly, all the field strengths H, G, and @’ in all

transformations in (2.4) are replaced by H , G, and D’.
Thus supersymmetry transformations, leaving our total
action invariant �QI ¼ 0 up to quartic-fermion terms, are

�Qe�
m ¼�2ð ���mc �Þ; (3.5a)

�Qc � ¼þD�ð!̂Þ�� 1

12
ð��

½3��ÞĜ½3�; (3.5b)

�QB�� ¼þð ������Þþ2ð ���½�c ��Þþ2B��ð�Q’Þ; (3.5c)
�Q�¼�ð���ÞD̂�’þ1

6
ð�½3��ÞĜ½3�; (3.5d)

�Q’¼þð ���Þ; (3.5e)

�QA� ¼þð �����Þ; (3.5f)

�Q�¼þ1

2
ð����ÞF̂��� 1

24
ð�½4��ÞĤ ½4�; (3.5g)

�QC���¼þð �������Þþ3B½��jð�QAj��Þ
�3A½�jð~�QBj���Þþ2C���ð�Q’Þ; (3.5h)

6Equations (3.1b) and (3.1c) are reexpressed in terms of
differential forms, as given in the Abstract of this paper. The
normalization is self-explanatory there.
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fixed up to quadratic-fermion terms. As in (2.5), all the
hatted field strengths are for the supercovariantization of
the unhatted ones.

The confirmation of the invariance �QI ¼ 0 up to

quartic-fermion terms under local supersymmetry is
straightforward now, once the supersymmetry transforma-
tion rules for the field strengths are constructed from (3.2).
This is because we can also restrict the general variation
�’s in (3.2) to the local supersymmetry transformation �Q.

In such a case, all the tilded variations ~�Q have only the

linear-fermion part without CS-related terms, so that the
gauge invariance of supersymmetry transformations of the
field strengths constructed from (3.2) is manifest. Their
explicit forms are

~�QC��� ¼ þð �������Þ; (3.6a)

~�QB�� ¼ þð ������Þ þ 2ð ���½�c ��Þ: (3.6b)

This is crucial, when we confirm the invariance �QI ¼ 0,
because all the terms of the type ðfermionÞ � ðbosonÞ2
generated in �QL are gauge invariant, canceling other

terms with gauge invariant field strengths. The covariant
transformations in (3.2) for �Q, when (3.6) is used, also

support the total consistency of our system.
Once the gauge covariance of the variation of all field

strengths is established, the cancellation patterns of
m-dependent terms in �QI are similar to the globally

supersymmetric case in [11]. There are only four sectors
that contain m: (i) m�G, (ii) m�D’, (iii) m�H , and
(iv) m�F. As in the globally supersymmetric case [11],
the sectors (iii) and (iv) need the m-dependent terms in the
BI’s (3.3a) and (3.3b), respectively.

There are three different gauge transformations associ-
ated with our field strengthsD’, F, G, andH . Let us call
them �, �, and � gauge transformations. Their definitions
and special features are summarized as follows:

(i) � Transformation

��’ ¼ �m�; ��A� ¼ þ@��;

��B�� ¼ 0; ��C��� ¼ �3B½��j@j���;

��ðD�’Þ ¼ 0; ��F�� ¼ 0;

��G��� ¼ 0; ��H ���� ¼ 0:

(3.7)

(ii) � Transformation

��’ ¼ 0; ��A� ¼ 0;

��B�� ¼ þ2@½�j�j�� þ 4�½�jDj��’;

��C��� ¼ þ6�½�jFj��� � 6A½�j@j�j�j��
þ 12�½�jAj�jDj��’;

��ðD�’Þ ¼ 0; ��F�� ¼ 0;

��G��� ¼ 0; ��H ���� ¼ 0:

(3.8)

(iii) � Transformation7

��’ ¼ 0; ��A� ¼ 0;

��B�� ¼ �m���;

��C��� ¼ þ3@½�j�j��� � 6�½��jDj��’

þ 3m�½��jAj��;

��ðD�’Þ ¼ 0; ��F�� ¼ 0;

��G��� ¼ 0; ��H ���� ¼ 0:

(3.9)

The � transformation is nothing but what we call dilaton-
shift symmetry. Needless to say, our Lagrangian (3.4) is
manifestly invariant under all the three symmetries: ��I ¼
��I ¼ ��I ¼ 0.

The corresponding special case of m ¼ 0, whose ex-
plicit form we skipped in the last section, is also recovered
by these transformations. Even though we do not give the
details, we can also confirm the invariances ��I ¼ 0,
��I ¼ 0, and ��I ¼ 0 in terms of tilded transformations in

(2.7), as additional confirmation of the mutual consistency
among the tilded transformations, the definitions of field
strengths, and the gauge transformations. As is seen, these
transformations involve different potentials and field
strengths in a nontrivial way, and provide the supporting
evidence for the validity of the definitions of field
strengths, as well as transformations themselves.
As in the globally supersymmetric case [11], the vector

field A� becomes massive because the kinetic term of ’ is

equivalent to the mass term for A�. This is nothing but the

compensator mechanism [9,10] for the dilaton-shift sym-
metry ’ ! ’�m�ðxÞ, where �ðxÞ here is a finite pa-
rameter. Similarly, the originally nonpropagating C���

field also becomes massive because of the kinetic term of
B�� which is equivalent to the mass term of C���. As

Table I also shows, the C��� field is no longer ‘‘auxiliary’’

but now is a propagating massive field with one physical
degree of freedom. These features are also reflected in the
infinitesimal transformations ��’ in (3.7) and ��B�� in

(3.9). These aspects are exactly the same as in the globally
supersymmetric case [11], but now the consistency of the
total system has been secured due to the coupling to SG.

IV. CONCLUDING REMARKS

In this paper, we have presented an N ¼ 1 locally super-
symmetric system of the dilaton ’ and the axion B��

serving as compensators. Initially atm ¼ 0, we established
the SG coupling to the two multiplets of VM and LM.
Subsequently, we introduced the coupling constant m that

7Even though the symbol ��� is somewhat confusing with the
� matrices, we can limit these symbols only in this context of
bosons, not mixing up with � matrix computations.
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controls the nontrivial Stuckelberg-type compensator
mechanism [9,10] for the dilaton-shift symmetry’ ! ’�
m�ðxÞ with the vector A� in VM absorbing ’ in LM. This

is accompanied by its supersymmetric partner fieldC��� in

VM absorbing B�� in LM. Our result is a generalization of

our previous result [11] with global to local N ¼ 1 super-
symmetry. Since the dilaton and the two-form fields arise
as the low-energy limit of superstring, it is natural to
consider local N ¼ 1 supersymmetry as the next step.

As has been mentioned, the field strengths H of C and
G of B have peculiar m-dependent as well as
m-independent CS-terms as in (3.1). These highly non-
trivial CS terms are required by supersymmetry as well
as the covariant expressions for the general variations.
These nontrivial CS terms arise not only in the m ¼ 0 case
(2.2), but also in the gauged case m � 0 (3.1). The correct-
ness of these field strengths also has been reconfirmed by
the three gauge invariances of our action under the infini-
tesimal ��, ��, and �� transformations in (3.7) through

(3.9).
In the conventional formulation of a VM, the auxiliary

field D is just a (pseudo)scalar field, whose linear term
breaks supersymmetry explicitly. In our case of the dual
three-form potential C���, however, its direct analog

�����H ���� of the D-linear term is a total divergence

at the lowest order, not affecting the C field equation. This
indicates that the dual VM is not necessarily equivalent to
the usual VM, when breaking supersymmetry. Moreover,
since the C field becomes massive and propagating after
the absorption of the B�� field [11], the difference between

the usual and dual VM’s is obviously nontrivial.
In this paper, we have not identified any string-theory

based origin of our Stuckelberg-type mechanism, because
such a link is very difficult to establish. For example, in the
paper [22], the massive two-form potential, or massive
vector field as its Poincaré dual has been discussed in the
context of superstring. Unfortunately, however, these for-
mulations are complimentary to our system, where the
dilaton (zero-form) and the three-form potential fields
become massive.

One can seek the stringy origin of the mechanism of the
dilaton as a compensator in the Green-Schwarz formula-
tion [1]. We start with the Fradkin-Tseytlin term [18]

I�R ¼
Z

d2�
ffiffiffiffiffiffiffi�g

p
�ðZÞRð2Þð�Þ

¼ �
Z

d2�
ffiffiffiffiffiffiffi�g

p
�i�i

ArA�; (4.1)

where �ðZÞ is the dilaton superfield, and ZM are the 10D
superspace coordinates, while �i (i ¼ 0; 1) are the 2D
curved coordinates. The �i is related to the 2D scalar

curvature Rð2Þð�Þ by ffiffiffiffiffiffiffi�g
p

Rð2Þð�Þ ¼ @ið ffiffiffiffiffiffiffi�g
p

�iÞ. The in-

dices A;B; . . . are 10D superspace coordinates, and rA �
EA

M@M þ ð1=2Þ�Ab
cMc

b is the usual 10D local Lorentz

covariant superderivative. The second expression in (4.1) is

possible due to the total divergence feature of Rð2Þ men-
tioned above.
For a possible action invariant under the local dilaton

shift � ! ��m�ðZÞ, rA should be covariantized to
DA� � rA�þmAA with the potential superfield AA, so
that I�R in (4.1) is modified to

~I �R � �
Z

d2�
ffiffiffiffiffiffiffi�g

p
�i�i

ADA�

� �
Z

d2�
ffiffiffiffiffiffiffi�g

p
�i�i

AðrA�þmAAÞ: (4.2)

The invariance ��
~I�R ¼ 0 is transparent under the dilaton-

shift symmetry

���¼�m�; ��AA ¼rA�) ��ðDA�Þ ¼ 0: (4.3)

The problem, however, is that the action ~I�R breaks 2D
local Lorentz symmetry. This can be seen under the infini-

tesimal local Lorentz transformation ��!i
ðkÞðlÞ ¼ Di�

ðkÞðlÞ,
where ðkÞ; ðlÞ; . . . are 2D local Lorentz indices. This is
equivalent to

��ð ffiffiffiffiffiffiffi�g
p

�iÞ ¼ �2�ij@j ~�; (4.4)

by the relationship
ffiffiffiffiffiffiffi�g

p
�i ¼ �2�ij ~!j, where ~� �

ð1=2Þ�ðiÞðjÞ�ðiÞðjÞ and ~!i � ��ðkÞðlÞ!iðkÞðlÞ are the dual of

�ðiÞðjÞ and !i
ðkÞðlÞ, respectively. Using (4.4) in (4.2), we get

��
~I�R ¼ m

Z
d2��ij ~��i

A�j
BFBA � 0: (4.5)

We cannot expect a cancellation by the Wess-Zumino-
Novikov-Witten term, either, because we cannot let the

axion field BAB transform like ��BAB ¼ �m~�FAB, be-

cause ~� ¼ ~�ð�Þ depends only on the 2D coordinates �i.
This is the problem, when seeking the stringy origin of our
formulation.
On the other hand, any Kaluza-Klein origin of the

Stuckelberg formulation seems also difficult to establish.
Even though there are many different types of gauged SG
from Kaluza-Klein compactifications, to our knowledge,
there has been no Stuckelberg-type compensator mecha-
nism for the dilaton worked out, based on compactifica-
tions from higher dimensions.
Finally, we conclude with the following three remarks.

First, it has been shown for the first time that dilaton-shift
symmetry can be gauged with local supersymmetry, as the
generalization of the globally supersymmetric case [11].
Ordinary gaugings or massive generalizations in SG theo-
ries [2] had been well-known in diverse dimensions, such
as massive type IIA theory in 10D [21] or the gauging of R
symmetry in 5D [23]. However, the important difference
here is that we have succeeded in gauging the dilaton-shift
symmetry ’ ! ’�m�ðxÞ consistently with local N ¼ 1
supersymmetry in 4D. In addition to our globally super-
symmetric version [11], we have now locally supersym-
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metric gauging of dilaton-shift symmetry, combined with
axion symmetry.

Second, it has been established that the auxiliary field D
in the VM can have its dual three-form potential C��� with

its field strength H���� consistently with local N ¼ 1

supersymmetry. Moreover, the C��� is auxiliary and non-

physical for m ¼ 0, but it starts propagating after absorb-
ing the B�� field from the LM form � 0. As in the globally

supersymmetric case [11], even though the original C field
is just the dual of the usual D auxiliary field, it is no longer
auxiliary after the absorption of the B field. The dual

auxiliary field C��� of a VM is not only valid at the free-

field level or global supersymmetry [11], but also at the
interaction level with nontrivial CS terms (3.1) with SG.
Third, the formulation of a VM with the three-form

potential C��� is based on the important concept of the

axion and dilaton regarded as simultaneous compensators
in a locally supersymmetric theory, as a natural solution to
the moduli problem. The dual VM with the auxiliary field
C��� has acquired its raison d’etre by the supersymmetric

compensator mechanism for the axion and dilaton to be
eliminated from the physical spectrum.

[1] M.B. Green, J. H. Schwarz, and E. Witten, Superstring
Theory (Cambridge University Press, Cambridge,
England, 1986), Vols. I–II.

[2] J. Wess and J. Bagger, Superspace and Supergravity
(Princeton University, Princeton, NJ, 1992).

[3] For reviews of LM coupled to SG, see, e.g., P. Binétruy, G.
Girardi, and R. Grimm, Phys. Rep. 343, 255 (2001), and
references therein.

[4] R. D. Peccei and H. Quinn, Phys. Rev. Lett. 38, 1440
(1977); S. Weinberg, Phys. Rev. Lett. 40, 223 (1978); F.
Wilczek, Phys. Rev. Lett. 40, 279 (1978).

[5] P. Svrcek and E. Witten, J. High Energy Phys. 06 (2006)
051.

[6] C. Amsler et al. (Particle Data Group), Phys. Lett. B 667,
1, (2008).

[7] J. Preskill, M. B. Wise, and F. Wilczek, Phys. Lett. 120B,
127 (1983); L. F. Abbott and P. Sikivie, Phys. Lett. 120B,
133 (1983); M. Dine and W. Fischler, Phys. Lett. 120B,
137 (1983).

[8] C. Wetterich, Nucl. Phys. B302, 668 (1988).
[9] E. C. G. Stueckelberg, Helv. Phys. Acta 11, 225 (1938); A.

Proca, J. Phys. Radium 7, 347 (1936).
[10] For reviews, see, e.g., H. Ruegg and M. Ruiz-Altaba, Int.

J. Mod. Phys. A 19, 3265 (2004).
[11] H. Nishino and S. Rajpoot, Phys. Rev. D 76, 065004

(2007).
[12] S. Ferrara, B. Zumino, and J. Wess, Phys. Lett. 51B, 239

(1974); W. Siegel, Phys. Lett. 85B, 333 (1979); U.
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