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We present a supersymmetric recursion relation for tree-level scattering amplitudes in N ¼ 4 super

Yang-Mills. Using this recursion relation, we prove that the tree-level S matrix of the maximally

supersymmetric theory is covariant under dual superconformal transformations. We further analyze the

consequences that the transformation properties of the trees under this symmetry have on those of the

loops. In particular, we show that the coefficients of the expansion of generic one-loop amplitudes in a

basis of pseudoconformally invariant scalar box functions transform covariantly under dual superconfor-

mal symmetry, and in exactly the same way as the corresponding tree-level amplitudes.
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I. INTRODUCTION AND BACKGROUND

In an interesting paper [1], Drummond, Henn,
Korchemsky, and Sokatchev (DHKS) have proposed that
scattering amplitudes in planar N ¼ 4 super Yang-Mills
(SYM) theory have a novel superconformal symmetry,
termed dual in order to distinguish it from the ordinary
superconformal symmetry.

This symmetry has also been explained very recently
from the string theory standpoint [2,3] using a T-duality of
the superstring theory on AdS5 � S5 which involves a
bosonic T-duality [4], accompanied by a new fermionic
T-duality. The combined effect of these T-dualities is to
map the original string sigma model into a dual sigma
model identical to the original one. The T-duality ex-
changes the original with the dual superconformal symme-
tries; furthermore, the strong coupling calculation of the
amplitudes in the dual sigma model turns out to be tech-
nically identical to that of a Wilson loop with a special
closed contour, constructed by gluing together the mo-
menta of scattered particles following the order of the
insertions of the string vertex operators [4]. Surprisingly,
calculations of the same Wilson loops in N ¼ 4 SYM at
weak coupling at one [5,6] and two loops [7–10] are in
perfect agreement with the maximally helicity violating
(MHV) scattering amplitudes of the N ¼ 4 theory calcu-
lated in [11–14]. See [15] for a recent review on the duality
between scattering amplitudes and Wilson loops.

According to the proposal put forward in [1], all tree-
level superamplitudes are covariant under dual supercon-
formal symmetry, and their transformations should be
precisely the same as those of the supersymmetric expres-
sion introduced by Nair [16] which generalizes the usual

MHV amplitudes.1 It is one of the goals of this paper to
prove this statement, i.e. to show that all tree-level super-
amplitudes of the N ¼ 4 theory transform covariantly
under this symmetry, and in exactly the same way as the
MHV superamplitude.
In order to achieve this goal, we look for a method to

compute amplitudes which respects superconformal co-
variance at the diagrammatic level. We claim that one
such method is given by an appropriate supersymmetric
extension of the Britto, Cachazo, and Feng (BCF) recur-
sion relation [17,18], which we will write down explicitly.2

The original motivation for this claim comes from the
explicit inspection of the recursive diagrams for the next-
to-MHV (NMHV) split-helicity gluonic amplitudes3 cal-
culated in [17,21]. As was observed in [1], all gluonic split-
helicity amplitudes are covariant. Furthermore, one can
easily verify that this covariance is realized separately in
each recursive diagram, as a direct inspection of the deri-
vations of [17,21] shows. Note, however, that non-split-
helicity amplitudes do not transform covariantly [1] and
they have to be packaged together with the split-helicity
amplitudes into superamplitudes, which according to [1]
should transform covariantly in general. So far this claim
has been verified for the case of MHV and NMHV ampli-
tudes. To extend this observation to a full proof of dual
superconformal covariance of the tree-level Smatrix of the
N ¼ 4 theory, we will first write down an appropriate
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1A superamplitude can be thought of as a generating function
that combines all tree amplitudes with a fixed number of external
lines and fixed total helicity into one supersymmetric quantity.
More details on this formalism are presented later in this section
and in Sec. II.

2An N ¼ 4 supersymmetric recursion relation using the
triple shifts of [19] has recently been written down in [20].

3Split-helicity amplitudes have all positive helicity gluons and
all negative helicity gluons adjacent.
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supersymmetric recursion relation satisfied by the super-
amplitudes in the maximally supersymmetric theory.

In the supersymmetric formalism of [16], to each parti-
cle in theN ¼ 4 theory one associates the usual commut-

ing spinors ��, ~� _� (in terms of which the momentum of the

ith particle is pi
� _� ¼ �i

�
~�i
_�), as well as anticommuting

variables �A
i , where A ¼ 1; . . . ; 4 is an SUð4Þ index. The

supersymmetric amplitude can then be expanded in powers
of the N ¼ 4 superspace coordinates �i

A for the different
particles, and each term of this expansion corresponds to a
particular scattering amplitude in N ¼ 4 SYM. A term
containing p powers of �i

A corresponds to a scattering
process where the ith particle has helicity hi ¼ 1� p=2
[22]. Explicitly, the n-point MHV superamplitude is [16]

AMHVð1; . . . ; nÞ ¼ ið2�Þ4

� �ð4ÞðPn
i¼1 �i

~�iÞ�ð8ÞðPn
i¼1 �i�iÞ

h12i � � � hn1i ;

(1.1)

where, as usual, hiji :¼ ����
�
i �

�
j .

The dual superconformal symmetry becomes more
transparent after introducing appropriate dual coordinates
[1]. These turn out to be ’t Hooft’s region (or T-dual)
momenta

pi;� _� ¼ ðxi � xiþ1Þ� _�; (1.2)

along with their supersymmetric partners �A�i introduced
in [1] as

�A
i �

�
i ¼ �A�i � �A�iþ1: (1.3)

It is important to note that these coordinates are appropri-
ate for characterizing planar diagrams only, where one can
express the momentum carried by one line as the difference
of the momenta of the two regions of the plane separated
by the line. The dual momenta also play an important role
in the discussion of pseudoconformal properties of integral
functions in [23].

The dual momenta xi, i ¼ 1; . . . ; n, are such that the
momenta of each particle are null, i.e. ðxi � xiþ1Þ2 ¼ 0,
and momentum conservation becomes automatic in this
formalism. It therefore makes perfect sense to act with
inversions on the dual momenta, which transform as4

xi;� _� ! xi;� _�

x2i
: (1.4)

From this transformation and the on-shell condition of the

momenta, which can be written as ðxi � xiþ1Þ _���
�
i ¼ 0,

one can derive the transformation of ��
i under a dual

inversion, with the result [1]

��
i ! 	iðxiÞ _���i�; (1.5)

where 	i is an arbitrary. For the particular choice 	i ¼
1=x2i the transformation becomes [1]

��
i ! ðx�1

i Þ _���i�: (1.6)

Similarly, the differences of fermionic variables �i of
adjacent particles are constrained to be on shell, namely

ð�i � �iþ1Þ�i ¼ 0; (1.7)

and the �i transform under inversions as [1]

�A�i ! ðx�1
i Þ _���Ai;�: (1.8)

For completeness, we also present the transformation of
the variables �A which can be deduced from the trans-
formation above [1],

I½�A
i � ¼

x2i
x2iþ1

ð�A
i � �Ai x

�1
i

~�iÞ: (1.9)

Using these transformations, it is easy to see that the
MHV superamplitude (1.1) transforms covariantly under
inversions,

AMHVð1; 2; . . . ; nÞ ! AMHVð1; 2; . . . ; nÞ
Yn
k¼1

x2k: (1.10)

After introducing a supersymmetric version of BCF on-
shell recursion relations, we will show that this transfor-
mation property (1.10) is maintained for any tree-level
superamplitude in N ¼ 4 SYM.
After this short discussion of dual superconformal prop-

erties of tree-level amplitudes, we nowmove on to consider
loop amplitudes. There the situation is more subtle due to
the appearance of infrared divergences in the scattering
amplitudes, which manifest themselves as ultraviolet di-
vergences in the dual Wilson loops, due to the presence of
cusps in the contour. Interestingly, it was shown in [7,8]
that by performing dual conformal transformations on the
lightlike Wilson loops in theN ¼ 4 theory one can derive
anomalous Ward identities, which turn out to be consistent
with the Bern, Dixon, and Smirnov (BDS) ansatz [24] for
the exponentiated form of the n-point MHV scattering
amplitude of theN ¼ 4 theory. In the four- and five-point
case, the solution to the Ward identity is actually unique up
to a finite constant, whereas for n � 6 particles, there is
room for a conformally invariant discrepancy function,
compared to the BDS ansatz, which was indeed found to
be nonzero in [10,14]. In this paper we focus our attention
on the coefficients of the expansion of one-loop amplitudes
in N ¼ 4 SYM in terms of integral box functions, and to
their transformation properties under dual superconformal

4Special conformal transformations are obtained as an inver-
sion followed by a translation, and a further inversion.
Combining this with supersymmetry transformations, one gen-
erates all the superconformal transformations. Since the dual
supersymmetries are either manifest or are related to ordinary
special superconformal symmetries [1], which obviously are
symmetries of tree-level N ¼ 4 SYM, invariance of the S
matrix under the full dual superconformal symmetry requires
only showing invariance under dual inversions.
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transformations. We will show that these coefficients are
covariant under superconformal symmetry and exhibit the
same transformation properties as those of the tree-level
superamplitudes. The main tool in this analysis is the use of
quadruple cuts of [25] which, crucially, can be performed
in four dimensions, since all one-loop amplitudes of the
maximally supersymmetric theory are four-dimensional
cut constructible [26]. This simplifies the analysis consid-
erably, bypassing dimensional regularization. As an added
bonus of this analysis, we will obtain an independent proof
of the covariance of the tree-level superamplitudes.

The rest of the paper is organised as follows: in Sec. II
we introduce a supersymmetric generalization of the BCF
recursion relations, present the MHV three-point super-
amplitude, and discuss the behavior of superamplitudes
under large complex deformations (shifts). In Sec. III we
give some simple applications of the supersymmetric re-
cursion relations. Readers who are familiar with the for-
malism may wish to skip this part. In Sec. IV we use the
supersymmetric recursion relations developed in Sec. II
and III to prove that all tree-level superamplitudes inN ¼
4 SYM transform uniformly under dual conformal trans-
formations. Finally, in Sec. V we prove that the coefficients
that appear in the expansion of generic one-loop super-
amplitudes in N ¼ 4 SYM in a basis of scalar box func-
tions transform covariantly in exactly the same way as the
corresponding tree-level amplitudes.

II. N ¼ 4 SUPERSYMMETRIC RECURSION
RELATIONS

In this section we write down a supersymmetric recur-
sion relation using two-particle shifts.5 These shifts can be
nicely formulated using the dual superspace variables in-
troduced in [1]. The recursion relation using conventional
two-particle shifts requires the three-point anti-MHV am-
plitude as well as the MHV amplitude as input. We will
thus require a three-point anti-MHV superamplitude and
we propose precisely such a superamplitude in the next
subsection. We then address the important issue of the
large-z behavior of the N ¼ 4 superamplitudes in
Sec. II B, where we prove that the superamplitude calcu-
lated with the supersymmetric recursion relation agrees
with that obtained by standard methods.

In order to set up the formalism, we briefly review the
derivation of the BCF recursion relations. The key property
entering these recursion relations is factorization on multi-
particle poles (or collinear factorization, for MHV ampli-
tudes). To exploit this efficiently, one considers a particular

deformation of an amplitude which shifts the spinors of
two of the n massless external particles, labeled here as i
and j, as [18]

~� i ! ~̂�i :¼ ~�i þ z~�j; �j ! �̂j :¼ �j � z�i; (2.1)

where z is the complex parameter characterizing the de-

formation. The spinors �i and ~�j are left unshifted. The

deformations (2.1) are chosen in such a way that the
corresponding shifted momenta

p̂ iðzÞ :¼ �i
~̂�i ¼ pi þ z�i

~�j;

p̂jðzÞ :¼ �̂j
~�j ¼ pj � z�i

~�j;
(2.2)

are on shell for all complex z. Furthermore, piðzÞ þ
pjðzÞ ¼ pi þ pj. Hence the quantity

Aðp1; . . . ; piðzÞ; . . . ; pjðzÞ; . . . ; pnÞ is a well-defined one

complex parameter family of scattering amplitudes, pa-
rametrized by z.
One then considers the following contour integral,

where the contour C is the circle at infinity in the complex
z plane,

1

2�i

I
C
dz

AðzÞ
z

: (2.3)

The integral in (2.3) vanishes if AðzÞ ! 0 as z ! 1.6 It
then follows from Cauchy’s theorem that we can write the
amplitude we wish to calculate,Að0Þ, as a sum of residues
of AðzÞ=z,

A ð0Þ ¼ � X
poles of AðzÞ=z excluding z¼0

Res

�
AðzÞ
z

�
: (2.4)

At tree level, AðzÞ has only simple poles in z. A pole at

z ¼ zP is associated with a shifted momentum P̂ :¼ PðzPÞ
flowing through an internal propagator becoming null. The
residue at this pole is then obtained by factorizing the
shifted amplitude on this pole. The result is that

A ¼ X
P

X
h

Ah
LðzPÞ

i

P2
A�h

R ðzPÞ; (2.5)

where the sum is over the possible assignments of the
helicity h of the intermediate state, and over all possible
P such that precisely one of the shifted momenta, say p̂i, is
contained in P.
The left- and right-hand amplitudes AL and AR are

well-defined amplitudes only for z ¼ zP, when PðzÞ be-
comes null. We call �P̂ and ~�P̂ the spinors associated to the

internal, on-shell momentum P̂, so that P̂ :¼ �P̂
~�P̂. Notice

that the intermediate propagator is evaluated with un-
shifted kinematics.

5As mentioned earlier, an N ¼ 4 supersymmetric recursion
relation was written down in [20] for NMHVamplitudes using a
set of three antiholomorphic shifts suggested by Risager [19]. In
that case it can be seen immediately that the two amplitudes
appearing in the corresponding recursion relation must have the
MHV helicity configuration. Indeed, the corresponding diagrams
are the super MHV diagrams considered in Sec. 5 of [27].

6We prove this property for a large portion of the super-
amplitude in Sect. II B and use supersymmetry to argue that
this is enough to determine the entire superamplitude.
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Since a momentum invariant involving both (or neither)
of the shifted legs i and j does not give rise to a pole in z,
the shifted legs i and j must always appear on opposite
sides of the factorization channel. In order to limit the
number of recursive diagrams, it is very convenient to shift
adjacent legs. In this case, the sum over P in (2.5) is just a
single sum. In the following we will do this, so that the
shifted legs will always be i and j ¼ iþ 1. We will denote
the shift in (2.1) with the standard notation ½iiþ 1i.

Now for the supersymmetric version of the BCF recur-
sion relation. First, we notice that it is very easy to describe
the shifts (2.1) and (2.2) using dual (or region) momenta.
One simply defines

p̂ i :¼ xi � x̂iþ1; p̂iþ1 :¼ x̂iþ1 � xiþ2; (2.6)

where we have introduced a shifted region momentum

x̂ iþ1 :¼ xiþ1 � z�i
~�iþ1: (2.7)

Notice that this is the only region momentum that is
affected by the shifts.7 Therefore in the supersymmetric
case we expect that �iþ1 is shifted but all other �’s remain
unshifted. This implies that

�i � �iþ2 ¼ �i�i þ �iþ1�iþ1; (2.8)

should remain unshifted. This is in complete similarity to
the fact that the sum of the shifted momenta is unshifted,
p̂i þ p̂iþ1 ¼ pi þ piþ1. Now, in the case of the ½iiþ 1i
shift employed here, we have shifted �iþ1 according to
(2.1) and so we can achieve this by shifting �i to

�̂ i ¼ �i þ z�iþ1; (2.9)

and leaving�iþ1 unshifted. This then gives the shifted �iþ1

�̂ iþ1 :¼ �iþ1 � z�iþ1�i: (2.10)

The recursion relation builds up tree-level amplitudes
recursively from lower point amplitudes. The starting point
of this process is the MHV superamplitude (1.1) (in fact
just the three-point MHV superamplitude is needed) to-
gether with the three-point anti-MHV superamplitude
which we present and discuss in the next section.
The supersymmetric recursion relation follows from

arguments similar to those which led to (2.5). We have

A ¼ X
P

Z
d4�P̂ALðzPÞ i

P2
ARðzPÞ; (2.11)

where �P̂ is the anticommuting variable associated to the

internal, on-shell leg with momentum P̂.
Note that in the case of superamplitudes it does not make

sense to assign individual helicities to the external parti-
cles, and every superamplitude is characterized by the
number of external particles and its total helicity, which
is the sum of the helicities of all external particles. In the
recursion relation (2.11) we have an important constraint
on AL and AR, namely, the total helicity of AL plus the
total helicity ofAR must equal the total helicity of the full
amplitude A. This condition replaces the sum over inter-
nal helicities in the standard BCF recursion (2.5).

A. Supersymmetric anti-MHV three-point amplitudes

In writing down recursion relations, one needs as a
starting point the three-point MHV and MHV amplitudes.
Whereas the former are given by the usual Nair formula,
we also require a supersymmetric expression for the latter.
We claim that this is

AMHVð1; 2; 3Þ ¼ ið2�Þ4 �
ð4Þðp1 þ p2 þ p3Þ�ð4Þð�1½23� þ �2½31� þ �3½12�Þ

½12�½23�½31� : (2.12)

For example, the gluonic amplitude Að1þg ; 2þg ; 3�g Þ ¼
½12�3=ð½23�½31�Þ is immediately obtained by extracting
the component

Q
4
A¼1 �

A
3 of (2.12).

In order to verify that (2.12) is supersymmetric, we
multiply it by the sum of the supercharges

P3
i¼1 Q

A
i;�

:¼P
3
i¼1 �

A
i �i;�. Upon acting on the combination of delta

functions in (2.12), one hasX3
i¼1

QA
i;� ! ��A

2 ½31� � �A
3 ½12�

½23� �1;� þ �A
2�2;� þ �A

3�3;�

¼ �A
2

�2;�½23� þ �1;�½13�
½23�

þ �A
3

�3;�½23� þ �1;�½21�
½23� ¼ 0; (2.13)

where the last equality follows from momentum conserva-

tion �1
~�1 þ �2

~�2 þ �3
~�3 ¼ 0. As discussed in [1], the

condition for the amplitude to be invariant under the sec-
ond set of supersymmetry generators is

�QA _�AMHVð1; 2; 3Þ ¼
X3
i¼1

~�i _�

@

@�A
i

AMHVð1; 2; 3Þ ¼ 0:

(2.14)

If we act with the operator �QA _� on the argument of the
fermionic delta function in (2.12), we obtain

�Qð�1½23� þ �2½31� þ �3½12�Þ
¼ ~�1½23� þ ~�2½31� þ ~�3½12� ¼ 0; (2.15)

thus proving that AMHV is invariant also under the �Q
supersymmetries.
Next we would like to show explicitly that (2.12) trans-

forms as a three-point amplitude, i.e. that

AMHVð1; 2; 3Þ ! x21x
2
2x

2
3AMHVð1; 2; 3Þ; (2.16)

7This is true only if adjacent legs are shifted. If i and j are not
adjacent, then region momenta xiþ1 . . . xj are all shifted by
�z�i

~�j.
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under a conformal inversion. This is slightly nontrivial due
to the absence of the usual eight-dimensional delta func-
tion of supermomentum conservation in (2.12).

The proof is very simple. Firstly, we notice that since

1

½12�½23�½31� ! x21x
2
2x

2
3

½12�½23�½31� ; (2.17)

we have to show that the combination �ð4Þðp1 þ p2 þ
p3Þ�ð4Þð�1½23� þ �2½31� þ �3½12�Þ is invariant under
inversions.

In order to see this, we recall that

�ð4Þð�1½23� þ �2½31� þ �3½12�Þ

:¼ Y4
A¼1

ð�A
1 ½23� þ �A

2 ½31� þ �A
3 ½12�Þ: (2.18)

Multiplying and dividing by �1;� for a fixed �, one gets

ð�A
1 ½23� þ �A

2 ½31� þ �A
3 ½12�Þ�1;� ¼ ½23�ð�1 � �4ÞA�

(2.19)

(notice that we have broken the cyclicity of the � varia-
bles). Hence we can write

�ð4Þð�1½23� þ �2½31� þ �3½12�Þ

¼
�½23�
�1;�

�
4 Y4
A¼1

ð�1 � �4ÞA�; (2.20)

at fixed (and arbitrary) �. The transformation properties of
(2.20) are manifest, using �1 ! x�1

1 �1, ½23� ! ½23�=x21,
and �1 ! x�1

1 �1, �4 ! x�1
4 �4 ¼ x�1

1 �4, where the last
step follows since the expression (2.12) contains a

�ð4Þðp1 þ p2 þ p3Þ ¼ �ð4Þðx1 � x4Þ. Therefore�½23�
�1;�

�
4 Y4
A¼1

ð�1 � �4ÞA� ! 1

ðx21Þ4
� ½23�
ðx�1

1 Þ _���1;�

�
4

� Y4
A¼1

ðx�1
1 Þ _��ð�1 � �4ÞA�

¼ 1

ðx21Þ4
Y4
A¼1

ð�A
1 ½23� þ �A

2 ½31�

þ �A
3 ½12�Þ; (2.21)

where the last equality follows in a way completely similar
to that used to derive (2.20), except that one multiplies and
divides by x�1

1 �1. Finally, comparing (2.20) and (2.21), we
see that

�ð4Þð�1½23� þ �2½31� þ �3½12�Þ

!
�
1

x21

�
4
�ð4Þð�1½23� þ �2½31� þ �3½12�Þ; (2.22)

under conformal inversions. Since �ð4Þðx1 � x4Þ !
ðx21Þ4�ð4Þðx1 � x4Þ, it follows that the combination

�ð4Þðp1 þ p2 þ p3Þ�ð4Þð�1½23� þ �2½31� þ �3½12�Þ is in-
variant, and hence the three-point MHV amplitude (2.12)
transforms correctly as (2.17) under inversions.
To conclude this section, we notice that an expression

for the three-point MHV has been presented in [28] which
reads8

AMHVð1; 2; 3Þ ¼ ið2�Þ4 �
ð4Þðp1 þ p2 þ p3Þ
½12�½23�½31�

�
Z Y3

i¼1

d4 ��ie
P

3
i¼1

��i;A�
A
i

� �ð8Þð ��1
~�1 þ ��2

~�2 þ ��3
~�3Þ: (2.23)

It is very easy to perform the �� integrations, and check that
(2.23) coincides with our form (2.12) of the three-point
MHV superamplitude.
In Secs. III and IV we will use (2.12) in specific ex-

amples in order to show how the supersymmetric recur-
sions and the dual momentum superspace formalism work
in practice.

B. Large-z behavior of the supersymmetric amplitudes
AðzÞ

In the remainder of this section we want to discuss a
crucial ingredient in the derivation of the supersymmetric
recursion formula (2.11). The argument leading to (2.5)
and its supersymmetric version (2.11) requires that the
z-shifted amplitude vanishes as9 z ! 1. In the case of
component gluon amplitudes, this issue was addressed in
[18] using MHV diagrams, as well as Feynman diagrams.
There, it was shown that when the two gluons associated
with the shifted momenta (recall we are using ½iiþ 1i
shifts) have positive helicity, the amplitude vanishes as z !
1.
When translated to the supersymmetric case, this argu-

ment implies that the z-shifted superamplitude Að�i ¼
�iþ1 ¼ 0; zÞ ! 0 as z ! 1. The Britto, Cachazo, Feng,
and Witten argument then states that the recursion relation
is valid for �i ¼ �iþ1 ¼ 0. In other words, defining the
function

f :¼ Arecursion �A; (2.24)

where by Arecursion we denote the result of performing the
calculation using the supersymmetric recursion formula
(2.11), and A is the correct superamplitude, we have
that the function f vanishes whenever �i ¼ �iþ1 ¼ 0.
Here, instead of showing directly that the complete

superamplitude vanishes at large z, we argue directly, using
supersymmetry, that the recursion relation does give the
correct full superamplitude, given that we know they agree

8We thank Johannes Henn for bringing this to our attention.
9The large-z behavior of amplitudes in N ¼ 4 was also

addressed in [29] and in [20], and in the very recent paper [30].
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for �i ¼ �iþ1 ¼ 0. In order to do this, we make use of �Q

supersymmetry (where �QA _� :¼ P
n
l¼1

~�l _�@=@�
A
l ), which

constrains the form of both the amplitudeA and the result
of the recursion relation Arecursion.

10 Hence the difference
function f is �Q supersymmetric,

�QA _�f ¼ 0: (2.25)

We also notice that �Q supersymmetry has been efficiently
used in [30] to show that superamplitudes inN ¼ 4 SYM
(N ¼ 8 supergravity) fall of as 1=z ð1=z2Þ as z ! 1.

In order to exploit the consequences of �Q supersymme-
try, we evaluate (2.25) at �i ¼ �iþ1 ¼ 0, and use the fact
that f vanishes when �i ¼ �iþ1 ¼ 0, to get�

~�i _�

@

@�A
i

þ ~�iþ1 _�

@

@�A
iþ1

�
f

���������i¼�iþ1¼0
¼ 0: (2.26)

For each A, (2.26) gives two equations which imply that
@f=@�i ¼ @f=@�iþ1 ¼ 0 when �i ¼ �iþ1 ¼ 0. Since �Q
commutes with all @=@�l derivatives, we can repeat the
above argument for @f=@�i and @f=@�iþ1 to show that all
second derivatives of f with respect to �i; �iþ1 also vanish
when �i ¼ �iþ1 ¼ 0. Continued repetition of this argu-
ment shows that f, and all its partial derivatives with
respect to �i and �iþ1, vanish when �i ¼ �iþ1 ¼ 0, and
hence f must vanish everywhere.

We conclude that the recursion formula agrees with the
superamplitude for all �. Several, nontrivial checks of this
statement can be found in the next section.

III. EXAMPLES

In this section we present some simple applications of
the supersymmetric recursion relation.

A. First example, supersymmetric MHV amplitudes

The first example is the case of the MHV amplitude.
Here we describe in detail the four-point case, but the
generalization to higher numbers of points is straightfor-
ward as explained below.

We choose a ½12i shift, i.e.
~̂� 1 ¼ ~�1 þ z~�2; �̂2 ¼ �2 � z�1: (3.1)

Correspondingly,

p̂ 1 ¼ x1 � x̂2; �̂1�1 ¼ �1 � �̂2; (3.2)

where

x̂ 2 ¼ x2 � z�1
~�2; �̂2 ¼ �2 � z�2�1: (3.3)

Notice that �̂1 ¼ �1 þ z�2. Also,

�2�̂2 ¼ �̂2 � �3: (3.4)

We begin by considering the very simple four-point case.
The two amplitudes on the left and on the right must be
MHVandMHV. Choosing a ½12i shift selects the left-hand
amplitude to be MHV, and the right-hand amplitude to be
MHV,

A L ¼ �ð4Þð1̂þ 4þ P̂Þ�ð8Þð�̂1�1 þ �4�4 þ �P̂�P̂Þ
h1P̂ihP̂4ih41i ;

AR ¼ �ð4Þð2̂þ 3� P̂Þ�ð4Þð�P̂½23� þ �2½3P̂� þ �3½P̂2�Þ
½P̂2�½23�½3P̂� :

(3.5)

Here we have used the n-point MHV superamplitude
(1.1), and the expression for the three-point MHV ampli-
tude in (2.12).
Now we make use of the identity

�ð8Þð�̂1�1þ�4�4þ�P̂�P̂Þ�ð4Þð�P̂½23�þ�2½3P̂�þ�3½P̂2�Þ
¼�ð8Þð X

i2L;R

�̂i�̂iÞ�ð4Þð�P̂½23�þ�2½3P̂�þ�3½P̂2�Þ: (3.6)

The second line follows from inserting the solution for �P̂

of the second � function into the first � function and using
momentum conservation at the second vertex of the dia-
gram in Fig. 1. Furthermore, with the help of the identitiesP

i�̂i�̂i ¼ P
i�i�i and

P
ip̂i ¼ P

ipi, the amplitude can be

FIG. 1 (color online). Recursive diagram for the MHV four-
point amplitude. Given the ½12i shift we have chosen, the
amplitude on the left must be MHV, and that on the right MHV.

10That the recursion relation maintains the �Q supersymmetry
can be straightforwardly checked. Applying �Q on a generic
recursive diagram entering (2.11) produces two terms, one where
�Q acts on AL and one where �Q acts on AR. Noting that the z
shift leaves the expression of �Q unaffected, and because of the
invariance of AL and AR under �Q supersymmetry, these two
terms combine into a contribution proportional to
~�P̂

R
d4�P̂@=@�P̂ðALARÞ. This is a total derivative, and hence

it vanishes. Therefore each recursive diagram (and hence the
recursion relation) maintains the �Q supersymmetry. The invari-
ance under the Q supersymmetry is manifest because of the
presence of an overall delta function of supermomentum
conservation.
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written as

A ð1; 2; 3; 4Þ ¼ i�ð4Þð X
i2L;R

piÞ�ð8Þð X
i2L;R

�i�iÞAð1; 2; 3; 4Þ;

(3.7)

where

A ¼ 1

P2
23

1

h41i½23�h1P̂ihP̂4i½P̂2�½3P̂�
Z

d4�P̂�
ð4Þð�P̂½23�

þ �2½3P̂� þ �3½P̂2�Þ: (3.8)

Completely standard manipulations lead to

h1P̂ihP̂4i½P̂2�½3P̂� ¼ h12ih34i½23�2; (3.9)

hence

Að1; 2; 3; 4Þ ¼ 1

h12ih23ih34ih41i : (3.10)

Hence we reproduce the expected supersymmetric MHV
superamplitude. Finally, we notice that the recursion rela-
tion for an n-point MHV superamplitude is a simple gen-
eralization of that presented above. The only difference is
that the amplitude on the left-hand side of Fig. 1 will be an
(n� 2)-point MHV superamplitude. The algebra is iden-
tical to that of the four-point example discussed above and
leads to the expected result (1.1).

Before moving on to consider five-point amplitudes, we
would like to make a comment on the large-z behavior of
the amplitude. On general grounds, it is known that a two-
particle shift where the holomorphic spinor associated to a

negative helicity gluon, and the antiholomorphic spinor of
a positive helicity gluon are shifted, leads in general to a
bad large-z behavior of the shifted amplitude [18], i.e. the
shifted amplitude AðzÞ does not vanish as z ! 1. For
example, performing such shifts in the gluonic Parke-
Taylor formula may lead to a Oðz2Þ growth at large z.
The interesting fact we wish to point out is that the super-
symmetric recursion relation for the MHV superamplitude
discussed here is blind to such bad shifts, as the helicities of
the particles in the two superamplitudes entering the re-
cursion relations are not specified, and the recursion rela-
tion produces the correct result. Note that this is a general
property of the N ¼ 4 supersymmetric recursion rela-
tions. A priori this might sound like a contradiction since
some of the component amplitudes, which enter the super-
amplitude as coefficients in the expansion in powers of�’s,
have bad large-z behavior. However, one has to remember

that under a shift not only the � and ~� variables are shifted
but also the �’s [see (2.9)], and that the coefficients of the
correct � expansion of the superamplitude are actually
certain linear combinations of component amplitudes
which do have good large-z behavior.

B. Second example, five-point MHV amplitudes

We continue using the same shifts as in (3.1). The
difference with the previous case is that now the two
amplitudes on the left- and right-hand side of the propa-
gator will both be MHV superamplitudes.
In this case, the two amplitudes are

A L ¼ �ð4Þð1̂þ 5þ P̂Þ�ð8Þð�̂1�1 þ �5�5 þ �P̂�P̂Þ
h1P̂ihP̂5ih51i ;

AR ¼ �ð4Þð2̂þ 3þ 4� P̂Þ�ð8Þð��P̂�P̂ þ �2�̂2 þ �3�3 þ �4�4Þ
hP̂ 2̂ih2̂3ih34ih4P̂i :

(3.11)

As usual, the product of two fermionic delta functions in
AL and AR generates a delta function which imposes
conservation of the supermomentum �ð8ÞðPi�i�iÞ.

In order to simplify the expression of the amplitude it
proves convenient to use the identity

h34ihP̂2ih2̂3ih4P̂i ¼ ½4P̂�½P̂2�½23�½34�
½34�4 h2P̂i4; (3.12)

which is a consequence of momentum conservation. One

further notices that h1jP̂j4� ¼ h15i½54�, h5jP̂j2� ¼ h51i½12�
so that

1

P2
15

1

h1P̂ihP̂5ih51ihP̂ 2̂ih2̂3ih34ih4P̂i

¼ 1Q5
i¼1½iiþ 1�

½34�4
h15i4h2̂ P̂i4 : (3.13)

It is then easy to reproduce known component amplitudes

from the recursive diagram in Fig. 2. For practical evalu-
ation purposes, it is also convenient to use

FIG. 2 (color online). Recursive diagram for the five-point
MHV amplitude.
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�ð8Þ
�X

i

�A
i �i;�

�
¼ 1

16

Y4
A¼1

X
i;j

�A
i �

A
j hiji; (3.14)

in order to extract the relevant contribution from the fer-
mionic delta functionsZ

d4�P̂�
ð8Þð�̂1�1 þ �5�5 þ �P̂�P̂Þ

� �ð8Þð��P̂�P̂ þ �2�̂2 þ �3�3 þ �4�4Þ: (3.15)

A few examples are in order.
For the split-helicity gluonic amplitude, one picks from

(3.15) the contribution proportional to ð�1Þ4ð�2Þ4, with the
result

A ð5�g ; 1�g ; 2�g ; 3þg ; 4þg Þ ¼ i
½34�3

½23�½45�½51�½12� : (3.16)

For the gluonic amplitude with helicities ð5�1�2þ3�4þÞ
one picks from (3.15) the coefficient of ð�5Þ4ð�1Þ4. Further
using that h3P̂i4=h2̂ P̂i4 ¼ ½24�4=½34�4, one quickly arrives
at

A ð5�g ; 1�g ; 2þg ; 3�g ; 4þg Þ ¼ i
½24�4

½23�½34�½45�½51�½12� :
(3.17)

One could further proceed and consider amplitudes involv-
ing fermions and scalars. Consider, for example, the am-
plitude ð5�f ; 1�g ; 2�g ; 3þf ; 4þg Þ. Proceeding as before, the

fermionic integrations produce a factor of h51i3hP̂1i�
hP̂ 2̂i3h2̂3i. Standard manipulations lead to h1P̂i�
h2̂ P̂i ¼ h15i½52�=ðh34i½34�, h2̂3i ¼ �½45�h34i=½25�, and
one quickly finds that

A ð5�f ; 1�g ; 2�g ; 3þf ; 4þg Þ ¼ i
½34�3½45�

½12�½23�½34�½45�½51� ;
(3.18)

in agreement with results of [22].
A further check is the derivation of a four-fermion

amplitude ð5�f1 ; 1�f2 ; 2þf1 ; 3�g ; 4þf2Þ, where f1 and f2 denote

fermions belonging to two different N ¼ 1 supermultip-
lets. Similar manipulations lead to the result

A ð5�f1 ; 1�f2 ; 2þf1 ; 3�g ; 4þf2Þ ¼ i
½45�½12�½24�2

½12�½23�½34�½45�½51� ;
(3.19)

in agreement with results of [29].

IV. PROOF OF TREE-LEVEL COVARIANCE

In this section we wish to use a supersymmetric general-
ization of the BCF recursion relations [17,18] to show that
the tree-level S matrix of N ¼ 4 SYM is covariant under
dual superconformal transformations. Here we will focus
on the dual inversions of the dual superconformal group.

As explained earlier, it is most convenient to combine all
amplitudes of a fixed total helicity and fixed number of
external lines with the help of the dual superspace into one
superamplitude, which is a natural generalization of Nair’s
MHV superamplitude (1.1). It is this superamplitude that
we expect to transform uniformly, while the component
amplitudes usually do not have simple transformation
properties under inversions except for the split-helicity
amplitudes [1].
Now assuming that all superamplitudes with up to n

external legs transform covariantly, we wish to use super-
space generalizations of BCF recursion relations to show
that all superamplitudes with nþ 1 legs also transform
covariantly, and hence, by induction, that all superampli-
tudes with arbitrary numbers of external legs transform
covariantly. We will achieve this by showing in the follow-
ing that actually each diagram in the recursion relation has
the correct covariant transformation behavior, inherited
from the transformation properties of the two subampli-
tudes entering the recursion diagram, the propagator, and
the bosonic and fermionic delta functions.
While the transformations of the region momenta xi’s

are unique, there is a normalization ambiguity in the defi-
nition of inversions of the spinor variables �i’s. In [1] the
transformations of the spinors under a conformal inversion

were chosen to be ��
i ! ðx�1

i Þ _���
�
i . In the proof of super-

conformal covariance of tree-level amplitudes constructed
using BCF recursion relations, it is however more useful to
keep the transformation of �i more general and fix the
normalizations later. We therefore consider the transforma-
tion

��
i ! x _��

i �i;�

	i

; (4.1)

and keep 	i arbitrary and local (i.e. they can have different

values, e.g. x2i , x
2
iþ1, or

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2i x

2
iþ1

q
for different points i)

although as we will see, we will be forced to fix the factors
	i and 	iþ1 of the shifted momenta. In order to complete
the proof, we consider the transformation properties of
amplitudes under this more general transformation.
By considering the explicit expression for the tree-level

MHV superamplitude (1.1), one sees that it transforms as

AMHVð1; 2; . . . ; nÞ ! AMHVð1; 2; . . . ; nÞ
Yn
k¼1

	2
k

x2k
: (4.2)

Now we wish to show recursively that in fact all tree-level
superamplitudes transform in this way under dual confor-
mal inversions.
Consider building a superamplitude recursively from

two superamplitudes with fewer legs, both of which trans-
form like the MHV amplitude above under (4.1) (see
Fig. 3),
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ALðjþ 1; jþ 2; . . . ; î; P̂Þ ! 	2
jþ1 . . .	

2
i�1	̂

2
i 	̂

2
P

x2jþ1 . . . x
2
i x̂

2
iþ1

�ALðjþ 1; jþ 2; . . . ; î; P̂Þ;
(4.3)

ARð diþ 1; iþ 2; . . . ; j;�P̂Þ ! 	̂2
iþ1	

2
iþ2 . . .	

2
j 	̂

2
P

x̂2iþ1x
2
iþ2 . . . x

2
jþ1

�ARð diþ 1; iþ 2; . . . ;

j;�P̂Þ: (4.4)

In the recursion we will make use of the shift denoted by
½iiþ 1i, i.e.

~̂� i ¼ ~�i þ z~�iþ1; �̂iþ1 ¼ �iþ1 � z�i; (4.5)

with all other spinors unchanged.
A couple of comments are in order before we proceed.

First of all, consider the spinor variables �P̂ and ~�P̂ of the

internal on-shell leg P̂. If we use the DHKS transformation
of �i and do not introduce 	i, then from the point of view
ofAL the spinor �P̂ would transform under inversions into
x̂iþ1�P̂=ðx̂iþ1Þ2, and from the point of view AR into
xjþ1�P̂=ðxjþ1Þ2, which are not compatible. This is why

we have introduced an arbitrary factor into the � trans-
formations. For the spinor �P̂ we have

��
P̂
! x̂ _��

iþ1�P̂;�

	̂P

¼ x _��
jþ1�P̂;�

	̂P

: (4.6)

Secondly, the two superamplitudes AL and AR above
depend on unshifted momenta but also on the shifted

momenta p̂i, p̂iþ1, and P̂. By assumption these amplitudes
are covariant under inversions of the corresponding sets of
shifted and unshifted momenta using the assignments of

region momenta in Fig. 3. On the other hand, every recur-
sive diagram depends only on unhatted quantities due to
the fact that hatted quantities depend via z only on unhatted
quantities. To be more specific, z for the recursive diagram
given above has to be set to the solution of the equation

ðP� z�i
~�iþ1Þ2 ¼ 0; (4.7)

which is zP ¼ P2=½iþ 1jPjii, where P ¼ PR :¼Pj
l¼iþ1 pl. It can easily be checked that the two seemingly

different definitions of the transformations of hatted quan-
tities as defined above and as inherited from the unhatted
quantities, combined with the appropriate transformation
of z ¼ zP, are actually identical. For the purpose of the
proof it is more convenient to work with the inversions of
hatted quantities as defined above, hence we will use those
in what follows, but the reader should keep in mind that
this is completely equivalent to performing all transforma-
tions on unhatted quantities.
An important fact to note at this point is that, whereas so

far we have kept the 	i arbitrary, the ½iiþ 1i shift in fact
fixes the transformation under inversions of �i and �iþ1. To

see this, note that �̂i ¼ �i and so the transformation �̂�
i !

x _��
i �̂i;�=	̂i must be consistent with ��

i ! x _��
i �i;�=	i

under inversions, requiring 	̂i ¼ 	i. A more complicated
consistency condition comes from considering the trans-

formation of �̂�
iþ1 and comparing with the transformation

of �iþ1 � z�i. Here the factors 	 will in general be func-
tions of the region momenta x and so the shifted factors 	̂
are simply the same function of the shifted region momenta
x̂. One solution of these conditions is

	i ¼ x2i 	iþ1 ¼ x2iþ1;) 	̂i ¼ x2i 	̂iþ1 ¼ x̂2iþ1;

(4.8)

which we assume from now on.
Now, in order to use an inductive proof on the number of

legs, we consider the contribution to the superamplitude
given by the recursive diagram in Fig. 3,

Z d4P

P2

Z
d4�P̂�

ð4ÞðPL þ PÞ�ð8Þð�̂L þ �P̂�P̂Þ
� �ð4ÞðPR � PÞ�ð8Þð�̂R � �P̂�P̂ÞALAR

¼ �ð4ÞðPL þ PRÞ�ð8Þð�L þ�RÞ 1

P2
L

�ð4Þðh�P̂�̂
A
LiÞALAR;

(4.9)

where we have defined amplitudes with momentum con-
servation and supermomentum conservation delta func-
tions removed as AL;R,

A ¼ �ð4Þ
�X

k

pk

�
�ð8Þ

�X
k

�k�k

�
A: (4.10)

We have also introduced the shorthand notation �L :¼P
i
l¼jþ1 �l�l, �̂L :¼ P

î
l¼jþ1 �l�l, and PL :¼ P

i
l¼jþ1 �l

~�l

FIG. 3 (color online). Generic recursion diagram used in the
proof of covariance.
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as usual. Similarly, we have defined �R :¼Pj
l¼iþ1�l�l¼

��L, �̂R :¼Pj

l¼ciþ1
�l�l¼��̂L, and PR :¼Pj

l¼iþ1�l
~�l¼

�PL. Notice also that �̂L ¼ �̂iþ1 � �jþ1. Finally, we ob-

serve that in the last line of (4.9), �P̂ appearing inside AL

and AR should be thought of as the solution of the equation

�̂L þ �P̂�P̂ ¼ 0.
Using (4.6) and the standard transformations (1.4) and

(1.8) of the xi and the �i under inversions, we find

1

P2
¼ 1

ðxiþ1 � xjþ1Þ2
! x2iþ1x

2
jþ1

1

P2
; (4.11)

�ð4Þðh�P̂�̂
A
LiÞ ! 1

	̂4
P

�ð4Þðh�P̂�̂
A
LiÞ; (4.12)

and, hence, together with (4.3) and (4.4) we infer that the
recursive diagram in Fig. 3 transforms with weight

x2iþ1x
2
jþ1

1

	̂4
P

	2
jþ1 . . .	

2
i�1	̂

2
i 	̂

2
P

x2jþ1 . . . x
2
i x̂

2
iþ1

	̂2
iþ1	

2
iþ2 . . .	

2
j 	̂

2
P

x̂2iþ1x
2
iþ2 . . . x

2
jþ1

¼ Yn
k¼1

	2
k

x2k

	̂2
i 	̂

2
iþ1

	2
i 	

2
iþ1

ðxiþ1Þ4
ðx̂iþ1Þ4

¼ Yn
k¼1

	2
k

x2k
; (4.13)

as required. The last equality follows directly from the
values of 	i, 	iþ1, and 	̂iþ1 given in (4.8).

In the analysis of the covariance properties of a generic
tree amplitude using recursion relations, we may encounter
diagrams where either AL or AR is the three-point anti-
MHV amplitude given in (2.12). This class of diagrams is
somewhat special since (2.12) does not contain the stan-
dard supermomentum conservation delta function.
However, we have shown in (2.17) that (2.12) transforms
in the correct way under dual superconformal symmetry,
hence recursive diagrams involving a three-point anti-
MHV amplitude are in fact not special from the point of
view of the covariance properties. For completeness, we
discuss now how a generic diagram in this class transforms
under conformal inversions.

Let AR then be the three-point anti-MHV amplitude.
Then the generic recursive diagram in this class is of the
form

Z d4P

P2

Z
d4�P̂�

ð4ÞðPL þ PÞ�ð8Þð�̂L þ �P̂�P̂Þ
�AL � �ð4ÞðPR � PÞ

� �ð4Þð�P̂½ diþ 1j� þ �iþ1½j� P̂� þ �j½�P̂ diþ 1�Þ
½ diþ 1j�½j� P̂�½�P̂ diþ 1�

¼ �ð4ÞðPL þ PRÞ�ð8Þð�L þ�RÞ

� 1

P2
AL

½ diþ 1j�3
½j� P̂�½�P̂ diþ 1�

; (4.14)

where j ¼ iþ 2 since we are dealing with a three-point

amplitude on the right. Now the conjugate spinors trans-
form as

~� k; _� ! � 	k

x2kx
2
kþ1

xk; _�� ~�
_�
k (4.15)

under inversions (for consistency with the transformation

of pk ¼ �k
~�k), hence the square brackets transform as

½kkþ 1� ! 	k	kþ1

x2kx
2
kþ1x

2
kþ2

½kkþ 1�: (4.16)

We then find that the diagram transforms with weight

x2iþ1x
2
jþ1

	2
jþ1 . . .	

2
i�1	̂

2
i 	̂

2
P

x2jþ1 . . . x
2
i x̂

2
iþ1

	̂2
iþ1	

2
j

	̂2
Px̂

2
iþ1x

2
jx

2
jþ1

¼ Yn
k¼1

	2
k

x2k

(4.17)

[using (4.8)], precisely as required.
In conclusion, we have found that each recursive dia-

gram with shifts ½iiþ 1i contributing to a generic super-
amplitude transforms covariantly under dual conformal
inversions once we assume that AL and AR transform
as superamplitudes. From this, and from the arbitrariness
of the choice of the legs i and iþ 1, we conclude by
induction that all tree-level superamplitudes in N ¼ 4
SYM transform covariantly as the MHV amplitudes, i.e.
as in (4.2).
Note that in the conventions of [1] we would have to set

	k ¼ x2k for all k, and the last line of (4.13) would become

just

Yn
k¼1

x2k; (4.18)

which shows that this recursive diagram and hence the
whole amplitude transforms uniformly with weight 1 under
inversions.

V. COVARIANCE OF THE COEFFICIENTS OF
ONE-LOOP AMPLITUDES

In this section we discuss how generic one-loop ampli-
tudes inN ¼ 4 SYM inherit the transformation properties
under dual superconformal symmetry from the tree-level
amplitudes. It is a well-known fact that all one-loop am-
plitudes in N ¼ 4 SYM can be expanded in a basis of
integral functions which consists only of so-called one-
loop scalar boxes, with coefficients that are rational func-
tions of the kinematic variables [11]. We will show in the
following that the coefficients of the expansion11 of an
arbitrary N ¼ 4 SYM superamplitude in terms of box
functions are given by conformally covariant functions
which transform in the same way as the corresponding
tree-level superamplitude.

11The precise definition of the basis will be given shortly.
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This claim is motivated by the special form of the
coefficients in the expansion of the split-helicity gluonic
amplitudes at one loop calculated in [31,32]. Inspection of
the results of these papers shows that these coefficients are
covariant under conformal inversions, as they are made of
spinor brackets consisting of strings of spinors always
belonging to adjacent legs. Another simple example is
provided by the infinite sequence of one-loop MHV super-
amplitudes in N ¼ 4 SYM. This superamplitude was
calculated in [11], and rederived in [33] using N ¼ 4
supersymmetric MHV diagrams, and is written as a sum
of two-mass easy box functions, all with the same coeffi-
cient.12 This coefficient is equal to the tree-level MHV
superamplitude, which is of course covariant.

Before we proceed, it is important to make a comment
on the basis of integral functions that we expand in. The
natural basis to consider in the context of dual conformal
symmetry is that given by the so-called scalar box func-
tions Fi, which are (pseudo)conformally invariant [23],
and are related to the more standard scalar box integrals
Ii by a kinematic prefactor [11]. The external momenta at
the four corners of a given box function,K1,K2,K3, andK4

(see Fig. 4), are in general sums of momenta pi of external
particles of the n-point amplitude under consideration.
Alternatively, the momenta K1...4 can be expressed in terms
of the region momenta x1...4 as in Fig. 4, e.g. K1 ¼ x12,
where xij :¼ xi � xj. Then, up to a numerical constant, the

relation between the F’s and the I’s is13

Ii ¼ Fiffiffiffiffiffi
Ri

p ;

Ri ¼ ðx213x224Þ2 � 2x213x
2
24x

2
12x

2
34 � 2x213x

2
24x

2
23x

2
41

þ ðx212x234 � x223x
2
41Þ2: (5.1)

It will be useful for later to quote here the transformation of
the kinematic factor

ffiffiffiffiffi
Ri

p
under dual conformal inversions:

ffiffiffiffiffi
Ri

p !
ffiffiffiffiffi
Ri

p
x21x

2
2x

2
3x

2
4

: (5.2)

Obviously we can expand the amplitude in either basis. We
write (schematically)

A1-loop ¼
X

BiIi ¼
X

~BiFi: (5.3)

We will show that it is the supersymmetric generalization

of the coefficients ~Bi ¼ Bi=
ffiffiffiffiffi
Ri

p
that have uniform cova-

riant transformation properties under dual superconformal

transformations just as the corresponding tree-level ampli-
tudes, while the Bi have mixed transformation properties.
In order to prove this statement, we now discuss in more

detail quadruple cuts of one-loop amplitudes. As men-
tioned above, all one-loop amplitudes in N ¼ 4 SYM
are expressed in terms of box functions only [11] and their
coefficients can be calculated most efficiently with qua-
druple cuts [25]. This technique allows one to calculate the
coefficients of the box functions one by one, and the
problem of finding general one-loop amplitudes in N ¼
4 SYM is reduced to a purely algebraic one, as the coef-
ficients turn out to be given by products of four tree-level
amplitudes. Importantly, quadruple cuts freeze the one-
loop integration completely and, hence, one can stay in
four dimensions, without introducing any regularization.
A generic quadruple cut box is of the form

Z
d4l�ðþÞðl2Þ�ðþÞððl� K1Þ2Þ�ðþÞððl� K1 � K2Þ2Þ

� �ðþÞððlþ K4Þ2Þ; (5.4)

or, reexpressing it in terms of the region momenta in Fig. 4,

Z
d4x5�

ðþÞðx251Þ�ðþÞðx252Þ�ðþÞðx253Þ�ðþÞðx254Þ: (5.5)

Under conformal inversions, the delta functions transform
in the same way as ordinary propagators, except for the
sign of the energy component, which is flipped, so that

�ðþÞððx� yÞ2Þ ! x2y2�ð�Þððx� yÞ2Þ. Therefore,

FIG. 4 (color online). Quadruple cut of a one-loop superam-
plitude in N ¼ 4 SYM. The four blobs represent tree-level
N ¼ 4 superamplitudes. The K1...4 correspond to sums of
momenta pi of the external particles.

12An explanation of why these box functions appear all with the
same coefficient—equal to 1, if one factors out the tree ampli-
tude—was given in terms of the Wilson loop/MHV amplitudes
duality in [6].
13In (5.1) we use a collective index i to denote the box function
with external momenta K1...4, as in Fig. 4.
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Z
d4x5�

ðþÞðx251Þ�ðþÞðx252Þ�ðþÞðx253Þ�ðþÞðx254Þ

! ðx21x22x23x24Þ
Z

d4x5�
ð�Þðx251Þ�ð�Þðx252Þ�ð�Þðx253Þ

� �ð�Þðx254Þ: (5.6)

Furthermore, the quadruple cut of the corresponding scalar
box function F is invariant under dual conformal
inversions.

The coefficient of the scalar box integral I appearing in
the expansion of the amplitude is then evaluated as [25]

B ¼ 1

nS

X
S;J

nJðA1A2A3A4Þ; (5.7)

where nS is the number of solutions S to the cut condition,

and the sum is extended to particles of all spin J in the
N ¼ 4 theory which can run in the loop. nJ is the number
of particles of spin J. Ai, i ¼ 1; . . . ; 4, are the four tree-
level amplitudes at the four corners of the quadruple cut, as
in Fig. 4.
In order to show in full generality that the coefficients of

the one-loop superamplitudes in N ¼ 4 SYM are dual
superconformal covariant, we have to generalize (5.7) in a
supersymmetric way by lifting the amplitudes to super-
amplitudes, and introducing the appropriate fermionic
delta functions which impose supermomentum conserva-
tion at the four corners of the diagram in Fig. 4. This
procedure will also lift the coefficient B in (5.7) to an
appropriate supercoefficient. Doing this, we get the follow-
ing expression for the quadruple cut,14 which implicitly
defines the supercoefficient B:

�ð4Þ
�X4
i¼1

Ki

�
�ð8Þ

�X4
i¼1

�i

�
B :¼ �ð4Þ

�X4
i¼1

Ki

�
1

nS

X
S

Z Y4
i¼1

d4�li�
ð8Þð�l2�l2 � �l1�l1 þ �12Þ�ð8Þð�l3�l3 � �l2�l2

þ �23Þ�ð8Þð�l4�l4 � �l3�l3 þ �34Þ�ð8Þð�l1�l1 � �l4�l4 þ �41ÞA1A2A3A4; (5.8)

where, as previously, Ai are the relevant superamplitudes with the momentum and supermomentum delta functions
removed.15 The cut loop momenta are defined as li :¼ �li

~�li , i ¼ 1; . . . ; 4, and we set �ij :¼ �i � �j. We have also defined
�i :¼

P
i2Ki

�i�i.
Next, we replace one of the fermionic delta functions with an overall supermomentum conservation delta function, and

then perform the �l1 , �l4 integrations to get

�ð4Þ
�X4
i¼1

Ki

�
�ð8Þ

�X4
i¼1

�i

�
1

nS

X
S

Z Y4
i¼1

d4�li�
ð8Þð�l2�l2 � �l1�l1 þ �12Þ�ð8Þð�l3�l3 � �l2�l2 þ �23Þ

� �ð8Þð�l4�l4 � �l3�l3 þ �34ÞA1A2A3A4

¼ �ð4Þ
�X4
i¼1

Ki

�
�ð8Þ

�X4
i¼1

�i

�
1

nS

X
S

Z
d4�l2d

4�l3�
ð4Þðhl1�A15iÞ�ð4Þðhl4�A45iÞ�ð8Þð�l3�l3 � �l2�l2 þ �23ÞA1A2A3A4

¼ �ð4Þ
�X4
i¼1

Ki

�
�ð8Þ

�X4
i¼1

�i

�
1

nS

X
S

�ð4Þðhl1�A15iÞ�ð4Þðhl4�A45iÞhl2l3i4A1A2A3A4: (5.9)

We now consider the transformation of this expression
under inversions. As in the proof of tree-level covariance
presented earlier, we make use of the more general form of
the transformations involving unspecified parameters 	i

[see (4.1)].16

Under dual conformal inversions, the various quantities
in (5.9) transform as

16Note however that no hatted quantities appear here, unlike the
case of the recursion relation in Sec. IV.

14An equivalent supersymmetric extension of the quadruple
cuts has been introduced in [34]. There it was used to calculate
explicitly supercoefficients of NMHV one-loop amplitudes and
four-mass box coefficients of next-to-next-to-MHV one-loop
amplitudes, and, furthermore, it was checked that these super-
coefficients are covariant under dual superconformal
15In (5.8) we consider the case where each of the four tree
superamplitudes provides an eight-dimensional delta function of
supermomentum conservation. The case where some of the tree
amplitudes are three-point MHV superamplitudes requires a
special treatment, similar to that presented in (4.14) in the proof
of covariance of the tree-level recursion relation.
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�ð4Þðhl1�A15iÞ !
�
1

	l1

�
4
�ð4Þðhl1�A15iÞ; �ð4Þðhl4�A45iÞ !

�
1

	l4

�
4
�ð4Þðhl4�A45iÞ; hl2l3i !

�
x25

	l2	l3

�
hl2l3i;

A1 !
	2
4	

2
l1
	2
l4

x21x
2
4x

2
5

A1; A2 !
	2
1	

2
l1
	2
l2

x21x
2
2x

2
5

A2; A3 !
	2
2	

2
l2
	2
l3

x22x
2
3x

2
5

A3; A4 !
	2
3	

2
l3
	2
l4

x23x
2
4x

2
5

A4:

(5.10)

For the sake of brevity, in writing the transformations of
A1...4 we have included only the dependence on the trans-
formation of the region momenta x1...5 because all other
region momenta are just spectators in this diagram—any
transformation properties with respect to them are directly
inherited from the superamplitudes entering the quadruple
cut.

Inserting the transformations (5.10) into (5.9), we see
that the corresponding (super)coefficient B transforms as

B ! B
	2
1	

2
2	

2
3	

2
4

x41x
4
2x

4
3x

4
4

: (5.11)

For any of the standard choices of the 	’s, the ratio in (5.11)
would give 1, and the coefficientBwould then be invariant
with respect to the transformation of the region momenta
x1...4.

The Bi’s are the coefficients relevant for the expansion
in the scalar box integrals Ii basis, which the quadruple cut
actually calculates. As mentioned earlier, from the point of
view of dual conformal symmetry it is more natural to
consider the transformation properties of the coefficients
~B ¼ B=

ffiffiffiffi
R

p
of the expansion in terms of scalar box func-

tions Fi. The transformation of these coefficients is imme-
diately obtained using (5.2) and (5.11),

~B ! ~B
	2
1	

2
2	

2
3	

2
4

x21x
2
2x

2
3x

2
4

; (5.12)

which, upon making the standard choice for the 	i, be-

comes ~B ! ~Bx21x
2
2x

2
3x

2
4. Reinstating the transformation

properties of the spectator region momenta, (5.12) shows

that the supercoefficients ~B of the expansion of the super-
amplitude in terms of the scalar box functions F’s trans-
form covariantly under dual inversions just as the tree-level
superamplitudes, i.e.

~B ! ~B
Yn
i¼1

	2
i

x2i
: (5.13)

We would like to conclude with a few comments.

(1) By performing four-dimensional quadruple cuts we
have bypassed the problem of dimensionally regu-
larizing the theory (thus breaking conformal invari-
ance). It is only when the cut box is lifted to a full
D-dimensional integral box function that infrared
divergences appear (and therefore need to be regu-
lated). However, for the sake of determining the
transformation properties of the coefficients of the

box functions, one can remain in four dimensions.
The MHVanomaly of [1] is of course hiding inside
the anomalous transformation properties under dual
conformal transformations of the D-dimensional
box functions.

(2) It is amusing to note that the covariance of the
integral coefficients of the one-loop amplitudes pro-
vides also an alternative proof that all tree-level
superamplitudes with arbitrary total helicity are
dual superconformal covariant. This is a simple
consequence of the observation that the universal
structure of infrared divergences of one-loop ampli-
tudes

A 1-loopjIR �Atree

Xn
i¼1

ð�si;iþ1Þ��

�2
; (5.14)

can be used to extract recursive expressions for tree
amplitudes (see [17,32]). A straightforward general-
ization of this argument to superamplitudes implies
that Atree is a linear combination of supercoeffi-

cients ~B which we just have shown to transform
covariantly. Notice that the only input needed for
this alternative proof of tree-level covariance is the
knowledge that the three-point MHVand MHV tree
superamplitudes are covariant. Furthermore, it is not
necessary to know the large-z behavior of the
superamplitudes.

(3) Finally, we compare the remarks of this section to
the approach followed by DHKS in [1]. There, it has
been conjectured that a generic n-point amplitude in
N ¼ 4 SYM can be written by factoring out the
corresponding n-point MHV amplitude, as [1]

A n ¼ An;MHVR; (5.15)

where R is dual superconformal invariant to all
loops. In the approach outlined here, we have re-
stricted ourselves to proving the superconformal
covariance of coefficients of the expansion of a
generic one-loop amplitude in terms of box func-
tions, without separating explicitly the (anomalous)
MHV superamplitude. It would be interesting to see
how this approach may provide a link between the
superconformal invariance of the amplitudes as dis-
cussed in [1], and the conformal properties of the
integral functions [23] appearing in the expansion of
generic amplitudes in N ¼ 4 SYM.
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