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In the holographic model of QCD, � dependence sharply changes at the point of confinement-

deconfinement phase transition. In large N QCD such a change in � behavior can be related to the

breakdown of the instanton expansion at some critical temperature Tc. Associating this temperature with

confinement-deconfinement phase transition leads to the description of the latter in terms of dissociation

of instantons into the fractionally charged instanton quarks. To elucidate this picture, we introduce the

nonvanishing chiral condensate in the deconfining phase and assume a specific Lagrangian for the �0 field
in the confining phase. In the resulting picture the high-temperature phase of the theory consists of the

dilute gas of instantons, while the low-temperature phase is described in terms of freely moving fractional

instanton quarks.
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I. INTRODUCTION

Color confinement, spontaneous breaking of chiral sym-
metry, theUð1Þ problem, and the � dependence are some of
the most interesting questions in QCD. At the end of the
1970’s, A.M. Polyakov [1] demonstrated charge confine-
ment in QED3. This was the first example where nontrivial
dynamics was shown to be a key ingredient for confine-
ment: Instantons (monopoles in 3d) play a crucial role in
the dynamics of confinement in QED3. Instantons in four-
dimensional QCD were discovered more than 30 years ago
[2]. However, their role in QCD4 is still not well under-
stood due to the divergence of the instanton density for
large size instantons in the confining phase. Soon after, ’t
Hooft and Mandelstam [3] suggested a qualitative picture
of how confinement could occur inQCD4. The key point in
the ’t Hooft-Mandelstam approach is the assumption that
dynamical monopoles exist and Bose condense. Many
papers have been written on this subject since the original
formulation [3]; however, the main questions, such as
‘‘What are these monopoles?’’; ‘‘How do they appear in
the gauge theories without Higgs fields?’’; ‘‘How do they
interact?’’; and ‘‘ What is the relation (if any) between the
’t Hooft-Mandelstam monopoles and instantons?’’ are still
not understood (for a review see [4]).

We reconsider these issues from a slightly different
angle by analyzing phase transitions as a function of tem-
perature T at nonzero � parameter. We study the evolution
of the most important field configurations as the phase
transition line is crossed. Indeed, understanding � depen-
dence gives a very good idea about the dynamics of the
most important color fluctuations with nontrivial topology.
On the other hand, we will see that � dependence can be
studied using an effective Lagrangian approach with color
singlet degrees of freedom.

The main result of our work can be formulated as
follows. In the holographic model of QCD [5,6]
confinement-deconfinement phase transition happens pre-
cisely at the value of temperature T ¼ Tc where � depen-
dence experiences a sudden change in behavior from �=N
in the low-temperature (confining) phase to e�N cos� in the
high-temperature (deconfining) phase [7]. Consider now
QCD with a large number of colors N. For very high
temperatures T � Tc ��QCD the typical size of instan-

tons is very small and the instanton gas is dilute with
density of order e�N . Calculations in this region are under
complete field theoretic control and the vacuum energy
behaves like e�N cos�. As the temperature is lowered to be
of order Tc the average instanton grows in size and the
perturbative expansion around the instanton field configu-
ration becomes unreliable. However, we argue, based on
some reasonable assumptions, that in the large N limit the
average distance between the instantons remains much
larger then the instanton size all the way down to the
critical value of temperature T ¼ Tc. Below Tc the instan-
ton expansion breaks down and a consistent field theoretic
calculation with nonoverlapping instantons is no longer
possible. It is then natural to assume that at T ¼ Tc there
is a sharp transition in � behavior, which can be associated
with confinement-deconfinement transition, just as in the
holographic model. The value of Tc can be estimated by a
one-instanton calculation.
To elucidate the physics of the transition we consider a

model where the chiral condensate does not vanish in the
deconfining phase. The holographic model of QCD is a
good example where this phenomenon occurs. On the field
theoretic side this can be achieved by coupling fundamen-
tal matter to the hidden gauge group whose dynamically
generated energy scale is higher than that of QCD. In the
presence of nonvanishing chiral condensate, its phase ’
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(which can be canonically normalized to yield �0) is a
perfect probe of the topological charges of the constituents
on both sides of the phase transition line. This is a con-
sequence of uniqueness of the �0 meson: it always enters
the system in combination (�� ’) irrespectively, whether
it is in the confining or the deconfining phase. One should
remark here that our results do not really depend on the
value of Nf as long as Nf � N.

The plan of the paper is as follows. We start in Sec. II by
reviewing recent work on the holographic model of QCD
where we note that � behavior sharply changes at the point
of confinement-deconfinement phase transition. We return
from the holographic model to quantum field theory in
Sec. III where we argue that instanton expansion breaks
down sharply at some critical temperature Tc and estimate
its value in terms of�QCD. Sections IVand Vare devoted to

the physical interpretation of the phase transition. Here we
attempt to answer the following question: what happens to
the well-defined objects (instantons) as the phase transition
line at T ¼ Tc is crossed from above. We assume a certain
Lagrangian for the low-temperature phase and show that
under this assumption, instantons do not completely dis-
appear from the system but rather dissociate into the in-
stanton quarks,1 the objects with fractional topological
charges�1=N which become the dominant quasiparticles.
At nonzero temperatures T < Tc, the instanton quarks
carry, along with fractional topological charges, the frac-
tional magnetic charges which makes them the perfect
candidates to serve as the dynamical magnetic monopoles,
the crucial element of the standard ’t Hooft, and the
Mandelstam picture for the confinement [3]; see the end
of Sec. V for details. In Sec. VI we formulate our main
results and discuss future directions.

II. HOLOGRAPHIC MODEL OF QCD

In this section we consider physics of the holographic
model of large N QCD with Nf � N flavors [5,6]. This

section is the review of previous work; our main point here
is the observation that � dependence changes once we go
from the confining to the deconfining phase. The holo-
graphic model of QCD is realized by placing Nf D8�
�D8 pairs in the background created by N D4 branes. In the
weak coupling regime the D4 branes span x0 . . . x4 coor-
dinates, while D8� �D8 branes are pointlike in the x4

direction and span the rest of spacetime. One of the direc-

tions (denoted by x4 below) along the D4 branes is com-
pactified on a circle of radius R4 (which sets the scale of the
glueball masses) with antiperiodic boundary conditions for
fermions. The value of the asymptotic separation between
the D8 and �D8 branes, denoted by L, is a parameter of the
brane construction along with R4, N, Nf and string cou-

pling and length gs and ls (which will be set to unity in the
rest of the paper). It will be convenient to introduce the
five-dimensional t’Hooft coupling �5 ¼ gsNls and its
four-dimensional counterpart defined at the Kaluza-Klein
scale �4 ¼ �5=R4. In the limit �4 � 1,�QCD � 1=R4 and

hence the theory approximates QCD pretty well. String
theory is solvable in the opposite regime, �4 � 1, where
there is no clear separation between the QCD scale and the
supergravity/Dirac-Born-Infeld dynamics. It is this regime
that we consider below, in the hope of drawing some
qualitative lessons.
For �4 � 1 the rules of gauge/string duality [10–12]

instruct us to pass to the metric which is the product of the
D4 branes backreaction:

ds2 ¼
�
U

R

�
3=2ððdx�Þ2 þ fðUÞðdx4Þ2Þ

þ
�
U

R

��ð3=2Þ�dU2

fðUÞ þU2d�2
4

�
; (1)

where fðUÞ ¼ 1�U3
K=U

3 and the U coordinate is
bounded from below by UK. The ðU; x4Þ are the analogs
of polar coordinates on the plane, which is ensured by the
relation

2�R4 ¼ 4�

3

�
R3

UK

�
1=2 ¼ 4�

3

�
��5

UK

�
1=2

; (2)

where in the second equality we used the relation between
the t’Hooft coupling and the curvature scale of the space
(1).
As explained in [13], the inclusion of the � angle in this

model corresponds to having a nonvanishing integral of the
Ramond-Ramond one-form over the x4 circle

Z
S1
C1 ¼

Z
D
F2 ¼ �mod2�k; F2 ¼ dC1; (3)

where k is an integer number and the integral is over the S1

parametrized by x4 2 ½0; 2�R4�. In the first equality we
used the fact that the ðU; x4Þ space has the disk topology
and Stokes theorem. One can solve the equation of motion
for F2 without taking backreaction into account (which is
justified as long as Nf � N) and substitute into the action;

the result for the vacuum energy at small � is [13]

Evac �
�g

2
�2; (4)

where �g �Oð1Þ is the topological susceptibility. The

addition of fundamental matter results [6] in the effective
Lagrangian consistent with Veneziano-Witten formula for

1Instanton quarks originally appeared in 2d models. Namely,
using an exact accounting and resummation of the n-instanton
solutions in 2d, CPN�1 models, the original problem of a
statistical instanton ensemble was mapped unto a 2d-Coulomb
gas (CG) system of pseudoparticles with fractional topological
charges �1=N [8]. This picture leads to the elegant explanation
of the confinement phase and other important properties of the
2d, CPN�1 models [8]. Unfortunately, similar calculations in 4d
gauge theories are proven to be much more difficult to carry out
[9].
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the �0 mass2:

L eff ¼ 1

2
ð@��0Þ2 þ N2

2
�g

�
�

N
þ 1

N

�0

f�0

�
2
; (5)

where we included some numerical factors such as
ffiffiffi
2

p
andffiffiffiffiffiffi

Nf

p
into the definition of f�0 to simplify notations in the

following sections. This result is not significantly changed
when the finite temperature is introduced, as long as the
theory is in the confining phase and the topology of the
space remains the same. Equation (4) is consistent with the
fact that in the confining phase physics is expected to
depend on � via the combination �=N [13],

Evac ¼ N2min
k
h

�
�þ 2�k

N

�
; (6)

where hðxÞ is some function which satisfies hð0Þ ¼
h0ð0Þ ¼ 0. Equation (6) can also be understood from the
quantum field theory viewpoint for finite N as a result of
summation over different branches in pure SUðNÞ gluody-
namics, see Sec. III of Ref. [18] where connection with
approach [13] is discussed.

As we will see below, instantons are not well-defined
objects in this phase. Indeed, this would contradict �=N
dependence since each instanton comes with an integer
multiple of �. In the holographic model this is resolved by
identifying instantons with Euclidean D0 branes wrapping
around the x4 direction which tend to shrink to zero size
and disappear [7].

At finite temperature the model exhibits confinement/
deconfinement and chiral phase transitions [19,20]. Two
possible metrics with Euclidean time tE compactified on a
circle with circumference � are (1) and its double analytic
continuation,

ds2 ¼
�
U

R

�
3=2ððdxiÞ2 þ fTðUÞdt2E þ ðdx4Þ2Þ

þ
�
U

R

��ð3=2Þ� dU2

fTðUÞ þU2d�2
4

�
; (7)

where fT ¼ 1�U3
T=U

3 and � ¼ 4�
3 ðR3

UK
Þ1=2. Since the two

metrics are the same, the comparison of the free energies is
simple: as soon as UT > UK the black hole metric (7)
becomes preferred. This corresponds to confinement/de-
confinement transition at T ¼ 1=2�R4. The Polyakov
loop, which is the order parameter for confinement, van-
ishes in the confining phase (1) and has a nonvanishing
value in the deconfining phase (7). In the deconfining phase
the x4 circle does not shrink to zero size and Stokes
theorem makes it possible to have vanishing F2, which
minimizes the energy [7]. That is, in this phase it is
possible to have

C1 ¼ �

2�
dx4: (8)

This leads to �g ¼ 0 to order N0; this is also consistent

with the fact that instantons are well-defined objects in this
phase and come with the factor of ein�. In the holographic
model this is again a consequence of the topology in the
deconfined phase, where the D0 brane wrapping the x4

circle cannot shrink to zero size and disappear. The factor
of ein� in the D0 brane action follows from (8). Hence, we
observe that the � dependence is different in the confining
and deconfining phases.Wewill also see that such a change
in the behavior is also supported by analyzing instantons in
field theory, see the next sections.
Another comment we would like to make is the exis-

tence of the phase where the glue is deconfined but chiral
symmetry is broken. While it is not necessarily true that
such a phase exists in QCD (after all, the holographic
model contains two variable parameters, as opposed to
�QCD), we discuss a field theoretic model with this prop-

erty to illuminate the topological charges of the relevant
constituents in the confining (Sec. V) and the deconfining
phases (Sec. IV).

III. LARGE N QCD AT T > Tc

In this section we estimate the value of Tc where the
instanton expansion breaks down and the � dependence
presumably experiences a sharp change. In the regime T >
Tc the � dependence is determined by the dilute instanton
gas approximation (see below for the discussion of the
assumptions that are necessary for this statement to
hold). Applicability of the instanton expansion (small den-
sity) implies that the � parameter enters partition function
in a very simple way � expð�i�Þ. The instanton contribu-
tion to the �0 mass � expð��ðTÞNÞ is exponentially sup-
pressed for any small (but finite) positive � > 0. In
contrast: at arbitrary small and negative � < 0 the instan-
ton expansion obviously breaks down. The � behavior
presumably drastically changes at Tc determined by

�ðT ¼ TcÞ ¼ 0 ) Tc ¼ c�QCD: (9)

A. Instantons at T > Tc with h0j �c c j0i � 0

In the following we will be interested in the instanton
density in the dilute gas regime at T > Tc. We assume that
the nonvanishing chiral condensate h0j �c c j0i � 0 exists in
this region.
The instanton-induced effective action for Nf massless

fermions can be easily constructed. In particular, for Nf ¼
2 flavors, u, d the corresponding expression takes the
following form [21–24]:

2Earlier works on the holographic derivation of the �0
Lagrangian include [14,15]. Theta dependence in the holo-
graphic models has been also considered in [16,17].
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Linst ¼ e�i�
Z

d	nð	Þð43�2	3Þ2fð �uRuLÞð �dRdLÞ
þ 3

32½ð �uR�auLÞð �dR�adLÞ � 3
4ð �uR
���

auLÞ
� ð �dR
���

adLÞ�g þ H:c: (10)

We wish to study this problem at nonzero temperature and
small chemical potential � (to be discussed later in the
text) for T > Tc, and we use the standard formula for the
instanton density at two-loop order [25]

nð	Þ ¼ CNð�Ið	ÞÞ2N	�5 exp½��IIð	Þ�
� exp½�ðNf�

2 þ 1
3ð2N þ NfÞ�2T2Þ	2�; (11)

where

CN ¼ 0:466e�1:679N1:34Nf

ðN � 1Þ!ðN � 2Þ! ;

�Ið	Þ ¼ �b logð	�QCDÞ;

�IIð	Þ ¼ �Ið	Þ þ b0

2b
log

�
2�Ið	Þ

b

�
;

b ¼ 11

3
N � 2

3
Nf;

b0 ¼ 34

3
N2 � 13

3
NfN þ Nf

N
:

This formula contains, of course, the standard instanton
classical action expð�8�2=g2ð	ÞÞ � exp½��Ið	Þ� which,
however, is hidden as it is expressed in terms of �QCD

rather than in terms of coupling constant g2ð	Þ. By taking
the average of Eq. (10) over the state with nonzero vacuum
expectation value for the chiral condensate h0j �c c j0i � 0,
one finds the following expression for the instanton-
induced interaction, defined as Vinstð’Þ 	 �h0jLinstð’Þj0i:

Vinstð’Þ ¼ �½h0j �c c j0iNf cosð’� �Þ� 

Z

d	nð	Þ

�
�
4

3
�2	3

�
Nf
�
1

2

�
Nf�1

¼ �a 
�4
QCD cosð’� �Þ; (12)

where we introduced a small dimensionless parameter
a � 1 which essentially governs the relevant physics.
We assumed factorization for the chiral condensates in
the large N limit in deriving (12). Hence the square bracket
in Eq. (10) vanishes. We also assumed that the condensates
for all flavors are equal, h0j �uRuLj0i ¼ h0j �dRdLj0i ¼ . . . ¼
1
2 h0j �c c j0i. Finally, we introduced a singlet phase of the

chiral condensate ’ðxÞ which we identify with the �0ðxÞ
field in the standard way, �c Rc L � ei’ðxÞ=Nf . As expected,
the �0 field ’ðxÞ enters the Lagrangian in unique combi-

nation with � as (’� �) which is a consequence of the
anomalous Ward identity.3

The mass of the ’ field in the chiral limit is determined
by the instanton density in this phase and is expressed in
terms of parameter a,

L ¼ �1
2f

2
�0 ð ~r’Þ2 þm2

�0f2�0 cosð’� �Þ;
m2

�0f2�0 	 a 
�4
QCD;

(13)

where f�0 is defined in the standard way as a normalization

of the ’ field, �0ðxÞ	f�0’ðxÞ, and in general f�0 ðTÞ
depends on temperature T (though it will not be explicitly
shown later in the text). We also keep only the lowest
Matsubara frequency for the ’ field in the environment
with T�0 which ensures the validity of the static approxi-
mation for all interactions involving ’. This effective Lag-
rangian is, by definition, a Wilson type Lagrangian for the
light �0 field which is valid as long as the �0 field is light,

m�0 � ffiffiffi
a

p
�QCD � 
�QCD: (14)

In the large N limit parameter a�e��N is exponentially
suppressed4 for temperatures above Tc, a�1, and the
instanton expansion converges. For T<Tc the instanton
expansion makes no sense (breaks down) and the expan-
sion parameter becomes large a�1. We assume that �
dependence sharply changes at T¼Tc. We estimate the
value of Tc by equalizing �¼0 according to Eq. (9); see
below.5 In deriving the low-energy effective Lagrangian

3In the presence of the massless chiral fermions the � depen-
dence as is known goes away in full QCD. To avoid any
confusion later in the text we remark here that our discussions
of � dependence in this paper deal exclusively with the dynamics
of gluons when light fermion degrees of freedom are frozen such
that essentially we analyze the � dependence in gluodynamics
rather than in full QCD. In different words, we assume a
quenched approximation for Nf � N. Precisely the � depen-
dence in quenched approximation plays a crucial role in the
understanding of the dynamics of strongly interacting systems.

4See also [26] for earlier discussions on the subject.
5It is conceivable that the phase transition and sudden change

in � behavior occur at the same point Tc for any finite N, and not
only for N ¼ 1. This assumption allows us to make some
reasonable estimate for Tc for finite N. By obvious reasons, an
estimate of Tc at finite N suffers from some inherent uncertain-
ties. Indeed, Tc in this case is determined by an approximate
condition a� 1 in contrast with precise Eq. (9) valid for the N ¼
1 case. The condition a � 1 implies that the �0 field is much
lighter than all other degrees of freedom in the system in the
chiral limit and condition (14) is satisfied. It is clear that this
condition can be always satisfied for sufficiently large N where
the parameter a is exponentially small at T > Tc. When T
becomes close to Tc from above, parameter a increases and
becomes order of unity at some point. This is precisely the region
where instanton approximation breaks down. Therefore, accord-
ing to our logic, the � dependence may sharply change here. We
identify this point where a� 1 with the point of the phase
transition Tc. Of course we do not know the precise coefficient
here (magnitude of a could be, for example, 3 instead of 1), but
the extracting of a large power in such an estimate, Tc ��QCD 

a�ð3=11NÞ should not produce a large error for the estimation of
Tc, even for the physically relevant case N ¼ 3.
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for the �0 field we should, in principle, use the exact
formula for the instanton density and not (11) which is
only valid in the two-loop approximation. We assume that
the perturbative corrections for T � Tc, although large, do
not drastically change the physics. Then we will see that
for any T > Tc the dilute instanton approximation is valid,
since the average distance between the instantons is para-
metrically larger then their size, see Eq. (19) below. To
reiterate, we do not know how to do an honest instanton
calculation in the close vicinity of Tc, but we assume that
the perturbative expansion around the instanton field con-

figuration can still be performed and would yield a�
e��ðTÞN , where �ðTÞ is a monotonic function vanishing at
T ¼ Tc. Then, for T > Tc the dilute instanton gas approxi-
mation is good, for T < Tc it is no longer valid, while T ¼
Tc describes the phase transition point with drastic changes
in � behavior.

We should also note that one can estimate Tcð�Þ for
nonzero chemical potential � � 0 as long as the chiral
condensate does not drastically vary with �, which we
assume to be the case at least for sufficiently small �. It
allows us to estimate not only a single point Tc on the phase
diagram but the entire phase transition line Tcð�Þ for
sufficiently small � � Tc.

B. Numerical estimates

First, we estimate the critical temperature Tc by solving
Eq. (9) and calculating coefficient c using the expression
for the instanton density (11). As the first approximation
(which greatly simplifies computations) we neglect all
logð	�QCDÞ factors in evaluating the

R
d	 integral. In

this case the integral can be computed analytically and
the limit N ! 1 can be easily evaluated. The result for the
instanton contribution takes the following form (as ex-
pected):

Vinstð’Þ � e��N cosð’� �Þ;

� ¼
�
11

3
ln

�
�T

�QCD

�
� 1:86

�
;

(15)

where we neglected all powers Np in front of e��N (as it
does not have any impact on the computation of Tc at N ¼
1) and used the standard Stirling formula

�ðN þ 1Þ ¼ ffiffiffiffiffiffiffiffiffiffi
2�N

p
NNe�N

�
1þ 1

12N
þO

�
1

N2

��
(16)

to evaluate the N ! 1 limit.
There are three main reasons for a generic structure (15)

to emerge. First of all, there is an exponentially large
‘‘T-independent’’ contribution, expressed as eþ1:86N in Eq.
(15). This term basically describes the entropy of the
configuration such as the number of embedding SUð2Þ
into SUðNÞ, etc. Second, there is a ‘‘T-dependent’’ contri-
bution to Vinstð’Þ which comes from the

R
nð	Þd	 integra-

tion (11). It is proportional to

�
�QCD

�T

�ð11=3ÞN ¼ exp

�
� 11

3
N 
 ln

�
�T

�QCD

��
: (17)

Finally, all fermion related contributions such as a chiral
condensate or nonvanishing mass term enter the instanton

density as follows: �h0j �c c j0iNf � eN
ð� lnjh0j �c c j0ijÞ. For
� 	 Nf

N ! 0 this term obviously leads to a subleading

effect 1=N in comparison with two main terms in the
exponent (15). Therefore, such terms can be neglected as
they do not change any estimates at N ¼ 1. It is in
accordance with the general arguments suggesting that
the fundamental fermions cannot change the dynamics of
the relevant gluon configurations as long as Nf � N.

Indeed, the formula for �ðTÞ for pure gluodynamics is
given by the same expression (15) as it should be for Nf �
N. If the chiral condensate vanishes, one can replace it by a
small but nonzero value for the quark’s mass to proceed
with our calculations. It would not alter Eq. (15). Therefore
our estimate below (18) is not affected whether the chiral
condensate develops or not. In different words, we essen-
tially study a pure gluodynamics. Our treatment of the
problem is the equivalent of a quenched approximation
for Nf � N. The fermion fields in the present study play

an auxiliary (not a dynamical) role as a probe of the
topological charges relevant for the phase transition as
will be discussed in the next sections. When a number of
fermions increases and Nf � N we cannot proceed with

the estimations as we have done above. In this case we do
anticipate a strong dependence on fermion properties such
as the quark’s masses and the chiral condensate as argued
in a recent paper [27]. Lattice simulations also suggest that
for physical values for the quark’s masses one should
expect a smooth crossover rather than a first order phase
transition, see e.g. [28,29]. We remind the reader that for
pure gluodynamics which is the main subject of the present
paper for all N � 3 and a small number of flavors Nf � N

one should expect the first order phase transition.
From discussions above it should be obvious that there

will be always a point Tc where two leading contributions
with exponential eN dependence cancel each other. As a
result, atN ! 1 for T > Tc the instanton gas is dilute with
density e��N , � > 0 which ensures a nice cos� depen-
dence, while for T < Tc the expansion breaks down, and
� dependence must sharply change at T < Tc. We identify
such sharp changes with first order phase transition.
As explained above, the critical temperature is deter-

mined by the condition � ¼ 0. Numerically, at one loop
level approximation, it happens at

� ¼
�
11

3
ln

�
�Tc

�QCD

�
� 1:86

�
¼ 0 ) TcðN ¼ 1Þ

’ 0:53�QCD; (18)

where �QCD is defined in the Pauli-Villars scheme. A few

remarks are in order.

PHASE TRANSITIONS, � BEHAVIOR, AND . . . PHYSICAL REVIEW D 78, 125002 (2008)

125002-5



(a) Our computations are carried out in the regime
where the instanton density � expð��NÞ is para-
metrically suppressed at N ¼ 1. From Eq. (15) one
can obtain the following expression for instanton
density in the vicinity of T > Tc:

a� cosð’� �Þ 
 e�NððT�TcÞ=TcÞ;

1 �
�
T � Tc

Tc

�
� 1=N;

(19)

where  is a numerical coefficient of order one.
Such a behavior does imply that the dilute gas
approximation is justified even in close vicinity of

Tc as long as T�Tc

Tc
� 1

N . In this case the diluteness

parameter remains small6 even in the close vicinity
of Tc. Therefore, the � dependence, which is sensi-
tive to the topological fluctuations only, remains
unaffected all the way down to the temperatures
very close to the phase transition point, T ¼ Tc þ
Oð1=NÞ. We cannot rule out, of course, the possi-
bility that the perturbative corrections may change
our numerical estimate for Tc. However, we expect
that a qualitative picture of the phase transition
advocated in this paper remains unaffected as a
result of these corrections in the dilute gas regime.

(b) In our estimate for Tc we neglected ðlog	�QCDÞk in
the evaluating of the

R
d	 integral. One can easily

take into account the corresponding contribution by
noticing that

R
d	 is saturating at 	 ’ ð�TÞ�1. The

corresponding correction changes our estimate (18)
very slightly, and it will be ignored in what follows.
Numerical smallness of the correction is due to the
strong cancellation between the second loop contri-
bution in the exponent (term proportional to b0=b)
and the first loop contribution in the preexponent in
Eq. (11).

(c) The transition to a different scheme leads to very
large changes in the instanton density. For example,
the transition to the so-called MS scheme is
achieved by replacing e�1:679N in the expression

for CN , see Eq. (11), as follows e�1:679N !
eð�1:679þ3:721ÞN with a number of other changes, see
e.g. [23]. The corresponding results would be ex-
pressed in terms of �MS

QCD, where MS stands for the

MS scheme, to be distinguished from�QCD which is

defined in the Pauli-Villars scheme and will be used
throughout this paper. We shall not elaborate on
these numerical issues in the present work.

(d) Unfortunately, we cannot compare our calculations
with the precise lattice results [30] for the ratio
Tc=

ffiffiffiffi



p
at large N as we compute Tc in the decon-

fined phase where the string tension 
 vanishes.
(e) As expected, the result (18) does not depend on a

number of flavors Nf nor does it depend on the

magnitude of the chiral condensate in the N ¼ 1
limit as our treatment of the problem corresponds
essentially pure Yang-Mills (YM) computations.

(f) For finite but large N � Nf the corresponding nu-

merical estimates for Tc can also be given. It can be
estimated from the condition a� 1. However, nu-
merical estimates in this case would depend on the
value of the UAð1Þ condensate a� h0jð �c c ÞNf j0i
which is not well known for T > Tc. Therefore, we
shall not discuss the corresponding numerical esti-
mates in the present work.

(g) A similar procedure for the estimation of the critical
chemical potential �c for confinement-
deconfinement phase transition at finite N, Nf at

T � 0 has been previously used in Ref. [31] where
the analogous arguments on drastic changes of � at
� ¼ �c have been presented, see also a review
paper [32].

(h) Once Tc is fixed one can compute the entire line of
the phase transition Tcð�Þ for relatively small � �
Tc for large but finite N � Nf. Indeed, in the weak

coupling regime at T > Tc the � dependence of the
instanton density is determined by a simple insertion
� exp½�Nf�

2	2� in the expression for the density

(11). In the leading loop order Tcð�Þ varies as
follows:

Tcð�Þ ¼ Tcð� ¼ 0Þ
�
1� 3Nf�

2

4N�2T2
c ð� ¼ 0Þ

�
;

� � �Tc; Nf � N:

(20)

As expected, � dependence goes away in the large
N limit in agreement with general large N argu-
ments [33]. This formula is in excellent agreement
with numerical computations [34–36] which show
very little changes of the critical temperature Tc

with � for sufficiently small chemical potential. In
particular, even for the case Nf ¼ 2, N ¼ 3 where

the expression (20) is not expected to give a good
numerical estimate, it still works amazingly well
even for N ¼ 3. Indeed, the result quoted in [34]
can be written as

Tcð�Þlat ¼ Tcð� ¼ 0Þlat
�
1� 0:500ð38Þ

� �2

�2T2
c ð� ¼ 0Þlat

�
;

Nf ¼ 2; N ¼ 3:

6This should be contrasted with the standard requirement for
finite N when the condition a� ð�QCD=TÞb � 1 can be only
achieved when the temperature is very large, T � �QCD. For
large N the condition a � 1 is satisfied as long as T�Tc

Tc
� 1

N , as
can be seen from Eq. (19).
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It should be compared with our theoretical predic-
tion (20) for this case

Tcð�Þth ¼ Tcð� ¼ 0Þth
�
1� 1

2

�2

�2T2
c ð� ¼ 0Þth

�
:

(i) It is natural to expect that the phase transition line
Tcð�Þ at � � Tc from (20) connects with the phase

transition line at very large�c �
ffiffiffiffi
N

p
as estimated in

a recent paper [27],

�cðTÞ ’ �cðT ¼ 0Þ
�
1� N�2T2

3Nf�
2
cðT ¼ 0Þ

�
;

ffiffiffiffi
N

p
T � �c; Nf � N;

(21)

where �cðT ¼ 0Þ ’ 1:4 
�QCD

ffiffiffiffiffi
N
Nf

q
at Nf � N [27].

This expectation is motivated by the observation that
the nature for the phase transition along the entire
line is one and the same: it is the drastic changes of �
dependencewhen the phase transition line is crossed.
Therefore, we believe that the entire line is the first
order phase transition as long as Nf � N.

IV. DUAL REPRESENTATION

The main goal of this section is to present the low-
energy effective Lagrangian for the �0 field (13) in the
dual form. The �0 field will play a crucial role in the
following two sections. As we shall see in a moment the
�0 field is a perfect probe of the glue configurations. This
field will help us to investigate the topological charges of
the constituents in both phases, and therefore it will help us
to interpret the nature of the phase transition whose critical
temperature Tc was computed in the previous section. In
Sec. II we discussed a holographic model with nonvanish-
ing chiral condensate. Here we consider a field theoretic
model with this property.

A. Coulomb gas representation: formal derivation

The effective low-energy dense-QCD Lagrangian (13) is
the sine-Gordon (SG) Lagrangian. Many of the special
properties of the SG theory apply. One of these properties
is the admittance of a Coulomb gas (CG) representation for
the partition function. Although this is a four-dimensional
theory at nonzero temperature T (rather than two dimen-
sional, where all known exact results regarding the SG
model were discussed) and questions about renormaliz-
ability of the theory may come to mind, there are no
such issues here since the effective action is a low-energy
one. Following the usual procedure for mapping a statisti-
cal CG model into the field theoretic SG model, the CG
picture that arises from the effective low-energy QCD
action, Eq. (13), will be derived in this section. The statis-
tical model contains some charges which appear due to the
presence of cosine interaction in the field theory model.

The physical meaning of these charges will be illuminated
in the next section by analyzing the corresponding measure
of the statistical ensemble.
The mapping between the SG theory and its CG repre-

sentation is well known. All we need to do is to reverse the
derivation of the SG functional representation of the CG in
Ref. [1]. The partition function corresponding to the
Lagrangian (13) is given by7

Z ¼
Z

D’e�
R

d3x
R

�

0
d�LE

¼
Z

D’e
�ð1=2TÞf2

�0
R

d3xð ~r’Þ2
e�

R
d3x cosð’ðxÞ��Þ; (22)

where we introduced fugacity for the CG ensemble to be
defined as

� 	
�
�QCD

T

�
a�3

QCD; (23)

LE is the Euclidean space Lagrangian. Leaving alone the
integration over ’ðxÞ for a moment, we expand the last
exponent in Eq. (22), represent the cosine as a sum of two
exponents, and perform the binomial expansion:

e �
R

d3x cosð’ðxÞ��Þ ¼ X1
M¼0

ð�=2ÞM
M!

�
�Z

d3x
X

Q¼�1

eiQð’ðxÞ��Þ
�
M

¼ X1
M�¼0

ð�=2ÞM
Mþ!M�!

�
Z

d3x1 . . .
Z

d3xMe
i
P

M
a¼0

Qað’ðxaÞ��Þ:

(24)

The last sum is over all possible sets of Mþ positive and
M� negative charges Qa ¼ �1. The last line in Eq. (24) is
a classical partition function of an ideal gas ofM ¼ Mþ þ
M� identical (except for charge) particles of chargesþ1 or
�1 placed in an external potential given by ið�� ’ðxÞÞ. It
is easy to see that (for a constant or slowly varying poten-
tial) the average number of these particles per unit of 3-
volume hMi=V3, i.e., the density, is equal to �. Thus
making � small one can make the gas arbitrarily dilute,
which is precisely the physical meaning of the fugacity.
From this observation, one can immediately see that the

average distance between charges Qa is ��1=3.
While � can indeed be viewed as an external potential

for the gas (24), ’ðxÞ is a dynamical variable, since it
fluctuates as signified by the path integration in (22). For

7To be precise, the path integral in Eq. (22) should be under-
stood as an integral over low-momentum modes of ’ only. The
upper limit of the momentum of ’ is the ultraviolet cutoff of the
effective Lagrangian (13), which should be taken as some scale
smaller than T. Only tree graphs contribute to Z so there is no
dependence on the precise value of the cutoff.
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each term in (24) the path integral is Gaussian and can be
easily taken:

Z
D’e

�ð1=2TÞf2
�0
R

d3xð ~r’Þ2
ei
P

M
a¼0

Qað’ðxaÞ��Þ

¼ e�i�
P

M
a¼0

Qae
�ðT=f2

�0 Þ
P

M
a>b¼0

QaGðxa�xbÞQb: (25)

We see that, for a given configuration of charges Qa,
�i’ðxÞ is the Coulomb potential created by such a distri-
bution.8 The function GðxÞ is the solution of the three-
dimensional Poisson equation with a point source (the

inverse of � ~r2
):

Gðxa � xbÞ ¼ 1

4�j ~xa � ~xbj : (26)

Thus we obtain the dual CG representation for the partition
function (22):

Z ¼ X1
M�¼0

ð�=2ÞM
Mþ!M�!

Z
d3x1 . . .

Z
d3xM

� e�i�
P

M
a¼0

Qae
�ðT=f2

�0 Þ
P

M
a>b¼0

QaGðxa�xbÞQb: (27)

The two representations of the partition function (22) and
(27) are equivalent.

Note that the physical meaning of � is the fugacity of the
system with charges Q and it is proportional to a which is
small in the regime under discussion. There are several
important features of the action (27) which should be
noted. First, the total Q charge of the configuration, QT ,
appears together with �, which we kept as a free parameter,
see (27). Such a dependence will play an important role in
the following identification ofQ charges as the topological
charges, see below. The � dependence in CG representa-
tion (27) gives an overall phase factor for each configura-
tion. Finally, our dimensional parameters � and ~xM come
into the expression (27) in the combination �d3x which is
nothing but the coefficient in front of the instanton con-

tribution to the effective action Sinst ¼R�
0 d�

R
d3xVinstð’Þ ¼ �R

d3x� cosð’� �Þ at nonzero

temperature T, see Eq. (12) and the definition of � (23).

B. Physical interpretation

The charges Qa were originally introduced in a rather
formal manner so that the QCD effective low-energy
Lagrangian can be written in the dual CG form (27).
However, now the physical interpretation of these charges

becomes clear: since Qnet 	
P

aQa is the total charge and
it appears in the action multiplied by � [see Eq. (27)], one
concludes that Qnet is the total topological charge of a
given configuration. Indeed, in QCD the � parameter ap-
pears in the Lagrangian only in the combination with the

topological charge density �i�G��
~G��=ð32�2Þ. It is also

quite obvious that each charge Qa in a given configuration
should be identified with an integer topological charge well
localized at the point xa. This, by definition, corresponds to
a small instanton positioned at xa (to be precise, ‘‘caloron’’
at temperature T � 0 which has topological charge Q ¼ 1
and action 8�2=g2 independent of temperature, see [24,25]
for review). To support this identification we note that
every particle with charge Qa brings along a factor of
fugacity �� a (23) which contains the classical one-
instanton suppression factor expð�8�2=g2ð	ÞÞ in the den-
sity of instantons (12) if one restores the instanton density
in terms of the coupling constant expð�8�2=g2ð	ÞÞ rather
than directly in terms of �QCD which is used in Eq. (11)

and which is more convenient for numerical estimates.
This identification is also supported by the following

observation: every extra particle with charge Qa brings an
additional weight e�i�Qa to the partition function. This is
certainly the most distinguishable feature of the nonzero
topological charge configuration.
The following hierarchy of scales exists in such an

instanton ensemble for temperatures slightly higher than
Tc. The typical size of the instantons 	� T�1 ���1

QCD.

The average distance between the instantons �r ¼ ��1=3 ¼
��1

QCDa
�1=3 is much larger than both the average size of the

instantons and the cutoff T�1. The largest scale is the

Debye screening length in the Coulomb gas, rD ¼
��1

QCDa
�1=2. This coincides with the static correlation

length of the ’ field, which is precisely �0 mass. It is
important that the Debye screening length rD is parametri-
cally larger than the average distance between the instan-
tons �r, therefore a large number of instantons can be
accommodated within the volume determined by the
Debye screening length rD which justifies our Coulomb
gas interpretation, at least in the large N limit. In short,

ðsize; 	Þ � ðdistance; �rÞ � ðDebye; rDÞ;
1

T
� 1

�QCD

ffiffiffi
a3

p � 1

�QCD

ffiffiffi
a

p :
(28)

Because of this hierarchy, ensured by small a � 1, we

acquire analytical control. In reality, of course, a�
ð�QCD

T ÞN � e�N � 1 is parametrically very small only at

very largeN while ð�QCD

T Þ � 1 could be very close to 1 from

below. It implies that at N ¼ 3 all scales could be numeri-
cally very close to each other.
It is also quite interesting that, although the starting low-

energy effective Lagrangian contains only a colorless field
’, we have ended up with a representation of the partition

8One notices that the term a ¼ b in the double sum (25) is
dropped. This is the self-interaction of each charge. It would
renormalize the fugacity � by a factor expð�Gð0Þ=ðf2�0 ÞÞ. This
factor should be dropped as it represents the contribution of very
short wavelength fluctuations of ’. Such fluctuations have to be
cut off at the scale 1=T. The self-energy of the charges comes
from much smaller scales which are already calculated and
contained in a.
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function in which objects carrying color (instantons, their
interactions and distributions) can be studied. In particular,
from the discussion above, one can immediately deduce
that II and I �I interactions are exactly the same up to a sign
and are Coulomb-like at large distances.

This looks highly nontrivial since it has long been
known that at the semiclassical level an instanton interacts
only with anti-instantons but not with another instanton
carrying a topological charge of the same sign. As we
demonstrated above it is not true any more at the quantum
level in the presence of the �0 field. Indeed, what we have
found is that the interactions between dressed (as opposed
to bare) instantons and anti-instantons after one takes into
account their classical and quantum interactions, after in-
tegration over all their possible sizes and color orienta-
tions, and after accounting for the interaction with the
background chiral condensate must become very simple
at large distances as explicitly described by Eq. (27). It is
impressive how the problem which looks so complicated in
terms of the original bare (anti)instantons becomes so
simple in terms of the dressed (anti)instantons when all
integrations over all possible sizes, color orientations, and
interactions with background fields are properly accounted
for.

Such a simplification of the interactions is of course due
to the presence of an almost massless pseudo-Goldstone
boson �0 which couples to the topological charge. When
the instanton gas becomes very dilute all semiclassical
interactions (due to zero modes) cannot contribute much,
since they fall off with distance faster then the Coulomb
interaction mediated by �0. On the other hand, when the
instanton density increases when T is getting smaller, the
Coulomb interaction becomes more screened and, as the
Debye length becomes comparable to the interinstanton
distances, we lose analytical control. Based on this picture
one can estimate the critical temperature Tc where this
transition must happen. It corresponds to the same condi-
tion a� 1 discussed previously in Sec. III.

We collect here the most important results of the present
section based on CG representation (27):

(a) SinceQnet 	
P

aQa is the total charge and it appears
in the action multiplied by the parameter �, one
concludes that Qnet is the total topological charge
of a given configuration.

(b) Each charge Qa in a given configuration should be
identified with an integer topological charge Qa ¼
�1well localized at the point xa. This, by definition,
corresponds to a small instanton (caloron at T � 0)
positioned at xa.

(c) While the starting low-energy effective Lagrangian
contains only a colorless field ’ we have ended up
with a representation of the partition function in
which objects carrying color (the instantons) can
be studied.

(d) In particular, II and I �I interactions (at very large
distances) are exactly the same up to a sign, order

g0, and are Coulomb-like. This is in contrast with
semiclassical expressions when II interaction is
zero and I �I interaction is order 1=g2.

(e) The very complicated picture of the bare II and I �I
interactions becomes very simple for dressed
instantons/anti-instantons when all integrations
over all possible sizes, color orientations, and inter-
actions with background fields are properly ac-
counted for.

(f) As expected, the ensemble of small 	� T�1 instan-
tons cannot produce confinement because small in-
stantons cannot produce a correlation at arbitrary
large distances which is a crucial feature of the
confinement. This is in accord with the fact that
there is no confinement in the high temperature
phase.

(g) Physical interpretation of the CG representation
(27) is simple. The �0 field being a dynamical field
couples to the topological charge Q exactly as the �
parameter does due to the specific combination
ð’ðxÞ � �Þ which appears in the low-energy
Lagrangian. In the dual language the �0 mass
emerges as a result of Debye screening in the plasma
of topologically charged instantons (interacting via
�0 Coulomb exchange) similar to the well-known
effect of generating the photon’s mass in the ionized
plasma due to the Coulomb interaction of charged
particles. In our case, instead of a conventional
vector photon we are dealing with a pseudo scalar
�0 field which receives its mass through the inter-
action with topological charges Q. Uncovering this
picture (which allows us to measure the topological
charges of constituents) was the main motivation for
introducing the chiral condensate into the theory.

(h) We should also remark here that a similar picture for
the instanton interactions occurs at large chemical
potential � � �QCD in the deconfined, so-called

color superconducting phase [37]. In the present
case T > Tc the weak coupling regime (small in-
stanton density) is governed by the small parameter
a� expð��NÞ � 1 while at the large � � �QCD,

N ¼ 3 case the corresponding small factor is
ð�QCD=�Þb � 1 [37].

V. SMALL T < Tc: CONFINED PHASE.
SPECULATIONS

In this section we want to speculate on the fate of the
instantons when we cross the phase transition line at T ¼
Tc. To be more precise: wewant to see if any traces of well-
defined instantons discussed above can be recovered. The
instanton expansion is not justified in the strong coupling
regime T < Tc where the expansion coefficient becomes of
order one, a� 1.
Therefore, we do not even attempt to use instanton

calculus or any other semiclassical computations in the
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present section. Instead, we present a few indirect argu-
ments supporting the picture that the instantons do not
completely disappear from the system when we cross the
phase transition line from above, but rather dissociate into
the instanton quarks [8,9], the self-dual objects with frac-
tional topological charges �1=N which become the domi-
nant quasiparticles. The arguments are not based on the
semiclassical calculations, but rather on the analysis of the
low-energy Lagrangian written in the dual form similar to
CG representation discussed in the previous section. Our
proposal about the fate of instantons at T < Tc originally
derived in Ref. [38] and to be reviewed for completeness in
this section should be considered as one of the many
possible outcomes. In this sense this section is very specu-
lative in nature in contrast with previous sections where the
weak coupling regime is justified at large N and precise
statements can be made.

We start from the chiral Lagrangian and keep only the
singlet�0 field. We assume the following expression for the
effective Lagrangian for the’ field which has a specific SG
form,

L’ ¼ 1

2
f2�0 ð@�’Þ2 þ Evac cos

�
’� �

N

�
; f2�0m2

�0 ¼ Evac

N2
;

(29)

where Evac � N2 is the vacuum energy of the ground state
in the chiral limit, expressed in terms of the gluon conden-
sate,

Evac ¼ 1
4h0j��

�j0i ¼ h0jbs=ð32�ÞG2j0i � N2; (30)

where we use the standard expression for the conformal
anomaly of the energy-momentum tensor, �

�
�. The ex-

pression (29) of course satisfies the standard requirement
crucial for the resolution of theUAð1Þ problem: the vacuum
energy in gluodynamics depends on � through the combi-
nation �=N. It also has a very specific SG structure for the
singlet combination corresponding to the following behav-
ior of the ð2kÞth derivative of the vacuum energy in pure
gluodynamics [39],

@2kEvacð�Þ
@�2k

���������¼0
�

Z Y2k
i¼1

dxihQðx1Þ . . .Qðx2kÞi �
�
i

N

�
2k
;

where Q 	 g2

32�2
G��

~G��: (31)

The same structure was also advocated in [40] from a
different perspective. We shall not discuss any additional
arguments supporting such Sine-Gordon structure referring
to the original papers.9 This is precisely the place where the
term ‘‘ speculation’’ from the title of this section enters our
analysis. One should also note that the combination

�g ¼ Evac

N2
¼ @2Evacð�Þ

@�2

���������¼0

is nothing but topological susceptibility �g for gluodynam-

ics in the large N limit.
Now we want to represent the low-energy Lagrangian

(29) in the dual form (CG representation) to see if any
traces from the instantons discussed at T > Tc can be
recognized. The effective Lagrangian is obviously the
color singlet object. Therefore, all color dynamics cannot
be recovered by this method. However, the topological
charge is the color singlet operator which is coupled to �.
The � parameter is not a dynamical field in QCD, however
the �0 field is, and it always enters the dynamics in combi-
nation (�� ’). Let us repeat again that this was the main
reason to introduce the chiral condensate into the system: it
allows to study the dynamics of the topological charges.
Therefore, in principle, the analysis of the �0 field gives the
information about the topological charges of the constitu-
ents. We use the trick (SG-CG mapping) below to attempt
to answer the following question: what kind of constituents
can provide the low-energy behavior (29), [39]?
We use the technique developed in the previous section

and represent SG action in the dual form. Technically, it
goes as follows: Eq. (29) replaces expression (13) dis-
cussed previously. As in (13) the Sine-Gordon effective
field theory (29) can be represented in terms of a classical
statistical ensemble (CG representation) similar to (27)
with the replacements � ! Evac, d

3x ! d4x as we assume
zero temperature T ¼ 0 in this phase. By repeating all
previous steps we arrive at the following expression:

Z ¼ X1
M¼0

ðEvac

2 ÞM
M!

Z
d4x1 . . .

Z
d4xM


 X
Qa¼�1=N

Z
D’e

�ð1=2Þf2
�0
R

d4xð@�’Þ2


 ðei
P

M
a¼1

Qa½’ðxaÞ���Þ: (32)

The functional integral is trivial to perform and one arrives
at the dual CG action,

Z ¼ X1
M�¼0

ðEvac

2 ÞM
Mþ!M�!

Z
d4x1 . . .

Z
d4xM


 e�i�
P

M
ða¼0;Qa¼�1=NÞ Qa


 e
�ð1=f2

�0 Þ
P

ða>b¼0;Qa¼�1=NÞ
QaGðxa�xbÞQb

; (33)

where Gðxa � xbÞ is the 4d Green’s function,

Gðxa � xbÞ ¼ 1

4�2ðxa � xbÞ2
: (34)

The fundamental difference in comparison with the pre-
vious case (27) is that while the total charge is integer, the
individual charges are fractional �1=N. This is a direct
consequence of the �=N dependence in the underlying

9One more additional argument supporting SG structure
� cosð�NÞ in pure gluodynamics will be given later in the text.
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effective Lagrangian (29) before integrating out ’ fields,
see Eq. (32).

A few remarks on the physical interpretation of the CG
representation (33) of theory (29) are in order:

(a) As before, one can identify Qnet 	 P
aQa with the

total topological charge of the given configuration.
(b) Because of the 2� periodicity of the theory, only

configurations which contain an integer topological
number contribute to the partition function.
Therefore, the number of particles for each given
configuration Qi with charges �1=N must be pro-
portional to N.

(c) Therefore, the number of integrations over d4xi in
CG representation exactly equals 4Nk, where k is an
integer. This number 4Nk exactly corresponds to the
number of zero modes in the k-instanton back-
ground. This is the basis for the conjecture [38]
that at low energies (large distances) the fractionally
charged species, Qi¼�1=N, are the instanton
quarks suspected long ago [8].

(d) For the gauge group G the number of integrations
would be equal to 4kC2ðGÞ where C2ðGÞ is the
quadratic Casimir of the gauge group (� dependence
in physical observables comes in the combination
�

C2ðGÞ ). This number 4kC2ðGÞ exactly corresponds to
the number of zero modes in the k-instanton back-
ground for gauge group G.

(e) We do not use the weak coupling regime or instanton
calculus anywhere in our arguments. Still, we re-
cover the moduli space which we identify with
strongly interacting instantons in the confinement
phase of the theory.

(f) The role of the fugacity for this statistical ensemble
plays Evac�N2. Therefore, an average distance be-

tween constituents is of order �r�E�1=4
vac ���1

QCDN
�1=2

which suggests that the system is very dense. It
obviously implies that the instanton expansion
makes no sense in this regime as all terms are
equally important, which is in huge contrast with
hierarchy from the previous case at T > Tc (28).

(g) The Debye screening length rD�m�1
�0 �

��1
QCD

ffiffiffiffi
N

p � �r is large. It means that the number of

constituents participating in the screening is of order
ðrD= �rÞ4 � N4.

(h) According to Eq. (29) the number of instanton
quarks in the spacetime box of size �QCD should
beN2 as an average distance between constituents is

�r� N�1=2. Each instanton contains N instanton
quarks, hence the density of instantons should be
of order N�4

QCD.
10 It is consistent with observation

from holography, Sec. II, that any finite number of
instantons will disappear from the system.

A. The relation to other studies

As we mentioned above our arguments in the present
section look extremely speculative as they are not based on
instanton calculus or any other dynamical calculations
which include color degrees of freedom. Still, by analyzing
� dependence in the deconfining phase we infer (indirectly)
that some fractionally charged degrees of freedom emerge
at low T < Tc. We presented arguments suggesting that the
corresponding fractionally charged constituents are the
colored instanton quarks. We should remark here that the
fractionally charged constituents have been discussed in
the literature in a number of papers previously. In particu-
lar, there seems to be a close relation between instanton
quarks and the ‘‘periodic instantons’’ [41–43], center vor-
tices and nexuses with fractional fluxes 1=N, see e.g. [44]
and references therein. We shall not discuss the corre-
sponding connections in detail in the present paper by
referring to the original literature and the recent review
by one of the authors [32] where some comments on the
corresponding connections have been made. In the present
work we want to make a few comments on two recent
papers [45,46] where the picture similar to the one pre-
sented in this work is advocated.
We start with [45]. In that work the authors consider a

specifically deformed SUðNÞ gluodynamics at T � 0. It
has been shown that such a deformation supports a reliable
analysis in the weak coupling regime in the confining
phase. The results of the corresponding calculations imply
that the relevant degrees of freedom in the confined phase

are the self-dual magnetic monopoles with action 8�2

g2N
and

topological charges Q ¼ �1=N which are precisely the
features of the instanton quarks discussed above.
In contrast, the starting point of Ref. [46] is semiclassi-

cal calculations in the background of calorons [41] where
the weak coupling regime cannot be guaranteed. Although
the calculations are semiclassical in nature, and therefore,
cannot be trusted in the strong coupling regime, still, the
corresponding analysis shows how well localized instan-
tons with integer topological charges at T > Tc may dis-
sociate into the fractional constituents at T < Tc and
become the key players in the confining phase. This is
precisely the picture we are advocating in the present
work based on the analysis of sharp � changes at N ¼
1. It is impressive how complicated semiclassical calcu-
lations carried out in [46] lead to the expression for the
vacuum energy Evac cosð�NÞ advocated in [40] using a com-

pletely different technique.11 Our technique does not allow
us to make any dynamical calculations in this phase as all
color degrees of freedom have been integrated out in the
course of obtaining (29). In other words, we cannot study
the dynamics of fractionally charged constituents in con-

10In [38] it was conjectured that these constituents (instanton
quarks) are the driving force for the confinement.

11Such a SG structure was a crucial element for recovering the
fractional topological charges Q ¼ �1=N in the confining phase
using �0 as a probe, see Sec. V and original discussions in [38].
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trast with papers [45,46].12 However, the fact that the
constituents carry fractional topological charge 1=N can
be recovered in our approach because the color-singlet �0

field enters the effective Lagrangian as cosð��’
N Þ and serves

as a perfect probe of the topological charges of the con-
stituents. One should also emphasize that the procedure of
the recovering of the fractional topological charge 1=N
(which has been used here) is not based on the weak
coupling expansion.

Our final comment in this subsection is as follows. The
main ingredient in the holographic picture discussed in
Sec. II was D0 brane wrapping around x4 which behaves
differently in confined and deconfined phases, and corre-
spondingly leads to a different � behavior on opposite sides
of the phase transition line. A similar picture was also
observed in Ref. [47] where the authors studied the D2
brane in confined and deconfined phases to arrive at the
same conclusion on sharp changes in � behavior. The
topological objects (sensitive to �) were identified as mag-
netic strings in Ref. [47]. These objects apparently have
been observed in the lattice simulations [48].

VI. CONCLUSION

We explore the consequences of the assumption that in
the large N QCD and QCD-like theories confinement-
deconfinement phase transition takes place at the tempera-
ture where the dilute instanton calculation breaks down,
and � dependence drastically changes. This assumption is
supported by holographic and field theoretic arguments. At
very high temperatures, T � �QCD instantons are well

localized configurations with a typical size 	� T�1 �
��1

QCD. As the temperature is getting lower the instanton

size becomes of order 	���1
QCD, however, provided the

perturbative corrections in the instanton background do not
significantly change the picture, the instanton density re-
mains dilute. Instanton expansion breaks down at Tc, and
for T < Tc, the strong interacting regime and confinement
are realized. Instantons are no longer well localized con-
figurations for T < Tc, but rather, in the picture of Sec. V,
they are represented by N instanton quarks which can
propagate far away from each other. The presence of the
light field�0 in the model is important for this picture and a
specific Lagrangian is assumed in Sec. V. The mass of �0 in
both phases in the dual picture can be thought of as the
Debye screening mass generated by the Coulomb interac-
tion of the topological charges.

We have made a number of assumptions in the field
theoretic analysis to arrive at the conclusion that the �

dependence changes sharply at some value of Tc. We
also used the holographic model to argue that this transi-
tion coincides with confinement-deconfinement phase
transition. This conclusion is supported by the lattice
simulations [30,49–52].
The value of the critical temperature as a function of

(sufficiently small) chemical potential Tcð�Þ is estimated
in Sec. III. The obtained expression is in excellent agree-
ment with numerical computations [34–36]. Finally, we
presented the arguments that this line of the phase transi-
tion (which is the first order for large N and Nf � N)

continuously transforms into the line�cðTÞ studied at large
� in Ref. [27]. The argument is based on the observation
that the physical nature of the phase transition along the
entire line is the same: it is the drastic changes in �
behavior when the phase transition line is crossed.
It would be very interesting to see if Coulomb law

between instantons can be understood holographically in
the deconfining phase. As we mentioned in the text it is
quite nontrivial that at large distances in the presence of the
�0 field the interaction between instantons and anti-
instantons is the same (up to sign) as the interaction
between two instantons.
Finally, we would like to make a short comment on the

relevance of the present analysis to real QCD with Nf ¼
N ¼ 3. The main subject of the present paper is pure
gluodynamics at large N, and therefore one cannot imme-
diately apply the results of the present analysis to the real
QCD with Nf ¼ N ¼ 3. However, we do expect that our

results can be and should be compared with the lattice
simulations for pure gluodynamics for N � 3 and for
QCD with Nf � N when the first order phase transition

is expected, see [30,49–52]. For the case Nf � N our

technique is not applicable as we explained in Sec. III B.
In this case one should expect that the properties of the
phase transition is very sensitive to the details of the
fermion matter fields. It a subject of a separate analysis
which will not be discussed here. However, we expect that
the picture of the phase transition as a transition between
plasma phase (when the instanton quarks are in plasma
state at T < Tc) and molecular phase (when the instanton
quarks form a small instanton at T > Tc) qualitatively
describes real QCD with N ¼ 3 as the confinement in
non-Abelian gauge theories is determined by the dynamics
of gluon (not quark) degrees of freedom.
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