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Recently, two independent calculations have been presented of finite-mass (‘‘self-force’’) effects on the

orbit of a point mass around a Schwarzschild black hole. While both computations are based on the

standard mode-sum method, they differ in several technical aspects, which makes comparison between

their results difficult—but also interesting. Barack and Sago [Phys. Rev. D 75, 064021 (2007)] invoke the

notion of a self-accelerated motion in a background spacetime, and perform a direct calculation of the

local self-force in the Lorenz gauge (using numerical evolution of the perturbation equations in the time

domain); Detweiler [Phys. Rev. D 77, 124026 (2008)] describes the motion in terms a geodesic orbit of a

(smooth) perturbed spacetime, and calculates the metric perturbation in the Regge-Wheeler gauge (using

frequency-domain numerical analysis). Here we establish a formal correspondence between the two

analyses, and demonstrate the consistency of their numerical results. Specifically, we compare the value of

the conservative Oð�Þ shift in ut (where � is the particle’s mass and ut is the Schwarzschild t component

of the particle’s four-velocity), suitably mapped between the two orbital descriptions and adjusted for

gauge. We find that the two analyses yield the same value for this shift within mere fractional differences

of �10�5–10�7 (depending on the orbital radius)—comparable with the estimated numerical error.
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I. INTRODUCTION

Two recent works discussed the effects of gravitational
self-force (GSF) on the motion of a point particle in a
circular orbit around a Schwarzschild black hole. Barack
and Sago [1] (hereafter BS) carried out a direct calculation
of both dissipative and conservative components of the
local GSF in the Lorenz gauge. Detweiler [2] (hereafter
SD) focused on quantifying a number of gauge-invariant
orbital effects associated with the finite-mass of the parti-
cle. Both analyses employ the mode-sum method [3,4],
wherein the metric perturbation associated with the parti-
cle is first decomposed into multipole harmonics, and the
contribution to the physical backreaction force is then
calculated mode by mode. However, the two analyses use
very difference languages in describing the motion of the
particle. BS’s description adheres to the original funda-
mental formulation of Mino, Sasaki and Tanaka [5] (also
Quinn and Wald [6] and the recent Gralla and Wald [7]),
wherein the GSF is viewed as accelerating the particle with
respect to a background geodesic. SD, instead, depicts the
particle’s orbit as a geodesic of a smooth, perturbed space-
time—an interpretation first put forward by Detweiler and
Whiting [8]. The two descriptions of the motion are known
to be fundamentally equivalent [8] (see [9] for a pedagog-
ical review), but the different language they use makes it
rather difficult to compare between the results of the
respective calculations.

The goal of this report is to establish a ‘‘common lan-
guage’’ to facilitate comparison between the results of BS
and SD, hence show that the two sets of results are in full

agreement with each other. The motivation for such a
comparison is threefold: First, it provides a reassuring
confirmation for the equivalence between the two descrip-
tions of the motion. Second, it demonstrates how the
correspondence between the two descriptions is to be
established in practice—a similar technique could then
potentially be implemented in future calculations of the
GSF. Third, the comparison provides a good overall check
of both calculations. It is indeed a good check, because the
two analyses are highly independent: Not only do they
invoke different interpretations of the perturbed motion,
they also use different gauges for the metric perturbation,
and apply very different numerical methods to evaluate it.
The GSF itself is gauge dependent [10], and, of course,

so is the metric perturbation. To compare the results of two
calculations held in different gauges, one naturally seeks to
consider gauge-invariant quantities which are affected by
the finite mass of the particle in a nontrivial way. A list of
such quantities, for circular orbits in Schwarzschild, was
introduced by Detweiler in [11] (cf. SD). In discussing
gauge-invariant GSF effects, it is useful to distinguish
between effects which are dissipative and others which
are conservative. Dissipative effects are manifest in a
gradual, secular drift in the value of the intrinsic orbital
parameters (such as the energy and angular momentum)
due to the emission of gravitational waves. In the case of a
circular-equatorial orbit in Schwarzschild, such effects
arise from the t and ’ components of the GSF (henceforth
t, r, �, ’ denote the standard Schwarzschild coordinates),
which are directly related to the rate of change of orbital
energy and angular momentum, respectively. The deficit in
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energy and angular momentum is carried away by the
gravitational waves, and can in principle be measured by
a distant observer—it is therefore not surprising to find
that, in the above orbital setup, the t and ’ components of
the GSF are gauge invariant (within a class of physically
reasonable gauges). This makes it relatively easy to test the
values of these components in numerical calculations.
Indeed, both BS and SD were able to demonstrate that
their numerical results for the t and ’ components of the
local GSF were in agreement with the values inferred from
the fluxes of energy and angular momentum in the gravi-

tational waves (the latter values were derived by BS and
SD from their respective numerically calculated metric
perturbations, and confirmed against values tabulated in
the literature). Hence, BS and SD’s results for the dissipa-
tive part of the GSF are already well tested, and we shall
not consider them further in this work.
The situation with the conservative part of the GSF is

more involved. Conservative GSF effects are manifest in a
small shift in the instantaneous values of the orbital pa-
rameters away from their unperturbed values; such effects
alter the time dependence of the orbital phases, and may

TABLE I. Comparison between numerical results from BS (Barack and Sago, Ref. [1]) and SD (Detweiler, Ref. [2]). The first
column gives the radius of the circular orbit in terms of the Schwarzschild standard areal radial coordinate r [or, equivalently at the
relevant order, in terms of the gauge-invariant radius R—see the discussion around Eqs. (4.6) and (4.7)]. The second column displays
the numerical value of the perturbation quantity ~H [defined in Eq. (3.9)], as calculated in this paper using the BS Lorenz-gauge code. In
the third column we tabulate the numerical values of the gauge-invariant Oð�Þ quantity �U [defined in Eq. (4.2)], as calculated here
based on Eq. (4.7) and using the BS metric perturbation. The numbers in square brackets are the estimated fractional errors in the BS
data. The fourth column displays the values of �U as derived using the SD code, to be compared with the BS values in the third
column. In the fifth column we indicate the relative difference between the BS and SD results. This difference is found to be
comparable in magnitude to the estimated numerical error in the BS data (which is larger than that in the SD data), providing a
reassuring validation test for both analyses.

r0=M ~H �U (from BS) �U (from SD) Rel. diff.

6.0 �0:523602 �0:296040244 ½7e� 05� �0:2960275 4e� 05
6.2 �0:493483 �0:276743089 ½6e� 05� �0:2767327 4e� 05
6.4 �0:466941 �0:260014908 ½6e� 05� �0:2600063 3e� 05
6.6 �0:443349 �0:245359714 ½6e� 05� �0:2453525 3e� 05
6.8 �0:422222 �0:232402084 ½6e� 05� �0:2323959 3e� 05
7.0 �0:403177 �0:220852781 ½5e� 05� �0:2208475 2e� 05
7.2 �0:385906 �0:210485427 ½5e� 05� �0:2104809 2e� 05
7.4 �0:370163 �0:201120318 ½5e� 05� �0:2011164 2e� 05
7.6 �0:355745 �0:192612971 ½5e� 05� �0:1926095 2e� 05
7.8 �0:342483 �0:184845874 ½4e� 05� �0:1848428 2e� 05
8.0 �0:330239 �0:177722443 ½4e� 05� �0:1777197 2e� 05
9.0 �0:280717 �0:149362192 ½3e� 05� �0:1493606 1e� 05
10.0 �0:244630 �0:129123253 ½2e� 06� �0:1291222 8e� 06
11.0 �0:217039 �0:113875315 ½1e� 06� �0:1138747 5e� 06
12.0 �0:195196 �0:101936046 ½1e� 06� �0:1019355 5e� 06
13.0 �0:177441 �0:092313661 ½1e� 06� �0:09231331 4e� 06
14.0 �0:162705 �0:084382221 ½1e� 06� �0:08438195 3e� 06
15.0 �0:150267 �0:077725527 ½1e� 06� �0:07772532 3e� 06
16.0 �0:139621 �0:072055223 ½1e� 06� �0:07205505 2e� 06
18.0 �0:122337 �0:062902026 ½1e� 06� �0:06290189 2e� 06
20.0 �0:108893 �0:055827795 ½6e� 07� �0:05582771 2e� 06
25.0 �0:085479 �0:043599881 ½3e� 07� �0:04359984 9e� 07
30.0 �0:070380 �0:035778334 ½5e� 07� �0:03577831 7e� 07
40.0 �0:052029 �0:026339690 ½3e� 07� �0:02633967 7e� 07
50.0 �0:041277 �0:020844661 ½2e� 07� �0:02084465 5e� 07
60.0 �0:034211 �0:017247596 ½1e� 06� �0:01724759 3e� 07
70.0 �0:029211 �0:014709648 ½7e� 07� �0:01470964 5e� 07
80.0 �0:025487 �0:012822962 ½6e� 07� �0:01282296 2e� 07
90.0 �0:022605 �0:011365317 ½5e� 07� �0:01136531 6e� 07
100.0 �0:020309 �0:010205285 ½4e� 07� �0:01020528 5e� 07
120.0 �0:016880 �0:008475253 ½2e� 07� �0:008475251 2e� 07
150.0 �0:013469 �0:006757093 ½3e� 07� �0:006757092 2e� 07
200.0 �0:010076 �0:005050643 ½3e� 07� �0:005050642 2e� 07
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have important influence on the phasing of the emitted
gravitational waves [12,13]. In the case of a circular orbit
in Schwarzschild, which concerns us here, the conservative
effects are entirely due to the radial (r) component of the
GSF. This component is not gauge invariant, and its value
depends on the gauge in which the associated metric
perturbation is expressed. A meaningful, gauge-invariant
description of the conservative effects requires knowledge
of both the GSF and the metric perturbation associated
with it. It is not possible to check the self-consistency of the
numerical calculation of the conservative GSF’s compo-
nent using energy-momentum balance considerations as
done with the dissipative components. It is possible to
test this calculation against results from the post-
Newtonian (PN) literature (as done in SD by examining
gauge-invariant quantities; see below), but such tests are
only applicable for orbits with a sufficiently large radius.
The two independent analyses by BS and SD now provide
us with an opportunity to test the calculation of the con-
servative GSF effects in the strong-field regime.

For our comparison we shall consider the two physically
observable gauge-invariant quantities identified by
Detweiler in [2,11]. (The meaning of ‘‘gauge invariance’’
here will be made precise below; it refers to a class of
gauge transformations compatible with the helical symme-
try of the perturbed spacetime.) The first quantity is the
azimuthal orbital frequency � (defined with respect to
Schwarzschild time t), from which one derives a ‘‘gauge-
invariant’’ orbital radius R [see Eq. (4.1) below]. The
second gauge invariant is U � ut, the contravariant t com-
ponent of the particle’s four-velocity. The functional form
of the relation UðRÞ is independent of the gauge, and thus
provides a convenient handle with which to compare be-
tween two calculations held in different gauges.

The relationUðRÞ (including finite-mass terms) has been
calculated in SD and used there as a basis for comparison
with results from PN calculations. Here we will calculate
UðRÞ based on the Lorenz-gauge results of BS. We shall
see that a meaningful comparison between ½UðRÞ�SD and
½UðRÞ�BS requires two important adjustments: First, one
needs to account for the fact that the orbits in the two
analyses are formally defined in two different geometries:
It is an accelerated trajectory on a background spacetime in
BS, whereas in SD it is a geodesic in a perturbed space-
time. We shall see that a formal connection between the
two descriptions can be established by suitably relating the
proper-time parameters along the two orbits.

The second necessary adjustment is more subtle: The
(perturbed) quantity U was shown in SD to be gauge
invariant, for circular orbits in Schwarzschild, within a
class of ‘‘physically reasonable’’ gauges (we shall define
this class more accurately in the next section). We will
show, however, that the Regge-Wheeler-gauge perturba-
tion of SD and the Lorenz-gauge perturbation of BS are
related by a gauge transformation which does not leave U

invariant. We will then work out explicitly a gauge trans-
formation which brings the BS perturbation into the same
class of ‘‘physically reasonable’’ gauges as the SD pertur-
bation, and use this to gauge-adjust the value of U (the
necessary gauge adjustment will have a monopole compo-
nent only).
The structure of this work is as follows. In Sec. II we

review BS’s and SD’s formulations of the orbital motion
and introduce the necessary notation for our analysis. In
Sec. III we establish a formal relation between ½UðRÞ�SD
and ½UðRÞ�BS by performing the two adjustments men-
tioned above. In Sec. IV we describe the numerical deri-
vation of UðRÞ within the BS analysis, and compare the
numerical values (adjusted for proper time and for gauge)
with those derived in SD. This comparison is displayed in
Table I.
Throughout this work we use standard geometrized units

(with c ¼ G ¼ 1) and metric signature ð� þþþÞ. t, r, �,
’ represent the standard Schwarzschild coordinates.

II. REVIEWAND NOTATION

BS and SD use rather different notation. For our purpose
it will be useful to introduce a unified notation, which is
one of the aims of the following short review. Our con-
vention will be that quantities arising from the BS analysis
are denoted with a ‘‘tilded’’ symbol (e.g., ~X), while their
SD counterparts are left ‘‘untilded’’:

~X: quantities arising from BS;

X: quantities arising from SD:
(2.1)

We will generally denote ‘‘background’’ quantities (i.e.,
ones obtained when the metric perturbation and all GSF
effects are ignored) with a script ‘‘0’’ (as in X0). To ensure
that BS and SD correspond to identical physical setups, we
will require that all background quantities attain the same
values in both analyses:

X0 ¼ ~X0: ’background’ quantities; GSF ignored: (2.2)

A. Orbital setup and equation of motion

In both analyses we consider a pointlike particle of mass
�ð¼ ~�Þ, in a circular orbit around a Schwarzschild black
hole with mass Mð¼ ~MÞ � �. The background

Schwarzschild metric is denoted gð0Þ��ð¼ ~gð0Þ��Þ. At the limit

� ! 0 (i.e., ignoring GSF effects) the particle moves on a

geodesic of gð0Þ��, with a fixed Schwarzschild radius r ¼
r0ð¼ ~r0Þ. (Note that identifying � ¼ ~�, M ¼ ~M and r0 ¼
~r0 is sufficient to guarantee that the underlying physical
setups in both BS and SD are identical.) In both analyses
we set up our Schwarzschild coordinate system such that
the background geodesic is confined to the equatorial
plane, � ¼ �=2.
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Now consider leading-order effects arising from the
finite mass of the particle. Denote the retarded linear metric

perturbations due to the particle by h�� and ~h�� (each

/ �), corresponding to SD and BS. The two perturbations
are mathematically distinct, since h�� is taken in the

Regge-Wheeler gauge [2], whereas ~h�� is taken in the

Lorenz gauge [1]. In BS, the (regularized) backreaction

from ~h�� is seen as giving rise to a GSF ~F�, which

accelerates the particle on the background spacetime

gð0Þ��. SD, on the other hand, does not calculate the GSF

directly. Instead, he constructs the smooth field hR�� (‘‘R’’

field), which is a particular vacuum solution of the per-
turbed Einstein equations (again, in the Regge-Wheeler
gauge), with the property that the perturbed orbit is a

geodesic of the total (smooth) perturbed metric g�� �
gð0Þ�� þ hR��. SD then attributes backreaction effects to the

shift in the values of the orbital parameters with respect to
their unperturbed values.

Let us parametrize the perturbed orbits in BS and SD by
their respective proper times ~� and �. We need here two
different symbols, because the two orbits are formally

defined in two different spacetimes: gð0Þ�� and g��, corre-

spondingly. Let events along the (accelerated) BS orbit
have Schwarzschild coordinate values ~x�p ð~�Þ, and events

along the (geodesic) SD orbit have ‘‘perturbed’’
Schwarzschild coordinate values x�p ð�Þ [such that, for a

given physical point along the orbit, x�p � ~x�p ¼ Oð�Þ].
Then define the corresponding four velocities ~u� �
d~x�p =d~� and u� ¼ dx�p =d�. (Note ~u� and u� are formally

vectors in two different geometries.) In our setup we have
u� ¼ ~u� ¼ 0, and we impose the circularity conditions ur,
~ur ¼ 0 and dur=d�, d~ur=d~� ¼ 0 [14]. A given physical
event along the orbit will generally have x� � ~x� and
u� � ~u�, with equalities restored only at the limit � !
0. An explicit relation between the corresponding tilded
and nontilded perturbed orbital quantities will be estab-
lished in the next section.

With the above notation, the equations of motion in BS
and SD take the respective forms

d~u�

d~�
þ ��ð0Þ

�� ~u�~u� ¼ ��1 ~F� (2.3)

and

du�

d�
þ ��

��u
�u� ¼ 0: (2.4)

Here the connection coefficients ��ð0Þ
�� correspond to the

background metric gð0Þ��, and �
�
�� correspond to the smooth

perturbed metric g��. Note that in BS the GSF effect is

entirely accounted for by the acceleration term appearing
on the right-hand side (RHS) of the equation of motion,

whereas in SD finite-� effects are encoded in the perturbed
values of u� and ��

��.

B. Gauge-invariant conservative GSF effects

A gauge transformation in gð0Þ�� þ hR�� of the form

x� ! x0� ¼ x� þ ��; (2.5)

where �� is of Oð�Þ, will change the SD vacuum pertur-
bation hR�� by an amount

	�h
R
�� ¼ �ð��;� þ ��;�Þ: (2.6)

Under a similar gauge transformation in gð0Þ�� þ ~h��, the

GSF in Eq. (2.3) will vary by an amount [10]

	�
~F� ¼ �½ð	�


 þ u�0 u0
Þ €�
 þ R�ð0Þ
�
�u

�
0 �


u�0�; (2.7)

where an overdot denotes covariant differentiation with
respect to ~�, u�0 is the four-velocity along the background

geodesic, and R�ð0Þ
�
� is the background Riemann tensor,

evaluated at the particle [15]. The orbits x�p ð�Þ and ~x�p ð�Þ
themselves will obviously change under (2.5) as 	�x

�
p ¼

	�~x
�
p ¼ ��, and, taking � and ~� derivatives, respectively,

we find for the corresponding four-velocities

	�u
� ¼ 	�~u

� ¼ d��

d�
: (2.8)

[Note that we may use d��=d� and d��=d~� interchange-
ably, as the two quantities differ only by an amount of
Oð�2Þ.]
What quantities can we construct, in our circular-

equatorial orbit case, which are independent of the gauge?
Apart from the obvious � and �, two familiar gauge-
invariant quantities are �dut=d� and du’=d� (and their

‘‘tilded’’ counterparts)—the rate of change of the geodesic
energy and angular momentum parameters, respectively.
These quantities vanish at � ! 0, and at the leading order
[Oð�Þ] are entirely due to the dissipative effect of the GSF.
For our BS/SD comparison we shall be interested in

orbital gauge invariants which are affected by the conser-
vative component of the GSF. Let us restrict attention to a
class of gauge transformations whose members, denoted
���, have ��� ¼ 0 as well as the helical symmetry

ð@t þ�0@�Þ ��� ¼ 0; (2.9)

where �0 ¼ u’0 =u
t
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
M=r30

q
is the orbital frequency of

the background geodesic. This choice is motivated as
follows: If the original metric perturbation respects the
helical symmetry of the physical (black holeþ particle)
configuration, and is also symmetric under reflection
through the equatorial plane—then a gauge transformation
within the family �� would retain these symmetries. The
condition (2.9) implies that, along the orbit, d ���=d� ¼
d ���=d~� ¼ 0 through Oð�Þ. Equation (2.8) therefore tells
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us that all components u� (and ~u�) are invariant under ��.
Of these four components, only ut and u’ exhibit nontrivial
conservative Oð�Þ effects, and so could serve usefully as
gauge invariants for our comparison. In fact, we shall
follow here SD, and utilize the alternative pair U � ut and

� � u’=ut ¼ d’p=dtp; (2.10)

along with their ‘‘tilded’’ counterparts ~U � ~ut and ~�. The
physical interpretation of the gauge-invariant U is some-
what less obvious than that of the orbital frequency�; it is
discussed in SD. Here we shall refer toU (or ~U) as the time
function along the orbit.

The orbital frequency and time function are given in BS,
through Oð�Þ, by

~� ¼ �0

�
1� r0ðr0 � 3MÞ

2�M
~Fr

�
; (2.11)

~U ¼ U0

�
1� r0

2�
~Fr

�
; (2.12)

where U0 � ð1� 3M=r0Þ�1=2 is the time function along
the background geodesic. The corresponding SD quantities
are given by

� ¼ �0

�
1� r0ðr0 � 3MÞ

4M
u�u�hR��;r

�
; (2.13)

U ¼ U0

�
1þ 1

2
u�u�hR�� � r0

4
u�u�hR��;r

�
; (2.14)

where hR�� and hR��;r are, of course, evaluated on the

circular orbit. That the quantities in Eqs. (2.11), (2.12),
(2.13), and (2.14) are gauge invariant under �� can be read-
ily verified with an explicit calculation, using 	 ��r0 ¼ ��r

and 	 ��
~Fr ¼ �3�M ��r=½r20ðr0 � 3MÞ� (see Ref. [1]), along

with Eq. (2.6).

III. RELATION BETWEEN BS AND SD GAUGE
INVARIANTS

We now seek to obtain an explicit relation between �

and ~� and between U and ~U. We achieve this in two steps.
In the first step we map the BS trajectory onto a geodesic
~yð�Þ defined à la SD in a perturbed spacetime (but in the

Lorenz gauge). We define the quantities ~�y and ~Uy asso-

ciated with this geodesic, and relate them to the original ~�
and ~U. We then discuss the (somewhat unexpected) fact
that the BS and SD metric perturbations are related by a
gauge transformation which is not within the family ��. In
the second step we therefore work out a gauge transforma-
tion which brings the two perturbations within a �� trans-
formation, and use this to establish an explicit relation

between ~�y, ~Uy and the SD quantities �, U.

A. Mapping between BS and SD trajectories

In BS, the orbit ~x�p ð~�Þ is an (accelerated) trajectory in the
Schwarzschild background gð0Þ��. However, one can reinter-

pret this orbit, in the spirit of Detweiler and Whiting [8], as

a geodesic of a smooth perturbed geometry ~g�� � gð0Þ�� þ
~hR��, where ~hR�� is the R part of the BS (Lorenz-gauge)

metric perturbation ~h��. (The field ~hR�� has not been con-

structed explicitly in Ref. [1] as it is not needed for
calculating the GSF in the BS approach. This field can,
in principle, be constructed following the prescription of
SD but working in the Lorenz gauge.) This geodesic is
physically identical with the SD geodesic x�p ð�Þ, since hR��
and ~hR�� represent the same physical perturbation (merely

expressed in different gauges). We may therefore parame-
trize it by the SD proper-time �. Let us then denote this
geodesic by ~y�p ð�Þ, with associated four-velocity ~v�ð�Þ �
d~y�p =d�. Here the ‘‘tildes’’ are meant to remind us that

these quantities are described in the Lorenz gauge of BS,
but one should bear in mind that both ~y�p and ~v� are defined

in the perturbed geometry ~g��.

Our goal now will be to relate the vector ~v�ð�Þ to the BS
four-velocity ~u�ð~�Þ. This task is somewhat delicate, be-
cause the two vectors are defined in two different space-
times, and so one first needs to establish a concrete
mapping between the two trajectories ~y�p ð�Þ and ~x�p ð~�Þ.
The mapping procedure (and its intimate relation with
the gauge freedom of the GSF) has been discussed in detail
by Barack and Ori [10]. The following derivation is largely
inspired by that work.
We begin by obtaining a relation between the proper-

time parameters � and ~� for a given physical point along
the orbit. The �-interval along the geodesic ~y�p ð�Þ in ~g��
satisfies

d�2 ¼ �ðgð0Þ�� þ ~hR��Þd~y�p d~y�p : (3.1)

The four-velocity ~v�ð�Þ along this geodesic satisfies

d~v�

d�
þ ~��

��ð~ypÞ~v�~v� ¼ 0; (3.2)

where the connections ~��
�� are those associated with the

full metric ~g��, and are here evaluated at ~y�p ð�Þ. We now

wish to think of gð0Þ�� and ~hR�� as separate tensor fields in the

geometry ~g��. In general, of course, the splitting of ~g��
into a background field gð0Þ�� and a ‘‘perturbation’’ field ~hR��
depends on the choice of gauge (indeed, it is the origin of
the gauge freedom). Here, however, we fix both the back-
ground coordinates (Schwarzschild) and the gauge

(Lorenz), and so both gð0Þ�� and ~hR�� are defined unambig-

uously. Let ~��ð0Þ
�� be the connections associated with the

field gð0Þ��, and let �
~��
�� � ~��

�� � ~��ð0Þ
�� . Then Eq. (3.2) can

be written in the form
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d~v�

d�
þ ~��ð0Þ

�� ð~ypÞ~v�~v� ¼ ��~��
��ð~ypÞ~v�~v�: (3.3)

Next, define a new parameter ~� along the geodesic ~y�p ð�Þ
using

d~�2 ¼ �gð0Þ��d~y
�
p d~y

�
p (3.4)

[with the requirement that the ‘‘zero point’’ of ~� is chosen
such that ~�� � ¼ Oð�Þ]; and define the new tangent
vector

~u � ¼ d~y�p
d~�

¼ ~v� d�

d~�
: (3.5)

We use here the symbols ~� and ~u� (in a slight abuse of
notation) as we are soon to interpret these as the BS proper
time and four-velocity. For now, however, recall that ~� and
~u� are defined along the geodesic ~y�p in the perturbed

spacetime ~g�� (not in gð0Þ��); but note ~� and ~u� are not

proper time and four-velocity along this geodesic.
Substituting ~v� ¼ ðd~�=d�Þ~u� and d=d� ¼ ðd~�=d�Þd=d~�
in Eq. (3.3), we now obtain

d~u�

d~�
þ ~��ð0Þ

�� ð~ypÞ~u�~u� ¼ ��~��
��ð~ypÞ~u�~u� � �~u�; (3.6)

where � � ðd�=d~�Þ2ðd2~�=d�2Þ. The expression on the
left-hand side here can be interpreted as the acceleration
of a trajectory ~ypð~�Þ (with proper-time ~� and four-velocity

~u�) in a spacetime gð0Þ��. This acceleration is orthogonal to

~u� in the spacetime gð0Þ�� [by virtue of gð0Þ��~u
�~u� ¼ �1,

which follows from Eq. (3.4)], so formally projecting both

sides of Eq. (3.6) orthogonally to ~u� (in the metric gð0Þ��)

finally gives

d~u�

d~�
þ ~��ð0Þ

�� ð~ypÞ~u�~u� ¼�ð	�
� þ ~u�~u�gð0Þ��Þ�~��

��ð~ypÞ~u�~u�:
(3.7)

Now, Detweiler and Whiting have shown [8] that the

expression on the RHS of Eq. (3.7) (where, recall, �~�
�
�� is

derived from the R-field ~hR��) is precisely the self-

acceleration ��1 ~F�, if one interprets this quantity as a

vector in gð0Þ��. Comparing then the forms of Eqs. (2.3) and

(3.7), we arrive at the following conclusion: If each point
along the geodesic ~ypð�Þ is associated with a point along

the BS trajectory having the same coordinate value (i.e.,
~xp ¼ ~yp), then the quantities ~� and ~u� defined in the

perturbed spacetime ~g�� in Eqs. (3.4) and (3.5) can be
interpreted—and would have the same values—as the
corresponding BS quantities ~� and ~u� ¼ d~x�p =d~�.

The main practical outcome from the above discussion
are formulas relating the BS quantities ~� and ~u� to their
counterparts � and ~v� defined à la SD in the perturbed
spacetime. From Eqs. (3.1) and (3.4) we obtain

d~�

d�
¼ 1þ ~H (3.8)

[through Oð�Þ], where
~H � 1

2
~hR��ðxpÞ~u�~u�: (3.9)

Equation (3.8) describes the relation between the BS and
SD proper-time parameters, assuming the ‘‘same-coordi-
nate-value’’ mapping between the respective trajectories.
The relation between the four-velocities then follows im-
mediately from Eq. (3.5):

~v � ¼ ð1þ ~HÞ~u� (3.10)

[again, through Oð�Þ].
Let us finally define the frequency ~�y � ~v’=~vt and time

function ~Uy � ~vt associated with the trajectory ~y�ð�Þ, and
relate these to the BS quantities ~� and ~U. For the fre-
quency we have, using Eq. (3.10),

~� y ¼ ~v’=~vt ¼ ~u’=~ut ¼ ~�: (3.11)

For the time function, Eq. (3.10) immediately gives

~U y ¼ ð1þ ~HÞ ~U: (3.12)

B. Adjusting the gauge

If the BS perturbation ~hR�� and the SD perturbation hR��
were related through a gauge transformation within the

family ��, then the quantities ~�y and ~Uy would have to

be equal to their SD counterparts� andU, since, recall,�
and U are gauge invariant under ��. As we now discuss, it
turns out that this is not the case: The two perturbations
differ by a gauge transformation not belonging to the
family ��.
To see this, it suffices to examine the asymptotic form of

the tt components of the BS and SD metric perturbations at
r ! 1. In SD a gauge is chosen (within the class of Regge-
Wheeler gauges) such that the perturbed metric is asymp-
totically Minkowskian:

gð0Þtt þ hRtt ! �1 ðr ! 1Þ: (3.13)

This is impossible to achieve with the BS Lorenz-gauge
perturbation, which has a monople contribution that fails to
vanish at r ! 1. This monopole contribution was first
derived by Detweiler and Poisson [16], who showed that
it uniquely describes the correct mass perturbation due to
the particle: Any other Lorenz-gauge monopole solution
would either diverge at the event horizon or at infinity, and/
or fail to describe the correct mass perturbation. The field
~hR�� inherits the large-r asymptotic form of the full pertur-

bation ~h��, which is dominated by the above monopole

term. The perturbed BS metric has the asymptotic form

gð0Þtt þ ~hRtt ! �1� 2� ðr ! 1Þ; (3.14)
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where

� ¼ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0ðr0 � 3MÞp ; (3.15)

and where the term �2� comes entirely from the mono-
pole perturbation. (The other tensorial components of the
BS metric attain their Minkowski values at r ! 1, just like
the SD metric.) The difference between the asymptotic
forms in Eqs. (3.13) and (3.14) must be accounted for by
a monopole gauge transformation. From Eq. (2.6) we find
that the generator of this gauge transformation must satisfy,
asymptotically, �t;t ¼ � (as well as �t;’ ¼ 0, since a

monople transformation cannot depend on ’), which nec-
essarily violates the condition of Eq. (2.9). Hence, the BS
and SD perturbations differ by a gauge transformation
outside the family ��.

The above conclusion by no means suggests that either
of BS/SD’s metric perturbations violates the helical sym-
metry of the physical spacetime (they both respect it, in
fact). Rather, it calls for a more careful inspection of the
class of gauge transformations which maintain helical
symmetry. Consider a gauge transformation �� ¼ at	�

t ,
where að/ �Þ is a constant. This transformation affects
only the tt component of the metric perturbation, which
shifts by an amount 	�h

R
tt ¼ 2ð1� 2M=rÞa. If the original

perturbation is helically symmetric [i.e., satisfying ð@t þ
�0@�ÞhR�� ¼ 0], then so will be the gauge-transformed

perturbation, even though the generator �� itself does not
respect the helical symmetry of the geometry. This sug-
gests a more general class of ‘‘physically reasonable’’
gauge transformations, with generators given by

�̂ � ¼ ��� þ at	�
t ; (3.16)

where ��� is any vector satisfying Eq. (2.9), and a is any

constant ( / �). While the generators �̂ themselves are
generally not helically symmetric, they do not interfere
with the helical symmetry of the metric perturbation they
act upon. It is not difficult to convince oneself that the class

�̂ is the most general class with this property [17].
The gauge transformation between the BS and SD per-

turbations belongs to the class �̂, with a ¼ � � 0.
Crucially for our analysis, the two quantities � and U,

which are invariant under ��, are not invariant under �̂ (for
any a � 0). More precisely, we have (for a ¼ �)

	�̂� ¼ ���0; 	�̂U ¼ �U0; (3.17)

through Oð�Þ. These expressions are easily derived using

Eq. (2.8), noting d ���=d� ¼ 0 and hence d�̂�=d� ¼ �U	�
t

along the worldline. Applying the gauge transformation

�̂� ¼ �t	�
t , the quantities ~�y and ~Uy of Eqs. (3.11) and

(3.12) transform as

~� y ! ~�y � ��0 ¼ ~�� ��0 ¼ ~�ð1� �Þ þOð�2Þ;
(3.18)

and

~U y ! ~Uy þ �U0 ¼ ð1þ ~HÞ ~Uþ �U0

¼ ~Uð1þ �þ ~HÞ þOð�2Þ: (3.19)

Since this gauge transformation brings the BS and SD
perturbations to within a �� transformation from one other,
the RHS expressions in Eqs. (3.18) and (3.19) must be
equal to the SD quantities � and U, respectively, (as,
recall, the frequency and time function are invariant under
�� transformations). We hence arrive at the desired relations

� ¼ ~�ð1� �Þ; (3.20)

U ¼ ~Uð1þ �þ ~HÞ; (3.21)

holding through Oð�Þ.
Equations (3.20) and (3.21) explicitly relate between the

BS and SD values of the perturbed frequency and time
function. These relations do not involve the GSF, but they

do require knowledge of the quantity ~H � ~hR��~u
�~u�=2,

which is to be constructed from the BS perturbation. A
physical interpretation of the quantity ~H is suggested from
Eq. (3.8): It describes how proper-time intervals relate to
each other in the different orbital representations of BS and
SD. It is straightforward to check that ~H is invariant, for
circular orbits, within the class of gauge transformations ��

(though not within �̂ for a � 0).

IV. COMPARISON OF NUMERICAL RESULTS

A. Gauge-invariant comparison formula

The relations (3.20) and (3.21), as they stand, do not
quite yet offer a practical means by which to test the BS/SD
numerical results against each other. The reason is as
follows: The equalities expressed in these relations hold,
through Oð�Þ, for a given physical orbit with (perturbed)
SD radius rp and BS radius ~rp. In these equalities,� andU

are to be evaluated at rp, while ~� and ~U are to be evaluated

at ~rp. Alas, the relation between rp and ~rp is not known to

us at Oð�Þ: It depends on the precise gauge transformation
between the BS and SD perturbations, which we have not
solved for. Without knowledge of how rp relates to ~rp
at Oð�Þ, it is not possible to extract the Oð�Þ parts of
Eqs. (3.20) and (3.21). Stated differently, we have the
following problem: While the quantities � and U are
gauge invariant (under ��), the finite-mass differences ��
�0 and U�U0 (which are the quantities whose numerical
values we wish to test) are not gauge invariant, since �0

and U0 depend on the gauge (through r0). We should
instead be looking at finite-� corrections which are gauge
independent.
A standard solution to this problem is to express one

gauge invariant in terms of the other, and, following SD,
we shall pursue this direction here. SD introduced the
gauge-invariant radius
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R � ðM=�2Þ1=3 (4.1)

(denoted R� in Ref. [2]), and then expressed U in terms of
R. The difference

�UðRÞ � UðRÞ � ð1� 3M=RÞ�1=2 (4.2)

[which is of Oð�Þ, since ð1� 3M=RÞ�1=2 ¼ U0 þOð�Þ]
is then a genuinely gauge-invariant measure of the con-
servative finite-� effect. SD derived the relation �UðRÞ
numerically, and utilized it for comparison with results
from PN theory. Here we shall reconstruct the relation
�UðRÞ from BS quantities, and use it to compare with SD.

Using Eq. (2.12) to substitute for ~U in Eq. (3.21), and
then substituting the result for U in Eq. (4.2), we obtain

�U ¼ ð1� 3M=r0Þ�1=2

�
1þ �þ ~H � r0

2�
~Fr

�

� ð1� 3M=RÞ�1=2 þOð�2Þ: (4.3)

Our goal is to express the RHS here entirely in terms of the
gauge-invariant radius R. For this, we need first to express
r0 in terms of R up through Oð�Þ. Starting from the
definition (4.1), then using Eqs. (2.11) and (3.20) in suc-
cession, and finally substituting ��2

0 ¼ r30=M, we obtain

R3 ¼ M��2 ¼ M ~��2ð1� �Þ�2

¼ r30

�
1þ 2�þ r0ðr0 � 3MÞ

�M
~Fr

�
þOð�2Þ: (4.4)

Hence,

r0 ¼ R

�
1� 2

3
�þ RðR� 3MÞ

3�M
~Fr

�
þOð�2Þ; (4.5)

where the quantities � and ~Fr=�, which are already Oð�Þ,
are evaluated at R. Substituting for r0ðRÞ in Eq. (4.3) and
expanding through Oð�Þ, we obtain

�U ¼ ð1� 3M=RÞ�1=2

�
R� 2M

R� 3M
�þ ~H

�
þOð�2Þ:

(4.6)

Finally, we note that on the RHS we can replace R ! r0
without affecting �U at leading order [since r0 � R�
Oð�Þ, and � and ~H are already Oð�Þ]. This allows us to
recast Eq. (4.6) in a more practical form:

�U ¼ ð1� 3M=r0Þ�1=2

�
r0 � 2M

r0 � 3M
�þ ~H

�
; (4.7)

with corrections of Oð�2Þ. Recall � ¼ �½r0ðr0 �
3MÞ��1=2, and ~H is the quantity constructed from the BS
metric perturbation through Eq. (3.9).

It is interesting to point out that our final expression,
Eq. (4.7), bears no direct reference to the GSF. This sug-
gests that the Oð�Þ coordinate change r ! R, in fact,
amounts to a gauge transformation which sets the conser-
vative piece of the BS GSF to zero. This is further sug-

gested by noticing U0ðr0ðRÞÞ ¼ ~Uðr0 ! RÞ (up to terms

/ �)—which one can readily verify starting with U0 ¼
ð1� 3M=r0Þ�1=2 and using Eqs. (2.12) and (4.5).

B. Numerical results

We have reconstructed the relation �Uðr0Þ numerically,
using the BS Lorenz-gauge code, based on Eq. (4.7). The
calculation of the full (retarded) Lorenz-gauge perturba-
tion is describe in detail in Ref. [1]. In short, the method
relies on the perturbation formalism of Barack and Lousto
[18], in which the Lorenz-gauge perturbation equations are
decomposed into tensor harmonics, resulting in a set of 10
partial differential equations (in t and r) for each l,
m-harmonic of the perturbation. These equations couple
between different tensorial components of the perturba-
tion, but are conveniently written in a form where no
coupling occurs in the principal part. In BS these equations
are then solved in the time domain (for each given l, m)
using finite differentiation on a characteristic mesh. The
monopole and dipole modes (l ¼ 0, 1) are calculated sepa-
rately, based essentially on the semianalytical results of
Detweiler and Poisson [16]. The full perturbation is finally
obtained by summing over a sufficiently large number of
modes l, m.
To construct the quantity ~H in Eq. (4.7) next requires us

to obtain the R-part of our numerical solutions, evaluated at

the particle. Conveniently, it is not strictly the R-part ~hR��
that we need, but rather the contracted quantity ~hR��~u

�~u�.

The construction of this quantity, through mode-by-mode
regularization, is prescribed by SD in Sec. IV.B of [2] for
any gauge related to the SD gauge through a ��-type trans-
formation, and we employ it here in a direct manner. (The

regular gauge transformation �̂� ¼ at	�
t does not affect

the singular part of the perturbation, hence the regulariza-
tion procedure described in [2] is applicable within the

broader �̂ family.) We construct ~H for a series of orbital
radii r0, and then use Eq. (4.7) to obtain�U for these radii.
We tabulate the values thus obtained in Table I, alongside
the corresponding SD values from Ref. [2]. The fractional
difference between the BS and SD results is found to be
similar in magnitude to the estimated fractional numerical
error in the BS data. (How this numerical error is estimated
is described in detail in Ref. [1]; the numerical error in the
corresponding SD data is in all cases much smaller.) We
conclude that the two calculations are in agreement with
each other.

V. DISCUSSION

The agreement established here between the numerical
results of BS and SD not only provides an important
validation test for both analyses, but it also illustrates
(and confirms) a few fundamental results from GSF theory.
The following list highlights these results. (i) The GSF, as
defined and calculated by Mino, Sasaki and Tanaka [5] and
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Quinn and Wald [6], can also be derived from the

Detweiler–Whiting R-field ~hR�� [8] using the formula on

the RHS of Eq. (3.7). (ii) The GSF can be defined and
calculated through a ‘‘same-coordinate-value’’ mapping of
the orbit from the physical perturbed spacetime onto a
background spacetime; relaxing the ‘‘same-coordinate-
value’’ rule gives rise to the gauge ambiguity in the GSF
[10]. (iii) A suitable gauge transformation can be made
(here r ! R) which nullifies the GSF (here, the conserva-
tive piece thereof). However, the information about the
physical finite-� effect can then still be retrieved in full
from the metric perturbation in the new gauge—cf.
Eq. (4.7). This is a particular example of the general state-
ment that the full information about the finite-� effect is
contained in the combination of both the GSF and the
metric perturbation [10].

As an aside in this work, we discussed what one may
mean by a ‘‘physically reasonable’’ gauge transformation
in the context of circular orbits. Sensibly, a ‘‘physically
reasonable’’ gauge is one in which the metric perturbation
admits the approximate helical symmetry of the
black holeþ particle system, i.e., it satisfies ð@t þ
�0@�Þh�� ¼ 0. However, it seems unnecessary to require

that the gauge transformation generators �� connecting
any two such physically-reasonable gauges be themselves
helically symmetric. If fact, the general class of such

generators, denoted here �̂, includes members �̂ða � 0Þ
which are not helically symmetric. The gauge transforma-

tion between the BS and SD perturbations—both of which
being ‘‘physically reasonable’’ in the above sense—is in-

deed generated by a vector �̂ which is not helically
symmetric.
We anticipate that comparisons similar to the one dis-

cussed in this work will allow robust tests of self-force
calculations for other orbits and other spacetimes (e.g.,
Kerr) when such calculations are available. The essential
elements of our formal discussion are directly applicable to
other orbits and geometries. Most important, Eqs. (3.8) and
(3.10), which describe the mapping of the orbital elements
from a BS-type background spacetime to an SD-type per-
turbed spacetime, hold quite generally for any orbit in any
black hole spacetime, and could form a basis for future
comparisons. The major challenge in any such future com-
parison would remain to devise a suitable set of gauge-
invariant quantities.
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discussions.

[1] L. Barack and N. Sago, Phys. Rev. D 75, 064021 (2007).
[2] S. Detweiler, Phys. Rev. D 77, 124026 (2008).
[3] L. Barack and A. Ori, Phys. Rev. D 61, 061502 (2000).
[4] L. Barack, Y. Mino, H. Nakano, A. Ori, and M. Sasaki,

Phys. Rev. Lett. 88, 091101 (2002).
[5] Y. Mino, M. Sasaki, and T. Tanaka, Phys. Rev. D 55, 3457

(1997).
[6] T. C. Quinn and R.M. Wald, Phys. Rev. D 56, 3381

(1997).
[7] S. E. Gralla and R.M. Wald, Classical Quantum Gravity

25, 205009 (2008).
[8] S. Detweiler and B. F. Whiting, Phys. Rev. D 67, 024025

(2003).
[9] E. Poisson, Living Rev. Relativity 7, 6 (2004).
[10] L. Barack and A. Ori, Phys. Rev. D 64, 124003 (2001).
[11] S. Detweiler, Classical Quantum Gravity 22, S681 (2005).
[12] A. Pound and E. Poisson, Phys. Rev. D 77, 044012 (2008).
[13] A. Pound and E. Poisson, Phys. Rev. D 77, 044013

(2008).

[14] These strict circularity conditions effectively ‘‘switch off’’
the dissipative component of the GSF. Such an exercise
enables us to study the instantaneous conservative effect in
isolation. Of course, a consistent treatment of the long-
term evolution would have to account for the dissipative
orbital decay.

[15] Equation (2.7) only makes sense when �� and €�� are well
defined on the worldline. It is not immediately clear how
to define the GSF in gauges related to the Lorenz gauge
through transformations �� which do not satisfy these
conditions. See Ref. [10] for a discussion of this issue.

[16] S. Detweiler and E. Poisson, Phys. Rev. D 69, 084019
(2004).

[17] The class �̂� has been introduced before in the literature—
see Appendix A of Ref. [16].

[18] L. Barack and C.O. Lousto, Phys. Rev. D 72, 104026
(2005).

TWO APPROACHES FOR THE GRAVITATIONAL SELF- . . . PHYSICAL REVIEW D 78, 124024 (2008)

124024-9


