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We use the effective field theory for gravitational bound states, proposed by Goldberger and Rothstein,

to compute the interaction Lagrangian of a binary system at the second post-Newtonian order. Throughout

the calculation, we use a metric parametrization based on a temporal Kaluza-Klein decomposition and test

the claim by Kol and Smolkin that this parametrization provides important calculational advantages. We

demonstrate how to use the effective field theory method efficiently in precision calculations, and we

reproduce known results for the second post-Newtonian order equations of motion in harmonic gauge in a

straightforward manner.
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I. INTRODUCTION

In the last two decades, significant progress has been
made towards the detection of gravitational waves (GWs)
via laser interferometry. Currently, the ground-based ex-
periments LIGO [1], VIRGO [2], GEO [3], and TAMA [4]
are actively searching for GWs [5]. Moreover, the pro-
posed LISA experiment [6], due to be the first space-based
GW detector, will search for GWs in a complementary
frequency band to the ground-based experiments and is
expected to achieve high event rates at an unprecedented
signal-to-noise ratio [7].

A particularly interesting source of GWs, which is ex-
pected to be detected, is the compact binary system under-
going coalescence, with neutron star (NS) and/or black
hole (BH) constituents. Current experiments have yet to
detect the binary inspiral signal. However, Advanced
LIGO [8], an upgrade of LIGO scheduled to come online
in 2014, may allow for routine detection of such events.
This is due to a�10-fold increase in sensitivity over LIGO,
which will in turn result in an increase of the accessible
event rate by a factor �1000. Current estimates for the
number of expected NS/NS, BH/BH, and BH/NS events in
Advanced LIGO are roughly 10–100, 1–500, and 1–30 per
year, respectively [9,10].

All three stages of the binary coalescence, inspiral,
merger, and ringdown, are potentially detectable. The in-
spiral phase, where the characteristic orbital velocity is
v2 � 1 (in units where c ¼ 1), can be computed analyti-
cally using an expansion in v2 �Gm=r. The merger is
computed numerically [11], and there has been significant
recent progress in this area [12]. The ringdown can be
treated analytically using quasinormal modes [13].

The perturbative calculation of the inspiral phase has
been performed with a variety of methods [14,15]. Because
of the phase evolution of the inspiral signal and the ability
to measure the total orbital phase to�10�3 over the LIGO
bandwidth [16], these perturbation expansions must be

calculated to high order. If we consider a circular orbit in
the adiabatic approximation, the signal phase �ð!Þ is
related to the orbital energy Eð!Þ and the radiated power
Pð!Þ through the relation d2�=d!2 � ðdE=d!Þ=P. An
accuracy of �10�3 in the cumulative orbital phase, over
the LIGO bandwidth, can be achieved if the perturbation
expansion is calculated to Oðv6Þ beyond Newtonian dy-
namics i.e., at third post-Newtonian order (3PN) [9,17].
This implies that we need to know Eð!Þ and Pð!Þ to at
least 3PN. Since the conservative dynamics, described in
our formalism by a Lagrangian, gives Eð!Þ, it also must be
known to 3PN. There is also a need to compute the pertur-
bative expansion to high order, to allow numerical studies
of the binary inspiral to be compared with the analytic PN
expansion [18].
Recently, Goldberger and Rothstein introduced an ef-

fective field theory (EFT) for nonrelativistic gravitational
systems, known as NRGR [19,20] (see [21] for a pedagog-
ical introduction). EFTs are particularly well suited to
problems with multiple physical scales, and the binary
inspiral which we consider here, is one such problem.
The hierarchy during inspiral takes the form rc � r �
�, where rc is the radius of the compact objects, r is the
orbital separation, and � is the wavelength of the emitted
GWs. One can use this hierarchy to set up a tower of EFTs
which systematically account for effects at each scale. This
approach disentangles the physical effects of different
scales, resulting in more tractable calculations. With the
definite power-counting scheme established by Goldberger
and Rothstein [19], the EFT treatment yields a completely
systematic description of the binary inspiral problem. In
particular, divergences which arise by using point particle
sources to represent the compact objects are well under-
stood in a field theory setting, and the effects due to the
spatial extent of the compact objects can be systematically
parameterized by subleading operators.
State-of-the-art calculations using traditional methods

have yielded the conservative equations of motion and
the orbital energy of a binary with spinless constituents
to 3PN order [22–25]. The 2PN dynamics of a three-body
system have been obtained in [26], but the four-body
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dynamics at 2PN are not known in closed form, see, for
example, Appendix D of [27]. Furthermore, the power
emitted by a binary with spinless objects through GWs is
known at the 3.5PN level [28] orOðv7Þ beyond the leading
quadrupole formula. While the EFT approach lags behind
the traditional post-Newtonian methods in terms of high
precision calculations of GW observables for binaries
without spin, it has led to a number of interesting results.
Spin was incorporated into the EFT framework and the
next-to-leading order (NLO) spin-spin potential, which
enters at 3PN, has been calculated for the first time [29].
Dissipative effects such as absorption by BH horizons have
also been considered [30]. In [31], the thermodynamics of
compactified black holes were studied, and the Einstein-
Infeld-Hoffman (EIH) Lagrangian and the quadrupole for-
mula were derived in arbitrary dimensions in [32]. The
EFT formalism was extended to the case of extreme mass-
ratio binaries where the leading order (LO) self-force
equation was derived [33]. Recently, it has been used in
calculations which include interactions beyond Einstein’s
general relativity [34,35].

Within the EFT method, Kol and Smolkin (KS) sug-
gested that a temporal Kaluza-Klein parametrization of the
metric [36] improved the calculational efficiency of
NRGR. The KS parametrization has been shown to reduce
the complexity required to calculate the EIH Lagrangian
[37]. Similar simplifications were observed in the compu-
tation of thermodynamic properties of compactified black
holes [36], and in the calculation of the NLO order spin-
spin potential [38].

In this paper, we report the NRGR calculation of the
2PN interaction Lagrangian for a binary system with non-
spinning compact objects. Existing EFT calculations of
binary observables have been obtained at NLO for poten-
tial interactions and at LO for the radiated power. This
work presents the first next-to-next-to-leading order com-
putation of a GW observable with the EFT method. Since
the complexity of our calculation is more involved, we
clearly want to find an optimum method to perform high
precision calculations within NRGR. Previously, it was not
clear how useful the KS parametrization would be as a
computational tool beyond NLO. We address this issue in
detail, and we show how the KS parametrization simplifies
our 2PN calculations. The methods of EFT are used to
systematically determine all relevant Feynman diagrams
which contribute at 2PN. In their evaluation, we encounter
Feynman integrals corresponding to one-loop and two-
loop integrals, which are computed using standard tech-
niques. Our work demonstrates how the EFTmethod to can
be used to efficiently compute conservative dynamics at
high precision in the PN expansion.

II. SETUP

Here, we outline the ingredients of our calculation of the
2PN potential and discuss the simplifications we will em-

ploy. In this section, we do not repeat in entirety the setup
of the EFT description of the binary inspiral problem, but
refer the reader to [19–21]. Sincewe deal with conservative
dynamics, we only need potential modes, and can simply
set the radiation modes to zero.

A. Two-body action

The purely gravitational action is the usual Einstein-
Hilbert action

SEH ¼ �2m2
Pl

Z
d4x

ffiffiffiffiffiffiffi�g
p

R; (1)

where our conventions are m2
Pl ¼ 1=32�G, ��� ¼

diag½1;�1;�1;�1�, R�
��� ¼ @��

�
�� � @��

�
�� þ

��
���

�
�� � ��

���
�
��, and R�� ¼ R�

���. In addition, we

must also fix the gauge. Our choice is harmonic gauge

SGF ¼ m2
Pl

Z
d4x

ffiffiffiffiffiffiffi�g
p

����g��; (2)

where �� ¼ �
�
��g

��. It differs from the linearized har-

monic gauge condition used in [19] and yields different
expressions at the 2PN level. The advantage of using
harmonic gauge is that we can compare intermediate
gauge-dependent results, such as the equations of motion,
with the existing literature [14].
For the gravitational coupling to two massive compact

objects, the worldline action for our binary system is given
by

Spp ¼ � X2
N¼1

mN

Z
d�N þ � � �

¼ � X2
N¼1

mN

Z
dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g��ðt;xNÞ dx

�
N

dt

dx�N
dt

s
þ � � � : (3)

Here, proper time is given by d�2 ¼ g��dx
�dx� and it is

convenient to use coordinate time t to parameterize the
worldline. The dots denote subleading operators encoding
finite-size effects. We will ignore finite-size effects since
they first enter at 5PN [19].

B. Kol-Smolkin variables

The expansion of the metric around flat Minkowski
space in the weak field limit is commonly parameterized
in a Lorentz covariant form such as

g�� ¼ ��� þ h��=mPl; (4)

where h�� is the excitation around Minkowski space. The

expansion of Eq. (4) was used in the original setup by
Goldberger and Rothstein [19]. Instead, we will use an
alternative parametrization based on a temporal Kaluza-
Klein decomposition, as suggested by KS [36]. In terms of
the KS variables, the metric reads
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g��¼ e2	=mPl �e2	=mPlAj=mPl

�e2	=mPlAi=mPl �e�2	=mPl
ijþe2	=mPlAiAj=m
2
Pl

 !
;

(5)

where 
ij ¼ ð�ij þ �ij=mPlÞ. In four dimensions, the met-

ric excitations are now described in terms of a scalar field
	, a three-vector field Ai, and a 3� 3 symmetric tensor
field �ij, all of which have been normalized to have mass

dimension 1. In the ground state, h	i ¼ hAii ¼ h�iji ¼ 0,

and the metric reduces to Minkowski space-time. In terms
of the KS variables, the EH action has the simple form

SEH ¼ �2m2
Pl

Z
d4x

ffiffiffiffi



p �
�R½
� � 1

4
e4	FijF

ij

þ 2ð@i	Þð@i	Þ þ . . .

�
; (6)

where Fij ¼ @iAj � @jAi and the dots denote terms with

time derivatives. In Eq. (6) all spatial indices are lowered or
raised with 
ij or 
ij, respectively. Some of the terms

involving time derivatives are needed for our calculation
along with the expansion of the gauge fixing action of Eq.
(2), and their contributions enter the Feynman rules given
in Sec. III.

Given the gravitational action Eqs. (1) and (2), the
worldline action from Eq. (3), and the KS metric parame-
trization from Eq. (5), we can proceed to derive Feynman
rules for the gravitational self-couplings and the couplings
to the compact object worldlines. The procedure is equiva-
lent to the one in [19], but is now implemented in terms of
the KS fields. For the gravitational self-couplings and
worldline couplings, there are infinitely many terms in
the respective actions. To avoid unnecessary calculation
at a given order, a method of systematic computation must
be established.

C. Power counting and Feynman diagram topologies

The power-counting rules for our calculation are the
same as those in the original EFT setup developed in
[19]. However, since there are no radiation fields in our
2PN potential calculation, we use a simplified procedure
where we power count our Feynman diagrams relative to
the LO Newtonian potential. For a bound state, the virial
theorem relates the orbital velocity v and Newton’s con-
stant G via, v2 �Gm=r, and as shown in [19], one can
power count all contributions in powers of the orbital
velocity v. Keeping the virial theorem in mind, we count
powers of G and powers of v2 separately. For the power
counting we do not keep track of factors of mass m and
separation r associated to each G. These will be generated
appropriately in the calculation of the diagrams. In this
scheme, the diagram responsible for the Newtonian poten-
tial scales as OðGv0Þ. For the 2PN potential calculation,
we need to include all diagrams which scale as OðGv4Þ,
OðG2v2Þ, and OðG3v0Þ.

To determine the relevant Feynman diagrams at 2PN, the
first stage is to generate all relevant diagram topologies. To
do this, one first counts in powers ofG, since all interaction

vertices will scale with a power of G (recall mPl �G�1=2).
Powers of velocity are inserted later, when all relevant
diagram topologies have been established. There are two
rules to consider when counting a topology in factors of G.
First, when there are n gravitons attached to a worldline,
this component receives a factor of Gn=2. Second, each
n-graviton self-interaction vertex receives a factor of

Gn=2�1. Note that a propagator does not receive any fac-
tors. Using these rules any diagram topology can be
counted in powers of G.
If we now proceed to apply these rules, we can only have

a single topology at OðGÞ, as shown in Fig. 1. All top-
ologies which simply renormalize the mass are omitted, as
discussed in [19]. Diagrams which involve a graviton line
starting and ending on the same worldline, without any
intermediate interaction, fall into this category. At the next
order, OðG2Þ, we have two topologies, as shown in Fig. 2.
Since the worldlines are static sources and do not propa-
gate, the diagrams in Fig. 2 do not involve any loops.
Diagrams with gravitational loops yield quantum effects
and are therefore ignored, and since only massless fields
propagate in NRGR, the expansion in loops corresponds to
an expansion in powers of @ [39]. At OðG3Þ, the total
number of possible topologies is nine, as shown in Fig. 3.
These diagrams are the relevant topologies for the static
component of the 2PN potential. In Figs. 2 and 3, we have
not drawn the topologies with the two worldlines inter-
changed, although they will be required for our
calculations.
Now that we have established all topologies relevant to

the calculation at 2PN, the powers of the orbital velocity v
must be counted. There are two possible sources for factors
of v in our calculations: (1) fields coupling to the world-
lines, where the LO couplings of 	, Ai, and �ij are Oðv0Þ,
Oðv1Þ, and Oðv2Þ, respectively, and (2) time derivatives,
where @0 � v=r for potential modes. Time derivatives can
arise from either purely gravitational interaction vertices or
from propagator insertions, where each propagator inser-
tion counts as Oðv2Þ.
With all relevant topologies and the counting rules for v,

the final diagrams at 2PN can now be constructed. Recall

FIG. 1. Order G topology. The single solid line denotes a
generic graviton field, either 	, Ai, or �ij, and double solid

lines denote the worldlines of the binary constituents.
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that the 2PN diagrams scale as eitherOðGv4Þ,OðG2v2Þ, or
OðG3v0Þ. The diagrams are generated by first populating
the topologies with the three gravitational fields 	, Ai, and
�ij in all possible combinations. We then count the factors

of v which result from the gravitational fields coupling to
the worldline, and any time derivatives acting on internal
vertices. Propagator insertions are also counted where
appropriate. The powers of v from the worldline vertices
are kept to all orders in the calculations and only expanded
to 2PN in the final result. The diagrams relevant at 2PN
which result from this procedure are shown in Sec. III,
Figs. 4–6.

D. Advantages of the Kol-Smolkin variables

In the KS parametrization of Eq. (5), we have introduced
three fields, 	, Ai, and �ij, instead of the standard h��

parametrization of Eq. (4). It will be necessary to keep
track of these new fields, so one should ask what has been
gained from a calculational perspective by using the KS
parametrization. This question is answered by considering
the static diagrams, i.e., those with no velocity factors.

First, consider the topology Fig. 2(b) which involves a
three-graviton vertex. This was used in [19] to construct
the EIH potential in the h�� variables. When the KS

variables are employed, it was shown that this topology
does not contribute at 1PN order [37]. We discuss this in
more detail since it points us to the source of the advan-
tages of the KS variables.
When working in the h�� parametrization, one often

considers its components h00, h0i, and hij separately, since

their LO coupling to the worldline scale as Oðv0Þ, Oðv1Þ,
and Oðv2Þ, respectively. So in practice, in the h�� and KS

parametrizations, one must keep track of the same number
of components or fields. Returning to our discussion, if we
consider static diagrams, only the h00 component can
couple to the worldline. Let us consider the static limit of
the first topology which arises with gravitational self-
couplings, Fig. 2(b). With h00 coupling to each worldline
at LO, without any propagator insertions, the only possible
source of powers of v would be the three-graviton vertex.
Naively, one would isolate the action component with three
powers of h00, which yields the 3-h00 vertex. Interestingly,
one finds that the corresponding term in the action is
proportional to h00ð@0h00Þ2, meaning that the 3-h00 vertex
has a power of v2 associated with it. So does this mean that
the topology in Fig. 2(b) does not enter at 1PN in the h��

parametrization? If this were true, then the EIH calculation
of [19] would be contradicted. The reason why the above
conclusion is wrong is the presence of mixing of the h��

components.
To explain this point, consider the h�� graviton propa-

gator in harmonic gauge, which is given by hTh��h��i �
ð������ þ ������ � ������Þ. Examining the tensor

(a) (b) (c) (d)

(e) (f) (g) (h) (i)

FIG. 3. Topologies at order G3.

(a) (b)

FIG. 2. Topologies at order G2.
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structure of the propagator, one can see h00 mixes with the
trace of hij, since hTh00hiji � �ij. Thus, a graviton which

starts as h00 at the worldline coupling can be either h00 or
hii at the three-graviton vertex. So instead of the 3-h00
vertex, one has to use the three-point function
hTh00h00h00i. This three-point function is obtained by
contracting the 3-h�� vertex with three graviton propaga-

tors and setting all remaining free indices to 0. One then
finds that there are components of the three-point function
hTh00h00h00i which do not involve time derivatives, and so
the topology Fig. 2(b) is required at 1PN in the h��

parametrization. Clearly, the topology Fig. 2(b) only sur-
vives at 1PN in the h�� parametrization because h00 can

mix with hii as it propagates.
The major advantage of the KS parametrization in har-

monic gauge is that it removes this kind of mixing, since
the two-point functions between the three fields are zero:
hT	Aii ¼ hT	�jki ¼ hTAi�jki ¼ 0. For the topology

Fig. 2(b) to contribute to the EIH potential in the KS
parametrization, all of the fields coupling to the worldlines
must be	’s, since only they couple atOðv0Þ. Knowing that
	 cannot mix with Ai or �ij, the 3-	 vertex must be used.

When the gravitational Lagrangian is examined, the only

relevant term is proportional to 	 _	2, where the two time
derivatives in this term cause the 3-	 vertex to be ofOðv2Þ
in the orbital velocity. Therefore, the diagrams resulting
from the topology Fig. 2(b) do not contribute until 2PN in
the KS parametrization.

This argument can be extended to the n-	 vertex (n >
2), where the relevant term in the gravitational action is

� expð�4	=mPlÞ _	2. Any n-	 vertex is then suppressed
by one order in the PN expansion because there are always
two time derivatives. Thus, in the KS parametrization, the
OðG3Þ topologies Fig. 3(b), 3(c), 3(f), and 3(g) enter at
2PN. This will reduce the calculational effort considerably.
Also, the fact that the topology Fig. 2(b) first enters at 2PN,
rather than 1PN, means that propagator insertions are not
required for this topology at 2PN.

We have established that the KS variables in harmonic
gauge provide important calculational advantages over the
h�� parametrization used in [19] at 2PN order. At 1PN, this

advantage was modest, since only one diagram topology
was eliminated. At 2PN, we have found that four top-
ologies at OðG3v0Þ were removed, and one did not need
propagator insertions atOðG2v2Þ on the topology Fig. 2(b).
Clearly as we proceed to higher order in the PN expansion,
the advantages of the KS variables become more
important.

III. CALCULATION OF FEYNMAN DIAGRAMS

In this section, we present the calculation of the
Feynman diagrams which are required to determine the
2PN interaction potential between the binary constituents.
Using the Feynman rules presented below, each diagram

equals �i
R
dtV from which we extract its contribution to

the potential V. The symmetry factor for each diagram is
computed in the usual manner [40], but one needs to
account for the nonpropagating classical sources. As dis-
cussed in Sec. II C, there are three classes of diagrams with
the following power counting: OðG3v0Þ, OðG2v2Þ, and
OðGv4Þ. We discuss how to evaluate each in turn, starting
with the simplest at OðGv4Þ, and finishing with the more
complex diagrams at OðG3v0Þ.
When calculating the diagrams, we work with the spatial

Fourier transform for the gravitational potential modes. For
example, for the 	 field, we will work in terms of 	kðtÞ,
which is the spatial Fourier transform of the coordinate

space field 	ðt;xÞ ¼ R
k e

ik�x	kðtÞ, where
R
k ¼ R

d3k
ð2�Þ3 .

We also make clear that after expanding the metric in the
KS fields 	, Ai, and �ij, we do not distinguish between

upper and lower spatial indices; they are lowered and
raised with �ij and �ij, respectively. Lastly, since we are

interested in the long range potential only, we drop irrele-
vant contact terms, such as V � �ðrÞ, wherever they appear
in the calculations.

A. Order Gv4 diagrams

As shown in Fig. 4, there are six diagrams to be eval-
uated atOðGv4Þ. The contributions from the diagrams ðaÞ,
ðdÞ, and ðfÞ are the easiest of all diagrams to compute at
2PN, since we only need to compute simple one-graviton
exchange diagrams.
The Feynman rules for couplings to the worldlines are

derived from the point particle action in Eq. (3), which is
expanded in the gravitational fields to the required order
for a given Feynman rule. The Feynman rules for a 	, Ai,
and �ij coupled to the worldline are

(7)
Pl

(8)
Pl

(9)
Pl

The double solid lines are the worldlines, and the dashed,
wavy, and double wavy lines represent the 	, Ai, and �ij

fields, respectively. Note that these rules are exact in v. We
will expand in v at the end of the calculation to isolate the
required terms at 2PN.
To compute diagrams ðaÞ, ðdÞ, and ðfÞ, we now need the

propagators for each gravitational field. From the purely
gravitational action, the sum of Eqs. (1) and (2), the
propagators can be derived. These potential propagators
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are nonrelativistic and instantaneous, and for the	, Ai, and
�ij gravitational fields we have, respectively,

hT	pðtaÞ	qðtbÞi¼�1

8
ð2�Þ3�3ðpþqÞ i

p2
�ðta� tbÞ; (10)

hTAi
pðtaÞAj

qðtbÞi¼1

2
ð2�Þ3�3ðpþqÞi�

ij

p2
�ðta� tbÞ; (11)

hT�ij
p ðtaÞ�kl

q ðtbÞi¼�ð2�Þ3�3ðpþqÞiP
ij;kl

p2
�ðta� tbÞ; (12)

where Pij;kl ¼ 1
2 ð�ik�jl þ �il�jk � 2�ij�klÞ.

The three single-graviton exchange diagrams are easily
computed with the above propagators and worldline cou-
plings. At OðGv4Þ, the only integral in k which arises is a
Fourier transform, which is evaluated using the
d-dimensional formula

Z ddk

ð2�Þd
1

ðk2Þ� e
ik�r ¼ 1

ð4�Þd=2
�ðd=2� �Þ

�ð�Þ
�
r2

4

�
��d=2

:

(13)

Doing the Fourier transform, and extracting the 2PN com-
ponent, gives the following potential contributions:

VðaÞ ¼ �Gm1m2

r

�
7

8
v41 þ

9

4
v21v

2
2 þ

7

8
v42

�
; (14)

VðdÞ ¼ �Gm1m2

r
ð�2v1 � v2ðv21 þ v22ÞÞ; (15)

VðfÞ ¼ �Gm1m2

r
ð2ðv1 � v2Þ2 � 2v21v

2
2Þ; (16)

where the notation we use here and subsequently is r �
x1ðtÞ � x2ðtÞ, r � jrj, and n � r=r. The labels 1 and 2 are
used for the left and right worldlines, respectively.
Although r, v1, etc., depend on t, we have suppressed
this dependence above. We will continue to do this when
convenient.

Diagrams ðbÞ, ðcÞ, and ðeÞ all involve propagator inser-
tions. These insertions account for the corrections to the

instantaneous nature of the nonrelativistic potential propa-
gators in Eqs. (10)–(12). These are included systematically
as a perturbation, where each propagator insertion is sup-
pressed with respect to the propagator by a power of v2.
The insertions are obtained from the terms in the action
which are quadratic in the fields and which involve time
derivatives. The required propagator insertions at 2PN are
derived to be

(17)

(18)

(19)

where one cross denotes a single propagator insertion and
two crosses denote two propagator insertions. Here, we
have chosen the simplest symmetric form of the time
derivatives; however, other choices are possible. Note
that any other choice of time derivatives yields potentials
which can be related to potentials computed with the
simplest symmetric choice by a total time derivative, and
are thus physically equivalent.
To demonstrate how the diagrams at OðGv4Þ are com-

puted, we show how to calculate diagram ðbÞ in some
detail. The first step is to form the expression of the
diagram. This is achieved by coupling Eq. (17) to two
copies of Eq. (7) for worldlines 1 and 2. The diagram is
given as follows, where we have done the q integration to
eliminate �3ðpþ qÞ,

�i
Z

dtV ¼ im1m2

8m2
Pl

Z
dtadtb

Z
p

eip�ðx1ðtaÞ�x2ðtbÞÞ

p4

� ð1þ v1ðtaÞ2Þð1þ v2ðtbÞ2Þ
ð1� v1ðtaÞ2Þ1=2ð1� v2ðtbÞ2Þ1=2

� @ta@tb�ðta � tbÞ: (20)

(a) (b) (c) (d) (e) (f)

FIG. 4. Order Gv4 diagrams at 2PN. Here the dashed, wavy, and double wavy lines, represent the 	, Ai, and �ij fields, respectively.
A cross denotes a propagator insertion.
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Care must be taken when labeling the time for each world-
line Feynman rule, and here we have used ta and tb. Since
each worldline interaction is a different Feynman rule, it
must therefore have a different dummy variable. Before
explicitly using the time derivatives, we employ the
Fourier integral from Eq. (13) to compute the remaining
momentum integral. Now, an integration by parts on both
time derivatives acting on �ðta � tbÞ is required, which
gives,

�i
Z

dtV ¼ �iGm1m2

2

Z
dtadtb�ðta � tbÞ

�
�
@ta@tb

�
jx1ðtaÞ � x2ðtbÞj

� ð1þ v1ðtaÞ2Þð1þ v2ðtbÞ2Þ
ð1� v1ðtaÞ2Þ1=2ð1� v2ðtbÞ2Þ1=2

��
: (21)

At this stage, the time derivatives must be allowed to act on
the square bracket. Only after this point can the �ðta � tbÞ
be used. It is clear that acceleration-dependent terms will
arise. The potential contribution we obtain is exact to all
orders in the PN expansion. Since we are only interested in
the 2PN potential, we extract this piece from the result. For
this purpose, we note that accelerations are power counted

as a� v2=r. The final contribution, VðbÞ, is given below,
along with the other one-graviton exchange diagrams with
propagator insertions at OðGv4Þ,

VðbÞ ¼ �Gm1m2

r

�
3

4
ðv1 � v2 � n � v1n � v2Þðv21 þ v22Þ

�

�Gm1m2

�
3

2
a1 � v1n � v2 � 3

2
a2 � v2n � v1

�
; (22)

VðcÞ ¼ �Gm1m2

r

�
1

8
v21v

2
2 þ

1

4
ðv1 � v2Þ2 þ 3

8
ðn � v1Þ2ðn � v2Þ2 � 1

2
v1 � v2n � v1n � v2 � 1

8
v21ðn � v2Þ2 � 1

8
v22ðn � v1Þ2

�

�Gm1m2

�
1

8
a1 � nðv22 � ðn � v2Þ2Þ � 1

8
a2 � nðv21 � ðn � v1Þ2Þ þ 1

4
a1 � v2n � v2 � 1

4
a2 � v1n � v1

�

�Gm1m2r

�
� 1

8
a1 � a2 � 1

8
a1 � na2 � n

�
; (23)

VðeÞ ¼ �Gm1m2

r
ð�2ðv1 � v2Þ2 þ 2v1 � v2n � v1n � v2Þ

�Gm1m2ð�2a1 � v2n � v2 þ 2a2 � v1n � v1Þ
�Gm1m2rð2a1 � a2Þ: (24)

Note that all the potential contributions VðbÞ, VðcÞ, and VðeÞ,
contain acceleration-dependent terms. They are generated
from either a time derivative acting on a worldline velocity
factor or from two time derivatives acting on x1 or x2.

B. Order G2v2 diagrams

The first three diagrams at OðG2v2Þ, ðgÞ, ðhÞ, and ðiÞ of
Fig. 5, are obtained by modifying the OðGÞ topology
through the addition of one extra gravitational leg connect-
ing the two worldlines. As we will see, such diagrams,
where a topology of lower order in G is augmented by an
additional leg between the worldlines, are particularly
simple to compute because their expressions factorize. To
compute these diagrams we need two additional Feynman
rules for the worldline couplings. The first has two	 fields
coupling to the worldline, and the second has a	 and an Ai

coupling to the worldline. These are, respectively,

(25)
Pl

(26)
Pl

These rules are again exact in the orbital velocity v.
We demonstrate how to calculate the three diagrams ðgÞ,

ðhÞ, and ðiÞ, by considering diagram ðhÞ. One can write this
diagram by using Eqs. (7), (8), and (26) for the worldline
couplings, and Eqs. (10) and (11) for the propagators. The
diagram is

�i
Z
dtV¼ im1m

2
2

16m4
Pl

Z
dtadtbdtc�ðta� tbÞ�ðta� tcÞ

�
Z
k;l;p;q

ei½ðkþpÞ�x1ðtaÞþl�x2ðtbÞþq�x2ðtcÞ�

�ð2�Þ3�3ðkþlÞð2�Þ3�3ðpþqÞ
k2p2

� v1ðtaÞ �v2ðtcÞð1�3v1ðtaÞ2Þð1þv2ðtbÞ2Þ
ð1�v1ðtaÞ2Þ3=2ð1�v2ðtbÞ2Þ1=2ð1�v2ðtcÞ2Þ1=2

:

(27)

The symmetry factor of this diagram is 1. Since there are
no time derivatives in this expression, the time delta func-
tions can be used immediately. We can also use the three-
momentum delta functions; doing so leads to
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� i
Z

dtV ¼ im1m
2
2

16m4
Pl

Z
dt
Z
k;p

eik�r

k2

eip�r

p2

� v1 � v2ð1� 3v21Þð1þ v22Þ
ð1� v21Þ3=2ð1� v22Þ

: (28)

Looking at this equation, it is clear that the two momentum
integrations factorize into two Fourier transforms. They are
seen to be the same in this diagram, and we can simply use
the Fourier integral, Eq. (13). Our final result for the exact
potential contribution from diagram ðhÞ to all orders in the
PN expansion, is then

VðhÞ
Exact ¼

�4G2m1m
2
2

r2
v1 � v2ð1� 3v21Þð1þ v22Þ
ð1� v21Þ3=2ð1� v22Þ

: (29)

The calculation of the other two diagrams with this
topology, diagrams ðgÞ and ðiÞ, proceed similarly.
However, when propagator insertions are present, as in
diagram ðiÞ, the time delta functions cannot be used im-
mediately. One must first integrate by parts, and act with
the time derivatives, before using the time delta functions.
The procedure is analogous to diagram ðbÞ in Sec. III A. At
2PN, we have the following contributions to the potential:

VðgÞ ¼ G2m1m
2
2

r2

�
� 9

4
v21 þ

3

2
v22

�
; (30)

VðhÞ ¼ G2m1m
2
2

r2
ð�4v1 � v2Þ; (31)

VðiÞ ¼ G2m1m
2
2

r2

�
1

2
ðn � v2Þ2 þ 1

2
v1 � v2 � n � v1n � v2

�
:

(32)

Although we do not display the diagrams where the two
worldlines are interchanged, they must be accounted for in
the final 2PN Lagrangian.
We now proceed to the diagrams where the topology is

that of Fig. 2(b), where a three-graviton vertex mediates the
interaction. First, the vertices for the gravitational self-
interactions must be derived, and this is done in a straight-
forward way from the sum of the Einstein-Hilbert action,
Eq. (1), and the gauge fixing action, Eq. (2). At 2PN, the
KS parametrization simplifies the vertex derivations, since
we need at most one leg to be the tensor field �ij. Once the

appropriate terms in the action are established via power-
counting factors of v, the Feynman rule for the vertex is
computed. Then each leg of a given vertex is multiplied by
the appropriate propagator to obtain the three-point func-
tion. For diagrams ðjÞ, ðkÞ, ðlÞ, ðmÞ, ðnÞ, ðoÞ, and ðpÞ of
Fig. 5, we use the following three-point functions:

hT	a	b	ci ¼ 1

16mPl

fð@ta�ðta � tcÞÞð@tb�ðtb � tcÞÞ

þ ð@ta�ðta � tbÞÞð@tc�ðtc � tbÞÞ
þ ð@tb�ðtb � taÞÞð@tc�ðtc � taÞÞg

� 1

k2
ak

2
bk

2
c

ð2�Þ3�3ðka þ kb þ kcÞ;
(33)

(g) (h) (i) (j) (k)

(l) (m) (n) (o) (p)

FIG. 5. Order G2v2 diagrams at 2PN.
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hT	a	bA
i
ci ¼ � i

16mPl

fðki
b@ta þ ki

a@tbÞ�ðta � tcÞ

� �ðtb � tcÞg � 1

k2
ak

2
bk

2
c

� ð2�Þ3�3ðka þ kb þ kcÞ; (34)

hT	aA
i
bA

j
ci ¼ 1

4mPl

�ðta � tcÞ�ðtb � tcÞ

� ki
bk

j
c � ki

ck
j
b þ kb � kc�

ij

k2
ak

2
bk

2
c

� ð2�Þ3�3ðka þ kb þ kcÞ; (35)

hT	a	b�
ij
c i ¼ 1

16mPl

�ðta � tcÞ�ðtb � tcÞ

� ki
ak

j
b þ ki

bk
j
a

k2
ak

2
bk

2
c

ð2�Þ3�3ðka þ kb þ kcÞ;
(36)

where the lower index on a field denotes its dependence on
t and k.

Because of the nonlinear structure of the diagrams ðjÞ
through ðpÞ, their contributions do not factorize, and we
have to calculate an integral which corresponds to a one-
loop Feynman integral. To demonstrate the calculation of
this class of diagrams, we consider diagram ðkÞ. This

diagram uses the three-point function hT	aA
i
bA

j
ci from

Eq. (35). The diagram is formed by coupling Eq. (35) to
the worldlines using Eqs. (7) and (8) and the symmetry
factor of this diagram is 1. Given there are no time deriva-
tives, we are free to do two of the time integrations imme-
diately. We also do the integration over the three-
momentum which labels the 	 leg. The result of these
operations is

� i
Z

dtV ¼ im1m
2
2

4m4
Pl

Z
dt

ð1þ v22Þvi1vj2
ð1� v21Þ1=2ð1� v22Þ

IijðrÞ;
(37)

where the integral IijðrÞ is given by

IijðrÞ ¼
Z
p;q

eip�r
piqj � qipj þ p � q�ij

p2q2ðpþ qÞ2

¼
Z
p
eip�r

pi�ja � pj�ia þ pa�ij

p2

Z
q

qa

q2ðqþ pÞ2 :
(38)

The next step is to evaluate the momentum integral, IijðrÞ.
From Eq. (38) it is apparent that IijðrÞ is calculated by first
computing the q-integration which corresponds to a one-
loop Feynman integral and subsequently performing a
Fourier integration over p. The Feynman integral is of
vector nature, and we reduce it to a scalar integral in the
usual way by noting that its expression must be propor-

tional to pa. The scalar integral is then computed in di-
mensional regularization using the d-dimensional master
integralZ ddk

ð2�Þd
1

½ðkþ pÞ2�n1½k2�n2 ¼
1

ð4�Þd=2
�ðn1 þ n2 � d=2Þ

�ðn1Þ�ðn2Þ
� �ðd=2� n1Þ�ðd=2� n2Þ

�ðd� n1 � n2Þ
� ðp2Þd=2�n1�n2 : (39)

The resulting expression for the integral IijðrÞ then be-
comes

IijðrÞ ¼ ��ij

16

Z
p
eip�r

1

jpj ; (40)

and the remaining Fourier transform integral is performed
with Eq. (13). Putting all terms back together gives the
exact potential for diagram ðkÞ,

VðkÞ
Exact ¼

G2m1m
2
2

r2
8v1 � v2ð1þ v22Þ

ð1� v21Þ1=2ð1� v22Þ
: (41)

The 2PN piece of this potential is extracted below.
The remaining diagrams from ðjÞ through ðpÞ are all

evaluated using the same methods as explained for diagram
ðkÞ. The only complication are the time derivatives which
occur in the three-point functions hT	a	b	ci and
hT	a	bA

i
ci, Eqs. (33) and (34), respectively. So when

calculating the diagrams ðjÞ, ðmÞ, and ðnÞ, it is necessary
to integrate by parts as explained in Sec. III A. We use Eq.
(39) (and its vector or tensor extensions) for any one-loop
integrals, and Eq. (13) for the Fourier transforms.
Additionally, for some diagrams we need vector and tensor
Fourier integrals which are obtained from the scalar
Fourier integral in Eq. (13) by taking derivatives with
respect to r. At OðG2v2Þ, the contributions from the indi-
vidual diagrams with the topology Fig. 2(b) are

VðjÞ ¼ G2m1m
2
2

r2

�
1

2
v22 �

1

2
ðn � v2Þ2

� 2v1 � v2 þ 4n � v1n � v2
�
; (42)

VðkÞ ¼ G2m1m
2
2

r2
ð8v1 � v2Þ; (43)

VðlÞ ¼ G2m1m
2
2

r2
ð�4v22Þ; (44)

VðmÞ ¼ G2m1m
2
2

r2
ð2v22 � 4ðn � v2Þ2

þ 2v1 � v2 � 4n � v1n � v2Þ; (45)

VðnÞ ¼ G2m1m
2
2

r2
ð�v1 � v2 þ n � v1n � v2Þ; (46)
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VðoÞ ¼ G2m1m
2
2

r2
ð�2v22 þ 4ðn � v2Þ2Þ; (47)

VðpÞ ¼ G2m1m
2
2

r2

�
1

2
v21 �

1

2
ðn � v1Þ2

�
: (48)

All of the above contributions with ð1 $ 2Þ must be added
to the final potential in order to account for the diagrams
with the two worldlines interchanged.

C. Order G3v0 diagrams

Finally, we progress onto the diagrams at OðG3v0Þ. The
diagrams which must be evaluated are ðqÞ, ðrÞ, ðsÞ, ðtÞ, and
ðuÞ, as shown in Fig. 6. For diagram ðqÞ a new worldline
vertex will be required coupling three 	 fields to the
worldline at one point. The Feynman rule is

(49)
Pl

which is exact to all orders in v. At this order, the potential
contribution at 2PN is static and there are no velocity
factors in the final potential contributions. Given this is
the case, we do not keep any velocity factors from the
worldline vertices when we discuss the calculations below.

The two simple diagrams at this order are ðqÞ and ðsÞ.
These diagrams are easy because there are no internal
vertices—only propagators and worldline couplings. The
diagrams therefore factor into simple Fourier transforms,
which are evaluated using Eq. (13). This is analogous to the
evaluation of diagram ðhÞ in Sec. III B. The symmetry
factors are 1=6 and 1 for ðqÞ and ðsÞ, respectively.
Computing each diagram gives the following potential
contributions:

VðqÞ ¼ �G3m1m
3
2

6r3
; (50)

VðsÞ ¼ �G3m2
1m

2
2

r3
; (51)

where the contribution of diagram ðqÞ must be added with
ð1 $ 2Þ in the final potential.
The next set of diagrams at OðG3v0Þ are no longer as

simple as ðqÞ and ðsÞ. This is due to the presence of the
four-point function, which is used to construct the dia-
grams ðrÞ, ðtÞ, and ðuÞ. The only four-point function needed
at 2PN is derived by joining two 		�ij vertices with an

intermediate �ij propagator, Eq. (12), and attaching 	

propagators, given in Eq. (10), to the external legs. This
is given by

hT	a	b|ffl{zffl}	c	d|ffl{zffl}i ¼ i

128m2
Pl

�ðta � tdÞ�ðtb � tdÞ�ðtc � tdÞka � kckb � kd þ ka � kdkb � kc � ka � kbkc � kd

ðka þ kbÞ2k2
ak

2
bk

2
ck

2
d

� ð2�Þ3�3ðka þ kb þ kc þ kdÞ; (52)

where each set of two 	 fields connected by a brace have
the same intermediate 		�ij vertex.

Of the three diagrams left to compute, ðtÞ is the most
involved, so wewill compute it explicitly. We first note that
the symmetry factor of this diagram is 1=2. The diagram is
constructed in the usual manner, using Eq. (7) and (52), but
we will only work to OðG3v0Þ in what follows neglecting
all velocity factors of the vertices. First, we integrate over
all the time delta functions. Then, we relabel the three-
momentum of the four-point function as

ðka;kb;kc;kdÞ ! ðk;q;p; lÞ and couple k and p to
worldline 1 and q and l to worldline 2. The l integration
is then performed using the �-function, which takes l !
�ðkþ pþ qÞ. After some algebra, redefining of k !
kþ p is seen to be useful. This gives the following ex-
pression:

� i
Z

dtV ¼ im2
1m

2
2

256m6
Pl

Z
dt
Z
k
eik�rðIIðkÞ þ IIIðkÞ

þ IIIIðkÞ þ IIVðkÞÞ; (53)

(q) (r) (s) (t) (u)

FIG. 6. Order G3v0 diagrams at 2PN.
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where the terms IIðkÞ, IIIðkÞ, IIIIðkÞ, and IIVðkÞ are the
integrals

IIðkÞ ¼
Z
p;q

�k � pq2=Qðk;p;qÞ; (54)

IIIðkÞ ¼
Z
p;q

k � qp2=Qðk;p;qÞ; (55)

IIIIðkÞ ¼
Z
p;q

p2q2=Qðk;p;qÞ; (56)

IIVðkÞ ¼
Z
p;q

�k2p � q=Qðk;p;qÞ; (57)

and Qðk;p;qÞ ¼ ðkþ qÞ2ðk� pÞ2ðkþ q� pÞ2q2p2.
These integrals correspond to two-loop Feynman integrals,
and we will show how to compute them efficiently by
reducing them to the one-loop master integral in Eq. (39).

The first three integrals IIðkÞ, IIIðkÞ, and IIIIðkÞ can be
computed straightforwardly using the d-dimensional one-
loop scalar integral from Eq. (39) twice, on both the p and
q integrations. One can see that IIðkÞ ¼ IIIðkÞ by making
the replacement ðp;qÞ ! ð�q;�pÞ, in IIIðkÞ. The reason
why one can evaluate these two-loop integrals employing
solely a single one-loop master integral, is that these
integrals correspond to nested loop diagrams. Here, it is
important to keep the dimension d of the integrals arbitrary
and only set d ¼ 3 after the final Fourier integration over k
has been performed.

The remaining two-loop integral, IIVðkÞ, requires an
integration by parts trick [41] in order to reduce it in terms
of our master integral of Eq. (39). But first, we redefine
q ! qþ k. This allows us to split the integral into four
terms, three of which can be evaluated using same methods
as discussed in the previous paragraph. The remaining term
is a two-loop integral with five factors in the denominator

k4

2

Z
p;q

1

q2ðq� kÞ2ðqþ pÞ2ðpþ kÞ2p2
: (58)

Using the integration by parts trick we can write this
integral as

Z
p;q

1

q2ðq� kÞ2ðqþ pÞ2ðpþ kÞ2p2

¼ 2

d� 4

Z
p;q

�
1

p2q2ðqþ kÞ2ðpþ kÞ4

� 1

p2q2ðpþ qÞ2ðpþ kÞ4
�
: (59)

Once in this form, we can evaluate it using Eq. (39) twice.
After all the Feynman integrals have been evaluated, we

perform the remaining Fourier transformation integral us-
ing Eq. (13). Subsequently, we can set d ¼ 3 and find a
contribution to the potential

VðtÞ ¼ � 2G3m2
1m

2
2

r3
: (60)

The remaining two diagrams, ðrÞ and ðuÞ, are simpler to
compute. They are evaluated with the methods we have
discussed, where once again it is necessary to compute
two-loop integrals by applying the master integral Eq. (39)
to two integrations. The results of the calculations are

VðrÞ ¼ �G3m1m
3
2

3r3
; (61)

VðuÞ ¼ 0; (62)

and the contribution of the potential VðrÞ must be added
with ð1 $ 2Þ in the final potential. It is worth noting that

VðuÞ ¼ 0 because the diagram gives a purely short distance
contribution V � �ðrÞ, which we have dropped.

IV. RESULTS

Having computed all the diagrams, we can now con-
struct the 2PN interaction Lagrangian. There are two con-
tributions which we need. The first is the kinetic energy,
which is obtained by expanding the matter coupling action,
Eq. (3), to Oðv6Þ while setting all fields to zero. The final
potential comes by summing each potential contribution

from the diagrams, VðaÞ to VðuÞ. At this stage, we add all
contributions with the worldlines interchanged, as appro-
priate. Our 2PN interaction Lagrangian for a binary system
is then given by

L2PN ¼ m1v
6
1

16
þGm1m2

r

�
7

8
v41 �

5

4
v21v1 � v2 �

3

4
v21n � v1n � v2 þ 3

16
v21v

2
2 þ

1

8
ðv1 � v2Þ2 � 1

8
v21ðn � v2Þ2 þ 3

4
n � v1n � v2v1 � v2

þ 3

16
ðn � v1Þ2ðn � v2Þ2

�
þGm1m2

�
1

8
a1 � nv22 þ

3

2
a1 � v1n � v2 � 7

4
a1 � v2n � v2 � 1

8
a1 � nðn � v2Þ2

�

þGm1m2r

�
15

16
a1 � a2 � 1

16
a1 � na2 � n

�
þG2m1m

2
2

r2

�
7

4
v21 þ 2v22 �

7

2
v1 � v2 þ 1

2
ðn � v1Þ2

�
þG3m1m

3
2

2r3

þ 3G3m2
1m

2
2

2r3
þ ð1 $ 2Þ; (63)
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where ð1 $ 2Þ refers to all terms given previously, with the
labels 1 and 2 interchanged. Note that n ! �n under this
exchange.

Upon comparison to the 2PN piece of the Lagrangian in
Eq. (174) in [14], it is apparent that our Lagrangian does
not have the same form. However, when the equations of
motion (EOM) are computed we recover the same 2PN
EOM as in [14]. This shows the physical equivalence of
our Lagrangian and the one in [14]. At the level of the
Lagrangian, this can be shown directly by relating our
result in harmonic gauge to the standard 2PN Lagrangian
in harmonic gauge of [14] via a total derivative and two
double zero terms [42]. A double zero term is an expres-
sion which vanishes at 2PN by the use of the lower order
EOM. Adding such a term modifies the form of the
Lagrangian, but does not change the EOM or the choice
of gauge. The terms we add are given by

�L1 ¼ 1

8

Gm1m2

r

�
r � a1 þGm2

r

��
r � a2 �Gm1

r

�
; (64)

�L2 ¼ � 15

8
Gm1m2r

�
ai1 þ

Gm2

r3
ri
��
ai2 �

Gm1

r3
ri
�
;

(65)

�L3 ¼ d

dt

�
7

4

G2m1m2

r2
ðm2r � v2 �m1r � v1Þ

þ 3

4

Gm1m2

r
ðr � v1v22 � r � v2v21Þ

�
; (66)

where the first two terms are double zero terms and the last
one is a total time derivative. By adding these terms to our
Lagrangian at 2PN, Eq. (63), we obtain the Lagrangian in
[14]. We again emphasize that applying these transforma-
tions leaves the EOM unchanged, so that we remain in
harmonic gauge.

We have also calculated the observable Eð!Þ for a
circular orbit and recover the known 2PN result [14]. We
note that if the accelerations were replaced in our
Lagrangian, using the LO EOM, Eð!Þ is unchanged,
although all intermediate expressions are different. This
is because Eð!Þ is physical and therefore gauge invariant,
and using the EOM at the level of the Lagrangian corre-
sponds to a change in gauge.

V. CONCLUSION

We have demonstrated how to use the EFT method [19]
to efficiently calculate the next-to-next-to-leading order
Lagrangian describing the conservative dynamics of a
binary system. We have shown how to systematically

determine all Feynman diagrams which contribute to the
2PN Lagrangian through the use of power counting in G
and v2. The calculation involved 21 distinct diagrams, and
we encountered integrals which correspond to one-loop
and two-loop Feynman integrals. All diagrams could be
computed with only two master integrals. This demon-
strates the efficiency of the EFT method for the calculation
of the 2PN Lagrangian.
Instead of a usual Lorentz covariant metric parametri-

zation, we employed a temporal Kaluza-Klein parametri-
zation of the metric, proposed by Kol and Smolkin [36,37].
When compared to the h�� parametrization used in [19],

we found that the KS variables reduced the number of
diagrams by four at OðG3v0Þ and avoided any propagator
insertions in the three-graviton diagrams at OðG2v2Þ. This
reduced the amount of calculation significantly at 2PN.
More generally, we conclude that the KS variables will
significantly improve any calculations which are per-
formed at higher order using NRGR methods. This is due
to (1) the simple propagators obtained with this gauge and
parametrization choice, (2) the suppression of 	n vertices
by one order in the PN expansion due to two time deriva-
tives acting on the vertex, (3) not requiring time insertions
in the 	n topologies at the next order in the PN expansion,
and (4) the advantageous compounding effect of the former
points when higher order expansions are calculated.
An interesting extension of the current calculation is to

compute the 3PN potential. Analogously to 2PN, where the
four-point function formed diagrams which were the most
difficult to evaluate, the hardest part of the calculation at
3PN is expected to involve a gravitational five-point func-
tion in OðG4v0Þ diagrams. Also, the number of diagrams
one must evaluate at 3PN is much greater. This means
more terms in the action will have to be computed to
account for new vertices at OðG4v0Þ, OðG3v2Þ, OðG2v4Þ,
and OðGv6Þ. Our preliminary estimates show there are
more than 100 diagrams at 3PN, compared to the 21 at
2PN. At 3PN, it will again be the case that a reduction in
the number of diagrams can be achieved if the KS variables
are employed. So while the 3PN calculation may prove
challenging, the relative ease of the calculation at 2PN
indicates that the NRGR calculation of the 3PN potential
can be done.
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