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Using the teleparallel equivalent of general relativity formulated in Weitzenböck spacetime, we

thoroughly explore a kind of Born-Infeld regular gravity leading to second order field equations for the

vielbein components. We explicitly solve the equations of motion for two examples: the extended

Bañados-Teitelboim-Zanelli black hole, which exists even if the cosmological constant is positive, and

a cosmological model with matter, where the scale factor is well behaved, thus giving a singularity-free

solution.
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I. INTRODUCTION: ULTRAVIOLET
CORRECTIONS TO GENERAL RELATIVITY (GR)

In the last decade a wide variety of modified theories of
gravity have been studied with the aim of solving or
smoothing some puzzling features of conventional gravity
and cosmology such as singularities, particle horizons,
accelerated expansion of the Universe, etc. Many of these
modified theories of gravity consist in the mere deforma-
tion of the current theory. In this case, one starts from a
known LagrangianL ¼ eL, where L is invariant and e is a
density under general coordinate changes, and then the
theory is deformed by replacing the Lagrangian by LD ¼
efðLÞ. It is expected that a suitable choice of the function f
will heal the unwanted features of the original theory. To
explain the method, let us consider an invariant Lagrangian
L ¼ Lð�a;�a

;�;�
a
;��; . . . ; x

�Þ and a density e that does not
depend on the derivatives of the fields �a: e ¼ eð�a; x�Þ
(this is because �a will later become a field describing the
geometry, and so the density ewill be the square root of the
determinant of the metric). Thus the Euler-Lagrange equa-
tions for the deformed Lagrangian LD ¼ efðLÞ are
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If the deformed Lagrangian is intended to modify only the
strong field (large L) regime, then f should satisfy

fðLÞ ’ LþOðL2Þ; (2)

i.e.,

fð0Þ ¼ 0; f0ð0Þ ¼ 1: (3)

In general, Eqs. (1) will have solutions differing from those
coming from the original LagrangianL ¼ eL. However, it
should be noted that not all the solutions of the original
theory get deformed by this procedure. In fact, let us
consider solutions of the original theory such that L ¼ 0.
In this case, by substituting L ¼ 0 in (1) and using (3), the
result is that the last term vanishes. Moreover, since
f0ð0Þ ¼ 1, then those solutions of the original theory hav-
ing L ¼ 0 also solve the Euler-Lagrange equations for the
deformed LagrangianLD. In particular, the invariant L for
GR is the curvature scalar R associated with the Levi-
Civita connection, which is null for all the (vacuum) solu-
tions. Thus general relativity is a quite rigid theory, be-
cause its vacuum solutions remain as solutions for the
(vacuum) field equations of deformed theories LD /ffiffiffiffiffiffiffi�g
p

fðRÞ, with f satisfying conditions (3). This is a rather

singular feature which is not shared by other field theories.
For instance, in Maxwell electromagnetism it is L / E2 �
B2, and only some vacuum solutions—mainly plane
waves—make the Maxwell Lagrangian null.
Contrasting with other theories, the general relativity

Lagrangian L / R contains second derivatives of the met-
ric. In spite of this feature, the Einstein equations are
second order because the fourth order terms in the Euler-
Lagrange equations cancel out (in other words, second
derivatives in L appear to just contribute to a divergence
term in the action). This property is lost in the deformed
theory LD / ffiffiffiffiffiffiffi�g

p
fðRÞ, whose dynamical equations be-

come fourth order, as it follows from Eq. (1). This undesir-
able fact is usually relieved by splitting the metric in a new
metric tensor times a conformal factor depending on a
scalar field; the scalar field becomes a constant when the
(f0 ¼ 1) general relativity case is retrieved. This procedure
allows us to reformulate an fðRÞ theory as a Brans-Dicke–
like scalar-tensor theory of gravity having ! ¼ 0 (metric
formalism [1,2]) or ! ¼ �3=2 (Palatini formalism [3–5]);
thus the new metric turns out to be governed by second
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order equations, and the extra degrees of freedom are
placed in a scalar field fulfilling a second order equation
too. However, the scalar-tensor reformulation of fðRÞ theo-
ries results in violations of the weak equivalence principle,
since matter and gravity would couple not only through the
(new) metric but also through the scalar field [6,7].
Incidentally, we mention that not all the fðRÞ’s appearing
in the literature fulfill the conditions (3); see, for instance,
the fðRÞ used to build the spherically symmetric vacuum
solution in Ref. [8], or the one proposed in Refs. [4,9] to
explain the acceleration of the universe as an effect of
modified gravity at the low curvature regime (which, if
regarded as a Brans-Dicke–like theory, can be dismissed
on the basis of well-established post-Newtonian con-
straints [2,5,10]; the Newtonian limit in the Palatini for-
malism is not retrieved either [11]).

The problems inherent in the formulation of an fðRÞ
theory can be avoided by starting from an alternative
theory of gravity whose Lagrangian only contains first
derivatives of the dynamical variables. In a recent article
[12] we have proposed to deform the teleparallel equiva-
lent of general relativity (TEGR) [13]. As currently for-
mulated, the TEGR is an alternative formulation of general
relativity. Although the dynamical object of the theory is
not the metric but the vielbein ea�ðxÞ, the teleparallel action
is invariant under local Lorentz transformations �a0

a ðxÞ of
the vielbein,

ea�ðxÞ ! ea
0

�ðxÞ ¼ �a0
a ðxÞea�ðxÞ; (4)

which do not change the metric

g��ðxÞ ¼ �abe
a
�ðxÞeb�ðxÞ; (5)

where �ab ¼ diagð1;�1;�1; . . .Þ. Since the TEGR action
is not sensitive to some of the degrees of freedom of the
vielbein, the theory can be driven to be equivalent to
general relativity for the metric (5) [14,15]. The telepar-
allel Lagrangian is built from the torsion associated with
the Weitzenböck connection [16],

�
W
�
�� ¼ e�a@�e

a
� ¼ �ea�@�e

�
a; (6)

where e�a stands for the vielbein inverse matrix:

e
�
a eb� ¼ �b

a; e
�
a ea� ¼ �

�
� : (7)

The Weitzenböck connection has zero Riemannian curva-

ture R
W
, but non-null torsion:

T�
�� ¼ �

W
�
��� �

W
�
�� ¼ e�að@�ea� � @�e

a
�Þ: (8)

The structure of the torsion tensor resembles the one of the
electromagnetic field tensor. Moreover, like the Maxwell
Lagrangian, the teleparallel Lagrangian density is qua-
dratic in this tensor. In fact, the TEGR Lagrangian with a
cosmological constant � is [17]

L T½ea�ðxÞ� ¼ e

16�G
ðS � T� 2�Þ; (9)

where e is the determinant of the matrix ea� (which is equal

to
ffiffiffiffiffiffiffi�g

p
), S � T ¼: S�

��T�
��, and S�

�� is defined as

S�
�� ¼ �1

4ðT��
� � T��

� � T�
��Þ þ 1

2�
�
�T	�

	

� 1
2�

�
�T

	�
	: (10)

While the Einstein-Hilbert Lagrangian depends on second
derivatives of the metric, the teleparallel Lagrangian is
built with just first derivatives of the vielbein, which makes
the study of its deformation more attractive, in the sense
that the field equations of the deformed theory will remain
second order equations. The Euler-Lagrange equations for
the Lagrangian LT þLmatter are

@
ðee�aS��
Þ � ee�aS�
��T�

�� þ 1
4ee

�
aðS � T� 2�Þ

¼ 4�Gee�aT�
�; (11)

where T�
� is the matter energy-momentum tensor. By

contracting Eq. (11) with the inverse vielbein ea�, one
obtains for the vacuum solutions

4e�1ea�@
ðee�aS��
Þ þ ðn� 4ÞS � T ¼ 2n�; (12)

where n is the spacetime dimension. In contrast to general
relativity, where the Einstein equations compel R to vanish
in vacuum (or to be a constant when the cosmological
constant is included), Eq. (12) does not compel the invari-
antS � T to be null or constant for vacuum solutions, which
raises the hope that a deformed teleparallelism could be
useful to smooth singularities of vacuum general relativity
solutions.

II. BORN-INFELD GRAVITY

Born-Infeld (BI) electrodynamics [18] has experienced a
renewed interest in recent years due to its close connection
with string theory, particularly because of its capability to
describe the electromagnetic fields of D-branes [19,20].
Inspired by these fruitful properties, together with the
ability of the BI program concerning the cure of singular-
ities, we shall study a teleparallel theory of gravity de-
formed à la Born-Infeld. In a rather different approach, this
subject has received some attention in the past [21–26],
where several deformations à la Born-Infeld combining
higher order invariants constructed with the curvature in a
Riemannian context were tried. All these constructions,
however, lead to troublesome fourth order field equations
for the metric. As a matter of fact, explicit solutions in four
dimensions within these frameworks were never found
[27]. In a different direction, BI actions were explored
more recently in Refs. [28,29] using the Palatini formal-
ism, where the metric and the connection are taken as
independent entities. In turn, along the lines of [12], we
will work with the Lagrangian
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L BI½ea�ðxÞ� ¼ �e

16�G

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ðS � T� 2�Þ

�

s
� 1

�
; (13)

where � is a constant that controls the scale at which the
deformed solutions depart from the original ones:
Lagrangian (13) tends to (9) when � ! 1. According to
Eq. (1), the Euler-Lagrange equations become

@
½ð1þ 2��1ðS � T� 2�ÞÞ�1=2ee�aS�
�
�

� ð1þ 2��1ðS � T� 2�ÞÞ�1=2ee�aS�
��T�

��

þ �

4
ee�a½ð1þ 2��1ðS � T� 2�ÞÞ1=2 � 1�

¼ 4�Gee�aT�
�: (14)

In order to explore the aptitude of deformed teleparallelism
to modify solutions of general relativity, we will try two
types of examples: the Bañados-Teitelboim-Zanelli (BTZ)
black hole and an n-dimensional cosmological model with
matter. In the first example, both GR and teleparallel
Lagrangians turn out to be constant for the chosen solution,
and thus the deformation is limited to a shift of the cos-
mological constant. In spite of this, teleparallelism exhibits
a better aptitude to deform the solution because it allows
for a BTZ solution even for a positive cosmological con-
stant. The strength of modified teleparallelism is, however,
revealed in solutions with sources, where modified tele-
parallelism is able to control the growth of the Hubble
parameter by avoiding the universe reaching a singularity
in a finite time.

A. Extended BTZ black hole

The BTZ black hole is a vacuum solution for general
relativity with a negative cosmological constant� in 2þ 1
dimensions [30]. The spinning BTZ metric is

ds2 ¼
�
�M��r2 þ J2

4r2

�
dt2 �

�
�M��r2 þ J2

4r2

��1
dr2

� r2
�
� J

2r2
dtþ d�

�
2
; (15)

whereM and J are integration constants related to the mass
and the angular momentum, respectively. For � ¼ �‘�2,
M> 0, and j J j� M‘, this metric has the structure of a
rotating black hole. The BTZ black hole displays event
horizons (the place where the lapse function vanishes) at
[31]

r� ¼ ‘

�
M

2
�M

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
J

M‘

�
2

s �
1=2

; (16)

and the ergosphere (the place where gtt vanishes) at

rerg ¼ ‘M1=2 > rþ > r�: (17)

The extremal case j J j¼ M‘ corresponds to rþ ¼ r� ¼
rerg=

ffiffiffi
2

p
. A suitable dreibein field for the metric (15) is

given by

e0 ¼
�
�M��r2 þ J2

4r2

�
1=2

dt;

e1 ¼
�
�M��r2 þ J2

4r2

��1=2
dr;

e2 ¼ � J

2r
dtþ rd�:

(18)

This dreibein satisfies Eq. (11) for a vanishing energy-
momentum tensor, and �abe

aeb reproduces the interval
(15). Let us investigate how this solution is affected by a
deformation of the theory. In order to understand the
changes that the dreibein (18) has to undergo for becoming
a solution of the deformed equations (14), let us note that
the invariant S � T turns out to be constant for the dreibein
(18): its value is�2�. Although LT is not zero, a vacuum
solution like (18) which renders LT constant is very close
to a vacuum solution of the deformed theory. In fact, let us
modify solution (18) by replacing � with a new constant
~�. Then S � T ¼ �2~�, so Eq. (14) turns out to be

@
ðee�aS��
Þ � ee�aS�
��T�

�� þ 1
4ee

�
a½S � T

� 2ð2�þ ~�Þ þ �� �ð1� 4��1ð�þ ~�ÞÞ1=2� ¼ 0:

(19)

Since the solution we are trying solves the teleparallel

vacuum equation (11) for � ¼ ~�, then it will solve Eq.

(19) if ~� is chosen such that

� 2ð2�þ ~�Þ þ �� �ð1� 4��1ð�þ ~�ÞÞ1=2 ¼ �2~�;

(20)

i.e.,

~� ¼ �ð1� �Þ; � ¼ 4�=�: (21)

This solution represents a black hole if the effective cos-

mological constant ~� is negative. Summarizing, the BTZ
dreibein for the deformed gravity theory described by
Lagrangian (13) is

e0 ¼
�
�M��ð1� �Þr2 þ J2

4r2

�
1=2

dt;

e1 ¼
�
�M��ð1� �Þr2 þ J2

4r2

��1=2
dr;

e2 ¼ � J

2r
dtþ rd�;

(22)

and the metric is
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ds2 ¼
�
�M��ð1� �Þr2 þ J2

4r2

�
dt2

�
�
�M��ð1� �Þr2 þ J2

4r2

��1
dr2

� r2
�
� J

2r2
dtþ d�

�
2
: (23)

The dreibein (22) or the metric (23) genuinely differs from
(15) and (18); these two metrics are not connected by a
coordinate change because the invariant S � T is different
for each one (also R is different). For a negative effective

cosmological constant ~� ¼ �~‘�2, the solution is a rotat-
ing BTZ black hole. Thus, even for �> 0 the BI
Lagrangian (13) allows for BTZ rotating black holes;
specifically, the metric (23) is a rotating black hole for�<
0 and � < 1, but also for �> 0 and � > 1. The horizons
are placed at

r�BI ¼
rergBI

2

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ�ð1� �Þ

�
J

M

�
2

s �
1=2

;

rergBI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M

��ð1� �Þ

s
:

(24)

Let us compare the lengths of the horizons for the solutions
(15) and (22) corresponding to fixed values of�,M, and J.
Since the horizons are circles, we will study the ratio

r�BI=r�. For ~�< 0, three ranges of the parameter � can
be distinguished in this comparison:

(i) Type I: � < 0 ð�< 0; � > 0Þ. This type results in
r
erg
BI =r

erg < 1, rþBI=rþ < 1, and r�BI=r� > 1; then the
horizons approach each other as a consequence of
the deformation.

(ii) Type II: � > 1 ð�> 0Þ. There is no black hole for the
GR counterpart.

(iii) Type III: 0< �< 1 ð�< 0; � < 0Þ. This type results
in rergBI =r

erg > 1, rþBI=rþ > 1, and r�BI=r� < 1; in this
case the horizons move away from each other as a
consequence of the deformation. However, the case
� < 0 will be rejected in the next section since it
produces physically unacceptable solutions in
cosmology.

This example shows the strategy to be followed to obtain
deformed solutions when one starts from a Lagrangian
having a ‘‘cosmological constant’’ term like the one in Eq.
(9), i.e. L / eðL� 2�Þ. If a given (vacuum) solution
makes L a (�-dependent) constant, then replace � in the

solution by a new constant ~� and substitute the so built
solution in the modified field equation. Using that L is
constant, Eq. (1) becomes

. . .� @�@�

�
e

@L

@�a
;��

�
þ @�

�
e

@L

@�a
;�

�
� e

@L

@�a

þ
�
L� fðL� 2�Þ

f0ðL� 2�Þ
�

@e

@�a ¼ 0: (25)

The proposed solution now solves the undeformed Euler-

Lagrange equations for the cosmological constant ~�.

Therefore ~� should be chosen in such a way that

Lð~�Þ � fðLð~�Þ � 2�Þ
f0ðLð~�Þ � 2�Þ ¼ 2~�; (26)

where Lð~�Þ is the Lagrangian evaluated on the proposed
solution. This means that the deformation replaces the role
of the cosmological constant in the solution for a new
parameter depending also on the scale �. Teleparallelism
à la Born-Infeld [Lagrangian (13)] uses the function f,

fBIðxÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2x

�

s
� �; (27)

so, writing Eq. (26) for the function (27), one gets Eq. (20)
and the solution (21).
Einstein equations with a cosmological constant imply

L ¼ �R ¼ 2�n=ðn� 2Þ for any vacuum solution in n
spacetime dimensions. Therefore, vacuum solutions for
theories fð�R� 2�Þ can be straightforwardly obtained
from general relativity vacuum solutions by shifting � to
be

2n

n� 2
~�� fð2~�½n=ðn� 2Þ� � 2�Þ

f0ð2~�½n=ðn� 2Þ� � 2�Þ ¼ 2~�: (28)

Contrasting with the teleparallel equation (12), the vacuum
solutions of GR share the same value of Lð�Þ. Thus, the
effective cosmological constant (28) for modified GR is the
same for all vacuum solutions.
Just for comparing with the Born-Infeld modified tele-

parallelism result (21), let us compute the modified GR
solution (28) for the Born-Infeld deformation (27) in n ¼ 3
dimensions. The result is

~� ¼ �

2

�
1� 1

4�
ð1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 8�
p Þ

�
: (29)

Thus the Born-Infeld deformation for GR is well defined if
� >�1=8, and the bracketed quantity in Eq. (29) is posi-
tive definite. This means that the effective cosmological
constant keeps the sign of �. Therefore, in GR modified à
la Born-Infeld, the BTZ black hole only exists for �< 0,
which is different from the result obtained for modified
teleparallelism.

B. Regular cosmology

The inability of the Einstein-Hilbert Lagrangian to allow
for high energy deformed solutions not only embraces the
vacuum solutions but also any GR (� ¼ 0) solution sat-
isfying R ¼ 0. This assertion remains valid even if there
are sources. For instance, the Friedmann-Robertson-
Walker (FRW) solution for a radiation fluid cannot be
smoothly deformed, because the energy-momentum tensor
is traceless and so it is R ¼ 0. In contrast, the teleparallel
Lagrangian (9) does not vanish in this case; thus telepar-
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allelism allows for a smooth deformation of such kinds of
solutions [12].

Let us study the deformation (13) in the context of a
spatially flat FRW geometry in the presence of a homoge-
neous and isotropic fluid. Then the source is represented by
the stress-energy tensor T�

�¼diagð�ðtÞ;�pðtÞ;�pðtÞ; . . .Þ
in the comoving reference frame. The teleparallel equa-
tions can be solved by considering the vielbein

ea� ¼ diagð1; aðtÞ; aðtÞ; . . .Þ; e ¼ an�1; (30)

leading to the metric g�� ¼ diagð1;�aðtÞ2;�aðtÞ2; . . .Þ. In
this case the only non-null components of S and T are

S�0� ¼ �S��0 ¼ �1
2ðn� 2ÞaðtÞ _aðtÞ;

T�0� ¼ �T��0 ¼ aðtÞ _aðtÞ; � � 0:
(31)

Thus S � T ¼ �ðn� 1Þðn� 2ÞH2, H ¼ _aðtÞ=aðtÞ being
the Hubble parameter, which is not null or constant when-
ever a source is present. The first term in Eq. (14) for the
indices a ¼ 0 ¼ � is null; then the initial value equation
for the modified FRW cosmology is

1� ��
1� �� 2ðn� 1Þðn� 2Þ H2

�

�
1=2 � 1 ¼ 16�G

�
�: (32)

The isotropy of the proposed solution makes Eqs. (14)
equal for spatial indexes a ¼ �; they are

ð1� �Þ
�
2ðn� 2ÞqH

2

�
þ 2nðn� 2ÞH

2

�
� 1þ �

�

�
�
1� �� 2ðn� 1Þðn� 2ÞH

2

�

��3=2 þ 1 ¼ 16�G

�
p

(33)

In the last expression q ¼ �a _a�2 €a ¼ �ð1þ _HH�2Þ is
the deceleration parameter. Equations (32) and (33) lead
to the energy-momentum conservation. In fact, by differ-
entiating the initial value equation (32) with respect to
time, and combining this result with Eq. (33), one gets

d

dt
ð�an�1Þ ¼ �p

d

dt
an�1 or

_�þ ðn� 1Þð�þ pÞH ¼ 0:
(34)

For a barotropic fluid satisfying the state equation p ¼
!ðnÞ�, the conservation law (34) leads to the behavior

�ðtÞ ¼ �o

�
ao
aðtÞ

�ðn�1Þð1þ!Þ
: (35)

Equations (32) and (33) in vacuum (� ¼ p ¼ 0) have
the solution H ¼ �Ho, q ¼ �1, for the constant H2

o ¼
2�ð1� �Þ=½ðn� 1Þðn� 2Þ�. In this case the result is the
de Sitter metric for the effective cosmological constant
~� ¼ �ð1� �Þ. The similarity with the shift of the previous

section comes from the fact that the invariant is S � T ¼
�2~� in both cases.

In the presence of a barotropic fluid, the system (32) and
(35) can be rewritten by using the variable

y ¼ ln

��
a

ao

�ðn�1Þð1þ!Þ� ) _y ¼ ðn� 1Þð1þ!ÞH: (36)

Thus the dynamics of the spatially flat FRW universe in
Born-Infeld teleparallelism is described by the equation

2ðn� 2Þ
ðn� 1Þð1þ!Þ2 _y2 þ �ð1� �Þ2

ð1þ 16�G�o�
�1 expð�yÞÞ2

¼ ð1� �Þ�; (37)

whose GR (� ! 1) limit is

2ðn� 2Þ
ðn� 1Þð1þ!Þ2 _y2 � 32�G�o expð�yÞ ¼ 4�: (38)

The variable y is monotonically increasing with the scale
factor aðtÞ. So the behavior of the scale factor can be read
directly from the ‘‘energy conservation’’ equations (37)
and (38). As known, the effective potential for a spatially
flat FRW universe in GR expands forever for �> 0 and
recollapses for �< 0. On the other hand, the Born-Infeld
teleparallel potential for � > 0 is an increasing function,
vanishing for y ! �1 (a ! 0) and going to �ð1� �Þ2 for
y ! 1. Since the energy level in Eq. (37) is �ð1� �Þ, then
(I) the universe recollapses if 1� � > 1 (i.e.�< 0), or (II)
it expands forever if 0< 1� � < 1 (i.e. 0<�< �=4).
Although this behavior does not seem to differ consider-
ably from the GR one, it should be emphasized that the
main difference lies in the behavior of the Hubble parame-
ter when y ! �1: whileH diverges in GR, in Born-Infeld
teleparallelism H goes to the constant value

H2 ! ð1� �Þ�
2ðn� 1Þðn� 2Þ ¼

�� 4�

2ðn� 1Þðn� 2Þ : (39)

For � < 0 and � � 1 the effective potential becomes an
infinite well. This is an unphysical feature, since it leads H
to diverge for 16�G� ¼ j�j [see Eq. (32)]. Therefore we
will only consider the case � > 0.
The dependence on time of the scale factor can be

obtained from the initial value Eq. (32) or, equivalently,
from (37). We will use the variable

y ¼ �

16�G�o

�
aðtÞ
ao

�ðn�1Þð1þ!Þ
: (40)

In this way, the initial value equation takes the form

_y ¼ �A
y

1þ y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2yþ �y2

q
; (41)

with A ¼ ð1þ!Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1��Þðn�1Þ

2ðn�2Þ
q

a non-null constant. The

solution of (41) can be obtained in a closed but implicit
form by direct integration and depends on the sign and
range of the parameter �. Concretely, we have two types of
solutions:
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(i) Type I: � < 0 ð�< 0Þ (the universe recollapses),

�At� c ¼ F ðyÞ � 1

ð��Þ1=2 arcsin

�
1þ �yffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p
�
:

(42)

(ii) Type II: 0< �< 1 ð�> 0Þ (the universe expands
forever),

Atþ c ¼ F ðyÞ þ 1ffiffiffi
�

p

� ln

�
1þ �yffiffiffi

�
p þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2yþ �y2

q �
; (43)

where the function F ðyÞ is, in both cases,

F ðyÞ ¼ ln

�
y

1þ yþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2yþ �y2

p �
: (44)

In Eq. (42) the sign� corresponds to the expanding and
the collapsing branches, respectively. Both branches can be
joined at t ¼ 0 by choosing the integration constant c to
equalize the right member for the maximum scale factor.
According to Eq. (41) the maximum scale factor ( _y ¼ 0) is

y max ¼ 1þ ffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p
��

; (45)

and thus

c ¼ � ln

�
1� �

1þ ffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p
�
þ �=2

ð��Þ1=2 : (46)

Figure 1 shows the type I recollapsing case. The scale
factor as a function of time is depicted for a radiation fluid
in three dimensions, i.e. ! ¼ 1=2 and n ¼ 3. Besides, we
set 16�G�o ¼ 1 and � ¼ �1. The upper, middle, and
lower (dashed) curves correspond to � ¼ �1 (� ¼ 4), � ¼
�0:1 (� ¼ 40), and GR (� ! 1), respectively. Note that
the GR scale factor exists only for�1 � t � 1, whereas it
exists for all values of time in the BI case.

Physically more relevant, at least in four dimensions, is
the type II case where the cosmological constant is posi-
tive. In this case, Eq. (43) says that the late time behavior

(y ! 1) of the scale factor is aðtÞ / exp½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ð1��Þ

ðn�1Þðn�2Þ
q

t�,
while the initial stage is described by aðtÞ /
exp½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1��Þ

2ðn�1Þðn�2Þ
q

t� [see Eq. (39)]. Thus, the universe

evolves from an inflationary stage, driven by the (vacuum-
like) energy �ð1� �Þ, to another exponential epoch ruled
by the vacuum energy �ð1� �Þ (a similar de Sitter-
de Sitter evolution was obtained in a quite different ap-
proach in Ref. [32]). Since � should be very small in order
that the theory does not appreciably differ from GR for
most of the history of the universe (see a lower bound for �
in Ref. [12]), one concludes that in four dimensions the
scale factor evolves in time as

aðt ! �1Þ / e
ffiffiffiffiffiffiffiffiffiffi
ð�=12Þ

p
t V aðt ! 1Þ / e

ffiffiffiffiffiffiffiffiffi
ð�=3Þ

p
t: (47)

Finally, the limiting case � ¼ 1 corresponds to the scale
factor being constant, as follows from Eq. (37).

III. CONCLUDING COMMENTS

In spite of having different causal structures, locally the
BTZ black hole is the anti-de Sitter spacetime [31], i.e. the
maximally symmetric solution with a negative cosmologi-
cal constant. When evaluated on maximally symmetric
solutions, both R and S � T Lagrangians are equal to a
constant that is independent of the integration constants: it
only depends on �. So, in both theories, general relativity
and teleparallelism, the deformation of these maximally
symmetric solutions only amounts to a shifting of the
cosmological constant. The shifting is controlled by the
nondimensional parameter � ¼ 4�=�, where � is a Born-
Infeld–like constant going to infinity when the deformed
theory approaches the original one. The cosmological con-

stant� and the (shifted) effective cosmological constant ~�
can have opposite signs in deformed teleparallelism, so the
anti-de Sitter solution can solve the deformed teleparallel
equations even for a positive cosmological constant.
On the other hand, we have studied the deformation of

nonvacuum cosmological solutions. Although the parame-
ter � takes part in Eq. (41), its presence does not alter the
nondeformed result that spatially flat Friedmann-
Robertson-Walker nonvacuum solutions expand for �>
0 and recollapse for �< 0. Instead, the deformed theory
smooths the initial singularities, which is the effect pursued
by Born-Infeld deformations. In fact, the Hubble parameter
goes to a constant when the scale factor a vanishes [see
Eq. (39)]. This value is also the maximum value that can be
attained by H [see Eq. (32)].

-2 -1 0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

a t a 0
3

FIG. 1. Behavior of the nondimensional cubed scale factor
ðaðtÞ=a0Þ3 as emerges from (42) for ! ¼ 1=2, � ¼ �1 in n ¼
3 dimensions. The upper curve is for � ¼ �1, the middle curve
is for � ¼ �0:1, and the dashed one corresponds to GR.
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The BI approach (13) generates regular solutions. In the
cosmological setting this is so, not only because the scale
factor is always different from zero, but because the geo-
metrical invariants (both in Riemannian and Weitzenböck
spacetimes) are bounded for all finite proper times. In fact,
each invariant in Weitzenböck spacetime that is quadratic
in the torsion tensor has to be proportional to H2 in the
setting (30) [see Eq. (31)]. On the other hand, the
Riemannian invariants for the metric g�� ¼
diagð1;�aðtÞ2;�aðtÞ2; . . .Þ can be cast in the polynomial
form P ¼ ðH; _HÞ. For instance, in four dimensions, the
scalar curvature is R ¼ 6ð2H2 þ _HÞ, the squared Ricci
scalar R2

�� ¼ R��R�� is R2
�� ¼ 12ð3H4 þ 3H2 _H þ _H2Þ,

and the Kretschmann invariant K ¼ R�
��R�

�� reads

K ¼ 12ð2H4 þ 2H2 _H þ _H2Þ. All these invariants are
well behaved due to the saturation value (39) that the
Hubble parameter reaches as aðtÞ ! 0. Regarding this
matter, the time derivative of Eq. (41) combined with the
definition given in Eq. (40) shows that

_H ¼ ��
y2

ð1þ yÞ3 ; (48)

where � ¼ �ð1þ!Þð1� �Þ2=2ðn� 2Þ is a non-null con-
stant. By setting n ¼ 4, ! ¼ 1=3, and � ¼ 0, one finds the
following expressions for the invariants:

R ¼ �

�
1þ 3y

ð1þ yÞ3
�
;

R2
�� ¼ �2

12

�
3þ 18yþ 27y2 þ 4y4

ð1þ yÞ6
�
;

K ¼ �2

6

�
1þ 6yþ 9y2 þ 4y4

ð1þ yÞ6
�
:

(49)

This means that the BI parameter � not only bounds the
dynamics of HðtÞ and characterizes the minimum density
for having inflation [12], but also establishes a maximum
attainable curvature.
One might wonder if the BI framework considered here

can be viewed as a particular case of a more general
determinantal Born-Infeld action for gravity. Indeed, fol-
lowing the BI action more closely, one could try the
n-dimensional determinantal action

I BIG ¼ �
Z

dnx½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðg�� þ ��1F��Þ

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðg��Þ

q
�;
(50)

where F�� is quadratic in the Weitzenböck torsion: F�� ¼
AS���T�

�� þ BS���T
�
�
�, A and B being nondimensional

constants. Such a combination ensures the correct GR limit
since both constituents of F�� have trace S � T. Besides,
the dynamical equations coming from (50) will still be of
second order in the vielbein derivatives. For the choice
2Aþ B ¼ 0, the action (50) reproduces the solutions con-
sidered in the last section, though the equivalence to the
scheme (13) for other solutions is not clear yet [33]. The
complete characterization of the theory (50) for the whole
parameter space ðA; BÞ will be a matter for future
developments.
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