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The complete analytical solutions of the geodesic equation of massive test particles in higher

dimensional Schwarzschild, Schwarzschild–(anti)de Sitter, Reissner-Nordström and Reissner–

Nordström–(anti)de Sitter spacetimes are presented. Using the Jacobi inversion problem restricted to

the theta divisor the explicit solution is given in terms of Kleinian sigma functions. The derived orbits

depend on the structure of the roots of the characteristic polynomials which depend on the particle’s

energy and angular momentum, on the mass and the charge of the gravitational source, and the

cosmological constant. We discuss the general structure of the orbits and show that due to the specific

dimension-independent form of the angular momentum and the cosmological force a rich variety of orbits

can emerge only in four and five dimensions. We present explicit analytical solutions for orbits up to 11

dimensions. A particular feature of Reissner-Nordström spacetimes is that bound and escape orbits

traverse through different universes.
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I. INTRODUCTION AND MOTIVATION

The idea of higher dimensions has a long history.
Already in the 1920s Kaluza and Klein unified electromag-
netism and gravity by introducing a 5th dimension, while
today string theory, as a promising candidate for the quan-
tum theory of gravity and for the unification of all inter-
actions, requires higher dimensions for its mathematical
consistency. Following Kaluza and Klein the higher di-
mensions may be considered small and compact and there-
fore not observable. Alternatively, in braneworld scenarios,
large higher dimensions are invoked, where only gravity is
allowed to penetrate the extra dimensions [1,2], while the
other fundamental interactions are considered to be trapped
on the 3-brane forming our universe.

In such braneworld models the four-dimensional gravi-
tational coupling G, corresponding to the Planck scale of
1019 GeV, does not set the fundamental scale. Instead, the
fundamental scale is assumed to be on the order of the
electroweak scale, and the extra dimensions then serve to
solve the hierarchy problem by invoking either flat com-
pact extra dimensions as in the Arkani-Hamed-
Dimopoulos-Dvali model [1] or warped extra dimensions
as in Randall-Sundrum models [2]. Both types of models
predict the production and evaporation of mini black holes
in high-energy collisions [3] at energies in the TeV range
accessible at the LHC at CERN or by observing high-
energy cosmic rays in the atmosphere [4,5].

The study of higher dimensional spacetimes is also of
relevance from another point of view. The AdS/CFT cor-

respondence [6,7] suggests a duality between a string
theory involving gravity in anti–de Sitter (AdS) space,
and a conformal field theory (CFT) living on its boundary.
Study of the phases of higher dimensional AdS black holes,
for instance, can then shed light on the properties of
strongly coupled gauge theories.
One of the first papers dedicated to the problem of

finding solutions of the Einstein equations in higher di-
mensions both in vacuum and coupled to matter fields was
by Tangherlini, who presented the Schwarzschild and
Reissner-Nordström solutions in n dimensions [8]. Two
decades later Myers and Perry [9] generalized the rotating
Kerr black hole solutions to higher dimensions. The metric
of a rotating black hole with a cosmological constant was
derived in [10] in 5 dimensions and in [11] for arbitrary
dimensions, while the general Kerr-NUT-(A)dS solution
was presented in [12], where NUT is an abbreviation for
Newman-Unti-Tamburino. A review of black hole solu-
tions in higher dimensional vacuum gravity was given by
Emparan and Reall [13]. In contrast, the higher dimen-
sional charged rotating black holes of Einstein-Maxwell
theory have not yet been obtained in closed form [14].
Perturbative Einstein-Maxwell rotating black holes were
studied in [15–18], while nonperturbative black hole solu-
tions were obtained numerically in [19,20] and a finite
cosmological constant was included in [21,22] (see [23]
for a recent review).
To understand the physical properties of solutions of the

gravitational field equations it is essential to study the
orbits of test particles and light rays in these spacetimes.
On the one hand, this is important from an observational
point of view, since only matter and light are observed and,
thus, can give insight into the physics of a given gravita-
tional field [24]. The study of the motion of test particles in
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gravitational fields also has significant practical applica-
tions. On the other hand, this study is also important from a
fundamental point of view, since the motion of matter and
light can be used to classify a given spacetime, to decode
its structure and to highlight its characteristics.

When integrating geodesic equations two fundamental
questions arise. These concern the separability of the
Hamilton-Jacobi equation and the possibility of solving
the equations of motion analytically. The first question is
related to the symmetries of a given spacetime. Continuous
isometries preserving a metric in curved spacetimes are
generated by Killing vector fields. For each Killing vector
field there exists a conserved quantity. For example, when
all metric components do not depend on time and the
azimuthal angle, energy and angular momentum are con-
served during a particle’s motion. In 1968 Carter [25]
discovered a new separation constant in the Kerr spacetime
and, thus, proved the separability of Hamilton-Jacobi equa-
tions. This peculiarity of the Kerr metric is associated with
hidden symmetries associated with the Killing-Yano [26]
tensor. Geodesic equations are completely integrable, and
Hamilton-Jacobi, Klein-Gordon, and Dirac equations are
separable in spacetimes with a metric admitting a confor-
mal Killing-Yano (CKY) tensor. A CKY tensor generates a
separation constant proportional to a quadratic angular
momentum of a particle. Hidden symmetries and the sepa-
ration of variables in higher dimensions are discussed in
[27–31].

The existence of analytical solutions for any kind of
problem is not just an academic question. In fact, analytical
solutions offer systematic applications as well as a frame
for tests of the accuracy and reliability of numerical inte-
grations. In 1931 Hagihara [32] first analytically integrated
the geodesic equation of a test particle motion in a
Schwarzschild gravitational field. This solution is given
in terms of the Weierstrass } function. With the same
mathematical tools one can solve the geodesic equation
in a Reissner-Nordström spacetime [33]. The solutions of
the geodesic equation in a Kerr and Kerr-Newman space-
time have also been given analytically (see [33] for a
survey). Recently two of us found the complete analytical
solution of the geodesic equation in Schwarzschild–(anti)
de Sitter spacetimes in 4 dimensions [34,35]. These calcu-
lations are based on the inversion problem of the hyper-

elliptic Abelian integrals [36]. The equations of motion
could be explicitly solved [34,35] by restricting the prob-
lem to the theta divisor. This procedure makes it possible to
obtain a one-parameter solution of the inversion problem.
The approach was suggested by Enolskii, Pronine, and
Richter who applied this method to the problem of the
double pendulum [37].
Our interest here focuses on the motion of test particles

in higher dimensional spherically symmetric spacetimes.
In Table I we characterize spacetimes with respect to the
possibility to solve the geodesic equation analytically.
Spacetimes whose geodesic equations can be integrated
by elliptic functions are marked by a þ. The underlying
polynomials PðrÞ in these equations can be reduced by a
simple substitution r ¼ ffiffiffi

x
p

or r ¼ 1=
ffiffiffi
x

p
to polynomials of

degree 3 or 4. Polynomials of 4th order can be subjected to
a subsequent substitution x ¼ 1=uþ r4 which reduces
P4ðxÞ to a cubic expression [here r4 is a zero of P4ðxÞ].
The complete integration of the geodesic equation with an
underlying polynomial of order 3 can be performed in
terms of elliptic functions. As an example consider the
geodesic equation in the Schwarzschild spacetime in 7
dimensions �

dr

d’

�
2 ¼ P6ðrÞ

r2L2
; (1)

where P6ðrÞ ¼ ðE2 � 1Þr6 � r4L2 þ r4Sr
2 þ L2r4S, with

the conserved quantities E and L and rS ¼ 2M [38].
Introducing the new variable x ¼ r2 reduces Eq. (1) to a
new one with a cubic polynomial P3ðxÞ�

dx

d’

�
2 ¼ 4

L2
P3ðxÞ; (2)

where P3ðxÞ ¼ ðE2 � 1Þx3 � x2L2 þ r4Sxþ L2r4S. The so-

lutions of Eq. (2) are given in terms of the Weierstrass }
function.
The symbol � in Table I indicates spacetimes whose

geodesic equations contain polynomials of order 5 (or
polynomials reducible to a polynomial of the 5th degree).
These equations are hyperelliptic and can be solved by the
method suggested in [34,35]. In these papers the method
was applied to the integration of geodesics in the
Schwarzschild–de Sitter spacetime in 4 dimensions and
in the Schwarzschild spacetime in 6 dimensions. Here we

TABLE I. Characterization of higher dimensional spherically symmetric spacetimes with respect to the integrability of the geodesic
equation. The þ denotes the solvability by elliptic functions, � the solvability in terms of hyperelliptic functions, and a � indicates
that it is not analytically solvable by any known method.

Dimension

Spacetime 4 5 6 7 8 9 10 11 d � 12

Schwarzschild þ þ � þ � � � � �
Schwarzschild–de Sitter � þ � þ � � � � �
Reissner-Nordström þ þ � � � � � � �
Reissner–Nordström–de Sitter � þ � � � � � � �
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study the remaining seven � cases. The� indicates space-
times whose equations of motion cannot be integrated
analytically by any known methods, since the underlying
polynomials are of 7th order or higher.

We begin with a short introduction to the new method of
hyperelliptic functions used for the integration of the equa-
tions of motion and apply it first to the Schwarzschild
spacetime in 9 and 11 dimensions in Sec. IV. Then we
continue with the Schwarzschild–(anti)de Sitter spacetime
in both 9 and 11 dimensions in Sec. V, the Reissner-
Nordström (RN) spacetime in 7 dimensions in Sec. VI
and the RN–(anti)de Sitter spacetime in 4 and 7 dimensions
in Sec. VII. We also include the solution of the geodesic
equation in the 4-dimensional RN–(anti)de Sitter space-
time, which also requires the knowledge of the theory of
hyperelliptic functions. The resulting orbits are classified
in terms of the energy and the angular momentum of a test
particle, the charge of the gravitational source and the
cosmological constant.

II. THE GEODESIC EQUATION

A. The spacetimes

We restrict ourselves to static spherically symmetric
vacuum solutions of the Einstein equations in an arbitrary
number of dimensions d

ds2 ¼ fðrÞdt2 � fðrÞ�1dr2 � r2d�2
d�2; (3)

with

fðrÞ ¼ 1�
�
rS
r

�
d�3 � 2�r2

ðd� 1Þðd� 2Þ þ
�
q

r

�
2ðd�3Þ

; (4)

where M and q are the mass and charge, respectively, of a
gravitational source, � is a cosmological constant, rS ¼
2M, and d�2

1 ¼ d’2 and d�2
iþ1 ¼ d�2i þ sin2�id�

2
i for

i � 1. These solutions are uniquely characterized by their
mass, charge, and cosmological constant [39].

B. The geodesic equation

The motion of a particle is given by the geodesic equa-
tion

Dvv ¼ 0; (5)

where v is the 4-velocity of the particle and D is the
covariant derivative based on the spacetime metric. We
also use the normalization gðv; vÞ ¼ � where � ¼ 1 for
massive particles and � ¼ 0 for light.

Because of spherical symmetry of the spacetime the
motion of a test particle can be restricted to the equatorial
plane defined by �i ¼ �=2, i � 1. There are two con-
served quantities: the dimensionless energy E and the
angular momentum L with the dimension of length (both
are normalized to the mass of the test particle)

E ¼ fðrÞ dt
ds

; L ¼ r2
d’

ds
: (6)

Equation (5) combines the equations describing the dy-
namics of the particle’s motion

�
dr

d’

�
2 ¼ r4

L2

�
E2 � ð1� fðrÞÞ

�
�þ L2

r2

��
; (7)

�
dr

ds

�
2 ¼ E2 � fðrÞ

�
�þ L2

r2

�
; (8)

�
dr

dt

�
2 ¼ f2ðrÞ

E2

�
E2 � fðrÞ

�
�þ L2

r2

��
: (9)

We also introduce the effective potential Veff which can be
read off (8)

Veff ¼
�
1�

�
rS
r

�
d�3 � 2�r2

ðd� 1Þðd� 2Þ
þ
�
q

r

�
2ðd�3Þ��

�þ L2

r2

�
: (10)

It is obvious that at any horizon, which is defined by fðrÞ ¼
0, the effective potential vanishes.
For convenience we rewrite (7) with new dimensionless

parameters and a dimensionless coordinate ~r

� ¼ r2S
L2

; � ¼ E2; � ¼ q2

r2S
;

~� ¼ �r2S; ~r ¼ r

rS

(11)

and obtain

�
d~r

d’

�
2 ¼ �~r4

�
��

�
1� 1

~rd�3
� 2~�~r2

ðd� 1Þðd� 2Þ

þ �d�3

~r2ðd�3Þ

��
�þ 1

�~r2

��
: (12)

The right-hand side of this equation can be written in the
form Pnð~rÞ=~rm, where Pn is a polynomial of order n (see
Table II).
Depending on the spacetime under consideration the

equation of motion (12) after some transformation ~r ¼
�ðxÞ can be reduced to one of the two forms

TABLE II. Order of the polynomials appearing in the equation
of motion (12) in various d-dimensional spacetimes.

� ¼ 0 � � 0

~� ¼ 0 ðd~rd’Þ2 ¼ Pd�1

~rd�5 ðd~rd’Þ2 ¼ P2ðd�2Þ
~r2ðd�4Þ

~� � 0 ðd~rd’Þ2 ¼ Pdþ1

~rd�5 ðd~rd’Þ2 ¼ P2ðd�1Þ
~r2ðd�4Þ
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�
x
dx

d’

�
2 ¼ P5ðxÞ (13a)�

dx

d’

�
2 ¼ P5ðxÞ; (13b)

where P5ðxÞ ¼ a5x
5 þ a4x

4 þ a3x
3 þ a2x

2 þ a1xþ a0.
Because of (12) spacetimes with odd number of dimen-

sions give polynomials Pn containing even powers of ~r
only. Therefore we simplify (12) by introducing u ¼ 1=~r2

which reduces the degree of Pn by a factor of 2

1

4

�
du

d’

�
2 ¼ ��d�3ud�1 � ���d�3ud�2 þ u1=2ðdþ1Þ

þ ��u1=2ðd�1Þ � u2 þ u

�
�ð�� �Þ

þ 2~�

ðd� 1Þðd� 2Þ
�
þ 2��~�

ðd� 1Þðd� 2Þ :
(14)

The number of positive real zeros of the polynomials on the
right-hand side of (12) and (14) coincide. Spacetimes with
an even number of dimensions, as e.g. 4-dimensional
Reissner–Nordström–de Sitter spacetime considered in
Sec. VII A, contain polynomials of odd degree so that
this substitution is not useful.

C. The topology of the orbits

Owing to the square on the left-hand side of (8) a test
particle is only allowed to move in the region restricted by
the condition E2 � Veff . Therefore, the motion is essen-
tially characterized by the number of real positive zeros the
polynomials Pnð~rÞ possess. The number of real positive
roots of a polynomial Pnð~rÞ can easily be determined by
using Descartes’ rule of signs.

If Pnð~rÞ possesses no real positive zero and Pnð~rÞ> 0,
then the particle is coming from infinity and moves directly
to the origin. Such an orbit we call a terminating escape
orbit. For Pnð~rÞ< 0 no motion is possible. One real posi-
tive zero means either that the particle starts at a finite
coordinate distance and ends at ~r ¼ 0, what we call a
terminating bound orbit, or it moves on an escape orbit
with a finite impact parameter. For two real positive zeros

we may have two cases: (i) if the polynomial is positive
between the two zeros we have a periodic bound orbit like
a planetary orbit, (ii) if the polynomial is negative between
the two zeros we have an escape orbit or a terminating
bound orbit. The structure of the orbits for more than two
positive zeros can be obtained analogously. The actual
orbit depends on the chosen initial position.
Below we discuss in more detail the structure of the

orbits for the various dimensions and the allowed values of
the energy, angular momentum, and cosmological con-
stant. As one result we see that for all considered space-
times the richest structure of orbits can be found in four and
five dimensions. The reason for that is that only in these
lower dimensions various terms combine such that more
possibilities arise to obtain different signs for coefficients
of the polynomial. For higher dimensions all terms disen-
tangle and the structure of the orbits becomes very simple
and is the same for all dimensions. That means that it is the
particular structure of the angular momentum part and the
cosmological part both being independent of the spacetime
dimensions, which single out the lower dimensions.

1. Schwarzschild spacetimes

For the geodesics in Schwarzschild spacetimes in arbi-
trary dimensions we have�

d~r

d’

�
2 ¼ 1

~rd�5
ð�ð�� 1Þ~rd�1 � ~rd�3 þ �~r2 þ 1Þ; (15)

which yields the types of orbits listed in Table III.
Only in four dimensions are there periodic bound orbits.

There are no stable configurations in higher dimensions.

2. Schwarzschild–de Sitter spacetimes

The geodesic equation in Schwarzschild–de Sitter
spacetime in higher dimensions�

d~r

d’

�
2 ¼ 1

~rd�5

�
2�~�

ðd� 1Þðd� 2Þ ~r
dþ1 þ

�
�ð�� 1Þ

þ 2~�

ðd� 1Þðd� 2Þ
�
~rd�1 � ~rd�3 þ �~r2 þ 1

�
(16)

TABLE III. Types of geodesics in Schwarzschild spacetime.

Dimension Polynomial Parameters Orbits

d ¼ 4 �ð�� 1Þ~r3 þ �~r2 � ~rþ 1 �< 1 periodic bound, terminating bound

�> 1 escape, terminating bound, terminating escape

d ¼ 5 �ð�� 1Þ~r4 þ ð�� 1Þ~r2 þ 1 �< 1, � < 1 terminating bound

�< 1, � > 1 terminating bound

�> 1, � < 1 terminating bound, escape, terminating escape

�> 1, � > 1 terminating escape

d � 6 �ð�� 1Þ~rd�1 � ~rd�3 þ �~r2 þ 1 �< 1 terminating bound

�> 1 terminating bound, escape, terminating escape
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contains an additional term ~�~rdþ1 as compared to the
Schwarzschild case. For large ~r this term is dominant.
For small negative � all escape orbits turn into periodic
bound orbits, and for small positive� some periodic bound
orbits (slightly below � ¼ 1) will turn into escape orbits.
A huge positive � might surpass the angular momentum
barrier. We skip the detailed discussion of all subcases and
just remark that only for d ¼ 4 and 5 different shapes of
orbits occur due to the mixing of different terms. Such
mixing no longer occurs for d � 6.

3. Reissner-Nordström spacetimes

The geodesics in RN spacetimes�
d~r

d’

�
2 ¼ ~r4

~r2ðd�2Þ ð�ð�� 1Þ~r2ðd�2Þ � ~r2ðd�3Þ þ �~rd�1

þ ~rd�3 � ��d�3~r2 � �d�3Þ (17)

do not possess any terminating escape orbit. The reason is
the charge which leads to gravitational repulsion near the
singularity at the origin. Accordingly, we have either peri-
odic bound or escape orbits. A particular feature is that the
4-dimensional RN spacetime is the only spacetime which
allows 2 different periodic bound orbits (see Table IV).
Both periodic bound orbits are characterized by the same
period which is a consequence of the fact that the solution,
owing to the order of the polynomial, is given in terms of
the Weierstrass } function.

4. Reissner–Nordström–de Sitter spacetimes

For the addition of a cosmological constant in the geo-
desic equation in a RN spacetime�

d~r

d’

�
2 ¼ �~r4

�
��

�
1� 1

~rd�3
� 2~�~r2

ðd� 1Þðd� 2Þ

þ �d�3

~r2ðd�3Þ

��
�þ 1

�~r2

��
(18)

the remarks made after (16) also apply. A point to add is

that the periods of the two periodic bound orbits appearing
in RN spacetime now become different.

D. Integration

Separation of variables in (13) yields the hyperelliptic
integral

’� ’in ¼
Z x

xin

x0dx0ffiffiffiffiffiffiffiffiffiffiffiffiffi
P5ðx0Þ

p (19a)

or

’� ’in ¼
Z x

xin

dx0ffiffiffiffiffiffiffiffiffiffiffiffiffi
P5ðx0Þ

p (19b)

for the physical angle ’ with xin ¼ xð’inÞ [the pair
ðxin; ’inÞ is an initial point of a test particle motion]. This
approach allows us to obtain an explicit solution of the
inversion problem by restricting the problem to the theta
divisor (zeros of the theta function). As a result we obtain
the complete set of analytically given orbits of test
particles.
There are two important points: The first is the ambig-

uous definition of the integrand because of two branches of
the square root. The second is the periodicity of xð’Þ
following from the requirement of xð’Þ to be independent
of the integration path. That means that for a closed inte-
gration path � and

! ¼
I
�

x0dx0ffiffiffiffiffiffiffiffiffiffiffiffiffi
P5ðx0Þ

p
or

! ¼
I
�

dx0ffiffiffiffiffiffiffiffiffiffiffiffiffi
P5ðx0Þ

p ;

respectively, the function xð’Þ has to fulfill

TABLE IV. Types of geodesics in Reissner-Nordström spacetime.

Dimension Polynomial Parameters Orbits

d ¼ 4 �ð�� 1Þ~r4 þ �~r3 � ð1þ ��Þ~r2 þ ~r� � �< 1 2 periodic bound

1<� periodic bound, escape

d ¼ 5 �ð�� 1Þ~r6 þ ð�� 1Þ~r4 þ ð1� ��2Þ~r2 � �2 �< 1, � < 1, ��2 > 1 not allowed

�< 1, � < 1, ��2 < 1 periodic bound

�< 1, � > 1, ��2 > 1 periodic bound

�< 1, � > 1, ��2 < 1 periodic bound

�> 1, � < 1, ��2 > 1 escape

�> 1, � < 1, ��2 < 1 periodic bound, escape

�> 1, � > 1, ��2 > 1 escape

�> 1, � > 1, ��2 < 1 escape

d � 6 �ð�� 1Þ~r2ðd�2Þ � ~r2ðd�3Þ þ �~rd�1 �< 1 periodic bound

þ~rd�3 � ��d�3~r2 � �d�3 1<� periodic bound, escape
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’� ’in ¼
Z x

xin

x0dx0ffiffiffiffiffiffiffiffiffiffiffiffiffi
P5ðx0Þ

p þ!;

or ’� ’in ¼
Z x

xin

dx0ffiffiffiffiffiffiffiffiffiffiffiffiffi
P5ðx0Þ

p þ!;

(20)

and, thus, has to be a periodic function with period !.
Owing to some modifications compared to [35] we

shortly review the procedure of explicit integration.

III. SOLVING HYPERELLIPTIC INTEGRALS

We consider (19) on the Riemannian surface y2 ¼ P5ðxÞ
of genus g ¼ 2 and introduce a basis of canonical holo-
morphic and meromorphic differentials dzi and dui, re-
spectively,

dz1 ¼ dxffiffiffiffiffiffiffiffiffiffiffiffi
P5ðxÞ

p ; dz2 ¼ xdxffiffiffiffiffiffiffiffiffiffiffiffi
P5ðxÞ

p ; (21)

du1 ¼ a3xþ 2a4x
2 þ 3a5x

3

4
ffiffiffiffiffiffiffiffiffiffiffiffi
P5ðxÞ

p dx; du2 ¼ x2dx

4
ffiffiffiffiffiffiffiffiffiffiffiffi
P5ðxÞ

p ;

(22)

and real 2!ij, 2�ij and imaginary 2!0
ij, 2�

0
ij period matri-

ces

2!ij ¼
I
aj

dzi; 2!0
ij ¼

I
bj

dzi; (23)

2�ij ¼
I
aj

dui; 2�0
ij ¼

I
bj

dui (24)

with i, j ¼ 1; 2, and the canonical basis of cycles
ða1; a2;b1; b2Þ. These 4 closed paths defined on a
Riemannian surface correspond to periods of a function
defined on it [in our case, to the solution of (19)]. We also
need the normalized holomorphic differentials

d ~v ¼ ð2!Þ�1d~z; d~z ¼ dz1
dz2

� �
: (25)

The period matrix of these differentials is given by ð12; 	Þ,
where 	 is a Riemann matrix defined by 	 ¼ !�1!0. It is
this 	 which contains all the information about the poly-
nomial P5.

The solutions of (19) can be inferred from the solutions
of the Jacobi inversion problem [36] which solves

’1 ¼
Z x1

x0

dxffiffiffiffiffiffiffiffiffiffiffiffi
P5ðxÞ

p þ
Z x2

x0

dxffiffiffiffiffiffiffiffiffiffiffiffi
P5ðxÞ

p ;

’2 ¼
Z x1

x0

xdxffiffiffiffiffiffiffiffiffiffiffiffi
P5ðxÞ

p þ
Z x2

x0

xdxffiffiffiffiffiffiffiffiffiffiffiffi
P5ðxÞ

p
(26)

for ~x ¼ ðx1; x2Þt in terms of ~’ ¼ ð’1; ’2Þt. This solution is
given by

x1 þ x2 ¼ 4

a5
}22ð ~’Þ; x1x2 ¼ � 4

a5
}12ð ~’Þ; (27)

where

}ijð~zÞ ¼ � @

@zi

@

@zj
log
ð~zÞ ¼ 
ið ~zÞ
jð~zÞ � 
ð~zÞ
ijð~zÞ


2ð~zÞ
(28)

are the generalized Weierstrass functions (
i ¼ @
=@zi),
where


ð~zÞ ¼ Ce�ð1=2Þ~zt�!�1 ~z#ðð2!Þ�1 ~zþ 	 ~gþ ~h; 	Þ; (29)

(the constant C can be given explicitly, see [40]) is the
Kleinian 
 function based on the theta function

#ð~z; 	Þ ¼ X
~m2Z2

ei� ~mtð	 ~mþ2~zÞ: (30)

It is the # function where the matrix 	 comes in. Note that
the problem (26) contains the problem (19) for x2 ! x0
and a restriction such that one of the two Eqs. (26) can be
omitted.
Without restriction we can choose x0 ¼ 1 (this only

induces a reformulation of ’) and consider the limit x2 !
1 to obtain

x1 ¼ lim
x2!1

x1x2
x1 þ x2

¼ 
ð ~’1Þ
12ð ~’1Þ � 
1ð ~’1Þ
2ð ~’1Þ

2

2ð ~’1Þ � 
ð ~’1Þ
22ð ~’1Þ
;

(31)

where ~’1 ¼ limx2!1 ~’¼ð26Þ Rx11 d~z ¼ R
x1
xin
d~z� R1

xin
d~z,

where xin is an initial point of a test particle motion.
The next step is to restrict Jacobi’s inversion problem to

a theta divisor�Kx0
, the one-dimensional set of zeros of the

theta function #ðð2!Þ�1 ~zþ ~Kx0 ; 	Þ, where ~Kx0 is the

Riemann vector associated with the base point x0 [40].
One can check that ð2!Þ�1’1 is an element of the theta
divisor � ~K1

with

~K 1 ¼ 	
1=2
1=2

� �
þ 0

1=2

� �

[40,41] and 
ð ~’1Þ ¼ 0. This allows us to write (31) in a
simpler form and to express one of the components of ’1
in terms of the other component.
Now we can write the analytic solution of the geodesic

equation as

~rð’Þ ¼ �ðxð’ÞÞ ¼ �ðx1Þ ¼ �

�
�
1ð ~’1Þ


2ð ~’1Þ
�
: (32)

Equation (32) is an explicit analytical solution of the
geodesic Eq. (12) which we will explicitly work out for
the Schwarzschild, Schwarzschild–de Sitter, Reissner-
Nordström, and Reissner–Nordström–de Sitter spacetimes
in higher dimensions.
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It is important to note that, depending on the type of the
problem (19), there are two possible physical angles ’:

’z2 ¼
Z x1

xin

dz2 þ ’in; (33a)

’z1 ¼
Z x1

xin

dz1 þ ’in: (33b)

This means that depending on the problem ~’1, which is an
element of the theta divisor and, therefore, one-
dimensional, will take a corresponding form

~’1;z2 ¼
R
x1
xin
dz1 �

R1
xin
dz1

’z2 � ’0
in;z2

 !
; (34a)

~’1;z1 ¼
’z1 � ’0

in;z1R
x1
xin
dz2 �

R1
xin
dz2

 !
; (34b)

where ’0
in;z2

¼ ’in þ
R1
xin
dz2 and ’0

in;z1
¼ ’in þ

R1
xin
dz1.

Note that in ’1;z2 the first component is a function of the

second component and in ’1;z1 the second component is a

function of the first component.
Now we are going to explicitly work out the solutions

for various higher dimensional spacetimes.

IV. GEODESICS IN HIGHER DIMENSIONAL
SCHWARZSCHILD SPACETIMES

In this section we present and discuss the possible types
of orbits in the spacetime of a gravitating source described
by the higher dimensional Schwarzschild metric given by
(3) for � ¼ 0 and q ¼ 0. We first address the effective
potential Veff in these spacetimes and describe the classi-
fication of zeros of the polynomial Pnð~rÞ in (12) in terms of
the parameters � and �. We then present the explicit
analytical solution of the geodesic equation for � ¼ 1.

A. Schwarzschild spacetime in 9 dimensions

The equation of motion (14) for Schwarzschild space-
time in 9 dimensions reduces to�

du

d’

�
2 ¼ 4uðu4 þ �u3 � uþ �ð�� 1ÞÞ ¼ 4P5ðuÞ:

(35)

The ��� diagram in Fig. 1(a) shows the number of
positive zeros of the polynomial P5ðuÞ [or, equivalently,
P8ð~rÞ], depending on the parameters � and �. Here the
gray-scale code is as follows: gray denotes two, light gray
one, and white no positive real zero of P5ðuÞ.

The effective potential is (10)

Veff ¼
�
1� 1

~r6

��
1þ 1

�~r2

�
: (36)

With z ¼ ~r2 the extrema of the effective potential are
given by 0 ¼ z3 � 3�z� 4. The discriminant of this cubic
equation is D ¼ 4� �3. For D< 0 there is always one

positive real zero given by z ¼ 2
ffiffiffiffi
�

p
cosð13 arccos 2ffiffiffiffi

�3
p Þ. For

D ¼ 0 the positive zero is given by z ¼ 42=3 and

Veffð41=3Þ ¼ 75
64 . For D> 0 we have z ¼ ð2þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4� �3
p

Þ1=3 þ ð2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� �3

p
Þ1=3. For any value of � the

second derivative of the potential at the corresponding
value of z is negative which implies that the potential has
a maximum. There are no stable circular or periodic bound
orbits.
Equation (35) is of type (13b) and the solution (32)

becomes

~rð’Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
2ð ~’1;z1Þ

1ð ~’1;z1Þ

vuut ; (37)

with the angular coordinate’z1 of a test particle from (33b)

and ~’1;z1 from Eq. (34b); xin here is the starting point of

the motion usually chosen to be a zero of P5ðxÞ.
The corresponding orbits of massive test particles are

illustrated in Fig. 2. The chosen energies� ¼ 2:6 and� ¼
3:9 are shown as dashed lines in the effective potential
Fig. 1(b) which swap out the regions where a particle is
allowed to move. For both chosen energy parameters ter-
minating bound and escape orbits exist. For � � 1 also
escape orbits become possible. For higher energies both
kinds of orbits become more deformed and approach the
unstable circular orbit corresponding to the maximum of
the potential. Then terminating escape orbits arise.
Let e1 . . . e5 be the roots of the polynomial of 5th degree

P5ðuÞ. The deflection angle for an escape orbit of a test
particle in Schwarzschild spacetimes in 9 dimensions is

�’ ¼ 2
Z 0

ue

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4P5ðuÞ

p � �

¼
��4!11 � � if <ei < ue
�4!12 � � if <ei > ue

; (38)

where ue is a zero of P5ðuÞ corresponding to an escape

0

1

2

3

4

0 10 20

(a) (b)

FIG. 1 (color online). Nine-dimensional Schwarzschild space-
time. (a) The zeros of P5 in a ð�;�Þ plot (the number of zeros is
encoded in the gray scales: white ¼ 0, light gray ¼ 1, gray ¼
2 zeros). (b) The effective potential for � ¼ 0:15. For the
corresponding orbits see Fig. 2.
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orbit and <ei is the real part of a corresponding complex
root ei.

B. Schwarzschild spacetime in 11 dimensions

For the Schwarzschild spacetime in 11 dimensions the
equation of motion (14) takes the form�

du

d’

�
2 ¼ 4uðu5 þ �u4 � uþ �ð�� 1ÞÞ ¼ 4P6ðuÞ:

(39)

The number of zeros of this P6 are shown in Fig. 3 in the
ð�;�Þ plot together with the effective potential

Veff ¼
�
1� 1

~r8

��
1þ 1

�~r2

�
(40)

which indicates no qualitative difference between the
Schwarzschild spacetimes in 9 and 11 dimensions. With
z ¼ ~r2 the extrema of the effective potential are given by
0 ¼ z4 � 4�z� 5. The only possible real positive zero is
given by the expression:

z ¼ 1ffiffiffi
2

p
� ffiffiffi

k
p þ

�
�kþ 2

ffiffiffi
2

p
�ffiffiffi
k

p
�
1=2
�

with k ¼ 1
3 ð27�2 þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81�4 þ 375

p Þ1=3 � 5ð27�2þ
3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81�4 þ 375

p Þ�ð1=3Þ and describes a maximum.
There are no stable circular or periodic bound orbits. A

substitution u ¼ 1
x þ u6, where u6 is a root of P6ðuÞ, trans-

forms (39) to ðx dx
d’Þ2 ¼ 4P5ðxÞwhich is of type (13a). Then

the solution of the geodesic equation for a test particle in an
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FIG. 2 (color online). Orbits of a test particle in the 9-dimensional Schwarzschild spacetime for � ¼ 0:15. The black circle indicates
the horizon. The plots are given in units of rs. (a) � ¼ 2:6: terminating bound orbit and escape orbit. (b) � ¼ 3:9: terminating bound
orbit and escape orbit. (c) � ¼ 3:9203: terminating bound orbit and escape orbit. (d) � ¼ 3:920 466 27: terminating bound orbit and
escape orbit. (e) � ¼ 4:0: terminating escape orbit.
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11-dimensional Schwarzschild spacetime is given by

~rð’Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 
2ð ~’1;z2

Þ

1ð ~’1;z2

Þ þ u6

r ; (41)

with the angular coordinate ’z2 from (33a) and ~’1;z2 from

(34a). xin is again an initial angle which can be chosen to be
a zero of P5ðxÞ. The orbits for various � are illustrated in
Fig. 4 and exhibit the same qualitative behavior as the
orbits in 9 dimensions.

The deflection angle for an escape orbit of a test particle
in the Schwarzschild spacetime in 11 dimensions is

�’ ¼ 2
Z 1

xe

xdxffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4P5ðxÞ

p � � ¼ �4!21 � 4!22 � �; (42)

where xe is a zero ofP5ðxÞ corresponding to an escape orbit
and we took u6 ¼ 0 here.

V. GEODESICS IN HIGHER DIMENSIONAL
SCHWARZSCHILD–(ANTI)DE SITTER

SPACETIMES

We now consider timelike geodesics in Schwarzschild–
(anti)de Sitter [S(a)dS] spacetime. A detailed discussion of
geodesics in Schwarzschild–de Sitter spacetime in 4 di-
mensions can be found in [35]. Here we restrict our con-
siderations to 9 and 11 dimensions. The geodesic equations
for 5 and 7 dimensions can be solved using the Weierstrass
} function.

A. Schwarzschild–(anti)de Sitter in 9 dimensions

For d ¼ 9 and � ¼ 0 we obtain from (14) the equation
of motion in the S(a)dS spacetime in 9 dimensions

�
du

d’

�
2 ¼ 4

�
u5 þ �u4 � u2

þ
�
�ð�� 1Þ þ

~�

28

�
uþ

~�

28
�

�
¼ 4P5ðuÞ; (43)

(b)(a)

FIG. 3 (color online). Eleven-dimensional Schwarzschild
spacetime. (a) ð�;�Þ plot (gray-scale code as in Fig. 1).
(b) Effective potential for � ¼ 0:4. For the corresponding orbits
see Fig. 4.
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FIG. 4 (color online). Orbits of a test particle in the Schwarzschild spacetime in 11 dimensions for � ¼ 0:4. In (b) the energy is close
to the energy of the unstable circular orbit related to the maximum of the effective potential in Fig. 3(b). (a) � ¼ 2:1: terminating
bound orbit and escape orbit. (b) � ¼ 2:176 008 452 1: terminating bound orbit and escape orbit.

FIG. 5 (color online). Potential for negative and positive cos-
mological parameter ~�. For the same value of a test particle
energy � it can be on a periodic bound orbit with perihelion and
aphelion points A and B or on an escape one with a point of
nearest approach A.
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which is of type (13b). The solution of the geodesic equa-
tion in the 9-dimensional Schwarzschild–(anti)de Sitter
spacetime is of the form (37). The sign of the cosmological
constant is crucial for the form of the orbits. As can be seen
from the effective potential

Veff ¼
�
1� 1

~r6
�

~�

28
~r2
��

1þ 1

�~r2

�
(44)

shown in Fig. 5, for ~�< 0 a particle necessarily follows a

bound orbit, while for ~�> 0 there are also escape orbits.

(a) (b)

FIG. 6 (color online). Nine-dimensional SdS spacetime:
(a) ð�;�Þ plot, ~� ¼ 8:7 � 10�4. (b) Effective potential for � ¼
0:2, ~� ¼ 8:7 � 10�4. For the corresponding orbits see Fig. 7.
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FIG. 7 (color online). Examples of a test particle’s motion in 9-dimensional SdS spacetime with positive cosmological constant
~� ¼ 8:7 � 10�5 and � ¼ 0:2. (a) � ¼ 1:008: terminating bound orbit and escape orbit. (b) � ¼ 1:8: terminating bound orbit and
escape orbit. (c) � ¼ 3:13: terminating bound orbit and escape orbit. (d) � ¼ 3:139 207 346 9: terminating bound orbit and escape
orbit. (e) � ¼ 3:139 21, terminating escape orbit. (f) � ¼ 3:5, terminating escape orbit.
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1. Positive cosmological constant

For ~�> 0 the positive zeros of P5ðuÞ [and also of
P10ð~rÞ] are shown in Fig. 6(a). From this figure as well as
from the effective potential Veff (44) shown for � ¼ 0:2

and ~� ¼ 8:7 � 10�5 in Fig. 6(a) it is clear that only termi-
nating bound, terminating escape, and escape orbits are
possible. The qualitative structure is mainly the same as for
the pure Schwarzschild case except that for small energies
the escape orbits show reflection at the cosmological con-
stant barrier, Fig. 6(b) (see Fig. 7 for corresponding orbits).

2. Negative cosmological constant

For ~�< 0 the positive zeros of P5ðuÞ are shown in Fig. 8
(a). For a negative cosmological constant the effective
potential Veff differs insofar as it tends to þ1 for r !
1. Therefore each orbit is a bound orbit, some are periodic,
some are terminating. This is related to the dark gray
region in Fig. 8(a) corresponding to three real positive
zeros giving one terminating bound orbit and one periodic
bound orbit, and the light gray region indicating one real
positive zero leading to terminating orbits (see Fig. 9).

For a periodic bound orbit restricted to the interval
½rmin; rmax� there is a perihelion shift

�perihel ¼ 2�� 2
Z eiþ1

ei

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4P5ðuÞ

p ¼ 2�� 4!1k; (45)

where ei and eiþ1 are those zeros of P5ðuÞ related to rmax

and rmin and the path ak surrounds the interval ½ei; eiþ1�.
The actual !1k to be taken also depends on the position of
the complex zeros of P5ðuÞ.

B. Schwarzschild–(anti)de Sitter in 11 dimensions

For d ¼ 11 and q ¼ 0 we obtain from (14) the equation
of motion

�
du

d’

�
2 ¼ 4

�
u6 þ �u5 � u2

þ
�
�ð�� 1Þ þ

~�

45

�
uþ

~�

45
�

�
¼ 4P6ðuÞ (46)
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FIG. 9 (color online). Orbits of a test particle in 9-dimensional SadS spacetime for ~� ¼ �8:7 � 10�5 and � ¼ 0:2. (a) � ¼ 1:008:
terminating bound and periodic bound orbits. (b) � ¼ 1:5: terminating bound and periodic bound orbits.

(b)(a)

FIG. 8 (color online). Nine-dimensional SadS spacetime:
(a) ð�;�Þ plot (here the dark gray color denotes 3 positive
zeros), ~� ¼ �8:7 � 10�5. (b) Effective potential for � ¼ 0:2,
~� ¼ �8:7 � 10�5. For the corresponding orbits see Fig. 9.

(a) (b)

FIG. 10 (color online). Eleven-dimensional S(a)dS spacetime:
(a) ð�;�Þ plot (gray-scale code as above), ~� ¼ 8:7 � 10�5.
(b) Effective potential for � ¼ 0:15, ~� ¼ 8:7 � 10�5. For the
corresponding orbits see Fig. 11.
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and from (10) the effective potential in the S(a)dS space-
time in 11 dimensions

Veff ¼
�
1� 1

~r8
�

~�

45
~r2
��
1þ 1

�~r2

�
: (47)

In analogy to the case of 9 dimensions we infer from (46)
that P6ðuÞ has two or no real positive roots, thus, leading
either to escape or to bound terminating orbits.

For obtaining the analytical solution of (46) we have to
introduce a new variable x by u ¼ 1

x þ u6, where u6 is a

zero of P6ðuÞ. This transforms Eq. (46) containing P6ðuÞ to
a new equation ðx dx

d’Þ2 ¼ 4P5ðxÞ which is of type (13a) and
possesses a solution of the form (41). The obtained orbits
show no qualitative differences from the 9 dimensional
Schwarzschild–de Sitter (SdS) case (see Figs. 10 and 11
for the plots for positive cosmological constant).

VI. GEODESICS IN REISSNER-NORDSTRÖM
SPACETIMES IN 7 DIMENSIONS

Let us now address the higher dimensional Reissner-
Nordström (RN) spacetime and investigate the effects of
the charge parameter � on the timelike geodesics. We
restrict ourselves to d ¼ 7 of (14)�

du

d’

�
2 ¼ 4uð��4u5 � �4�u4 þ u3 þ �u2

� uþ �ð�� 1ÞÞ
¼ 4P6ðuÞ: (48)

The relation of the zeros of P6ðuÞ with the parameters �
and � are shown in Fig. 12(a) for� ¼ 0:7. From this plot as
well as from the effective potential

Veff ¼
�
1� 1

~r4
þ �4

~r8

��
1þ 1

�~r2

�
(49)

shown in Fig. 12(b) it is clear that we have three types of
orbits: For one zero (light gray area) we have an escape

orbit, for two zeros (gray area) we have a periodic bound
orbit, and for three zeros (dark gray area) we have a
periodic bound orbit and an escape orbit. The relative
maximum in Veff shown in Fig. 12(b) increases for larger
L (smaller �) and the relative minimum decreases for
smaller q (larger �).
In order to obtain explicitly the analytic solution we

have to substitute u ¼ � 1
x þ u6, where u6 is the root of

P6ðuÞ, which transforms (48) to ðx dx
d’Þ2 ¼ 4P5ðxÞ. Then the

solution of the geodesic equation in Reissner-Nordström
spacetime in 7 dimensions is given by the equation

~rð’Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð ~’1;z2

Þ

1ð ~’1;z2

Þ þ u6

r ; (50)

with the angular coordinate ’z2 from (33a) and ~’1;z2 from

(34a). xin again is an initial position which can be chosen to
be a zero of P5ðxÞ.
Reissner-Nordström spacetimes have two distinctive

features. The first is the existence of two horizons, an inner
(Cauchy) and an outer horizon which for d ¼ 7 are given

–1

–0.5

0

0.5

1

–1 –0.5 0.5 1

–40

–20

0

20

40

20 40 60 80

–1

–0.5

0

0.5

1

–1 –0.5 0.5 1

–10

0

10

–20 –10

(a) (b)

FIG. 11 (color online). Geodesics of a test particle in 11-dimensional S(a)dS spacetime with positive cosmological constant ~� ¼
8:7 � 10�5 and � ¼ 0:15. (a) � ¼ 1:0: terminating bound orbit and escape orbit. (b) � ¼ 4:38: terminating bound orbit and escape
orbit.

(a) (b)

FIG. 12 (color online). Seven-dimensional RN spacetime:
(a) ð�;�Þ plot (gray scales as above), � ¼ 0:7. (b) Effective
potential for � ¼ 0:35, � ¼ 0:7. For the corresponding orbits see
Fig. 13.
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by

rinner ¼ 1ffiffiffi
2

p ð2� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�4

q
Þ1=4

router ¼ 1ffiffiffi
2

p ð2þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�4

q
Þ1=4;

(51)

and the second is an antigravitating potential barrier pre-
venting a particle from falling into the singularity which is
related to lim~r!0Veff ¼ þ1. For � ¼ 1ffiffi

2
p the two horizons

coincide and we obtain a degenerate RN spacetime. In this

case the extrema of Veff in (49) are given by ~r1 ¼ 2�1=4 and

~r 2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 5

2

svuut
:

At ~r1 the effective potential possesses a minimum with
Veffð~r1Þ ¼ 0, and at ~r2 a maximum. That means, in par-
ticular, that a particle with energy � ¼ 0 moves on a
circular orbit with radius ~r ¼ rinner ¼ router corresponding
to the two coinciding horizons. For 0<�< 1 a particle
necessarily follows a periodic bound orbit. For 1<�<
Veffð~r2Þ we have a periodic bound and an escape orbit and
for �> Veffð~r2Þ only escape orbits.
For arbitrary � the extrema of Veff are defined by 0 ¼

z4 � 2z3�� 3z2 þ 4�4�zþ 5�4 with z ¼ ~r2. Using
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FIG. 13 (color online). Orbits for a test particle motion in Reissner-Nordström spacetime in 7 dimensions for � ¼ 0:35.
(a) � ¼ 1:01, � ¼ 0:2: many-world periodic bound orbit and escape orbit. (b) � ¼ 1:82, � ¼ 0:2: many-world periodic bound orbit
and escape orbit. (c) � ¼ 1:1, � ¼ 0:7: many-world periodic bound orbit and escape orbit. (d) � ¼ 1:6, � ¼ 0:7: many-world
periodic bound orbit and escape orbit. (e)� ¼ 1:9, � ¼ 0:2: two-world periodic escape orbit. (f)� ¼ 1:9, � ¼ 0:7: two-world escape
orbit.
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again Descartes, there are two or no extrema at positive z.
For two extrema there is a range of � for which there are

periodic bound as well as escape orbits, and a range of �
with escape orbits only (see the plots in Fig. 13). If there is
no extremum there are escape orbits only.

A particle moving along one of the periodic bound orbits
shown in Fig. 13 crosses, say, from the outside, first the
outer and then the inner horizon, both indicated by black
circles. After crossing the inner horizon the particle is
reflected by the charge induced potential barrier and again
crosses the Cauchy horizon in the opposite direction,
thereby entering a new copy of the RN spacetime. This
can be inferred from the Carter-Penrose diagram of the RN
spacetime shown, e.g., in [42] or [33]. By proceeding
further along its ~r-periodic motion, the particle again and
again enters new copies of the RN spacetime within its
analytic continuation. This may be called a many-world
periodic bound orbit. Since E2 � 0, all bound orbits have
to cross both horizons.

The same happens with the escape orbits shown in
Fig. 13(e) and 13(f). The incoming particle crosses both
horizons (see the inset in Fig. 13(f)), is reflected by the
potential barrier and, by crossing again the horizons in the
transverse direction, enters a new copy of the RN space-
time. Analogously this may be called a two-world escape
orbit. Such a scattering or flyby makes the spacecraft
disappear into another universe.

The perihelion shift for periodic bound orbits is

�perihel ¼ 2�� 2
Z eiþ1

ei

xdxffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4P5ðxÞ

p ¼ 2�� 4!2k; (52)

where the zeros ei and eiþ1 of P5ðxÞ are again related to the
range of motion ½rmin; rmax� and the path ak surrounds the
interval ½ei; eiþ1�. Again, the actual !2k depends on the
position of the other zeros of P5 under consideration.
Because of the fact that the motion does not take place
within one universe it is not clear how one could measure
this perihelion shift. One possibility might be that an

astronaut adds up the angles ’ measured in the various
universes starting from the position of largest distance with
respect to the gravitating body to the next position of
largest distance. In this case only the astronaut can carry
through the measurement and only he or she has access to
the result. This kind of effect may be called a ‘‘many-word
perihelion shift.’’

VII. GEODESICS IN REISSNER–NORDSTRÖM–
(ANTI)DE SITTER SPACETIMES

As a last example of the motion in higher dimensional
spacetimes, we discuss RN–de Sitter spacetimes in 4 and 7
dimensions. This is the most compound case due to a large
number of parameters which includes the mass and the
charge of the gravitating source and the cosmological
constant. Owing to its complexity, we start the investiga-
tion for 4 dimensions and then consider 7 dimensions.

A. Reissner–Nordström–(anti)de Sitter in 4 dimensions

Since already the solution of the geodesic equation in 4-
dimensional S(a)dS spacetimes requires the application of
hyperelliptic integrals [34,35] the same is true for the
geodesic equation in 4-dimensional RN–(anti)de Sitter
spacetimes�

d~r

d’

�
2 ¼ 1

3
ð~��~r6 þ ð3�ð�� 1Þ þ ~�Þ~r4

þ 3�~r3 � 3ð��þ 1Þ~r2 þ 3~r� 3�Þ
¼ 1

3
P6ð~rÞ: (53)

The zeros of (53) are represented in a ð�;�Þ plot in Fig. 14
(a). This is in line with the form of the effective potential

Veff ¼
�
1� 1

~r
�

~�

3
~r2 þ �

~r2

��
1þ 1

�~r2

�
(54)

shown in Fig. 14(b) for � ¼ 0:1, � ¼ 0:1, ~� ¼ 8:7 � 10�5.

(a) (b) (c)

FIG. 14 (color online). Four-dimensional RN–(anti)de Sitter spacetime: (a) ð�;�Þ plot (the black region indicates 5 positive roots,
dark gray is 3, and light gray is 1), ~� ¼ 8:7 � 10�5, � ¼ 0:1. (b) Effective potential for � ¼ 0:1, � ¼ 0:1, and ~� ¼ 8:7 � 10�5.
(c) Potential for � ¼ 0:1, � ¼ 0:357 640 4, and ~� ¼ 8:7 � 10�5. For the corresponding orbits see Figs. 15 and 16.
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The substitution ~r ¼ � 1
x þ r6, where r6 is a root of

P6ð~rÞ, reduces (53) to ðx dx
d’Þ2 ¼ P5ðxÞ

3 which is of type

(13a) with the general solution given in (50). There are
periodic bound orbits presented in the first part of Figs. 15
(a)–15(c) where particles cross both horizons and then
enter another universe. Corresponding escape orbits are
shown in the second part of Figs. 15(a)–15(c). In the
second part of the Fig. 15(a) the influence of the cosmo-
logical constant appears as a barrier for particles coming
from infinity. Further two-world escape orbits for particles
coming from infinity and crossing the horizons are illus-
trated in Figs. 15(d) and 15(e) for different values of �.

A particular property of Veff is shown in Fig. 14(c) for
� ¼ 0:357 640 4 which corresponds to the black area in
Fig. 14(a). The figure reveals three regions where a test
particle can move, and in two of them orbits are bound. The
geodesics for� ¼ 0:888 are shown in Fig. 16 and exhibit a
many-world periodic bound orbit in Fig. 16(a), an ordinary
periodic bound orbit in Fig. 16(b), and an escape orbit in
Fig. 16(c).
Since in general there are two periodic bound orbits we

may obtain two perihelia shifts. Each is given by

�ðjÞ
perihel ¼ 2�� 2

Z eiþ1

ei

xdxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P5ðxÞ=3

p ¼ 2�� 4!2k; (55)
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FIG. 15 (color online). Orbits of a test particle in RN–de Sitter spacetime in 4 dimensions for � ¼ 0:1 and � ¼ 0:1, ~� ¼ 8:7 � 10�5.
(a) � ¼ 0:95: many-world periodic bound orbit and escape orbit. (b) � ¼ 1:3: many-world periodic bound orbit and escape orbit.
(c) � ¼ 2: many-world periodic bound orbit and escape orbit. (d) � ¼ 2:1: two-world escape orbit. (e) � ¼ 5:0: two-world escape
orbit.
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FIG. 16 (color online). Three geodesics in RN–de Sitter spacetime in 4 dimensions for the parameters � ¼ 0:357 640 4, � ¼ 0:888,
� ¼ 0:1, and ~� ¼ 8:7 � 10�5. (a) Many-world periodic bound orbit. (b) Periodic bound orbit. (c) Escape orbit.
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where the zeros ei and eiþ1 of P5ðxÞ again correspond to

the considered range of motion ½rðjÞmin; r
ðjÞ
max� and the path ak

surrounds the interval ½ei; eiþ1�. In our case j 2 f1g (only
one bound orbit) or j 2 f1; 2g (two bound orbits). While in
the 4-dimensional RN spacetime for�< 1 the two periods
related to two periodic bound orbits are the same, the
appearance of the cosmological constant removes this
degeneracy so that the two orbits possess different periods.

It is again interesting to investigate naked singularities.
In the 4-dimensional RN spacetime we have two horizons
for �< 1

4 (or q <M). For � ¼ 1
4 both horizons become

degenerate and for �> 1
4 a naked singularity appears.

The horizons for a 4-dimensional RN–de Sitter space-
time are given by the real positive zeros of the equation

~�

3
~r4 � ~r2 þ ~r� � ¼ 0: (56)

FromDescartes’ rule we infer: For negative ~� there are two

or no positive zeros. For positive ~� there are three or one
positive zeros; one of these is the cosmological horizon.

For both signs of ~� two zeros may combine to a degenerate
horizon.
It is possible to state the algebraic condition on � as a

function of a given ~� for which a degenerate horizon
occurs. In Fig. 17 we show the effective potential (54)
for two values of the charge parameter, � ¼ 0:26 and � ¼
0:33; Fig. 18 presents the corresponding orbits. The mini-
mum of Veff is negative for small �, it vanishes for the
critical �, and it lies above the ~r axis for larger values of �.
For some larger � the minimum disappears. Because of the
potential barrier a test particle does not fall into the singu-
larity, but in contrast to the many-world periodic bound
orbits discussed above the particle will stay in the same
universe (compare Fig. 18(a) and e.g. Fig. 16(a)).

B. Reissner–Nordström–de Sitter in 7 dimensions

For the 7-dimensional RN–de Sitter spacetime Eq. (14)
becomes

�
du

d’

�
2 ¼ 4

�
��4u6 � �4�u5 þ u4 þ �u3 � u2

þ
�
�ð�� 1Þ þ

~�

15

�
uþ

~�

15
�

�
¼ 4P6ðuÞ: (57)

The number of positive zeros of P6ðuÞ [or P12ð~rÞ] is drawn
in Fig. 19(b) and the effective potential

Veff ¼
�
1� 1

~r4
�

~�

15
~r2 þ �4

~r8

��
1þ 1

�~r2

�
(58)

for � ¼ 0:05, � ¼ 0:4, and ~� ¼ 8:7 � 10�5 in Fig. 19(b).
The dark gray area of 3 real positive roots corresponds to
many-world periodic bound orbits and escape orbits shown
in Fig. 20, and the gray area to two-world escape orbits.

FIG. 17 (color online). Effective potential for naked singular-
ities in RN–de Sitter spacetime in 4 dimensions for � ¼ 0:3,
~� ¼ 8:7 � 10�5; for orbits see Fig. 18.
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FIG. 18 (color online). Geodesics in the RN–de Sitter spacetime in 4 dimensions with naked singularity. (a) � ¼ 0:26, � ¼ 1:
periodic bound orbit and escape orbit. (b) � ¼ 0:33, � ¼ 1: escape orbit. Here ~� ¼ 8:7 � 10�5.
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Introduction of a new variable x such that u ¼ � 1
x þ u6,

where u6 is the root of P6ðuÞ, reduces (57) to ðx dx
d’Þ2 ¼

4P5ðxÞ which is of type (13a) with the solution given in
(50).

For a periodic bound orbit in the interval between points
ei and eiþ1 and the path ak surrounding this interval, the
perihelion shift �perihel is defined as

�perihel ¼ 2�� 2
Z eiþ1

ei

xdxffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4P5ðxÞ

p ¼ 2�� 4!2k: (59)

VIII. LIGHT RAYS

For light rays � ¼ 0 and the geodesic equation (12)
reduces to

�
d~r

d’

�
2 ¼ ~r4

�
��þ 2~�

ðd� 1Þðd� 2Þ �
�
1� 1

~rd�3

þ �d�3

~r2ðd�3Þ

�
1

~r2

�
: (60)

Here the cosmological constant only contributes to the
energy parameter; it does not change the mathematical
structure of the differential equation. The only remaining
parameter of relevance is�. For� ¼ 0 the equation has the
structure ðd~rd’Þ2 ¼ Pd�1ð~rÞ=~rd�5 and for � � 0 we have

ðd~rd’Þ2 ¼ P2ðd�2Þð~rÞ=~r2ðd�4Þ. For a spacetime with odd di-

mension d we get for (14)

�
du

d’

�
2 ¼ 4u

�
��d�3ud�2 þ u1=2ðd�1Þ � uþ ��

þ 2~�

ðd� 1Þðd� 2Þ
�
: (61)

(a) (b)

FIG. 19 (color online). Seven-dimensional RN–de Sitter
spacetime: (a) ð�;�Þ plot (gray scales as above), ~� ¼
8:7 � 10�5, � ¼ 0:4. (b) Effective potential for � ¼ 0:05, � ¼
0:4, ~� ¼ 8:7 � 10�5. For the corresponding orbits see Fig. 20.
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FIG. 20 (color online). Orbits of a test particle in RN–de Sitter spacetime in 7 dimensions for � ¼ 0:05 and � ¼ 0:4, and
~� ¼ 8:7 � 10�5.(a) � ¼ 1:1: many-world periodic bound orbit and escape orbit. (b) � ¼ 4:0: many-world periodic bound orbit and
escape orbit. (c) � ¼ 8:4: many-world periodic bound orbit and escape orbit.
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The effective potential for light is

Veff ¼ fðrÞL
2

r2

¼ � 2~�

�ðd� 1Þðd� 2Þ þ
1

�~r2
� 1

�~rd�1
þ �2ðd�3Þ

�~r2ðd�2Þ :

(62)

It is clear that the cosmological constant does not play any
role in the motion of light rays. For higher dimensions the
attractive �1=~rd�1 becomes more pronounced. Also the
repulsive part related to the charge becomes stronger for
higher dimensions and also for larger charges.

In the case of Schwarzschild and S(a)dS spacetimes the
equations of motion are�

d~r

d’

�
2 ¼ 1

~rd�5

��
��þ 2~�

ðd� 1Þðd� 2Þ
�
~rd�1

� ~rd�3 þ 1

�
; (63)

here are two sign changes in the polynomial on the right-
hand side indicating a terminating bound and an escape
orbit, or a terminating escape orbit. This can by verified by
the form of the effective potential. The equation of motion
can be analytically solved with elliptic functions for 4, 5, 7
and with hyperelliptic functions for 6, 9 and 11 dimen-
sions. No analytic solution is known for 8, 10, 12 and all
higher dimensions.

In a RN or RN-(anti)de Sitter spacetime the equation of
motion has the form�

d~r

d’

�
2 ¼ 1

~r2ðd�4Þ

��
��þ 2~�

ðd� 1Þðd� 2Þ
�
~r2ðd�2Þ

� ~r2ðd�3Þ þ ~rd�3 � �d�3

�
: (64)

If the first term is positive then Descartes’ rule states that
there are three or one real positive zeros of the polynomial
implying the existence of many-world periodic bound and
escape orbits or two-world escape orbits. That means light
can disappear into another universe or appear from another

universe. For a large negative ~� escape orbits no longer
exist. This can also be seen from the corresponding effec-
tive potential. Using (61) the equation of motion can be
solved for 5 and 7 dimensions, in 5 dimensions by elliptic
functions, in 7 dimensions with hyperelliptic functions as
shown above.

IX. RADIAL MOTION

For radial motion, i.e., for L ¼ 0, the geodesic equation
(8) for point particles reduces to�

d~r

ds

�
2 ¼�� 1þ 1

~rd�3
þ 2~�~r2

ðd� 1Þðd� 2Þ �
�d�3

~r2ðd�3Þ : (65)

This equation can be integrated along the lines presented
above for nonradial motion. The effective potential for this

radial motion is

Veff ¼ 1� 1

~rd�3
� 2~�~r2

ðd� 1Þðd� 2Þ þ
�d�3

~r2ðd�3Þ : (66)

Of interest are the equilibrium positions given by the
vanishing of the first derivative of the effective potential

0¼ ðd� 3Þ~rd�3 � 4~�

ðd� 1Þðd� 2Þ~r
2ðd�2Þ � 2ðd� 3Þ�d�3:

(67)

If � ¼ 0 then there is a solution only for �> 0 which,
however, corresponds to a maximum and, thus, gives no
stable position. This equation has stable solutions only if
� � 0, independent of the dimension. For simplicity, we

now choose � ¼ 0. Then (67) has the solution ~r0 ¼
21=ðd�3Þ� with the effective potential Veffð~r0Þ ¼
1� 1

4�
3�d. Therefore, in any dimension for � � 41=ð3�dÞ

a charged solution allows particles to stay at rest at a stable
position at a finite value of the radial coordinate.

X. CONCLUSION AND OUTLOOK

A given gravitational field can only be analyzed and
interpreted through the exploration of the geodesics of
particles and light rays. In this paper we have discussed
the motion of test particles and light rays in higher dimen-
sional spacetimes of spherically symmetric gravitational
sources endowed with mass and electric charge and a
cosmological constant. We discussed the general structure
of the resulting orbits. One result of this analysis is that
only in 4-dimensional Schwarzschild and Schwarzschild–
de Sitter spacetimes it is possible to have stable periodic
orbits which do not cross horizons. In Reissner-Nordström
spacetimes of any dimension we have stable orbits which,
however, periodically disappear into other universes. This
raises questions about the operational realization and in-
terpretation of notions like the perihelion shift and scatter-
ing angles. Furthermore, due to the structure of the angular
momentum barrier and the cosmological force only in 4
and 5 dimensions we have a rich variety of orbits. For 6 and
higher dimensions we always encounter the same two
types of orbits.
We analytically integrated the equations of motion for

test particles and light rays in Schwarzschild and
Schwarzschild–de Sitter spacetimes in 9 and 11 dimen-
sions, in Reissner–Nordström spacetimes in 7 and
Reissner–Nordström–de Sitter spacetimes in 4 and 7 di-
mensions by applying a method based on a solution of the
Jacobi inversion problem restricted to the set of zeros of a
theta function and described in [34,35]. The explicit inte-
gration was possible because in these cases the underlying
polynomial appearing in the equation of motion is at most
of order 6.
The next step would be to find the solutions of geodesic

equations with an underlying polynomial of 7th and higher
order (cases indicated with a � in Table I). In these cases
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we have to enlarge the number of variables to be three or
more. It is not clear currently how to constrain the Abel
mapping between 3 or higher dimensional spaces in order
to reduce the number of variables.

Meanwhile, it is of special importance to find analytical
solutions of the equations of motion. Because of the, in
principle, arbitrary high accuracy of analytical solutions
one can test with these solutions numerical codes, e.g., for
the dynamics of binary systems in extreme mass ratio
inspirals. Another application is that the offered solution

can serve as a starting point for an advanced approximation
scheme in more complicated situations appearing in stellar,
planetary, comet, asteroid, or satellite dynamics.
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