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In this work, exact solutions of static and spherically symmetric space-times are analyzed in fðRÞ
modified theories of gravity coupled to nonlinear electrodynamics. First, we restrict the metric fields to

one degree of freedom, considering the specific case of gttgrr ¼ �1. Using the dual P formalism of

nonlinear electrodynamics, an exact general solution is deduced in terms of the structural function HP. In

particular, specific exact solutions to the gravitational field equations are found, confirming previous

results and new pure electric field solutions are found. Second, motivated by the existence of regular

electric fields at the center, and allowing for the case of gttgrr � �1, new specific solutions are found.

Finally, we outline alternative approaches by considering the specific case of constant curvature, followed

by the analysis of a specific form for fðRÞ.
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I. INTRODUCTION

A central theme in cosmology is the perplexing fact that
the Universe is undergoing an accelerated expansion [1].
Several candidates, responsible for this expansion, have
been proposed in the literature, in particular, dark energy
models and modified gravity. Amongst the modified theo-
ries of gravity, models generalizing the Einstein-Hilbert
action have been proposed, where a nonlinear function of
the curvature scalar, fðRÞ, is introduced in the action.
These modified theories of gravity seem to provide a
natural gravitational alternative to dark energy, and in
addition to allow for a unification of the early-time infla-
tion [2] and late-time cosmic speed-up [3,4]. These models
seem to explain the four cosmological phases [5]. They are
also very useful in high energy physics, in explaining the
hierarchy problem and the unification of grand unified
theories with gravity [6]. The possibility that the galactic
dynamics of massive test particles may be understood
without the need for dark matter was also considered in
the framework of fðRÞ gravity models [7]. One may also
generalize the action by considering an explicit coupling
between an arbitrary function of the scalar curvature, R,
and the Lagrangian density of matter [8]. Note that these
couplings imply the violation of the equivalence principle
[9], which is highly constrained by solar system tests.

A fundamental issue extensively addressed in the litera-
ture is the viability of the proposed fðRÞ models [10–12].
In this context, it has been argued that most fðRÞ models
proposed so far in the metric formalism violate weak field
solar system constraints [13], although viable models do
exist [11,14–16]. The issue of stability [17] also plays an
important role for the viability of cosmological solutions
[12,16,18–20]. In the context of cosmological structure
formation observations [21], it has been argued that the
inclusion of inhomogeneities is necessary to distinguish

between dark energy models and modified theories of
gravity, and therefore, the evolution of density perturba-
tions and the study of perturbation theory in fðRÞ gravity is
of considerable importance [18,22–24].
A great deal of attention has also been paid to the issue

of static and spherically symmetric solutions of the gravi-
tational field equations in fðRÞ gravity [25–27]. Solutions
in the presence of a perfect fluid were also analyzed [28],
where it was shown that the pressure and energy density
profiles do not uniquely determine fðRÞ. In addition to this,
it was found that matching the exterior Schwarzschild-de
Sitter metric to the interior metric leads to additional
constraints that severely limit the allowed fluid configura-
tions. An interesting approach in searching for exact
spherically symmetric solutions in fðRÞ theories of gravity
was explored in [29], via the Noether symmetry approach,
and a general analytic procedure was developed to deal
with the Newtonian limit of fðRÞ gravity in [30].
Analytical and numerical solutions of the gravitational
field equations for stellar configurations in fðRÞ gravity
theories were also presented [31–33], and the generalized
Tolman-Oppenheimer-Volkov equations for these theories
were derived [31].
In the context of fðRÞmodified theories of gravity, it was

recently shown that power-law inflation and late-time cos-
mic accelerated expansion can be explained by a modified
fðRÞ-Maxwell theory [34], due to breaking the conformal
invariance of the electromagnetic field through a nonmini-
mal gravitational coupling. It is interesting to note that
such a coupling may generate large-scale magnetic fields.
Motivated by these ideas, we consider in this work fðRÞ
gravity coupled to nonlinear electrodynamics, and en-
deavor to search for exact solutions in a static and spheri-
cally symmetric setup. In contrast to a nonminimal
gravitational coupling, here conformal invariance is not
broken.
In the context of nonlinear electrodynamics, a specific

model was proposed by Born and Infeld in 1934 [35]
founded on a principle of finiteness, namely, that a satis-
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factory theory should avoid physical quantities to become
infinite. The Born-Infeld model was inspired mainly to
remedy the fact that the standard picture of a point particle
possesses an infinite self-energy, and consisted in placing
an upper limit on the electric field strength and considering
a finite electron radius. Later, Plebański explored and
presented other examples of nonlinear electrodynamic
Lagrangians [36], and showed that the Born-Infeld theory
satisfies physically acceptable requirements. Furthermore,
nonlinear electrodynamics have recently been revived,
mainly because these theories appear as effective theories
at different levels of string/M-theory, in particular, in
Dp-branes and supersymmetric extensions, and non-
Abelian generalizations (see Ref. [37] for a review).

Much interest in nonlinear electrodynamic theories has
also been aroused in applications to cosmological models
[38], in particular, in explaining the inflationary epoch and
the late-time accelerated expansion of the universe [39]. It
is interesting to note that the first exact regular black hole
solution in general relativity was found within nonlinear
electrodynamics [40,41], where the source is a nonlinear
electrodynamic field satisfying the weak energy condition,
and recovering the Maxwell theory in the weak field limit.
In fact, general relativistic static and spherically symmetric
space-times coupled to nonlinear electrodynamics have
been extensively analyzed in the literature: regular mag-
netic black holes and monopoles [42]; regular electrically
charged structures, possessing a regular de Sitter center
[43]; traversable wormholes [44] and gravastar solutions
[45].

Thus, as mentioned above, motivated by recent work on
a nonminimal Maxwell-fðRÞ gravity model [34], in this
paper fðRÞ modified theories of gravity coupled to non-
linear electrodynamics are explored, in the context of static
and spherically symmetric space-times. This paper is out-
lined in the following manner: In Sec. II, the action of fðRÞ
gravity coupled to nonlinear electrodynamics is intro-
duced, and the respective gravitational field equations
and electromagnetic equations are presented. In Sec. III,
we restrict the metric fields to one degree of freedom, by
considering the specific case of gtt ¼ �g�1

rr , and using the
dual P formalism of nonlinear electrodynamics, we present
exact solutions in terms of the structural function HP.
Subsequently, in Sec. IV we investigate the situation where
the two metric fields are related via a power law in r,
introducing additional parameters, and derive new specific
solutions. In Sec. V, we present alternative methods of
finding exact solutions, first by considering the specific
case of constant curvature, then by choosing a form for
the fðRÞ, before we conclude in Sec. VI.

II. ACTION AND FIELD EQUATIONS

Throughout this work, we consider a static and spheri-
cally symmetric space-time, in curvature coordinates,
given by the following line element:

ds2 ¼ �e2�ðrÞdt2 þ e2�ðrÞdr2 þ r2ðd�2 þ sin2�d�2Þ;
(1)

where the metric fields� and� are both arbitrary functions
of r. We use geometrized units, c ¼ G ¼ 1.
The action describing fðRÞ gravity coupled to nonlinear

electrodynamics is given in the following form:

S ¼
Z ffiffiffiffiffiffiffi�g

p �
fðRÞ
2�

þ LðFÞ
�
d4x; (2)

where � ¼ 8�, and fðRÞ is an arbitrary function of the
Ricci scalar R. LðFÞ is a gauge-invariant electromagnetic
Lagrangian which depends on a single invariant F given by
F ¼ F��F��=4 [36]. As usual the antisymmetric Faraday

tensor F�� ¼ A�;� � A�;� is the electromagnetic field and

A� its potential. In Maxwell theory the Lagrangian takes

the form LðFÞ ¼ �F=4�. Nevertheless, we consider more
general choices of electromagnetic Lagrangians. The
Lagrangian may also be constructed using a second invari-
ant G / F��

�F��, where the asterisk * denotes the Hodge

dual with respect to g��. However, we shall only consider

F, as this provides interesting enough results.

A. Gravitational field equations

Varying the action with respect to g�� provides the

following gravitational field equation:

fRR�� � 1
2fg�� �r�r�fR þ g��hfR ¼ �T��; (3)

where fR ¼ df=dR, and the stress-energy tensor of the
nonlinear electromagnetic field is given by

T�� ¼ g��LðFÞ � F��F�
�LF; (4)

with LF ¼ dL=dF.
Taking into account the symmetries of the geometry

given by the metric (1), the nonzero compatible terms for
the electromagnetic field tensor are

F�� ¼ 2Eðx�Þ	½t
�	

r�
� þ 2Bðx�Þ	½�

�	
��
� ; (5)

such that the only nonzero components are Ftr ¼ Eðx�Þ
and F�� ¼ Bðx�Þ. Thus, the invariant F takes the follow-

ing form:

F ¼ � 1

2

�
e�2ð�þ�ÞE2 � B2

r4sin2�

�
: (6)

Consequently, the stress-energy tensor components are
given by

Tt
t ¼ Tr

r ¼ Lþ e�2ð�þ�ÞE2LF; (7)

T�
� ¼ T�

� ¼ L� B2

r4sin2�
LF: (8)

The property Tt
t ¼ Tr

r imposes a stringent constraint on
the field equations, which will be analyzed further below.
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The contraction of the field equation (3) yields the trace
equation

fRR� 2fþ 3hfR ¼ �T (9)

which shows that the Ricci scalar is a fully dynamical
degree of freedom. The trace of the stress-energy tensor,
T ¼ T�

�, is given by T ¼ 4ðL� FLFÞ. Note that for the

Maxwell limit, with L ¼ �F=ð4�Þ and LðFÞ ¼ �1=ð4�Þ,
one readily obtains T ¼ 0, and consequently Eq. (9) in the
Maxwell limit reduces to fRR� 2fþ 3hfR ¼ 0.

The trace equation (9) can be used to simplify the field
equations and then keep it as a constraint equation. Thus,
substituting the trace equation into the field equation (3),
we end up with the following gravitational field equation:

fRR
�
� � 1

4	
�
� ðfRR�hfR � �TÞ � r�r�fR ¼ �T�

�:

(10)

Now we can use the properties (7) and (8) of the electro-
magnetic stress-energy tensor by subtracting the ðrrÞ–ðttÞ
and ð��Þ–ðttÞ components, which provides the following
field equations:

f00R � ð�þ �Þ0f0R � 2

r
ð�þ �Þ0fR ¼ 0; (11)

and

NðrÞ
�r2

¼ �
�
e�2ð�þ�ÞE2 þ B2

r4sin2�

�
LF; (12)

respectively, where we defined the dimensionless function
NðrÞ as

NðrÞ ¼ r2e�2�fR

�
�00 þ 2�02 þ e2� � 1

r2

þ
�
�0 þ �0 � f0R

fR

��
1

r
� �0

��
: (13)

The prime stands for the derivative with respect to the
radial coordinate r. It is important to note that Eq. (11)
places a constraint on the metric fields and fR, indepen-
dently of the form of the electromagnetic Lagrangian. In
the Einstein limit, fR ¼ 1, Eq. (11) leads to ð�þ �Þ0 ¼ 0
which we will assume in Sec. III to explore a specific class
of solutions.

Note that with the help of Eq. (11), the following rela-
tionship,

hfR ¼ e�2�

�
f00R þ

�
�0 � �0 þ 2

r

�
f0R

�
; (14)

and the definition of the curvature scalar, provided from the

metric, given by

R ¼ 2e�2�

��
�0 þ 2

r

�
ð�0 � �0Þ � �00 þ e2� � 1

r2

�
; (15)

the trace equation (9) may be expressed as

f ¼ fRe
�2�

�
��00 þ �0ð�0 � �0Þ þ 1

r
ð�0 þ 5�0Þ

þ e2� � 1

r2
þ 3

�
�0 þ 1

r

�
f0R
fR

�
� �

2
T: (16)

If �ðrÞ and �ðrÞ are specified, one can obtain fRðrÞ from
the first gravitational equation (11) and the curvature scalar
in a parametric form, RðrÞ, from its definition via the
metric. Then, once T is known as a function of r, one
may in principle obtain fðRÞ as a function of R from
Eq. (16).

B. Electromagnetic field equations: F representation
of nonlinear electrodynamics

The electromagnetic field equations are given by the
following relationships:

ðF��LFÞ;� ¼ 0; ð�F��Þ;� ¼ 0: (17)

The first equation is obtained by varying the action with
respect to the electromagnetic potential A�. The second

relationship, in turn, is deduced from the Bianchi identities.
Using the electromagnetic field equation ð�F��Þ;� ¼ 0,

we obtain E ¼ EðrÞ and B ¼ Bð�Þ, and from ðF��LFÞ;� ¼
0, we deduce

ELF ¼ qee
�þ�

r2
; B ¼ qm sin�: (18)

The electric field E is determined from Eqs. (12) and
(18), and is given by

EðrÞ ¼ e�þ�

2�qe

�
�NðrÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2ðrÞ �

�
2�qeqm

r2

�
2

s �
: (19)

Note that independently of NðrÞ the electric field diverges
at the center in the presence of a magnetic field, as in the
general relativistic case [45]. Thus, to avoid this problem-
atic feature, in the following analysis we consider either a
purely electric field or a purely magnetic field.
The physical fields and the other relevant quantities in

the purely electric and the purely magnetic case, respec-
tively, are summarized in the following table:
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In the purely magnetic case the field equations assume a
simpler form, Nr2 / LF, than in the purely electric case,
where Nr2 / 1=LF, and the magnetic fields are indepen-
dent of the metric fields, contrary to the electric field.
Therefore the F representation of electrodynamics is
more suited for finding purely magnetic solutions which,
however, involve magnetic monopoles.

C. Electromagnetic field equations: Dual P formalism

As introduced above, nonlinear electrodynamics is rep-
resented in terms of a nonlinear electrodynamic field, F��,

and its invariants. However, one may introduce a dual
representation in terms of an auxiliary field P��. This

strategy proved to be extremely useful for deriving exact
solutions in general relativity, especially in the electric
regime [40,41]. The dual representation is obtained by
the following Legendre transformation:

H ¼ 2FLF � L: (21)

The structural function H is a functional of the invariant
P ¼ P��P

��=4. Then the theory is recast in the P repre-

sentation by the following relations:

P�� ¼ LFF��; F�� ¼ HPP��;

L ¼ 2PHP �H; LFHP ¼ ð4�Þ�2;
(22)

where HP ¼ dH=dP. The invariant P is given by

P ¼ 1

4
P��P

�� ¼ � 1

2

�
e�2ð�þ�ÞP2

tr � 1

r4sin2�
P2
��

�
:

(23)

The stress-energy tensor in the dual P formalism is
written as

T�� ¼ g��ð2PHP �HÞ � P��P�
�HP; (24)

and provides the following nonzero components

Tt
t ¼ Tr

r ¼ �H þ 1

r4sin2�
P2
��HP; (25)

T�
� ¼ T�

� ¼ �H � e�2ð�þ�ÞP2
trHP: (26)

The trace of the stress-energy tensor reads T ¼ �4ðH �
PHPÞ, so that in the Maxwell limit, H ¼ �P=ð4�Þ and

HP ¼ �1=ð4�Þ, we have T ¼ 0, which is consistent with
the F formalism, as outlined in Sec. II A.
The electromagnetic field equations now read

P��
;� ¼ 0; ðHP

�P��Þ;� ¼ 0: (27)

We emphasize that the tensor F�� ¼ HPP�� is the physi-

cally relevant quantity. The P invariant may be deduced
from Eq. (27) in an analogous manner as in the F formal-
ism. In the purely electric case, B ¼ 0, we find

P ¼ � q2e
2r4

: (28)

Because of the fact that it does not depend on the metric
fields � and �, this formalism is attractive to find electric
solutions, as opposed to the usual F representation where
purely magnetic solutions are easier to find. The gravita-
tional field equation (12) now takes the simple form

r2NðrÞ ¼ ��q2eHPðrÞ; (29)

where the function NðrÞ was defined in Eq. (13) and
describes the gravity side. Through Eq. (20) in the purely
electric case, we can express the electric field in terms of
HP and P as

EðrÞ ¼ qe
r2

e�þ�HP ¼ e�þ�
ffiffiffiffiffiffiffiffiffiffiffi�2P

p
HP: (30)

In summary, using the dual P formalism, it is easier to
find nonlinear electrodynamic solutions than in the F
formalism, for the specific case of pure electric fields.
We shall consider several specific solutions in the follow-
ing section.

III. SPECIFIC SOLUTIONS: �ðrÞ ¼ ��ðrÞ
It is highly nontrivial to find general solutions for the

field equations of fðRÞ modified theories of gravity
coupled to nonlinear electrodynamics. However, restrict-
ing the metric fields to one degree of freedom provides
very interesting solutions which will be analyzed in this
section. In this context, the condition ð�þ �Þ0 ¼ 0 im-
poses �ðrÞ ¼ ��ðrÞ, where the constant of integration can
safely be absorbed by redefining the time coordinate.
In this specific case, Eq. (11) implies fRðrÞ ¼ Arþ B.

The Einstein limit is achieved by A ! 0, B ! 1 and so we
define A :¼ A=B which represents the departure from
Einstein gravity while B can be interpreted as rescaling
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the coupling constants. The second field equation (29) now
provides the following general solution for the metric field
in terms of HP:

e2�ðrÞ ¼ 1� 2r2

3

�
3C1 þ

Z �
�q2e
B�r2

HPð�rÞ �A�r

�
�ð �rÞ
�r3

d�r

�

þ 2�ðrÞ
3r

�
C2

B
þ

Z �
�q2e
B�r2

HPð �rÞ �A�r

�
d�r

�
; (31)

where C1 and C2 are constants of integration and the
function �ðrÞ is defined as

�ðrÞ ¼ 1� 3
2Arþ 3A2r2 � 3A3r3 lnðB½Aþ 1=r�Þ:

(32)

The electric field, given in Eq. (30), in this case simply
provides

EðrÞ ¼ qe
r2

HPðrÞ: (33)

Thus, in principle, by choosing a particular nonlinear
electrodynamics theory, by specifying HP, all the physical
fields are deduced. Note that in order for the electric field to
be finite at the center HP must be / r" for small r, with
" � 2. In the following sections we consider specific
choices for HP and find the respective exact solutions.

A. fðRÞ gravity and Maxwell electrodynamics

Consider the specific case of fðRÞ gravity coupled to
Maxwell electrodynamics, i.e. HðPÞ ¼ �P=ð4�Þ. The
field equation (29) provides the following exact solution:

e2�ðrÞ ¼ 1þAD� 2D

3r
þ q2e

Br2
� ð1þ 2ADÞAr

� 2C1r
2 þ

�
1

2
þ ð1þ 2ADÞ lnðB½Aþ 1=r�Þ

�
�A2r2; (34)

where we defined D ¼ ð2Aq2e � C2Þ=B, which can be
interpreted as an effective mass for the fðRÞ-Maxwell
case. The corresponding electric field is simply

EðrÞ ¼ � qe
4�r2

; (35)

and, as expected, diverges at the center.
Note that the vacuum solution, HðPÞ ¼ 0, in fðRÞ grav-

ity, can be immediately obtained by setting qe ¼ 0 in the
Maxwell solution, Eq. (34),

e2�ðrÞ ¼ 1� C2A
B

þ 2C2

3Br
�

�
1� 2C2A

B

�
Ar� 2C1r

2

þ
�
1

2
þ

�
1� 2C2A

B

�
lnðB½Aþ 1=r�Þ

�
A2r2:

(36)

An interesting difference to the vacuum solution in general
relativity is the term linear in r, and the term with the
logarithm. Note that the former linear term also arises in
the vacuum solutions of conformal Weyl gravity [46].
In order to obtain the Schwarzschild-de Sitter solution,

one sets the following values for the constants: A ¼ 0,
C2 ¼ �3BM, and C1 ¼ �=6. This result is similar to the
analysis outlined in Ref. [27]. Note also that the A � 0
vacuum solution is not asymptotically flat. An interesting
solution is obtained by setting C2 ¼ 0, which yields

e2�ðrÞ ¼ 1�Ar� 2C1r
2 þ ½12 þ lnðB½Aþ 1=r�Þ�A2r2:

(37)

This solution has no effective mass term. For positive B it
is regular at the center but diverges for large r, indepen-
dently of the constants C1 and A. For negative B it shows
the opposite behavior.
For the specific case of general relativity coupled to

Maxwell electrodynamics, i.e. fðRÞ ¼ R and HðPÞ ¼
�P=ð4�Þ, the solution reduces to

e2�ðrÞ ¼ 1þ 2C2

3r
þ q2e

r2
� 2C1r

2 (38)

which is simply the Reissner-Nordstrom-de Sitter solution
by setting C2 ¼ �3M and C1 ¼ �=6, as shown above.
Note that the solution (38) is equivalent to considering A ¼
0 and B ¼ 1 in the solution given by Eq. (34).
Clearly it is interesting to try to reconstruct the fðRÞ

theory associated with the solution given in Eq. (34). First
we calculate the Ricci scalar for the given �ðrÞwhich reads
in parametric form

RðrÞ ¼ 1

ð1þArÞ2
�
24C1 þ 13A2 þ 36A3D� 2AD

r2

þ 6Aþ 8A2D

r
þ 24ð2C1 þA3DÞAr

þ 6ð4C1 �A2ÞA2r2

� 12A2ð1þ 2ADÞð1þArÞ2 lnðB½Aþ 1=r�Þ
�
:

(39)

Because of the term / lnðAþ 1=rÞ, however, this cannot
simply be inverted to find rðRÞ. Using the trace equation
(16), with T ¼ 0 for the Maxwell case, we find fðrÞ in
parametric form
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fðrÞ ¼ B

2ð1þArÞ2
�
Að9þ 24C1 þ 13A2 þ 36A3DÞ

þ 6þ 6A2 þ 8A3D

r
� 2D

1þA2

r2

þ 6ð4A3C1 �A5Þr2
þ 4A2ð1þ 12C1 þ 6A3DÞr
� 12A3ð1þ 2ADÞð1þArÞ2 lnðB½Aþ 1=r�Þ

�
:

(40)

In principle one could find the functional form fðRÞ from
these parametric forms but, as mentioned, RðrÞ cannot
analytically be inverted to find rðRÞ and substitute into
fðrÞ.

In Fig. 1 we plot RðrÞ, fðrÞ, and fðRÞ for specific values
of the constants. B and qe scale the gravitational and
electromagnetic force while C1 only acts as an overall
additive constant, so we set B ¼ 1 ¼ qe and C1 ¼ 0 in
the plots. The sign of the constant D ¼ ð2Aq2e � C2Þ=B
influences the sign of R and f close to the center. Thus by
looking at different values of A with fixed C2 ¼ 2, we see
the different behaviors: if D is positive fðRÞ is not a
uniquely defined function at large distances r from the
center. As a consequence, for fðRÞ to be well-defined
everywhere C2 needs to satisfy C2 � 2Aq2e.

B. Generalized Maxwell electrodynamics

To demonstrate the effect of nonlinear electrodynamics
we consider a generalized form of the Maxwell theory
described by the following structural function:

HðPÞ ¼ � P

4�

�
1þ �

1þ 	
ð�2q2ePÞ	

�
; (41)

where � and 	 are the characteristic parameters of the

theory. Note that this choice may physically describe
strong fields, as the second term is now dominant, i.e. for
P � 1. This Lagrangian possesses the correct Maxwell
limit for 	 > 0, i.e.H ’ �P=ð4�Þ for P � 1. The relevant
quantity HP is then given by

HP ¼ � 1

4�
½1þ�ð�2q2ePÞ	�: (42)

A particularly interesting and simple example is ob-
tained by setting 	 ¼ 1=4, such that using Eq. (28), HP

takes the form

HP ¼ � 1

4�

�
1þ�qe

r

�
: (43)

Thus, substituting Eq. (43) into Eq. (29), we finally
deduce the following solution:

e2�ðrÞ ¼ 1þAD� 2D
3r

þ q2eð2�Ajqej�Þ
2Br2

þ 2jqej3�
5Br3

� ð1þ 2ADÞAr� 2C1r
2

þ
�
1

2
þ ð1þ 2ADÞ lnðB½Aþ 1=r�Þ

�
A2r2;

(44)

where now the effective mass is generalized to

D ¼ Aq2eð2�Ajqej�Þ � C2

B
: (45)

Note that fðRÞ gravity coupled with Maxwell electromag-
netism, i.e. HP ¼ �1=ð4�Þ, follows from the above
solution in the limit of � ¼ 0, which simply reduces to
Eq. (34). Note that we can use the solution (44) to write
RðrÞ and fðrÞ in parametric form, and finally, in principle,
deduce the functional form fðRÞ. However, as outlined in
Sec. III A, RðrÞ cannot be analytically inverted to find rðRÞ
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FIG. 1 (color online). In the left panel we plot RðrÞ and fðrÞ, while the right panel shows fðRÞ. We choose the coupling constants to
be B ¼ 1 ¼ qe and the overall additive constant C1 ¼ 0. The sign of the constant D influences the sign of R and f close to the center.
For the choice C2 ¼ 2 it reduces to D ¼ 2ðA� 1Þ and by plotting f and R for A 2 f0:5; 1; 1:2g we see the different behaviors: as soon
as D is positive (here A > 1) fðRÞ is not a uniquely defined function at large distances r from the center.
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and substituted into fðrÞ. In addition to this, we do not
write out the explicit forms of RðrÞ and fðrÞ due to their
lengthy character.

Setting A ¼ 0 and B ¼ 1, which is equivalent to general
relativity, Eq. (44) provides a particularly interesting solu-
tion given by

e2�ðrÞ ¼ 1þ 2C2

3r
þ q2e

r2
þ 2jqej3�

5r3
� 2C1r

2; (46)

which can also be found from Eq. (31). Note the presence
of a term proportional to 1=r3, which dominates for low
values of r. This solution tends to the Maxwell-Einstein
limit setting � ¼ 0.

IV. NEW SOLUTIONS: �ðrÞ � ��ðrÞ
Because of the fact that fðRÞ gravity has more degrees of

freedom compared to Einstein gravity, and also in view of
Ref. [47], it is very interesting to explore the situation of
� � ��. However, without specifying a relation between
� and �, a specific nonlinear electrodynamics model, or a
specific fðRÞ theory, the equations are not closed and
therefore analytically intractable. In this section we con-
sider the specific example where the two metric fields
satisfy the following relationship:

�ðrÞ þ �ðrÞ ¼ lnðkr‘Þ; (47)

where k and ‘ are free parameters. This case is particularly
interesting since it allows for regular electric fields at the
center, as will be shown below.

From the first field equation (11) we find that fRðrÞ has
the following form:

fRðrÞ ¼ Arpþð‘Þ þ Brp�ð‘Þ; (48)

where A and B are constants of integration, and the ex-
ponents depend on the parameter ‘ as

p�ð‘Þ ¼ 1
2ð1þ ‘�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘ð‘þ 10Þ þ 1

p
Þ: (49)

In order for p�ð‘Þ to be real it is required that either ‘ �
2

ffiffiffi
6

p � 5 or ‘ 	 �2
ffiffiffi
6

p � 5. In the limit ‘ ¼ 0 the expo-
nents become pþð0Þ ¼ 1 and p�ð0Þ ¼ 0 such that fRðrÞ ¼
Arþ B as in the case considered in the previous section.
We plot p� in Fig. 2.
The electric field now reads

EðrÞ ¼ qekr
‘�2HPðrÞ: (50)

An interesting case is ‘ ¼ 2 where the electric field is
constant in the Maxwell limit, HP ¼ �1=ð4�Þ.
Let us consider the case A ¼ 0 where fRðrÞ is a simple

power law which has a well-defined Einstein limit for ‘ ¼
0 and B ¼ 1. For this specific case the second field Eq. (29)
can in principle be solved for any general structural func-
tionHPðrÞ. We define the constantK ¼ �q2ek

2=B and solve
Eq. (29) for ‘ � 1; 2, which provides the following solu-
tion:

e2� ¼ k2r2‘

ð‘� 1Þðpþ � 2‘� 2Þ þ
2r2

pþ � 4

�
��

C1 þ K
Z

�rpþþ‘�6HPð�rÞd�r
�

� rpþ�4

�
C2 þ K

Z
�r‘�2HPð�rÞd�r

��
; (51)

while the special cases ‘ ¼ 1, 2 have to be solved sepa-
rately. For ‘ ¼ 1, the solution is

e2� ¼ ð6 lnðrÞ � ffiffiffi
3

p � 3Þk2r2
3ð ffiffiffi

3
p � 3Þ þ 2r2

3ð ffiffiffi
3

p � 3Þ
�

��
C1 þ K

Z
�r
ffiffi
3

p �4HPð �rÞd�r
�

� r
ffiffi
3

p �3

�
C2 þ K

Z HPð �rÞ
�r

d�r

��
; (52)

FIG. 2 (color online). In the left panel we plot p�, the powers of r in the solution for fRðrÞ, as function of the parameter ‘. The right
panel zooms into the right branch of p�. Note that p� vanishes for ‘ ¼ 0, is positive for negative ‘ and vice versa, while p� ! �2 for
large ‘. This behavior makes the solution fR ¼ Brp� particularly interesting.
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and for ‘ ¼ 2, we find

e2� ¼ � 1

2
k2r4 þ 2r2

��
C1 þ K

Z
lnð�rÞHPð�rÞd�r

�

� lnðrÞ
�
C2 þ K

Z
HPð �rÞd�r

��
: (53)

In all cases, the solution is not conformally flat due to the
first term.

An interesting case is fðRÞ gravity coupled to Maxwell
electrodynamics where HP ¼ �1=ð4�Þ. The electric field

for this case is given by

EðrÞ ¼ � qek

4�
r‘�2; (54)

where for ‘ ¼ 0, the classical Coulomb field is recovered.
For ‘ < 2 it diverges at the center. Interestingly the electric
field is constant for ‘ ¼ 2, as mentioned before. For ‘ > 2
the electric field vanishes at the center and diverges at
spatial infinity.
The metric field is then given in the three cases as

‘ � 1; 2: e2� ¼ k2r2‘

ð‘� 1Þðpþ � 2‘� 2Þ þ
Krpþþ‘�3

2�ð‘� 1Þðpþ þ ‘� 5Þ þ
2ðC1r

2 þ C2r
pþ�2Þ

pþ � 4
; (55)

‘ ¼ 1: e2� ¼ 3� ffiffiffi
3

p

3ð2� ffiffiffi
3

p Þ
�
�C1r

2 þ C2r
ffiffi
3

p �1 � K

4�
½lnðrÞ þ ð3� ffiffiffi

3
p Þ�1�r

ffiffi
3

p �1

�
; (56)

‘ ¼ 2: e2� ¼ � 1

2
k2r4 þ K

2�
r3 þ 2r2½C1 � C2 lnðrÞ�: (57)

In the first case, the exponents of r are positive in all terms
for ‘ � ‘crit, where ‘crit ¼ ð5� ffiffiffiffiffiffi

13
p Þ=2 ’ 0:7. See the left

panel of Fig. 3 for a comparison of the different exponents.
At ‘ ¼ 1 and ‘ ¼ 2 the hierarchy of the terms change
which explains why these are special cases.

A solution is regular at the origin if the function and all
its derivatives are finite at r ¼ 0. We verify that the solu-
tions (56) and (57) are not regular at the origin, although
they vanish for r ¼ 0. In case of solution (55) we only
consider 2< ‘ 2 N for which the electric field is regular at
the origin, cf. Eq. (54). For its derivatives to be finite at the
origin, the following exponents of r,

n1 ¼ pþ þ ‘� 3 ¼ 1
2½3‘� 5þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘ð‘þ 10Þ þ 1

p
�; (58)

n2 ¼ pþ � 2 ¼ 1
2½‘� 3þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

‘ð‘þ 10Þ þ 1
p �; (59)

must be natural numbers, i.e. n1; n2 2 N.
The metric function grr must also be regular at the

origin. Using �ðrÞ þ �ðrÞ ¼ lnðkr‘Þ, we have

e2� ¼ k2

�C1 þ �C2r
pþ�l�3 þ �C3ðC1r

2ð1�lÞ þ C2r
pþ�2�2lÞ ;

(60)

with the constants

FIG. 3 (color online). In the left panel the exponents of r in the four terms of e2�ðrÞ for ‘ � 1; 2 are plotted. For ‘ � ‘crit ’ 0:7 the
exponents of r are positive in all terms. Negative ‘ lead to solutions divergent at the center. At ‘ ¼ 1 and ‘ ¼ 2, the hierarchy of the
terms changes, which explains why these are special cases. The right panel shows e2�ðrÞ for ‘ ¼ 0:8 for four different combinations of
signs of the integration constants, while for simplicity and transparency we set K ¼ 1 ¼ k2 throughout the analysis.
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�C1 ¼ k2

ð‘� 1Þðpþ � 2‘� 2Þ ;

�C2 ¼ K

2�ð‘� 1Þðpþ þ ‘� 5Þ ;

�C3 ¼ 2

pþ � 4
:

(61)

We have considered that l > 2, so that we have to impose
C1 ¼ 0 to have regularity at the origin. Furthermore the
metric function e2� and its derivatives need to exist at the
origin which means the following exponents of r must be
natural numbers:

m1 ¼ pþ � ‘� 3 ¼ 1
2½�‘� 5þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘ð‘þ 10Þ þ 1

p
�;
(62)

m2 ¼ pþ � 2ð‘þ 1Þ ¼ 1
2½�3ð‘þ 1Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘ð‘þ 10Þ þ 1

p
�:

(63)

However, it turns out that m1 and m2 are both negative for
all ‘ 2 N which contradicts the imposition that m1 and m2

be natural numbers. Thus, we conclude that the solution
(55) is not regular at the origin.

It is evident that for ‘ ¼ 1 and ‘ ¼ 2 the metric field
goes to negative infinity for large r > r0 and thus has to be
matched to an external vacuum solution at a junction inter-
face at r < r0. This behavior is independent of the signs of
the constants of integration C1 and C2. However, for the
solution to be positive for small r, we find C2 � 0. In the
case of ‘ > 2 we find the same behavior of the metric field
and the same constraint on C2. For ‘crit 	 ‘ < 1 we find
positive solutions for all r if C2 	 0 and C1 � 0. If C1 < 0
the solution is negative for small r > 0, ifC2 > 0 it tends to
negative infinity for large r. See the right panel of Fig. 3.

We also emphasize that through RðrÞ and fðrÞ (not
written out explicitly due to their extremely lengthy nature)
expressed in parametric form, the functional form fðRÞ
may in principle be deduced. However, as outlined in
Sec. III A, RðrÞ cannot be analytically inverted to find
rðRÞ and substitute into fðrÞ.

V. ALTERNATIVE APPROACHES

A. Constant curvature

An interesting alternative is to consider the specific case
of constant curvature RðrÞ ¼ R0. Note that in this case fR
is independent of r, and for simplicity one may set fRðrÞ ¼
B. Thus, one verifies that Eq. (11) yields �ðrÞ ¼ ��ðrÞ, so
that the curvature scalar is given by

R ¼ � 2e2�ðrÞ

r2
½4r�0 þ r2�00 þ 2r2ð�0Þ2 � e�2� þ 1�:

(64)

For constant curvature, RðrÞ ¼ R0, this yields the follow-
ing solution for �ðrÞ:

e2�ðrÞ ¼ 1� 2C1

r
þ 2C2

r2
� R0

12
r2: (65)

Substituting the metric field into Eq. (29), one deduces
HP, given by

HPðrÞ ¼ � C2B

2�q2e
: (66)

which reduces to the Maxwell type, i.e. HP ¼ �1=ð4�Þ,
by setting the constant of integration C2 ¼ q2e=ð2BÞ.
For this case, i.e. constant curvature, and taking into

account that the Maxwell limit implies T ¼ 0 (see
Sec. II A), the trace equation (9) imposes the following
algebraic relationship:

fRR� 2f ¼ 0; (67)

so that the form of fðRÞ needs to obey this algebraic
identity. Thus the metric given by Eq. (65) is an exact
solution for the class of solutions fðRÞ, in the Maxwell
limit, that satisfy fRðR0ÞR0 � 2fðR0Þ ¼ 0. For instance,
considering the case of fðRÞ ¼ R��4=R, and using the

above trace equation yields R0 ¼ � ffiffiffiffiffiffi
�2

p
. The case of

fðRÞ ¼ Rþ 
2R2, provides R0 ¼ 0.

B. Specific gravity theory: fðRÞ ¼ Rþ ��2R2

Another alternative approach is to consider specific
choices for the form of fðRÞ. Consider the specific case
of fðRÞ ¼ Rþ �
2R2, which for�ðrÞ ¼ ��ðrÞ implies that
Arþ B ¼ 1þ 
2R, with 
2 ¼ 2 �
2. Substituting the value
for RðrÞ, provides the following solution:

e2�ðrÞ ¼ 1� 2C2

r
þ 2C1

r2
þ ð1� BÞ

12
2
r2 � A

20
2
r3: (68)

Note that this solution is consistent with Eq. (11), i.e.
f00RðrÞ ¼ 
2R00ðrÞ ¼ 0.
Now, substituting this solution in Eq. (12), and finally

using the relationship P ¼ �q2e=ð2r4Þ, we reconstruct the
following nonlinear electrodynamic structural function

HðPÞ ¼ � C1B

2�q2e
Pþ A

2�q2e

�
3C2jqejð�2PÞ1=2

� 2jqej3=2ð�2PÞ1=4 þ Bjqej5=2
5
2

ð�2PÞ�ð1=4Þ

þ Ajqej3=2
8
2

ð�2PÞ�ð1=2Þ
�
: (69)

Note that for A ¼ 0 and C1 ¼ q2e=ð2BÞ it reduces to the
Maxwell type, i.e.H ¼ �P=ð4�Þ. However, for A � 0 this
structural function does not tend to the Maxwell limit for
P � 1. Therefore it is not a viable nonlinear electrody-
namic theory. This specific case illustrates the difficulty in
finding viable nonlinear electrodynamic theories, i.e. with
the correct Maxwell limit, by explicitly providing a form
for fðRÞ.
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VI. CONCLUSION

The issue of exact static and spherically symmetric
solutions in fðRÞ modified theories of gravity is an impor-
tant theme, mainly due to the analysis of weak field solar
system constraints, and the generalization of exact general
relativistic solutions to fðRÞ gravity. In this work we have
analyzed exact solutions of static and spherically symmet-
ric space-times in fðRÞ modified theories of gravity
coupled to nonlinear electrodynamics. First, the metric
fields were restricted to one degree of freedom, by consid-
ering the specific case of gtt ¼ �g�1

rr . Using the dual P
formalism of nonlinear electrodynamics, an exact general
solution was found in terms of the structural function HP.
In particular, exact solutions to the gravitational field equa-
tions were found, confirming previous results and new pure

electric field solutions were deduced. Second, by allowing
two degrees of freedom for the metric fields, and motivated
by the existence of regular electric fields at the center, new
solutions were found. Finally, we have also briefly consid-
ered alternative approaches by analyzing the specific case
of constant curvature and, second, by considering a specific
form for fðRÞ.
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Páramos, arXiv:0805.1241; T. P. Sotiriou, Phys. Lett. B
664, 225 (2008); T. P. Sotiriou and V. Faraoni, Classical

Quantum Gravity 25, 205002 (2008); O. Bertolami,
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