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We propose the lightest supersymmetric particle (LSP) as a well-suited candidate for superheavy dark

matter (SHDM). Various production mechanisms at the end of inflation can produce SHDM with the

correct abundance, �LSPh
2 � 0:1, if its mass is sufficiently high. In particular, gravitational production

requires that the mass mLSP of the LSP is above 3� 1011 GeV. Weak interactions remain perturbative

despite the large mass hierarchy, mLSP � mZ, because of the special decoupling properties of supersym-

metry. As a result the model is predictive and we discuss the relevant cosmological processes for the case

of a superheavy neutralino within this scheme.
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I. INTRODUCTION

Uncovering the nature of dark matter (DM) is one of the
most pressing problems of current research in particle
physics and cosmology. A wealth of observational data
suggests that a viable DM candidate has to be nonbaryonic
and should be nonrelativistic, at least from the time of
matter-radiation equilibrium on [1]. The various particles
proposed as cold dark matter (CDM) candidates X can be
divided in two main subcategories: Thermal relics were at
least once during the history of the Universe in chemical
equilibrium with the thermal plasma, while nonthermal
relics have either sufficiently small interactions or a high
enough mass mX to be never produced efficiently by pro-
cesses like, e.g., e�eþ ! XX.

The present relic abundance�X of a thermal relic scales
approximately as �X / 1=�ann with its annihilation cross
section �ann. Moreover, unitarity of the S matrix restricts
annihilations into the lth partial wave of particles with

relative velocity vrel as �ðlÞ
ann � ð2lþ 1Þ4�=ðvrelM

2
XÞ [2].

Since for nonrelativistic point particles higher partial
waves are suppressed, the observed value [3] �CDMh

2 ¼
0:11 of the DM abundance constrains the mass of any
thermal relic as m & 100 TeV. On the other hand, the
requirement that the DM is cold translates for thermal
relics into a lower mass limit of the order 10 keV. Thus
the mass of thermal relics should lie in the 10 keV–
100 TeV range.

Supersymmetry (SUSY) provides with the lightest neu-
tralino one of the most attractive candidates for thermal
DM, see Ref. [4] for a review. Low-energy SUSY models
are a natural extension of the standard model (SM), offer-
ing a solution to the hierarchy mass problem and a real-
ization of electroweak symmetry breaking by radiative
corrections [5]. The typical range of neutralino masses in
these models extends from a few tens of GeV up to
�10 TeV.

Two notable nonthermal DM candidates are axions and
superheavy DM (SHDM) particles. Axions were proposed
as a solution to the strong CP problem, but the still viable
‘‘axion window’’ includes the possibility that axions are
the main contribution to the DM abundance. Depending on
the inflationary scenario, axions may be nonthermally
produced either by the misalignment mechanism or the
decay of axionic topological defects [6].
Wewill review the status of the SHDMmodel in the next

section, before we discuss ‘‘superheavy supersymmetry’’
in Sec. III. Results for the relevant cosmological processes
of a superheavy neutralino like elastic scattering on light
fermions, self-scatterings, and annihilations are presented
in Sec. IV. After that, we review various possible produc-
tion mechanisms of SHDM for the special case of a super-
heavy neutralino in Sec. V and summarize in Sec. VI.

II. SUPERHEAVY DARK MATTER

The first proposal of SHDM in Refs. [7,8] was motivated
by observations of ultrahigh energy cosmic rays (UHECR),
which revealed not the expected suppression of the energy
spectrum due to the interaction of extragalactic protons
with cosmic microwave photons. Since CDM is gravita-
tionally accumulated in the halo of our galaxy, the secon-
daries produced in decays or annihilations of SHDM do not
suffer energy losses and their energy spectrum is charac-
terized by a flat spectrum up to the kinematical cutoff
mX=2. In this scenario, the mass mX of the SHDM particle
should exceed 1012 GeV. Meanwhile, this original moti-
vation for proposing SHDM has disappeared in the light of
new UHECR data compatible with the expected flux sup-
pression; for more details see Ref. [9].
Superheavy dark matter particles with the density re-

quired by cosmological observations can be efficiently
produced at inflation by many mechanisms including ther-
mal production [7,8,10]. The most detailed description of
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this process within an inflationary framework is given in
Ref. [11].

A variety of different production mechanisms can pro-
vide a nonthermal distribution of superheavy particles in
the expanding universe. Since the energy density of non-
relativistic particles decreases slower than the one of ra-
diation, their abundance increases by the factor aðt0Þ=aðt�Þ
with respect to radiation, where aðt0Þ and aðt�Þ are the scale
factors of the universe today and at the epoch of particle
generation, respectively. If particle production happens at
the earliest relevant time, i.e. during inflation, this factor
can become extremely large,�1022. Not surprisingly, such
a small energy fraction can be transferred to SHDM parti-
cles by many different mechanisms, as thermal production
at reheating [7,10], the nonperturbative regime of a broad
parametric resonance at preheating [12,13], and production
by topological defects [7,14].

We discuss first the generation of superheavy particles
by gravitational interactions from vacuum at the end of
inflation [15,16]. Since this production mechanism relies
only on the gravitational coupling of the SHDM particle, it
is unavoidably present in contrast to other, more model-
dependent generation mechanisms. Neither inflation is
needed for this production, it rather limits the gravitational
production of the particles. Since this production is caused
by the time variation of the Hubble parameter HðtÞ, only
particles with masses mX & HðtÞ can be produced. In
inflationary scenarios HðtÞ & m�, where m� is the mass

of the inflaton. It results in the limit on the mass of the
produced particles, mX & 1013 GeV [15,16].

The numerical calculations of Ref. [16] for the present
abundance of fermionic SHDM can be approximated as

�Xh
2 � TR

108 GeV

� ðmX=HIÞ2; mX � HI

expð�mX=HIÞ; mX � HI;
(1)

where HI � 1013 GeV is the Hubble parameter during
inflation and TR is the reheating temperature.

Other generation mechanisms can occur additionally to
gravitational production. If the SHDM particles couple
directly or through an intermediate particle to the inflaton
field, the time dependence of the classical inflaton field
induces particle production. SHDM particles may be also
efficiently produced at preheating [12]. This stage, prede-
cessor of reheating, is caused by oscillations of the inflaton
field relative to the minimum of the potential after infla-
tion. Such an oscillating field can produce nonperturba-
tively in the regime of a broad parametric resonance
intermediate bosons which then decay to SHDM particles.
The mass of the SHDM particles can be one or even two
orders of magnitude larger than the inflaton mass.

Another mechanism is the so-called instant preheating
[13]. It works only in specific models, where the mass of
the intermediate boson � is proportional to the inflaton
field, m� ¼ g�. When the inflaton crosses the potential

minimum � ¼ 0, � particles are massless and they are

efficiently produced. When j�j increases, m� increases,

too, and can reach values up to the Planck mass.
While these additional production mechanisms can in-

crease the abundance of SHDM particles relative to Eq. (1),
entropy production as for instance in thermal inflation can
reduce their abundance. Therefore there exists only a
lower, not an upper limit for the mass of SHDM, arising
from the condition that the SHDM particles do not reach
chemical equilibrium.
What are the particle candidates for SHDM?
The first problem one meets is the particle lifetime.

Superheavy particles are expected to be very short-lived:
Even gravitational interactions, e.g. described by
dimension-five operators suppressed by the Planck mass,
result in lifetimes much shorter than the age of the universe
t0. Superheavy particles must be thus protected from fast
decays by a symmetry which is respected even by gravity.
Such symmetries are known: They are discrete gauge
symmetries. These symmetries can be very weakly broken,
e.g. by wormhole [7] or instanton effects [8], to provide a
sufficiently long lifetime �, � * t0. A systematic analysis
of broken discrete gauge symmetries is given in Ref. [17].
For instance, the lifetime of SHDM with mass mX �
1013–1014 GeV was found to be in the range
1011–1026 yr in the case of the symmetry group Z10.
Various models that contain either absolutely stable or

unstable particles with lifetimes larger than the age of the
universe have been discussed [17–19]. Most of the sug-
gested SHDM candidates belong to a new sector that has
no tree-level interactions with SM particles. By contrast,
we study in this work the possibility of having a SHDM
particle with SM-like couplings to the weak gauge bosons.
Since the longitudinal part of gauge bosons couples as /
gMX=mZ to a particle with mass MX, weak interactions
become generically strong for MX � mZ and thus the
perturbative expansion fails. Using partial-wave unitarity,
Chanowitz, Furman, and Hinchliffe [20] derived thereby
an upper limit of MX � TeV for particles coupling with
SM strength to the weak gauge bosons. An exception to
this bound is supersymmetric theories, if only mass terms
are added that break supersymmetry (SUSY) softly [21],
and, in particular, the minimal supersymmetric extension
of the SM (MSSM) [22]. Therefore we are led to suggest
superheavy supersymmetry, i.e. the case where all masses
of supersymmetric particles are of order 1011 GeV or
larger, as a concrete model for SHDM with SM weak
interactions. For definiteness, we choose the LSP as the
lightest neutralino but we note that other possibilities as a
sneutrino are also viable.

III. SUPERHEAVY SUPERSYMMETRY

Our main motivation for the introduction of superheavy
supersymmetry is the search for a particle candidate for
superheavy dark matter. As discussed in the previous sec-
tion, the particle candidates found so far [17–19] are in new
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particle sectors, such as e.g. the hidden sectors of super-
gravity or string models. In this section we discuss a more
natural and more familiar candidate, the lightest super-
symmetric particle, in the case that all supersymmetric
particles are superheavy. The longevity of this dark matter
candidate is provided by a Z2 discrete gauge symmetry (R
parity) and its production is guaranteed by gravitational
interactions in any standard inflationary scenario. The
scale of SUSY breaking may be determined by LHC ex-
periments, and our model can be soon falsified by the
discovery of low-scale SUSY at LHC.

Independent of the scale of symmetry breaking, super-
symmetry remains an inevitable feature of any theory that
wants to unify internal gauge symmetries such as SU(5) or
SO(10) with the symmetry group of Minkowski space-
time, the Poincaré group. Promoted to a local symmetry,
gravity and gauge interactions are on a similar footing,
with the gravitino as the gauge field of gravity. Another
motivation to consider (superheavy) SUSY is that it is a
generic ingredient of consistent string theories. Thus vari-
ous esthetical reasons suggest that SUSY may be realized
in nature.

Below we discuss the status of superheavy supersym-
metry in comparison with low-scale symmetry breaking.

There are three pieces of evidence pointing towards
‘‘low-scale SUSY,’’ i.e. a mass scale MSUSY of the super-
symmetric partners of the SM particles below or around
1 TeV. First, the unification of coupling constants fails in
the SM, while the three couplings meet in the MSSM
assuming MSUSY � 1 TeV [23]. Second, the fine-tuning
problem of the SM Higgs is remedied in the MSSM,
only if the mass splitting between the SM particles and
their SUSY partners is small enough. Third, the SM con-
tains no suitable DM candidate, while the lightest super-
symmetric particle (LSP) of the MSSM, assuming that R
parity is conserved, is a promising CDM candidate.
Assuming further that the LSP is a thermal relic requires
again that at least part of the SUSYmass spectrum is below
or close to the TeV scale.

These attractive properties of low-scale SUSY are over-
shadowed by several less appealing features: Low-scale
SUSY predicts generically excessive flavor and CP viola-
tion as well as proton decay through dimension-five op-
erators that is close to or exceeds observational bounds.
Moreover, the nonobservation of SUSY particles with
masses around 100 GeV reintroduces a ‘‘small’’ fine-
tuning problem [24]: For instance, electroweak symmetry
breaking requires that

m2
Z

2
¼ m2

2 �m2
1tan

2�

tan2�� 1
��2; (2)

where mi are the usual mass parameters of the Higgs
potential that depend implicitly on the soft SUSY breaking
masses. For m2

Z � m2
i , �

2, a certain amount of cancella-
tion between the terms on the right-hand side is required.

Similarly, an upper limit on neutralino mass of 200 GeV
arises, if one limits accidental fine-tuning to the level of 1%
[25]. Moreover, most of the so-called ‘‘bulk region’’ in
which the lightest neutralino has naturally the correct DM
abundance is meanwhile excluded [26].
Recently, split SUSY has been proposed as a model

avoiding the problems of low-scale SUSY while keeping
gauge coupling unification [27]. In this model, the mass
spectrum of SUSY particles is separated in two parts:
Gauginos and gluinos are kept at the TeV scale providing
with the lightest neutralino a suitable thermal DM candi-
date, while all scalars additional to the SM Higgs are
heavy, with masses possibly close to the grand unified
theory (GUT) scale. Motivated by the cosmological con-
stant problem and the landscape picture [28] suggested by
string theory, the naturalness principle is given up, keeping
as guiding principles only experimental observations: The
existence of DM and the hint for GUT from gauge coupling
unification.
In this work, we go one step further by abandoning also

for the gaugino and gluino masses the weak scale. This
becomes possible because we assume that the LSP is
produced nonthermally at the end of inflation. As a result,
the mass of the LSP should be generically above �3�
1011 GeV. The mass of the gluinos and of the SUSY
scalars could be either close or, in a similar but not as
extreme setup as in split SUSY, much larger. In such a
setup, alternative approaches as modular [29] or conformal
[30] invariance may provide a solution to the hierarchy
problem and to gauge coupling unification.
Experimental data from LHC will soon decide if the

supersymmetric particles are at least partly close to the
weak scale. If this is not the case, then both the MSSM and
split supersymmetry are disfavored. Our proposal that
superheavy LSPs (SHLSP) are the DM particles may be
then an interesting alternative connecting SUSY to the
physical world. The prospects to detect DM in the form
of stable superheavy neutralinos will be discussed in a
subsequent work [31].

A. Neutralino as LSP

We assume throughout that the lightest neutralino � 	
�1 is the lightest of the supersymmetric particles. The
neutralino mass matrix M� in the ð ~B; ~W0; ~H0

1;
~H0
2Þ basis is

given by [32]

M1 0 �c�mZsW mZsWs�
0 M2 cWc�mZ �cWmZs�

�c�mZsW cWc�mZ 0 ��
mZsWs� �cWmZs� �� 0

0
BBB@

1
CCCA
(3)

with s� ¼ sin�, c� ¼ cos� where tan� ¼ v1=v2 is the

ratio of the two Higgs vacuum expectation value (vev),
sW ¼ sin#W , cW ¼ cos#W with #W as Weinberg angle and
� as the Higgs mixing parameter.
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The consequences of the limit M1, M2, j�j � mZ for
the neutralino have been already extensively discussed for
a neutralino as thermal relic [33]. Neglecting the terms of
order mZ, the four neutralino mass eigenstates become a
pure b-ino, w-ino, and the symmetric and antisymmetric
combination of the two Higgsinos,

f ~B; ~W0; ð ~H0
1 þ ~H0

2Þ=
ffiffiffi
2

p
; ð ~H0

1 � ~H0
2Þ=

ffiffiffi
2

p g (4)

with masses

fM1;M2;��;�g: (5)

In order to decide which of the two Higgsino combinations
is the lightest, one has to include corrections of second
order in mZ. Then one obtains as mass eigenvalues�

M1 � s2Wð� sinð2�Þ þM1Þm2
Z

�2 �M2
1

;M2

� c2Wð� sinð2�Þ þM2Þm2
Z

�2 �M2
2

;��

þ ðsinð2�Þ � 1Þð�þ c2WM1 þ s2WM2Þm2
Z

2ð�þM1Þð�þM2Þ ; �

þ ðsinð2�Þ þ 1Þð�� c2WM1 � s2WM2Þm2
Z

2ð��M1Þð��M2Þ
�
; (6)

if the masses are not degenerate. Depending on the sign of
�, the symmetric (�< 0) or the antisymmetric (�> 0)
combination of the Higgsino is the LSP for j�j � M1,M2.
To be definite, we shall choose always �> 0 in the
following.

If the mass difference between the two lighter of the
three mass parameters �, M1, and M2 are small compared
to mZ, a large mixing between the gaugino and the
Higgsino remains even in the limit j�j, M � mZ. This
case of a (partially) degeneration between the neutralino
mass parameters �, M1, and M2 was dubbed a well-
tempered neutralino and discussed in Ref. [34].

B. Unitarity for superheavy particles

We illustrate with two explicit examples how super-
heavy SUSYavoids that longitudinal gauge bosons become
strongly coupled to neutralinos for m� � mZ. The first

case is the annihilation of neutralinos into fermion pairs in
the limit of zero relative velocity v. Then the amplitude
consists of sfermion, Z and A exchange, M ¼
MZ þMA þMsf. An inspection of the annihilation

cross section given e.g. in Ref. [4] shows that the longitu-
dinal component ZL contributes the term

ð�vÞZL
¼ �f

16�

g4

c4W
jO00L

11 j2T2
3

m2
f

m4
Z

(7)

to the annihilation cross section into fermions with mass
mf, isospin T3, coupling O00L

11 , and �2
f ¼ 1�m2

f=m
2
�.

Assuming that there are no cancellations between MZ

and MA þMsf as well as that the factor O00L
11 is of

Oð1Þ, the annihilation cross section would be independent
from m� and thus violate perturbative unitarity for m� �
mZ.
The resolution of this apparent problem lies partly in the

specific form of the neutralino coupling and mass matrix.
The interaction between Z0 and the neutralinos are given in
the unitary gauge by the Lagrangian [4]

L Z�0�0 ¼ g

2cW
Z�½ ��0

n�
�ðO00L

nmPL þO00R
nmPRÞ�0

m
; (8)

where n ¼ m ¼ 1 yields the interaction between Z0 and

the LSP. Moreover, expressing O00L;R
ij by the neutralino

mixing matrix elements gives

O00L
nm ¼ �O00R�

nm ¼ 1
2ð�N3nN

�
3m þ N4nN

�
4mÞ: (9)

Neglecting as always below possible CP violation, the
coupling becomes simply / ðN2

13 � N2
14Þ for m ¼ n ¼ 1.

For a completely (anti)symmetric Higgsino, this coupling
vanishes because of jN13j ¼ jN14j, while a b-ino andw-ino
LSP have jN13j ¼ jN14j ¼ 0 in the limit mZ ! 0. The
leading contribution is thus suppressed by ðmZ=MSUSYÞ2
and given by

O00L
11 ¼

8>>>><
>>>>:

cosð2�Þs2Wm2
Z

2ð�2�M2
1
Þ ; if M1 � M2; �;

cosð2�Þc2Wm2
Z

2ð�2�M2
2Þ

; if M2 � M1; �;

cosð2�Þm2
Zðc2WM1þs2WM2��Þ

4�ð��M1Þð��M2Þ ; if � � M1;M2:

(10)

Thus this coupling vanishes in the limit m�=mZ ! 1,

because the longitudinal components of the gauge bosons
couple only to the deviation from a completely (anti)sym-
metric mixing of the Higgsino components. Although the
approximations (10) are valid only for nondegenerate
masses, this conclusion holds also for degenerate masses,
because jN13j � jN14j remains valid. Taking into account
this suppression factor from the neutralino mixing matrix,
already the single term from ZL exchange in the annihila-
tion cross section is consistent with the unitary bound,
�ann / 1=m2

�.

Another way to understand how the apparently danger-
ous terms m�=mZ disappear in physical quantities is to

compare the coupling of the Z and its Goldstone boson GZ

in different gauges. For simplicity, we use for this com-
parison the unitary and the R	 gauge restricted to 	 ¼ 1.
Then the Z propagator becomes purely transversal in the
R	 gauge, and the interactions of neutralinos with the

Goldstone boson GZ have to agree with those with the
longitudinal part of the Z boson in unitary gauge.
We consider as an example the annihilation of neutrali-

nos into a Z and the lighter CP even Higgs boson in the
limit of vanishing relative velocity v. Then the longitudinal
part ZL gives for �ðpÞ þ �ðp0Þ ! ZðkÞ þ hðk0Þ annihila-
tion at rest [35]
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M ð�� ! ZhÞZL
¼ �ig2OZ

11

2cos2#W

m�

mZ

���5�
q � "ðkÞ
q2 �m2

Z

; (11)

where q ¼ pþ p0 denotes the momentum of the virtual ZL

and " the polarization vector of the real Z boson. Although
the neutral Goldstone boson is part of the Z boson in the
unitary gauge, its coupling to neutralinos differs and is
given by

CG
�n�m

¼ igOG
nm

2 cos#W

(12)

with

OG
nm ¼ ðNn2cW � Nn1sWÞðc�Nm3 þ s�Nm4Þ þ ðn $ mÞ:

(13)

For the lightest neutralino annihilation, n ¼ m ¼ 1, and
since the coupling is imaginary, the Goldstone boson only
couples to the axial part of the neutralino. The amplitude
for the Goldstone exchange diagram is thus

M ð�� ! ZhÞG ¼ i
g2OG

11

2c2W
���5�

q:"ðkÞ
q2 �m2

Z

: (14)

Comparing (11) and (14), gauge independence requires as
relation between the couplings

OZ
11

m�

mZ

¼ � 1

2
OG

11; (15)

or expressed in terms of the neutralino mixings and masses,

ðN2
14 � N2

13Þ
m�

mZ

¼ �ðcWN12 � sWN11Þðs�N14 þ c�N13Þ:
(16)

The authors of Ref. [35] noted that this relation can be
derived directly from the definition of the neutralino mix-
ing matrix N,

ðNMÞnm ¼ mnNnm; (17)

since the identity

ðmn þmmÞðNPN�1Þnm ¼ ðNðMPþ PMÞN�1Þnm (18)

holds for any matrix P. Choosing for P the isospin operator
that flips the first Higgsino sign compared to the second
one, P ¼ diagð0;��3Þ, reproduces a generalization of Eq.
(16). It is the special structure of the neutralino mass matrix
that makes PMþMP off diagonal, and thereby leads to
the vanishing of the left-hand side of (18) with mZ.

Finally, superheavy particles in a theory with chiral
particles may lead to radiative effects that do not vanish
for m� ! 1. The authors of Ref. [22] discussed in a series

of works, if the SM can be viewed as the low-energy limit
of the MSSM in the sense of the Appelquist-Carazzone
theorem [36]. They showed that all virtual effects of the
SUSY particles are either suppressed by inverse powers of
their mass or can be absorbed in the renormalization of SM

parameters [37]. In conclusion, superheavy SUSY particles
neither lead to a violation of perturbative unitarity or to
nondecoupling effects in virtual corrections.

IV. RELEVANT PROCESSES AND CROSS
SECTIONS

A. Elastic scattering on fermions and the energy
relaxation time

Kinetic equilibrium of neutralinos in the late universe
may be reached by scattering on light fermions like neu-
trinos and electrons. In the rest frame of the neutralino, the
Mandelstam variables become

s ¼ 2!m� þm2
�; t ¼ �2!2ð1� cos#Þ; (19)

where m� is the mass of the lightest neutralino, ! is the

initial energy of the lepton, and # is the scattering angle.
We consider here only the case of a broken electroweak
symmetry, i.e. the case of temperatures T below the weak
scale, when the following hierarchy holds

! � mZ � m�: (20)

The assumption mZ � m� leads also to several simplifi-

cations in the Higgs sector of the MSSM that we shall
employ below. Additionally, we require that the neutralino
mass parameters are not too degenerate,

j��M1j; j��M2j; jM2 �M1j � mZ: (21)

We consider explicitly the case where the lightest neutra-
lino is a b-ino or a Higgsino and scatters on a neutrino. The
case of a w-ino is almost identical to the one of the b-ino.
The Feynman amplitudes of the process �þ 
e ! �þ


e consists of three contributions: Sneutrino exchange in
the s and u channel and t channel exchange of Higgses and
the Z, jMj2 ¼ jMs �Mu þMtj2. Since the neutralino
is a Majorana particle, the amplitudesMs andMu can be
obtained by interchanging the neutralino in the initial and
final states and thus they should be subtracted.

1. The b-ino as the LSP

Using the approximations explained above, we obtain as
the leading contribution to the total spin-averaged squared
Feynman amplitude in the case of a b-ino [38]

jMuj2 ¼ jMsj2 ¼ e4M2
1!

2

2c4WðM2
~
 �M2

1Þ2
; (22)

jMtj2 ¼ e4M2
1!

2ð3� cosð#ÞÞcos2ð2�Þ
2c4Wð�2 �M2

1Þ2
; (23)

2ReðMsM�
uÞ ¼ � e4M2

1!
2sin2ð#=2Þ

c4WðM2
~
 �M2

1Þ2
; (24)
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2ReðMsM�
t Þ ¼ �2ReðMtM�

uÞ

¼ e4 cosð2�ÞM2
1!

2ð3� cosð#ÞÞ
2c4WðM2

1 �M2
~
ÞðM2

1 ��2Þ : (25)

Here, we used neutrinos as a scattering target and denoted
by M~
 the sneutrino mass.

The energy relaxation time can be calculated as (see e.g.
Ref. [39])

1

�rel
¼ Neff

2Ekm�

Z 1

0
d!

Z
d�n0ð!Þð�pÞ2

�
d�el

d�

�
fL�

;

(26)

where Ek ¼ ð3=2ÞT is the mean kinetic energy of the
neutralinos, �p the neutralino momentum obtained in
one scattering,

ð�pÞ2 ¼ 2!2ð1� cosð#ÞÞ; (27)

and the number density of relativistic fermions with one
polarization and energy ! is

n0 ¼ 1

2�2

!2

e!=T þ 1
� 1

2�2
!2e�!=T: (28)

Finally, the factor Neff counts the number of relevant
relativistic degrees of freedom, weighted with the relative
size of their cross section compared to a neutrino.
Combining the different contributions and performing the
integrals gives

�rel ¼ �3c4WM1ðM2
~
 �M2

1Þ2ð�2 �M2
1Þ2

25Neffe
4T6½cosð2�ÞM2

~
 þ�2 � 2c2�M
2
1
2

: (29)

2. The Higgsino as the LSP

In the case of a Higgsino as the LSP the contributions to
the total squared Feynman amplitude jMj2 are given by

jMsj2 ¼
2e4�2!2m4

ZðM1c
2
W þM2s

2
W ��Þ4ðc� þ s�Þ4

s42Wð��M1Þ4ð��M2Þ4ðM2
~
 ��2Þ2 ;

(30)

jMuj2 ¼
2e4�2!2m4

ZðM1c
2
W þM2s

2
W ��Þ4ðc� þ s�Þ4

ð��M1Þ4ð��M2Þ4ðM2
~
 ��2Þ2 ;

(31)

jMtj2 ¼
2e4!2c22�ð3� cos#ÞðM1c

2
W þM2s

2
W ��Þ2

s42Wð��M1Þ2ð��M2Þ2
;

(32)

2ReðMsM�
t Þ ¼ 2e4ðc2� þ s4�=2Þð3� cos#Þ

� �m2
Z!

2ð�M1c
2
W �M2s

2
W þ�Þ3

s42Wð��M1Þ3ð��M2Þ3ð�2 �M2
~
Þ
;

(33)

2ReðMsM�
uÞ ¼ �4e4ðc� þ s�Þ4sin2ð#=2Þ

� �2!2m4
ZðM1c

2
W þM2s

2
W ��Þ4

s42Wð��M1Þ4ð��M2Þ4ðM2
~
 ��2Þ2 ;

(34)

2ReðMtM�
uÞ ¼ �2e4ðc2� þ s4�=2Þð3� cos#Þ

� �!2m2
Zð�M1c

2
W �M2s

2
W þ�Þ3

s42Wð��M1Þ3ð��M2Þ3ð�2 �M2
~
Þ
:

(35)

Analogously to the case of the b-ino, the energy relaxation
time for a Higgsino as lightest neutralino follows as

�rel ¼ �3�3ð��M1Þ2ð��M2Þ2s42W
100Neffe

4T6c22�ðM1c
2
W þM2s

2
W ��Þ2 : (36)

B. Elastic neutralino-neutralino scattering

We use in this subsection again the assumptions (22), but
denote now with ! the kinetic energy of the colliding
neutralinos in their center of mass frame. Then the
Mandelstam variables are

s ¼ 4ðM2
� þ!2Þ; t ¼ �2!2ð1� cos#Þ: (37)

1. The b-ino as the LSP

Neutralino-neutralino scattering can occur through s and
t channel exchange of the Z and the three neutral Higgs
bosons. We shall see that it is sufficient to consider only the
squared matrix elements. They are given in the unitary
gauge by

jMZ-exchj2 ¼ 9e4cos4ð2�Þm4
ZM

4
1tan

4ð#WÞ
2ð�2 �M2

1Þ4
; (38)

jMZ-annj2 ¼ e4cos4ð2�Þm4
ZM

4
1tan

4ð#WÞ
2ð�2 �M2

1Þ4
; (39)

jMh-annj2 ¼ e4!4m4
Zð� sinð2�Þ þM1Þ4tan4ð#WÞ

2M4
1ð�2 �M2

1Þ4
(40)

jMh-exchj2 ¼ 8e4m4
ZM

4
1ð� sinð2�Þ þM1Þ4tan4ð#WÞ

M4
hð�2 �M2

1Þ4
;

(41)

jMH-exchj2 ¼ 8e4�4cos4ð2�Þm4
ZM

4
1tan

4ð#WÞ
M4

Hð�2 �M2
1Þ4

; (42)

jMH-annj2 ¼ 8e4�4!4cos4ð2�Þm4
Ztan

4ð#WÞ
ðM2

H � 4M2
1Þ2ð�2 �M2

1Þ4
; (43)
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jMA0-annj2 ¼
8e4m4

ZM
4
1ð�þ sinð2�ÞM1Þ4tan4ð#WÞ

ðM2
A0 � 4M2

1Þ2ð�2 �M2
1Þ4

;

(44)

and

jMA0-exchj2 ¼ e4tan4ð#WÞ

� !4ðcosð2#Þ þ 7Þm4
Zð�þ sinð2�ÞM1Þ4

M4
A0ð�2 �M2

1Þ4
:

(45)

We note first that we can neglect the squared amplitudes
proportional to !4. Because of the hierarchy in the Higgs
masses,

O ðMhÞ ¼ OðmZÞ � OðMHÞ ¼ OðMA0Þ; (46)

the h-exchange channel (41) that is of order OðM0
SUSYÞ

compared to other channels of Oðm4
Z=M

4
SUSYÞ dominates

the self-scattering of superheavy neutralinos. With
jM�0�0!�0�0 j2 ¼ jMh-exchj2, the total cross section of

neutralino-neutralino scattering follows as

� ¼ e4m4
ZM

2
1ð� sinð2�Þ þM1Þ4tan4ð#WÞ
16M4

h�ð�2 �M2
1Þ4

: (47)

2. The Higgsino as the LSP

Analogously to the b-ino case, the leading contribution
to Higgsino-Higgsino scattering is given by the exchange
of the light, SM-like Higgs h. With

jM�0�0!�0�0 j2 ¼ jMh-exchj2 ¼
e4ðc� þ s�Þ8

2c4Ws
4
W

�4m4
ZðM1cos

2ð#WÞ ��þ sin2ð#WÞM2Þ4
M4

hð��M1Þ4ð��M2Þ4
(48)

the total cross section of neutralino-neutralino scattering
follows as

� ¼ e4ðc� þ s�Þ8�2m4
ZðM1c

2
W þM2s

2
W ��Þ4

256�c4Ws
4
WM

4
hð��M1Þ4ð��M2Þ4

: (49)

C. Annihilations

The annihilations of neutralinos have been studied in
great detail. Annihilations of superheavy neutralinos are, in
the b-ino case, dominated by the channels ZH, hA, AH,
W�H
, since all other channels are suppressed by powers

of mZ=MSUSY. In the Higgsino case all bosonic channels
contribute at leading order except annihilation into Z0 þ
A0 and hþH. Annihilation into fermions are always
suppressed.
The fermionic annihilation channels do not give leading

order contributions in any case.

1. The b-ino as the LSP

Assume that fM�1
;M�2

;M�3
;M�4

g correspond to

fM1;M2; �;��g. Then the squared matrix elements of
these dominant channels are given by

jM�0�0!Z0Hj2 ¼ e4ðM2
H � 4M2

1Þ2 �
ð�4�M3

1 þ Aþ Bþ�2M2
As2�Þ2

8c4Wð�2 �M2
1Þ2ðM2

A � 4M2
1Þ2ð�2�2 � 2M2

1 þM2
HÞ2

; (50)

with

A ¼ ðM2
A � 2M2

HÞs2�M2
1; (51)

B ¼ 2�ð2�2 þM2
A �M2

HÞM1; (52)

jM�0�0!A0Hj2 ¼ e4ðM2
A �M2

HÞ2=ð8c4Wt22�Þ �
ð�8s2�M

4
1 � 8�M3

1 þ CþDþ EÞ2
ð�2 �M2

1Þ2ðM2
A � 4M2

1Þ2ð�2�2 � 2M2
1 þM2

A þM2
HÞ2

; (53)

with

C ¼ 2ðM2
A þM2

HÞs2�M2
1; (54)

D ¼ 4�ð�2�2 þM2
A þM2

HÞM1; (55)

E ¼ c�M
2
Að�4�2 þM2

A þM2
HÞs�; (56)
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jM�0�0!hA0 j2 ¼ e4ðsinð2�ÞM2
A þ 4�M1Þ2

8c4WðM2
A � 2�2 � 2M2

1Þ2
; (57)

and

jM�0�0!W�H
j2 ¼ e4ðM2
H� � 4M2

1Þ2=8c4W � ð�4�M3
1 þ FþGþ�2M2

As2�Þ2
ðM2

H� � 2�2 � 2M2
1Þ2ð�2 �M2

1Þ2ðM2
A � 4M2

1Þ2
; (58)

where

F ¼ ðM2
A � 2M2

H�Þs2�M2
1; (59)

G ¼ 2�ð�M2
H� þ 2�2 þM2

AÞM1: (60)

The annihilation cross section of the various channels
follows then as

�v ¼ �f

32�m2
�

X
i

jMij2: (61)

2. The Higgsino as the LSP

Assume that fM�1
;M�2

;M�3
;M�4

g correspond to

f�;��;M1;M2g. Then the squared matrix elements of
these dominant channels are given by

jM�0�0!Z0Z0 j2 ¼ 2e4

sinð2#WÞ4
; (62)

jM�0�0!WþW�j2 ¼ e4

4 sinð#WÞ4
; (63)

jM�0�0!Z0hj2 ¼
2e4�2c22�

ð�2 þM2
1Þ2ð�2 þM2

2Þ2s42W
� ð�2M2c

2
W þM2

1M2c
2
W

þM1ð�2 þM2
2Þs2WÞ2; (64)

jM�0�0!A0hj2 ¼
e4ðc� þ s�Þ4

2ð�2�2 � 2M2
1 þM2

AÞ2A2s42W

� ð4�M1s
2
WA� 2c2WM

2
1B

þ 4�c2WM2CþDÞ2; (65)

where

A ¼ ð�2�2 � 2M2
2 þM2

AÞ; (66)

B ¼ ðM2
A þ 4�M2Þ; (67)

C ¼ ðM2
A � 2�2Þ; (68)

D ¼ M4
A � 2�2M2

A � 2M2
2s

2
WM

2
A: (69)

The annihilation into W�, H
 are dominated by the char-
gino exchange and the A0 annihilation channels. In order to

obtain relatively compact expressions, we set MA0 ¼ MH�

and assume that � cosð�Þ þ sinð�ÞM2 � 0. As a result we
obtain

jM�0�0!W�H
j2 ¼ e4ðs2�M2
H� þ 4�M2Þ2

8ð�2�2 � 2M2
2 þM2

H�Þ2s4W
: (70)

To simplify the squared matrix elements both for annihi-
lations into Z0 þH and A0 þH, we set MA0 ¼ MH. The
results are

jM�0�0!Z0Hj2 ¼
e4ðc� � s�Þ4

Hð�2�2 � 2M2
2 þM2

HÞ2
� ðM4

H

� 2�2M2
H þ E� F�GÞ2; (71)

with

E ¼ 4�M1ð2�2 þ 2M2
2 �M2

HÞs2W; (72)

F ¼ 2c2WM
2
1ðM2

H � 4�M2Þ; (73)

G ¼ 2M2ð2�ðM2
H � 2�2Þc2W þM2M

2
Hs

2
WÞ; (74)

H ¼ 2s42Wð�2�2 � 2M2
1 þM2

HÞ2; (75)

and

jM�0�0!A0Hj2 ¼
2e4�2c22�

ð�2 þM2
1 �M2

HÞ2I
� ðM2

1M2c
2
W

þM2ð�2 �M2
HÞc2W þ JÞ2 (76)

with

I ¼ ð�2 þM2
2 �M2

HÞ2s42W; (77)

J ¼ M1ð�2 þM2
2 �M2

HÞs2W: (78)

The annihilation channels Z0 þ A0 and hþH do not give
an Oð1Þ contribution.

V. COSMOLOGICAL PRODUCTION

All the mechanisms for the production of SHDM parti-
cles described in Sec. II apply also to SHLSPs. In particu-
lar, the abundance of neutralinos due to gravitational
production is given by Eq. (1). In most works on SHDM
particles the dependence on TR and the twofold degeneracy
in Eq. (1) was fixed by choosing first for TR the highest
value allowed by the gravitino problem, TR ¼ 109 GeV.
Then the larger of the two possible masses was selected,
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m� � 3� 1013 GeV, so that secondaries of SHDM decays

could explain the cosmic rays of the highest energies, E *
1020 eV.

Both constraints can be relaxed in our scenario:
Superheavy gravitinos decay before big bang nucleosyn-
thesis and we do not insist that SHDM decays explain
UHECRs with energies, E * 1020 eV. As a result, the
only constraint additionally to Eq. (1) is the requirement
that neutralinos do not thermalize, TR � m�=30. Thus the

choice TR ¼ 1010 GeV and m� ¼ 3� 1011 GeV gives the

smallest possible neutralino mass. Finally we note that
decays of heavier SUSY particles with mass ~m, that are
more effectively produced in the regime ~m � HI than
neutralinos, can change the relation (1) but not the smallest
possible neutralino mass.

VI. SUMMARY

We have suggested the lightest supersymmetric particle
as a well-suited candidate for superheavy dark matter. The
requirement that SHDM is produced with the correct
abundance by gravitational interactions at the end of in-
flation leads to a lower mass limit of 3� 1011 GeV for the

masses of all SUSY particles. Since weak interactions
remain perturbative despite the large mass hierarchy,
m� � mZ, and the mass scales are approximately fixed,

we could reliably calculate the relevant processes for the
special case of a superheavy neutralino.
Our proposal can be falsified in the near future by the

discovery of low-scale/split SUSYat the LHC. If this is not
the case, then SHLSPs as DM particles may be the unique
opportunity to connect SUSY to the physical world. The
observable consequences of metastable SHDM were dis-
cussed already in detail in Refs. [40,41], while the pros-
pects to detect DM in the form of stable superheavy
neutralinos despite their small number density and annihi-
lation cross section will be discussed in a subsequent work
[31].
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