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Gamma-ray bursts (GRB) are the most energetic events in the Universe and provide a complementary

probe of dark energy by allowing the measurement of cosmic expansion history that extends to redshifts

greater than 6. Unlike type Ia supernovae (SNe Ia), GRBs must be calibrated for each cosmological model

considered, because of the lack of a nearby sample of GRBs for model-independent calibration. For a flat

universe with a cosmological constant, we find �m ¼ 0:25þ0:12
�0:11 from 69 GRBs alone. We show that the

current GRB data can be summarized by a set of model-independent distance measurements, with

negligible loss of information. We constrain a dark energy equation of state linear in the cosmic scale

factor using these distance measurements from GRBs, together with the ‘‘Union’’ compilation of SNe Ia,

WMAP five-year observations, and the SDSS (Sloan Digital Sky Survey) baryon acoustic oscillation scale

measurement. We find that a cosmological constant is consistent with current data at 68% confidence level

for a flat universe. Our results provide a simple and robust method to incorporate GRB data in a joint

analysis of cosmological data to constrain dark energy.
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I. INTRODUCTION

Gamma-ray bursts (GRBs) are the most luminous astro-
physical events observable today, because they are at cos-
mological distances [1]. The duration of a gamma-ray burst
is typically a few seconds but can range from a few milli-
seconds to several minutes. The initial burst at gammay-
ray wavelengths is usually followed by a longer-lived
afterglow at longer wavelengths (x-ray, ultraviolet, optical,
infrared, and radio). Gamma-ray bursts have been detected
by orbiting satellites about 2 to 3 times per week. Most
observed GRBs appear to be collimated emissions caused
by the collapse of the core of a rapidly rotating, high-mass
star into a black hole. A subclass of GRBs (the ‘‘short’’
bursts) appear to originate from a different process, the
leading candidate being the collision of neutron stars orbit-
ing in a binary system. See Ref. [2] for a recent review on
GRBs.

GRBs can be used as distance indicators [3] and can thus
provide a complementary probe of dark energy.1 The main
advantage of GRBs over type Ia Supernovae (SNe Ia) is
that they span a much greater redshift range (from low z to
z > 6). The main disadvantage is that GRBs have to be
calibrated for each cosmological model tested (see, for
example, Ref. [5]). This is in contrast to SNe Ia, where
the calibration relations are established using nearby SNe
Ia, and applied to high z SNe Ia to extract cosmological
constraints. There are no nearby GRBs that can be used for
calibration. Thus, the GRB data must be fitted simulta-

neously for calibration and cosmological parameters. This
makes the use of GRBs to probe cosmology somewhat
cumbersome.
In this paper we show that the current GRB data can be

summarized by a set of model-independent distance mea-
surements. Our results provide an easy, robust, and trans-
parent way to incorporate GRB data in an analysis of
combined cosmological data to constrain dark energy.

II. METHOD

A. Calibration of GRBs

Following [6], we consider five calibration relations for
GRBs. These relate GRB luminosity, L, or the total burst
energy in the gamma rays, E�, to observables of the light

curves and/or spectra: �lag (time lag), V (variability), Epeak

(peak of the �F� spectrum), and �RT (minimum rise time):
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�
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Not surprisingly, Epeak carries the most distance infor-

mation. The Epeak � E� relation is the tightest of the GRB

calibration relations. To be included in this relation, the
GRB afterglow must have an observed jet break in its light
curve, and this means that only a fraction of GRBs with
redshifts can contribute to establishing this relation. The
variability-luminosity relation has the largest scatter. The
variability is a measure of the sharpness of the pulse
structure, which is determined by the size of the visible
region in the jet.

In order to calibrate GRBs, L and E� must be related to

the observed bolometric peak flux, Pbolo, and the bolomet-
ric fluence, Sbolo:

L ¼ 4�d2LPbolo

E� ¼ E�;isoFbeam ¼ 4�d2LSboloð1þ zÞ�1Fbeam;
(6)

where E�;iso is the isotropic energy. Clearly, the calibration

of GRBs depend on the cosmological model through the
luminosity distance dLðzÞ.

The cosmological constraints from GRBs are sensitive
to how the GRBs are calibrated. Calibrating GRBs using
Type Ia supernovae (SNe Ia) gives tighter constraints than
calibrating GRBs internally [7]. In this paper, we choose to
calibrate GRBs internally, without using any external data
sets, so that our results can be used to combine with any
other cosmological data sets.

In fitting the five calibration relations, we need to fit a
data array fxi; yigwith uncertainties f�x;i; �y;ig, to a straight
line

y ¼ aþ bx (7)

through the minimization of �2 given by [8]

�2 ¼ XN
i¼1

ðyi � a� bxiÞ2
�2

y;i þ b2�2
x;i

: (8)

It is convenient to define

xð�Þi � logðxð�Þ0;i Þ; (9)

thus

xð1Þ0;i ¼
�lag;ið1þ zÞ�1

0:1 s
; (10)

xð2Þ0;i ¼
Vð1þ zÞ
0:02

; (11)

xð3Þ0;i ¼ xð4Þ0;i ¼
Epeak;ið1þ zÞ
300 keV

; (12)

xð5Þ0;i ¼
�RT;ið1þ zÞ�1

0:1 s
; (13)

and

yð1Þi ¼ yð2Þi ¼ yð3Þi ¼ yð5Þi ¼ log

�
L

1 erg s�1

�

¼ logð4�Pbolo;iÞ þ 2 log �dL;

yð4Þi ¼ log

�
E�

1 erg

�
¼ log

�
4�Sbolo;iFbeam;i

1þ z

�
þ 2 log �dL;

(14)

where we have defined

�d L � ð1þ zÞH0rðzÞ=c: (15)

Since the absolute calibration of the GRBs is unknown, the
Hubble constant cannot be derived from GRB data. Thus
we have defined the data arrays fyig such that

c=H0 ¼ 9:2503� 1027h�1 cm (16)

is absorbed into the overall calibration.
Furthermore, for the L� Epeak and Epeak � E� relations,

the measurement error of Epeak is asymmetric, thus we

need to modify the �2 such that

�x;i ¼ �þ
x;i; if ðyi � aÞ=b � xi;

�x;i ¼ ��
x;i; if ðyi � aÞ=b < xi;

(17)

where �þ
x;i and ��

x;i are the � measurement errors.

As noted by Ref. [6], the statistical errors on fai; big are
quite small, but the �2’s are very large due to the domina-
tion of systematic errors. Following Ref. [6], we derive the
systematic errors by requiring that �2 ¼ � (the degrees of
freedom), and that �2

tot ¼ �2
stat þ �2

sys.

For illustration on the cosmological parameter depen-
dence of the calibration of GRBs, Table I shows the sys-

TABLE I. Systematic errors for the five GRB calibration
relations.

�m ¼ 0:27 �m ¼ 0:2 �m ¼ 0:4

a1 �3:901� 0:027 �3:848� 0:027 �3:979� 0:026
b1 �1:154� 0:033 �1:167� 0:033 �1:138� 0:032
�sys;1 0.417 0.427 0.405

a2 �3:822� 0:011 �3:781� 0:011 �3:883� 0:011
b2 3:983� 0:050 4:017� 0:05 3:934� 0:049
�sys;2 0.927 0.931 0.922

a3 �3:821� 0:010 �3:782� 0:010 �3:881� 0:010
b3 1:830� 0:027 1:863� 0:027 1:787� 0:026
�sys;3 0.466 0.466 0.467

a4 �5:612� 0:024 �5:574� 0:024 �5:672� 0:024
b4 1:452� 0:059 1:468� 0:060 1:430� 0:058
�sys;4 0.204 0.200 0.211

a5 �3:486� 0:023 �3:431� 0:024 �3:567� 0:023
b5 �1:590� 0:044 �1:617� 0:044 �1:557� 0:042
�sys;5 0.591 0.598 0.582
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tematic errors, as well as the constants fai; big for the five
calibration relations for �m ¼ 0:2, 0.27, 0.4 for a flat
universe with a cosmological constant. Note that the ai in
this table is smaller than the definition of Ref. [6] by
2 logð9:2503� 1027h�1Þ. Note also that the derived sys-
tematic errors change by less than 3% for the different
models. Since systematic errors should be independent of
the cosmological model, we take the systematic errors for
the�m ¼ 0:27 flat�CDMmodel to be the standard values
in the rest of this paper.

For most of the calibration relations, fitting straight lines
using errors in both coordinates does not give significantly
different results from fitting straight lines using errors in
the y coordinates only. For the L� V relation, assuming
the �m ¼ 0:27 flat �CDM model, fitting straight lines
using errors in the y coordinates only, we find a2 ¼
�3:540� 0:003, b2 ¼ 1:649� 0:012, and �sys;2 ¼
0:518. The slope and the systematic error are both signifi-
cantly smaller than the results shown in Table I. Since the x
coordinates have significant measurement errors in all five
calibration relations, the latter should be fitted to straight
lines using errors in both x and y coordinates.

Note that we do not use the calibration relations from
Table I (the parameters ai and bi) when we derive model-
independent distances from GRBs (see Sec. II B). Table I is
only used to show that the calibration of GRBs is sensitive
to the assumptions about cosmological parameters, but the
systematic uncertainties of the calibration parameters ai
and bi are not sensitive to the assumptions about cosmo-
logical parameters. Thus, we will derive calibration rela-
tions of GRBs for each set of assumed distances, but we
will assume that the systematic errors on ai and bi are
given by the �m ¼ 0:27 flat �CDM model.

B. Model-independent distance measurements
from GRBs

Following Ref. [6], we weight the five estimators of
distance of GRBs (from the five calibration relations) as
follows:

ðlog �d2LÞdatai ¼
P

5
�¼1ðlog �d2LÞð�Þi =�2

i;�P
5
�¼1 1=�

2
i;�

; (18)

�ðlog �d2LÞdatai ¼
�X5
�¼1

1=�2
i;�

��1=2
; (19)

where

ðlog �d2LÞð�Þi ¼ a� þ b�x
ð�Þ
i � logð4�Pbolo;iÞ;

for � ¼ 1; 2; 3; 5;
(20)

ðlog �d2LÞð4Þi ¼ a4 þ b4x
ð4Þ
i � log

�
4�Sbolo;iFbeam;i

1þ z

�
; (21)

and

�2
i;� ¼ �2

a� þ ð�b�x
ð�Þ
i Þ2 þ

�
b��ðxð�Þ0;i Þ
xð�Þ0;i ln10

�
2 þ

�
�ðPbolo;iÞ
Pbolo;i ln10

�
2

þ ð�ð�Þ
sysÞ2; for � ¼ 1; 2; 3; 5; (22)

�2
i;4 ¼ �2

a4 þ ð�b4x
ð4Þ
i Þ2 þ

�
b4�ðxð4Þ0;i Þ
xð4Þ0;i ln10

�
2 þ

�
�ðSbolo;iÞ
Sbolo;i ln10

�
2

þ
�
�ðFbeam;iÞ
Fbeam;i ln10

�
2 þ ð�ð4Þ

sysÞ2: (23)

For each cosmological model given by �d2L, we can
calibrate the GRBs as described in Sec. II A, and then
derive the distance estimate ðlog �d2LÞi from each GRB.
The �2 of a model is given by

�2
GRB ¼ XNGRB

i¼1

½ðlog �d2LÞdatai � log �d2LðziÞ�2
½�ðlog �d2LÞdatai �2 : (24)

The treatment of the asymmetric errors in Epeak is given by

Eq. (17).
We summarize the cosmological constraints from GRB

data, �d2LðzGRBÞ, in terms of a set of model-independent
distance measurements f �rpðziÞg:

�r pðziÞ �
rpðzÞ

rpð0:17Þ ; rpðzÞ � ð1þ zÞ1=2
z

H0

ch
rðzÞ;

(25)

where rðzÞ ¼ dLðzÞ=ð1þ zÞ is the comoving distance at z.
For the 69 GRBs from [6], the lowest redshift GRB has z ¼
0:17, while the highest redshift GRB has z ¼ 6:6. There
are only four GRBs at 4:5 � z � 6:6. We find that the
optimal binning is to divide the redshift range between
0.17 and 4.5 into 5 bins, and choosing the last bin to span
from 4.5 and 6.6 (see Fig. 2).
Note that the ratio rpðzÞ=rpð0:17Þ is the most convenient

distance parameter choice for the currently available GRB

FIG. 1 (color online). The accuracy with which the scaled
distance �rpðzÞ ¼ rpðzÞ=rpð0:17Þ can be reconstructed using cu-

bic spline interpolation (C.S.) from f�rpðziÞg for Nbin ¼ 6 with our

choice of binning. Note that ��rpðzÞ ¼ �rpðzÞC:S: � �rpðzÞtrue.
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data, since z ¼ 0:17 is the lowest redshift GRB in the data
set, and the absolute calibration of GRBs is unknown.
Using the distance ratio rpðzÞ=rpð0:17Þ removes the depen-

dence on Hubble constant (which is unknown due to the
unknown absolute calibration of GRBs).

Because f�rpðziÞg varies very slowly for all cosmological

models allowed by current data, the scaled distance �rpðzÞ at
an arbitary redshift z can be found using cubic spline
interpolation from f �rpðziÞg to �1%–3% percent accuracy

for Nbin ¼ 6 with our choice of binning, see Fig. 1.
Note that for a given set of possible values of f �rpðziÞg

(i ¼ 1; 2; . . . ; 6), the luminosity distance at an arbitrary
redshift, dLðzÞ, is given by the accurate interpolation de-
scribed above. Thus no assumptions about cosmological
parameters are made. We calibrate the GRBs for each set of
possible values of f�rpðziÞg (i ¼ 1; 2; . . . ; 6), and compute

the likelihood of this set of f �rpðziÞg in a Markov chain

Monte Carlo analysis. Hence the distances f�rpðziÞg are

independent of assumptions about cosmological
parameters.

C. Other cosmological data

GRB data alone do not constrain dark energy parame-
ters. In order to investigate how well our model-

independent distance measurements from GRB represent
GRB data, we study them in combination with 307 SNe Ia
[9], cosmic microwave background anisotropy (CMB) data
fromWMAP five year observations [10] and baryon acous-
tic oscillation (BAO) scale measurement from the SDSS
(Sloan Digital Sky Survey) data [11].
SN Ia data give the luminosity distance as a function of

redshift, dLðzÞ ¼ ð1þ zÞrðzÞ. We use 307 SNe Ia from the
‘‘Union’’ compilation by Ref. [9], which includes data
from Ref. [12]. Appendix A of Ref. [13] describes in detail
how we use SN Ia data (flux-averaged to reduce lensinglike
systematic effects [14] and marginalized over H0) in this
paper [15]. We applied flux-averaging to the ‘‘without
systematics’’ data from the Union compilation. The
‘‘with systematics’’ data differ only in having small offsets
added to different data sets, which leads to correlations in
the data. We expect the increase of uncertainties resulting
from flux-averaging to be larger than the effect of the small
offsets between different data sets.
We include the CMB data using the method proposed by

Ref. [13], which showed that the CMB shift parameters

R �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�mH

2
0

q
rðz	Þ; la � �rðz	Þ=rsðz	Þ; (26)

together with�bh
2, provide an efficient summary of CMB

data as far as dark energy constraints go. We use the
covariance matrix of ½Rðz	Þ; laðz	Þ;�bh

2� from the five
year WMAP data (Table 11 of [10]), with z	 given by
fitting formulas from Hu & Sugiyama (1996) [16]. CMB
data are included in our analysis by adding the following
term to the �2 of a given model with p1 ¼ Rðz	Þ, p2 ¼
laðz	Þ, and p3 ¼ �bh

2:

�2
CMB ¼ �pi½Cov�1

CMBðpi; pjÞ��pj;

�pi ¼ pi � pdata
i ;

(27)

where pdata
i are the maximum likelihood values given in

Table 10 of [10].
We also use the SDSS BAO scale measurement by add-

ing the following term to the �2 of a model:

�2
BAO ¼

�
A� ABAO

�A

�
2
; (28)

where A is defined as

A ¼
�
r2ðzBAOÞ czBAO

HðzBAOÞ
�
1=3 ð�mH

2
0Þ1=2

czBAO
; (29)

and ABAO ¼ 0:469ðnS=0:98Þ�0:35, �A ¼ 0:017, and
zBAO ¼ 0:35 (independent of a dark energy model) [11].
We take the scalar spectral index nS ¼ 0:96 as measured
by WMAP five year observations [10].
Finally, in combination with CMB data, we include the

Hubble Space Telescope (HST) prior on the Hubble con-
stant of h ¼ 0:72� 0:08 [17].

FIG. 2 (color online). The distances measured from 69 GRBs
using the five calibration relations in Eqs. (1)–(5). The error bars
indicate the 68% C.L. uncertainties. The top panel shows the
scaled distances rpðziÞ [see Eq. (25)]; the bottom panel shows the

corresponding comoving distances rðziÞ.
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III. RESULTS

For Gaussian distributed measurements, the likelihood

function L / e��2=2, with

�2 ¼ �2
GRB þ �2

SNe þ �2
CMB þ �2

BAO; (30)

where �2
GRB is given in Eqs. (31)–(33), �2

SNe is given in

Appendix A of Ref. [13], �2
CMB is given in Eq. (27), and

�2
BAO is given in Eq. (28).

We run a MCMC based on the MCMC engine of [18] to
obtain Oð106Þ samples for each set of results presented in
this paper. For the model-independent GRB distance mea-
surements, the parameter set is f �rpðziÞg (i ¼ 1; 2; . . . ; 6); no

assumptions are made about cosmological parameters.
For the combined analysis of GRBs [using either the
model-independent distance measurements f �rpðziÞg (i ¼
1; 2; . . . ; 6), or the 69 GRBs directly] with other cosmo-
logical data, the cosmological parameter sets used are �m

for a flat universe with a cosmological constant; ð�m;��Þ
for a cosmological constant; ð�m; w0Þ for a flat universe
with a constant dark energy equation of state; and
ð�m; h;�bh

2; pDEÞ for a flat universe with a dark energy
equation of state linear in the cosmic scale factor, with
pDE ¼ ðw0; w0:5Þ or ðw0; waÞ. We assume flat priors for all
the parameters and allow ranges of the parameters wide
enough such that further increasing the allowed ranges has
no impact on the results. The chains typically have worst
e-values [the variance(mean)/mean(variance) of 1=2
chains] much smaller than 0.005, indicating convergence.
The chains are subsequently appropriately thinned to en-
sure independent samples.

Figure 2 shows the distances f �rpðziÞg measured from 69

GRBs using the five calibration relations in Eqs. (1)–(5).
Table II gives the mean and 68% confidence level errors of
f �rpðziÞg. The normalized covariance matrix of f �rpðziÞg is
given in Table III. To use our GRB distance measurements
to constrain cosmological models, use

�2
GRB ¼ ½��rpðziÞ� 
 ðCov�1

GRBÞij 
 ½��rpðzjÞ�
��rpðziÞ ¼ �rdatap ðziÞ � �rpðziÞ;

(31)

where �rpðzÞ is defined by Eq. (25). The covariance matrix

is given by

ðCovGRBÞij ¼ �ð �rpðziÞÞ�ð�rpðzjÞÞðCovGRBÞij; (32)

where CovGRB is the normalized covariance matrix from
Table III, and

�ð �rpðziÞÞ ¼ �ð�rpðziÞÞþ; if �rpðzÞ � �rpðzÞdata;
�ð�rpðziÞÞ ¼ �ð �rpðziÞÞ�; if �rpðzÞ< �rpðzÞdata;

(33)

where �ð�rpðziÞÞþ and �ð�rpðziÞÞ� are the 68% C.L. errors

given in Table II.
Using the distance measurements from GRBs (see

Tables II and III), we find �m ¼ 0:247 (0.122, 0.372)
(mean and 68% C.L. range). Using the 69 GRBs directly,
we find�m ¼ 0:251 (0.135, 0.365). This demonstrates that
our model-independent distance measurements from
GRBs can be used as a useful summary of the current
GRB data.

TABLE II. Distances measured from 69 GRBs with 68% C.L.
upper and lower uncertainties.

z �rdatap ðzÞ �ð�rpðzÞÞþ �ð�rpðzÞÞ�
0 0.17 1.0000 . . . . . .
1 1.036 0.9416 0.1688 0.1710

2 1.902 1.0011 0.1395 0.1409

3 2.768 0.9604 0.1801 0.1785

4 3.634 1.0598 0.1907 0.1882

5 4.500 1.0163 0.2555 0.2559

6 6.600 1.0862 0.3339 0.3434

TABLE III. Normalized covariance matrix of distances mea-
sured from 69 GRBs.

1 2 3 4 5 6

1 1.0000 0.7056 0.7965 0.6928 0.5941 0.5169

2 0.7056 1.0000 0.5653 0.6449 0.4601 0.4376

3 0.7965 0.5653 1.0000 0.5521 0.5526 0.4153

4 0.6928 0.6449 0.5521 1.0000 0.4271 0.4242

5 0.5941 0.4601 0.5526 0.4271 1.0000 0.2999

6 0.5169 0.4376 0.4153 0.4242 0.2999 1.0000

Ω
m

Ω
Λ

307 SNe Ia + 69 GRBs
307 SNe Ia

Decelerating Universe

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

FIG. 3 (color online). The joint confidence contours for
ð�m;��Þ, from an analysis of 307 SNe Ia with and without
69 GRBs. A cosmological constant is assumed.
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Figure 3 shows the joint confidence contours for
ð�m;��Þ, from an analysis of 307 SNe Ia with and without
69 GRBs, assuming a cosmological constant. This shows
that the addition of GRB data significantly reduces the
uncertainties in ð�m;��Þ, and shifts the bestfit parameter
values towards a lower matter density universe. Figure 4
shows the joint confidence contours for ðw0;�mÞ, from an
analysis of 307 SNe Ia with and without 69 GRBs, assum-
ing a flat universe. This shows that SNe Ia alone rules out a
cosmological constant at greater than 68% C.L., but the
addition of GRB data significantly shifts the best-fit pa-

rameter values, and a cosmological constant is consistent
with combined SN Ia and GRB data at 68% C.L.
We now consider a dark energy equation of state linear

in the cosmic scale factor a. Figure 5 shows the joint
confidence contours for ðw0; w0:5Þ and ðw0; waÞ, from a
joint analysis of 307 SNe Ia with CMB data from
WMAP5, and SDSS BAO scale measurement, with and
without 69 GRBs. HST prior onH0 has been imposed and a
flat universe is assumed. Note that w0:5 ¼ wXðz ¼ 0:5Þ in
the linear parametrization [19]

wXðaÞ ¼
�
ac � a

ac � 1

�
w0 þ

�
a� 1

ac � 1

�
w0:5

¼ acw0 � w0:5 þ aðw0:5 � w0Þ
ac � 1

(34)

with ac ¼ 2=3 (i.e., zc ¼ 0:5). Equation (34) corresponds
to a dark energy density function

XðzÞ ¼ �XðzÞ
�Xð0Þ

¼ exp

�
3

�
1þ

�
acw0 � w0:5

ac � 1

��
lnð1þ zÞ

þ 3

�
w0:5 � w0

ac � 1

�
z

1þ z

�
: (35)

Equation (34) is related to wXðzÞ ¼ w0 þ ð1� aÞwa [20]
by setting [19]

wa ¼ w0:5 � w0

1� ac
; or w0:5 ¼ w0 þ ð1� acÞwa: (36)

Reference [19] showed that ðw0; w0:5Þ are much less corre-
lated than ðw0; waÞ and are thus a better set of parameters to
use. Figure 5 shows that the addition of GRB data notably
shifts the 68% C.L. contours of ðw0; w0:5Þ and ðw0; waÞ to
enclose the cosmological constant model (wXðaÞ ¼ �1).
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FIG. 5 (color online). The joint confidence contours for ðw0; w0:5Þ and ðw0; waÞ, from a joint analysis of 307 SNe Ia with CMB data
from WMAP5, and SDSS BAO scale measurement, with and without 69 GRBs. HST prior on H0 has been imposed and a flat universe
is assumed.
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FIG. 4 (color online). The joint confidence contours for
ðw0;�mÞ, from an analysis of 307 SNe Ia with and without 69
GRBs. A flat universe and dark energy with constant equation of
state are assumed.
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IV. SUMMARYAND DISCUSSION

We have shown that the current GRB data, consisting of
69 GRBs spanning the redshift range from 0.17 to 6.6, can
be summarized by a set of distance measurements (see
Fig. 2). For each set of possible distance values, the
GRBs are calibrated. The resultant distance measurements
(given in Tables II and III) are independent of cosmology
and can be easily used to combine with other cosmological
data sets to constrain dark energy [see Eqs. (31)–(33) and
(25)].

The number of bins used in our distance measurement,
nbin ¼ 6, is determined by the current sample of GRBs.
Increasing the number of bins by one leads to oscillations
in the measured distance values. As more GRB data be-
come available, we can expect to be able to increase the
number of bins used to represent GRB data.

We find that GRB data alone give �m ¼ 0:25þ0:12
�0:11 for a

flat universe with a cosmological constant. Figures 3 and 4
show that combining GRB data with SN Ia data signifi-
cantly shifts the best-fit model towards a lower matter
density universe, in agreement with the galaxy redshift
survey [21] and CMB data [22]. Figure 5 shows that
assuming a dark energy equation of state linear in cosmic
scale factor a, including GRB data together with SN Ia,

CMB, and BAO data, shifts the 68% C.L. contours of the
two dark energy parameters to enclose the cosmological
constant model.
For a flat universe with a cosmological constant, our

results for GRBs alone differ from that of Ref. [6]. We find
�m ¼ 0:25þ0:12

�0:11, while Ref. [6] found �m ¼ 0:39þ0:12
�0:08.

The difference likely resulted from the different numerical
methods used to calibrate the GRBs.We have fitted straight
lines to the calibration relations using errors in both x and y
coordinates [see Eq. (8)], while Ref. [6] used ‘‘ordinary
least squares without any weighting.’’ Our results are con-
sistent with the results of Ref. [7], who used SNe Ia to help
calibrate the GRBs and found �m ¼ 0:25þ0:04

�0:05.

In our quest to solve the mystery of dark energy, GRBs
will provide a unique and complementary probe. Our
results will make it very convenient to incorporate GRB
data in any joint cosmological data analysis in a simple and
robust manner.
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