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We study the effect of peculiar motion in weak gravitational lensing. We derive a fully relativistic

formula for the cosmic shear and the convergence in a perturbed Friedmann universe. We find a new

contribution related to galaxies’ peculiar velocities. This contribution does not affect cosmic shear in a

measurable way, since it is of second order in the velocity. However, its effect on the convergence (and

consequently on the magnification, which is a measurable quantity) is important, especially for redshifts

z � 1. As a consequence, peculiar motion modifies also the relation between the shear and the

convergence.
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I. INTRODUCTION

Mapping the large-scale structure of the universe is one
of the most important current challenges for cosmology.
Weak gravitational lensing represents a promising tool to
achieve this goal, since it is directly sensitive to the distri-
bution of matter in the universe, independent of its nature
(baryon, dark matter. . .). Gravitational lensing describes
indeed the deflection of light rays from distant sources by
the gravitational potential along the line of sight. It induces
consequently a modification of the shape of the sources.
This distortion of images contains information about the
evolution of large-scale structure, i.e. about the geometry
and dynamics of the universe (see e.g. [1,2] and references
therein). Weak gravitational lensing can be divided in two
parts: the shear, that distorts the shape of the source; and
the convergence, that magnifies or demagnifies it. Both of
these effects have already been measured.

Cosmic shear is detected through the correlations it
induces on the ellipticity of galaxies. It was measured for
the first time in 2000, by four independent teams [3]. Since
then, many other experiments have detected cosmic shear
in random patches of the sky [4,5]. In the next few years,
weak lensing surveys, like CFHTLS [6], the Dark Energy
Survey [7], and Pan-STARRS [8] will deliver accurate
measurements ( & 1% level) over large parts of the sky.
In the further future, even more challenging experiments
like Euclid [9], LSST [10], and SNAP [11] are planned.

The other component of weak lensing, the convergence,
can be detected through the modifications it induces on the
galaxy (or quasar) number density over a given flux thresh-
old [12]. The convergence (or more precisely the magnifi-
cation) has already been robustly detected using quasar-
galaxy correlations (see e.g. [13] and references therein).
Moreover, recently [14] has highlighted the possibility to
measure accurately the magnification autocorrelations
with the Square Kilometer Array (SKA) [15]. A precision
of 10% is expected at the beginning and & 1% later on.

Hence the convergence provides an additional precise ob-
servational quantity, useful to constrain cosmology. In
order to make optimal use of this observational informa-
tion, one needs to understand the underlying theory of
weak lensing accurately.
In this paper, we present a fully relativistic description of

weak gravitational lensing. More precisely, we calculate
the Jacobi map, that relates the surface of a galaxy to its
angular image at the observer position, following the for-
malism presented in [16]. This map describes the distortion
of a light beam by density perturbations along the geodesic
between the source and the observer. The shear and the
convergence are then extracted from this application. Our
derivation differs from the standard one in two points.
First, in the usual derivation the 4� 4 Jacobi map is

reduced to a 2� 2matrix, called the magnification matrix,
by assuming that the source and the image belong to the
same two-dimensional subspace, normal to the photon
direction and to the observer four-velocity. The conver-
gence is then defined as the trace of the magnification
matrix and the shear as the traceless part. However, the
source four-velocity differs generally from the observer
four-velocity. As a consequence the source and the image
do not belong to the same two-dimensional subspace. In
this paper we take into account this difference. We show
that the Jacobi map cannot be reduced to a 2� 2matrix but
only to a 3� 3 matrix, the third line describing the pro-
jection of the source plane into the observer plane. We
establish that this generates an additional shear component.
However, since this effect is second order in the peculiar
velocity of the source, it is not large enough to be observed.
Second, in the usual derivation the shear and the con-

vergence are expressed as functions of the source confor-
mal time. However, conformal time is not an observable
quantity. Hence, in this paper we calculate the shear and
the convergence as functions of the source redshift, which
is observable. We show that this modification generates
new contributions to the convergence. Whereas most of
those terms can be safely neglected with respect to the
standard one, we establish that the contribution of the*camille.bonvin@unige.ch
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source peculiar velocity is important, especially for red-
shifts z & 1. More particularly, for surveys in which the
sources are situated at redshift 0.5, we expect a modifica-
tion of order 50% relative to the standard results. For larger
redshifts of the source the effect of peculiar motion de-
creases, whereas the standard term increases. However, at
redshift 1, we still expect the velocity term to be �1% of
the standard term, i.e. measurable by the SKA. Further-
more, we show that the transformation from conformal
time to redshift does not affect the shear component. As
a consequence, the relation between the shear and the
convergence is modified by peculiar velocities.

The paper is organized as follows. In Sec. II we derive a
general formula for the magnification matrix valid in
(nearly) arbitrary geometries. In Sec. III we apply this
formula to a perturbed Friedmann universe. In Sec. IV,
we investigate in detail the shear component of the mag-
nification matrix. Finally, in Sec. V we calculate the con-
vergence component and we determine its angular power
spectrum. We investigate also the relation between cosmic
shear and convergence.

Notation.—We denote four-vectors with Greek indices,
k�. Three-dimensional vectors are denoted bold face k, or
with Latin indices ki. We use the metric signature
ð�;þ;þ;þÞ.

II. MAGNIFICATION MATRIX

We consider an inhomogeneous and anisotropic uni-
verse with geometry ds2 ¼ g��dx

�dx�. We are interested

in the propagation of a light beam in this arbitrary space-
time. We follow the derivation presented in [16]. We
denote by ’ the phase of the light beam. The wave vector
is then given by k� ¼ �r�’. We construct the deviation
vector field �x� connecting two neighboring rays. Since all
the rays of the beam have the same phase, the deviation
vector satisfies �x�k� ¼ 0. Furthermore, it obeys the geo-
desic deviation equation [17]

D2�x�ð�Þ
D�2

¼ R�
���k

�k��x�; (1)

where � is an affine parameter along the geodesics, D
D� �

k�r� represents the covariant derivative along geodesics,
and R�

��� is the Riemann tensor associated with the metric

ds2.
We consider the case of a light beam emitted by a galaxy

at spacetime position S and received by an observer at O
(see Fig. 1).

We denote by vO the observer velocity and vS the source
velocity. The photon energy measured at the source, re-
spectively, at the observer is

!S ¼ �k�ð�SÞv�
S ; (2)

!O ¼ �k�ð�OÞv�
O: (3)

The solution of Eq. (1) is then given by [18]

�x�ð�SÞ ¼ J��ð�SÞ���ð�OÞ; (4)

where

���ð�Þ � 1

!O

k�r��x
�ð�Þ: (5)

Here J��ð�SÞ is the Jacobi map, that relates the deviation

vector at the source �x�ð�SÞ � �x�S to the angular vector at

the observer ���ð�OÞ � ���O. As we shall see, these two

four-vectors belong to two different two-dimensional
planes, orthogonal to the source peculiar velocity (respec-
tively the observer peculiar velocity) and the photon direc-
tion at the source (respectively at the observer).
Each ray can be parameterized by its affine parameter �

and three other parameters yi that label the ray. This
parameterization is not unique and one can therefore
make changes of the form

yi ¼ gið~yjÞ; � ¼ ~�þ hð~yjÞ: (6)

Under this reparameterization the connection vector �x�

transforms as [17]

�~x� ¼ �x� þ k��h: (7)

At the source, we can therefore choose a parameteriza-
tion such that �x�SvS� ¼ 0. Moreover, �x�Sk�ð�SÞ ¼ 0 in-

duces �x�SnS� ¼ 0, where nS is the photon direction at the

source: nS ¼ 1
!S

kð�SÞ � vS. Hence �x�S lives in a two-

dimensional subspace orthogonal to the source velocity
and to the photon direction. It lies consequently in the
plane of the galaxy.
In addition to the choice of gi and h in Eq. (6), there is

another degree of freedom corresponding to the scales of
the affine parameter on the different rays. We can therefore
require that at O, vO�k

� ¼ vO�
dx�

d� ¼ �!O, for all rays.

With this choice, we get �x�r�!O ¼ 0, which gives
���OvO� ¼ 0. Furthermore, we can easily show that

���ð�Þk�ð�Þ ¼ 0, which implies ���OnO� ¼ 0, where nO
is the photon direction at the observer: nO ¼ 1

!O
kð�OÞ �

vO. Hence ���O lives in a two-dimensional subspace or-

O

S

dΩO

dAS

FIG. 1. A light beam emitted by a galaxy at spacetime position
S and received by an observer at O. At the observer position, the
plane normal to the observer four-velocity is indicated.
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thogonal to the observer velocity and to the photon direc-
tion. It lies consequently in the plane of the observer.

Therefore the Jacobi map J��ð�SÞ in Eq. (4) determines

how the surface of the galaxy represented by �x�S , is

deformed into the observer angular vector ���O, during
propagation in an arbitrary spacetime. It maps hence the
surface of the galaxy to its angular image at the observer.

We now want to relate this map to the magnification
matrix defined in [16]. At the observer we construct an
orthonormal basis ðE�

1 ð�OÞ; E�
2 ð�OÞ; n�Oð�OÞ; v�

Oð�OÞÞ. We

parallel transport this basis along the geodesic. The sub-
space defined by ðE�

1 ð�Þ; E�
2 ð�ÞÞ is called the screen

adapted to v�
Oð�Þ and k�ð�Þ.

We can write the deviation vector �x�S and the angular

vector ���O in this basis. Using the fact that �x�k� ¼ 0, we
have

�x�ð�Þ ¼ �	1ð�ÞE�
1 ð�Þ � 	2ð�ÞE�

2 ð�Þ
� 	0ð�Þ½n�Oð�Þ þ v�

Oð�Þ�

¼ �	1ð�ÞE�
1 ð�Þ � 	2ð�ÞE�

2 ð�Þ �
	0ð�Þ
!O

k�ð�Þ: (8)

Moreover, ���Ok�ð�OÞ ¼ ���OvO� ¼ 0 implies

���O ¼ ��1ð�OÞE�
1 ð�OÞ � �2ð�OÞE�

2 ð�OÞ: (9)

In this basis Eq. (4) becomes then

	1

	2

	0

0
@

1
Að�SÞ ¼ Ĵijð�O; �SÞ

0
@

1
A �

�1
�2
0

0
@

1
Að�OÞ; (10)

where

Ĵ i
jð�O; �SÞ ¼

E1�ð�SÞJ��ð�SÞE�
1 ð�OÞ E1�ð�SÞJ��ð�SÞE�

2 ð�OÞ 0

E2�ð�SÞJ��ð�SÞE�
1 ð�OÞ E2�ð�SÞJ��ð�SÞE�

2 ð�OÞ 0

k�ð�SÞJ��ð�SÞE�
1 ð�OÞ k�ð�SÞJ��ð�SÞE�

2 ð�OÞ 0

0
BB@

1
CCA: (11)

Ĵijð�O; �SÞ is proportional to the magnification matrix of
lens theory, i.e. the gradient of the lens map.

Indeed, the lens map relates angles at the observer �O to
angles at the source �S

� O ! �S ¼ �O þ �: (12)

The gradient of this map, Ai
j is called the magnification

matrix

A i
j ¼ �i

j þ
@�i

@�jO
: (13)

For small angles, we can write �S ¼ A � �O, and conse-
quently

� S ¼ ð�O � �SÞ�S ¼ ð�O � �SÞA � �O: (14)

This implies

Ĵð�O; �SÞ ¼ ð�O � �SÞA: (15)

Usually, the component 	0ð�SÞ of the connection vector is
neglected, and Eq. (10) becomes

	1

	2

� �
ð�SÞ ¼

�
Di

jð�O; �SÞ
�
� �1

�2

� �
ð�OÞ; (16)

where Di
j is the 2� 2 submatrix of Ĵij. The shear and the

convergence are then extracted from Di
j (see e.g. [16]).

However, in general Di
j is not sufficient to relate �S (or

equivalently �S) to �O. The third line of the matrix Ĵ does
indeed not vanish and therefore it plays a role in the
deformation of the source plane. This is due to the fact
that even if the connection vector �S at the source and the

angular vector �O at the observer are both two-
dimensional, they do not live in parallel planes. The con-
nection vector �S belongs indeed to the plane normal to vS

and nS, whereas the angular vector �O belongs to the plane
normal to vO and nO. If vS � vO, these two planes are
different.
Hence, if we choose ðE�

1 ð�OÞ; E�
2 ð�OÞÞ as a basis on the

observer plane, the parallel transported vectors
ðE�

1 ð�SÞ; E�
2 ð�SÞÞ do not form a basis of the source plane.

The connection vector �S will then have a component
along k�, that we have to take into account when calculat-
ing the shear and convergence of galaxies. The difference
between the two-dimensional plane of the source and the
one of the observer comes mainly from the difference
between the peculiar velocity of the source and the ob-
server. There is an additional effect, due to parallel trans-
port, which is however very small. Hence, if vS ¼ vO, we
can approximate the two planes as equal and we recover
the 2� 2 magnification matrix Di

j.

In Sec, III, we calculate explicitly the full matrix Ĵ in a
perturbed Friedmann Universe (where in general vS � vO)

and we show that the third line of the matrix Ĵ induces an
additional shear effect, which is however negligible since
its amplitude is of second order in the source velocity.

III. THE MAGNIFICATION MATRIX IN A
PERTURBED FRIEDMANN UNIVERSE

We now calculate explicitly the magnification matrix in
a Friedmann universe with scalar perturbations. In longi-
tudinal (or Newtonian) gauge the metric is given by
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g��dx
�dx� ¼ a2½�ð1þ 2�Þd
2 þ ð1� 2�Þ�ijdx

idxj�:
(17)

For perfect fluids like ordinary matter, dark matter, and
radiation, the metric perturbations � and � are equal.
Hence we assume in the sequel � ¼ �. We restrict our-
selves to a spatially flat universe (K ¼ 0), so that �ij ¼ �ij.

Furthermore, since lightlike geodesics are not affected
by conformal transformations, we perform the calculation
in the metric

~g��dx
�dx� ¼ 1

a2
g��dx

�dx�: (18)

We can then easily relate the magnification matrix in the
two metrics by remembering that angles are not affected by
conformal transformations, but distances scale with the
conformal factor a. Hence

Ĵð�O; �SÞ ¼ as
~̂Jð�O; �SÞ: (19)

We calculate therefore the magnification matrix related to
the metric

~g��dx
�dx� ¼ �ð1þ 2�Þd
2 þ ð1� 2�Þ�ijdx

idxj;

(20)

and then we simply multiply the result by aS to obtain the
correct magnification matrix in a perturbed Friedmann
universe.

In [19], we have calculated the Jacobi map associated
with the luminosity distance in a perturbed Friedmann
universe, which relates angles at the source ���S to dis-

tances at the observer �x�O

�x�O ¼ JðdLÞ��ð�S; �OÞ���S : (21)

This situation is the mirror of the lensing situation consid-
ered here [see Eq. (4) and Fig. 2]. The two maps can
therefore easily be related [17] by

J��ð�O; �SÞ ¼ �!O

!S

JðdLÞ �
� ð�S; �OÞ: (22)

Using JðdLÞ�� from [19], we find

Ĵ i
jð
O;
SÞ ¼ �aSð
O � 
SÞ

�
1� �� �1 ��2 0

��2 1� �þ �1 0
w �E1 w � E2 0

0
@

1
A (23)

with

�1 ¼
Z 
O


S

d

ð
� 
SÞð
O � 
Þ


O � 
S

@i@j�ðEi
1E

j
1 � Ei

2E
j
2Þ;
(24)

�2 ¼ 2
Z 
O


S

d

ð
� 
SÞð
O � 
Þ


O � 
S

@i@j�Ei
1E

j
2; (25)

� ¼
Z 
O


S

d

ð
� 
SÞð
O � 
Þ


O � 
S

r2
?�þ 3�S

� 4

ð
O � 
SÞ
Z 
O


S

d
�� 2
Z 
O


S

d


� 
S


O � 
S

_�;

(26)

w ¼ vS � vO �
Z 
O


S

d
r�: (27)

Here r2
?� � ðr2 � ninj@i@jÞ� is the transverse

Laplacian. Note that a similar derivation of �1, �2, and �
in the context of CMB lensing is presented in [20].
We have written here the magnification matrix as a

function of conformal time 
. However, 
 is not an ob-
servable quantity. What we do measure is the redshift of
the galaxy, which is also affected by perturbations, zS ¼
�zS þ �zS. Now

Ĵð
SÞ ¼ Ĵð
ð�zSÞÞ � Ĵð�zSÞ ¼ ĴðzSÞ � d

d�zS
ĴðzSÞ�zS:

(28)

Furthermore,

d

d�zS
ĴðzSÞ ¼ 1

1þ zS

�
1

H Sð
O � 
SÞ
� 1

�
Ĵ þ 1st order;

(29)

and (see [19])

�zS ¼ ð1þ zSÞ
�
�S ��O þ 2

Z 
O


S

d
n � r�

þ ðvO � vSÞ � n
�
: (30)

Hence � becomes

O

S

dΩO

dAS

O

SdΩS

dAO

Lensing Luminosity distance

FIG. 2. On the left the ‘‘lensing’’ Jacobi map relates a surface
at the source dAS to a solid angle at the observer d�O, and on the
right the ‘‘luminosity distance’’ Jacobi map relates a surface at
the observer dAO to a solid angle at the source d�S. The two
maps are linked by Eq. (22).
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� ¼
Z 
O


S

d

ð
� 
SÞð
O � 
Þ


O � 
S

r2
?�þ 3�S

� 2
Z 
O


S

d


� 
S


O � 
S

_�� 4

ð
O � 
SÞ
�

Z 
O


S

d
�þ
�
1� 1

H Sð
O � 
SÞ
�

�
�
ðvS � vOÞ � nþ�S ��O þ 2

Z 
O


S

d
 _�

�
; (31)

and �1, �2, and w are not affected.
The complete relativistic magnification matrix in a per-

turbed Friedmann universe defined in Eqs. (23)–(25), (27),
and (31) contains therefore additional terms to the standard
one. In the next section, we investigate the effect of the
third line of the matrix on the shape of a galaxy, and more
particularly on the shear. And in Sec. V, we discuss in more
detail the different contributions to the convergence �. We
determine that the only term which can be relevant is the
one involving the galaxy’s peculiar velocity.

IV. THE SHEAR

In this section, we study the effect of the third line of the
magnification matrix on the shape of a galaxy. In order to
simplify the calculation, we restrict ourselves to the pecu-
liar velocity contribution. This means that we consider a
homogeneous and isotropic Friedmann universe, but we
allow for nonzero peculiar velocity of the source vS and of
the observer vO. The magnification matrix becomes then

Ĵ i
jð
O;
SÞ ¼ �
O � 
S

1þ zS

�
1� � 0 0
0 1� � 0

ðvS � vOÞE1 ðvS � vOÞE2 0

0
@

1
A;
(32)

where

� ¼
�
1� 1

H Sð
O � 
SÞ
�
ðvS � vOÞ � n: (33)

The usual shear components �1 and �2 vanish, but as we
will see the third line generates an additional shear
deformation.

From Eqs. (10) and (32), we find

	0 ¼ v1	1

1� �
þ v2	2

1� �
; (34)

where v1 � ðvS � vOÞ �E1 and v2 � ðvS � vOÞ �E2. At
first order in vS and vO, Eq. (34) becomes

	0 � v1	1 � v2	2 ¼ 0; (35)

that represents the equation of a two-dimensional plane.
This reflects directly the fact that the galaxy, described by
�S does not belong to the parallel transported observer

plane: ðE�
1 ð�SÞ; E�

2 ð�SÞÞ, but it rather belongs to the plane
defined by Eq. (35).
We now assume that the galaxy is a disc of radius r.

Hence in spherical coordinate

	1 ¼ r sin� cos�; 	2 ¼ r sin� sin�;

	0 ¼ r cos�:
(36)

Combined with Eq. (35), this gives

	1ð�Þ ¼ �r
tð�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ t2ð�Þp cos�;

	2ð�Þ ¼ �r
tð�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ t2ð�Þp sin�;

(37)

with

tð�Þ ¼ 1

v1 cos�þ v2 sin�
: (38)

Theþ sign is for� 2 ½0; 
=2� [ ½
; 3
=2� and the� sign
for � 2 ½
=2; 
� [ ½3
=2; 2
�.
The observer measures

�1ð�Þ ¼ 	1ð�Þ
1� �

¼ � r

1� �

tð�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2ð�Þp cos�;

�2ð�Þ ¼ 	2ð�Þ
1� �

¼ � r

1� �

tð�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2ð�Þp sin�;

(39)

where we have already removed the monopole contribution

O�
S

1þzS
.

We now show that ð�1ð�Þ; �2ð�ÞÞ describes an ellipse,
and we determine its semiaxis a and b. We consider,
without loss of generality, the case where v2 ¼ 0. This
simply means that we align E1 on vS � vO. We then
determine a and b such that

�21ð�Þ
a2

þ �22ð�Þ
b2

¼ 1; 8�: (40)

Using Eq. (39) for �ið�Þ, we find
b ¼ r

1� �
and a ¼ r

1� �
ð1þ v2

1Þ�1=2: (41)

Hence we see that the third line of the magnification

matrix Ĵ deforms a disc into an ellipse and consequently it
induces an additional shear effect. Since this new contri-
bution does not derive from a scalar potential, as the usual
component, it can generate B-modes. Peculiar motion
constitutes therefore an intrinsic source of B-modes in
cosmic shear. Moreover, contrary to the B-modes’ contri-
bution from source redshift clustering [21] that peaks at
small scales, the velocity contribution is expected to peak
at rather large scales, where peculiar velocity correlations
are larger. However, this effect is second order in the
velocity difference v1. It is therefore too small to be
detected by current and future experiments and conse-
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quently to be responsible for the observed B-modes [22]. In
the following we can therefore safely neglect it with re-
spect to the standard shear components �1 and �2 and
reduce the magnification matrix to the usually considered
2� 2 submatrix.

Note that in this calculation we did not take into account
the effect of the potential, which induces an integrated
Sachs-Wolf term,

R

O

S

d
r� in Eq. (27). However, this

term is much smaller than the peculiar velocity contribu-
tion (see e.g. [19]) and can be neglected. Hence, the effect
of the third line on the shape of the galaxy reduces to a
purely kinematic effect, which can also be understood as
length contraction of the galaxy in the velocity direction.

V. CONVERGENCE

A. The velocity contribution to the convergence

We evaluate now the convergence �. The various terms
in Eq. (31) are very similar to the one affecting the lumi-
nosity distance perturbations. In [19], we have estimated
all these terms and we found two dominant contributions:
the lensing term and the source peculiar velocity term. We
neglect hence the other terms here. Among them, one finds
the effect of peculiar velocity of the lenses, which corre-
sponds to the gradient of the potential in Eqs. (27) and (30).
Those terms which may be relevant in intermediate lensing
(see e.g. [23] and references therein) are completely sub-
dominant in weak lensing. Therefore, in the following we
restrict our calculations to the two components

� ¼ �� þ �v; (42)

where

�� ¼
Z 
O


S

d

ð
� 
SÞð
O � 
Þ


O � 
S

r2
?�; (43)

�v ¼
�
1� 1

H Sð
O � 
SÞ
�
ðvS � vOÞ � n: (44)

The convergence can be measured through the modifica-
tions it induces on the galaxy number density at a given
flux.

Let us introduce the magnification

� ¼ 1

detA
’ 1þ 2�; if �; �1; �2 	 1: (45)

The magnification modifies the size of an observed source:
d�O ¼ �d�S, where d�S is the true angular size of the
source and d�O is the solid angle measured by the ob-
server, i.e. the size of the image. The lensing term �� is
always positive and consequently it always magnifies the
source. On the contrary, the velocity term �v can be either
positive or negative and it therefore either magnifies or
demagnifies the source. The sign of �v depends on the sign
of vS � n and on the sign of gðzSÞ � ð1� 1

H Sð
O�
SÞÞ.

To fix the ideas, let us consider a galaxy moving toward
us. Then vS � n> 0, since n represents the photon direc-
tion, which points to the observer. Moreover, the sign of
gðzSÞ depends on the redshift of the source zS. In a �CDM
universe with�m ¼ 0:24 and�� ¼ 0:76, we have gðzÞ<
0 for z < 1:7 and gðzÞ> 0 for z > 1:7. Hence for small z
the surface is demagnified (�v ¼ 1þ 2�v < 1) and for
large z it is magnified (�v > 1). This is caused by the
change in redshift induced by the source peculiar velocity.
Indeed, for a fixed redshift, a source moving toward us is
more distant (in conformal time, for example) than a
source with null peculiar velocity. This generates two
opposite effects on the observed solid angle. On one
hand, a distant galaxy is observed under a smaller solid
angle. And on the other hand, since its conformal time is
smaller, its scale factor is also smaller. Consequently, the
image experiences more expansion when coming to us. At
small redshift the first effect dominates, leading to a de-
magnification of the source, whereas at large redshift the
second effect dominates and the source is magnified. At
z ¼ 1:7, both effects compensate, leaving the size of the
source unchanged. The situation is then simply reversed for
a source moving away from us.
We evaluate now the effect of magnification (or demag-

nification) on the galaxy number density. We consider
�nðfÞdf unlensed galaxies per unit solid angle at a redshift
zS and with a flux in the range ½f; fþ df�. The magnifi-
cation modifies the flux measured by the observer, since it
modifies the observed galaxy surface. It modifies also the
solid angle of observation and hence the number of galaxy
per unit of solid angle. These two effects combine to give a
galaxy number overdensity [13]

��
g ¼ nðfÞ � �nðfÞ

�nðfÞ ’ 1þ 2ð�� 1Þð�� þ �vÞ: (46)

Here � � �N0ð>fcÞfc=NðfcÞ, where Nð>fcÞ is the num-
ber of galaxies brighter than fc and fc is the flux limit
adopted. Hence � is an observable quantity [13,14].
Recent measurements of the galaxy number overdensity

�
�
g are reported in [13]. The challenge in those measure-

ments is to eliminate intrinsic clustering of galaxies, which
induces an overdensity �cl

g much larger than ��
g . One

possibility to separate these two effects is to correlate
galaxy number overdensities at widely separated redshifts.
One can then measure h��

g ðzSÞ�cl
g ðzS0 Þi, where zS is the

redshift of the sources and zS0 < zS is the redshift of the
lenses. Recently, the authors of [14] proposed to remove
close pairs of galaxies at the same redshift from the signal
in order to eliminate �cl

g . This allows then to measure

h��
g ðzSÞ��

g ðzS0 Þi, either for zS � zS0 , or for zS ¼ zS0 , i.e.
for galaxies situated at the same redshift but in different
directions. This method requires of course to know pre-
cisely the redshift of the galaxies.
The velocity contribution �v has only an effect on

h��
g ðzSÞ��

g ðzS0 Þi. The correlations between �cl
g ðzS0 Þ and vS
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are indeed completely negligible and hence the source
peculiar velocity does not affect h��

g ðzSÞ�cl
g ðzS0 Þi. In the

following we study in detail the contribution of peculiar
motion to h��

g ðzSÞ��
g ðzS0 Þi.

The two components of the convergence �� and �v (and
consequently the galaxy number overdensity) are functions
of redshift zS and direction of observation n. We can
therefore determine the angular power spectrum

h��
g ðzS;nÞ��

g ðzS0 ;n0Þi ¼ X
‘

2‘þ 1

4

C
�
‘ ðzS; zS0 ÞP‘ðn � n0Þ:

(47)

The coefficients C
�
‘ ðzS; zS0 Þ contain two kinds of terms

induced by h����i and h�v�vi. The cross-term h�v��i
vanishes since �� contains only Fourier modes with a
wave vector k? perpendicular to the line of sight [see
Eq. (43)], whereas �v selects modes with wave vector
along the line of sight [Eq. (44)].

The velocity contribution is

h�v
gðzS;nÞ�v

gðzS0 ;n0Þi ¼ 4ð�S � 1Þð�S0 � 1ÞhðvSnÞðvS0n0Þi
�
�
1� 1

H Sð
O � 
SÞ
�

�
�
1� 1

H S0 ð
O � 
S0 Þ
�
: (48)

Here we neglect the peculiar velocity of the observer vO
which gives rise only to a dipole.

We use the Fourier transform convention

v ðx; 
Þ ¼ 1

ð2
Þ3
Z

d3kvðk; 
Þeikx; (49)

v ðk; 
Þ ¼
Z

d3xvðx; 
Þe�ikx: (50)

With the solution of the continuity equation [24]

v ðk; 
Þ ¼ i
D0ðaÞ
DðaÞ

k

k2
�ðk; aÞ; (51)

where �ðk; 
Þ is the density contrast, DðaÞ is the growth
function, andD0ðaÞ its derivative with respect to 
, we find

Cv
‘ðzS; zS0 Þ ¼

16
�2
Hð�S � 1Þð�S0 � 1Þ

ðH0
OÞ2D2ða ¼ 1Þ
D0ðzSÞD0ðzS0 Þ

H2
0

�
�
1� 1

H Sð
O � 
SÞ
�

�
�
1� 1

H S0 ð
O � 
S0 Þ
�

� 
2
O

Z
dkkT2ðkÞj0‘ðkð
O � 
SÞ

� j0‘ðkð
O � 
S0 Þ: (52)

Here �H is the density contrast at horizon and TðkÞ is the
transfer function defined through [24]

�ðk; aÞ ¼ 9

10
�pðkÞTðkÞDðaÞ

a
; (53)

where �pðkÞ is the primordial power spectrum.

We want to compare this contribution with the usual
contribution coming from the potential ��

C�
‘ ðzS; zS0 Þ ¼

36
�2
Hð�S � 1Þð�S0 � 1Þ�2

m

D2ða ¼ 1Þ �DðzSÞDðzS0 Þð1þ zSÞð1þ zS0 Þ

�
Z

dkk3T2ðkÞ
Z 
O


S

d
Wð
;
SÞðj‘ðkð
O � 
ÞÞ þ j00‘ ðkð
O � 
ÞÞÞ

�
Z 
O


S0
d
0Wð
0; 
S0 Þðj‘ðkð
O � 
0ÞÞ þ j00‘ ðkð
O � 
0ÞÞÞ; (54)

where Wð
;
SÞ ¼ ð
�
SÞð
O�
Þ
ð
O�
SÞ is the lensing kernel. We

evaluate Cv
‘ and C

�
‘ in a�CDM universe with�m ¼ 0:24,

�� ¼ 0:76, and ns ¼ 1. �H can be measured from the
Sachs-Wolf plateau [25]. We find �H ¼ 6 � 10�5 [26].
We use the BBKS transfer function [27] (see also [28]
which proposes a similar fit).

In Figs. 3–6, we plot Cv
‘ and C�

‘ for different redshifts,

but with zS ¼ zS0 . The amplitude of Cv
‘ and C

�
‘ depends on

ð�� 1Þ2, which varies with the redshift of the source, the
flux threshold adopted, and the sky coverage of the experi-
ment [14]. Since this term influences Cv

‘ and C�
‘ in the

same way we do not include it in our plot. Generally, at
small redshifts, (�� 1) is smaller than 1 and consequently
the amplitude of both Cv

‘ and C�
‘ is slightly reduced,

whereas at large redshifts ð�� 1Þ tends to be larger than
1 and to amplify Cv

‘ and C�
‘ [14]. However, the general

features of the curves and more importantly the ratio
between Cv

‘ and C�
‘ are not affected by ð�� 1Þ.

Figures 3 and 4 show that Cv
‘ peaks at rather small ‘,

between 30 and 150 depending on the redshift. The behav-
ior of C�

‘ is different, since it increases with ‘ (Figs. 5 and
6). Hence, peculiar motion of galaxies generates additional
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correlations that peak at relatively large angle ��
70–360 arcmin. It is therefore important to have large
sky surveys to detect this effect.

The relative importance of Cv
‘ and C�

‘ depends strongly

on the redshift of the source. At small redshift, zS ¼ 0:2,

the velocity contribution is about 5 � 10�5 and is hence
larger than the lensing contribution which reaches 10�6. At
redshift zS ¼ 0:5, Cv

‘ is about 50% of C�
‘ , whereas at

redshift zS ¼ 1, it is about 1% of C�
‘ . Then at redshift zS ¼

1:5 and above, Cv
‘ becomes very small with respect to

C�
‘ : C

v
‘ & 10�4C�

‘ . This fast decrease of Cv
‘ is a conse-

FIG. 3 (color online). The velocity contribution Cv
‘ as a func-

tion of ‘, for redshift (from top to bottom) z ¼ 0:2, 0.5, 0.7, 1,
1.2, and 1.5. We see that Cv

‘ decreases with redshift in this

redshift range.

FIG. 5 (color online). The potential contribution C�
‘ as a

function of ‘, for redshift (from top to bottom) z ¼ 1:5, 1.2, 1,
0.7, 0.5, and 0.2.

FIG. 4 (color online). The velocity contribution Cv
‘ as a func-

tion of ‘, for redshift (from top to bottom) z ¼ 4, 3, 2.5, and 2.
We see that Cv

‘ increases with redshift in this redshift range.

FIG. 6 (color online). The potential contribution C�
‘ as a

function of ‘, for redshift (from top to bottom) z ¼ 4, 3, 2.5,
and 2.
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quence of the behavior of g2ðzÞ plotted in Fig. 7. We see
that at redshift zS ¼ 1:7, Cv

‘ vanishes, due to the fact that

�v ¼ 0, as explained above. Finally, for zS > 1:7, gðzÞ and
consequently Cv

‘ start to increase as a function of zS
(Fig. 4). However, the lensing term C�

‘ increases faster

than the velocity term and hence the ratio Cv
‘=C

�
‘ stays

small, even at redshift 4 where it reaches a few 10�4.
We have also calculated Cv

‘ðzS; zS0 Þ for zS � zS0 . We

found that it decreases very rapidly with the redshift dif-
ference, and hence it gives a negligible contribution to
correlations between different redshift bins. On the con-
trary, C�

‘ ðzS; zS0 Þ is not very sensitive to the redshift dif-

ference and induces therefore correlations at different
redshifts.

To summarize, we see from Figs. 3 and 4 that a lensing
survey must satisfy three criteria in order to detect the
velocity contribution Cv

‘. First it has to cover a rather large

part of the sky, since the velocity contribution peaks at
angles between 70 arcmin and 6
 (depending on the red-
shift of the source). Ongoing and future surveys fulfill this
requirement. For example, the CFHTLS Wide survey has
already spanned 57 square degrees of the sky (over three
independent fields) and allowed consequently to measure
the two-point shear statistics from 1 arcmin to 4
. And in
the near future, measurements will be extended up to 8

[5]. Future surveys are even more ambitious. For example,
Euclid and the SKA plan to cover up to 20 000 square
degrees. The requirement of a wide field survey is also of
great importance for shear measurements. It is necessary in
order to, on one hand, beat cosmic variance, and on the

other hand probe accurately the linear regime of
perturbations.
Second, in order to measure precisely the galaxy number

overdensity, one needs to remove intrinsic clustering. One
way to perform this consists simply of removing from the
signal close pairs of galaxies at the same redshift, as
proposed in [14]. This requires one to measure the redshift
of the galaxies. The SKA offers here a great advantage,
since it can measure with high precision the redshift of
galaxies from 21 cm emission line wavelength. Most other
future lensing surveys will deliver photometric redshift
measurements of the observed galaxies. This is indeed
also crucial for cosmic shear observation. First it allows,
as for magnification measurements, to remove close pairs
of galaxies, in order to reduce the systematic noise due to
intrinsic alignment of galaxies in the same cluster [29].
Second, redshift information permits one to perform 3D
cosmic shear analysis.
Finally, Fig. 3 shows that the velocity contribution is

mainly important at redshift z & 1. Hence an ideal survey
should cover redshifts from 0.2 to 1. This is well within the
range of ongoing and future experiments.
The accuracy with which the velocity contribution can

actually be measured as well as the exact redshifts range
where it is detectable depend of course of the precision of
the survey. In [14], measurements of the magnification
autocorrelations by the SKA are discussed in detail. The
autocorrelations are calculated for redshifts z * 1. Since at
redshift 1, our velocity contribution is of order 1% of the
standard term, it should be measurable by the SKA if, as
expected, an accuracy of 1% is reached. At larger redshifts,
the velocity contribution decreases quickly and will hence
not be detectable. However, the SKA should be able to
measure the velocity contribution at smaller redshifts.
Indeed, at small redshift z ’ 0:2, the velocity contribution
is rather large, of the order 5 � 10�5. Hence between red-
shift 0:2 � z � 1, the velocity contribution should be mea-
surable. Between redshift 0:5 � z � 1:5, a large number of
galaxies ( * 104 deg�2) are expected to be detected by the
SKA, hence good statistic should be achieved in this
redshift range. Of course, the amplitude of the signal is
weighted by ð�� 1Þ2, which is not included in Figs. 3 and
4. At very small redshift, �� 1 can be small, and even
negative. If ð�� 1Þ � �0:5, the amplitude is, for example,
reduced by 4. The value of � depends on the features of the
survey: sky coverage, selection threshold, redshift of the
galaxies, etc.. Hence one can optimize this value to detect
the velocity contribution.

B. Nonlinear contribution

Until here, we have only considered peculiar velocities
from linear theory, where Eq. (51) holds. However, on
small scales, galaxies’ peculiar velocities do not obey
linear theory anymore. Typically, galaxies in a cluster
can have peculiar velocities of the order vS � 1000 km=s

FIG. 7. The prefactor 4g2ðzÞ of the velocity term Cv
‘ as a

function of redshift.
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[30]. Equation (48) becomes then

h�v
gðzS;nÞ�v

gðzS;n0Þi ’ ð�S � 1Þ24g2ðzSÞ � 10�5: (55)

The amplitude depends on the prefactor 4g2ðzÞ plotted in
Fig. 7, and on ð�� 1Þ2. Hence the nonlinear contribution
is large up to redshift z ’ 1:4, where it is still of the order of
10�6, if we take �� 1 ’ 1. Then between z ¼ 1:4 and z ¼
2:1 it becomes very small. But for z * 2:1 the signal is
again non-negligible and reaches even 10�5 at z ¼ 4.
However at those redshifts, we do not expect to find
clusters of galaxies.

Moreover, the nonlinear velocity contribution is large
only on very small scales and it should become negligible
when one removes close pairs of galaxies at the same
redshift from the signal, as proposed in [14].

C. The reduced shear

In Sec. IV we have established that peculiar motion
contributes at second order to the shear and is therefore
too small to be detected. However, since what is actually
observed is not the shear, but the reduced shear [31]

g ¼ �

1� �
’ �� �� for �; � 	 1; (56)

it is necessary to investigate the effect of peculiar motion
on g.

The reduced shear correlations are given by

hgðzS;nÞgðzS0 ;n0Þi ¼ h�ðzS;nÞ�ðzS0 ;n0Þi
� h�ðzS;nÞ�ðzS0 ;n0Þ�ðzS0 ;n0Þi
� h�ðzS;nÞ�ðzS;nÞ�ðzS0 ;n0Þi
þ higher order: (57)

The corrections h�ðzS;nÞ�ðzS0 ;n0Þ��ðzS0 ;n0Þi have been
computed in [32]. They are large enough to impact on
cosmological parameter estimation from future experi-
ments. However, one can show that the velocity induced
corrections h�ðzS;nÞ�ðzS0 ;n0Þ�vðzS0 ;n0Þi vanish. Indeed
�ðzS;nÞ contains only Fourier modes with a wave
vector k? perpendicular to the line of sight [see
Eqs. (24) and (25)]. On the other hand �vðzS;nÞ selects
modes with wave vector along the line of sight [Eq. (44)].
Hence correlations between �v and � vanish and we have

h�ðzS;nÞ�ðzS0 ;n0Þ�vðzS0 ;n0Þi ¼ (58)

h�ðzS;nÞ�ðzS0 ;n0Þih�vðzS0 ;n0Þi ¼ 0: (59)

Therefore, peculiar motion does not affect the reduced
shear correlations at first order in �v.

D. Relation between shear and convergence

In the usual description of weak lensing, the shear and
the convergence satisfy a functional relation. They are
indeed both related to second order derivatives of the

potential along the line of sight. In the flat sky approxima-
tion, we have

��ð
S;�Þ ¼ ���̂ð
S;�Þ; (60)

�1ð
S;�Þ ¼ ðr�1
r�1

�r�2
r�2

Þ�̂ð
S;�Þ; (61)

�2ð
S;�Þ ¼ 2r�1
r�2

�̂ð
S;�Þ; (62)

where

�̂ð
S;�Þ ¼
Z 
O


S

d
Wð
;
SÞ�ð
;�Þ: (63)

Here � ¼ ð�1; �2Þ is a two-dimensional angular vector
describing the position of the source in the flat sky ap-
proximation, and r� is the associated two-dimensional

gradient. Equation (60) can be solved to express �̂ as a
function of ��. Inserting the result into Eqs. (61) and (62)
leads to the following relation between �� and � (see e.g.
[33]):

�ð�Þ ¼ �1ð�Þ þ i�2ð�Þ ¼ 1




Z
d2�0Dð�� �0Þ��ð�0Þ;

(64)

where

Dð�Þ ¼ �2
2 � �2

1 � 2i�1�2

j�j4 : (65)

The two-dimensional Fourier transform of the shear and
the convergence are therefore related through �̂ðqÞ ¼
e2i’�̂�ðqÞ, where ’ is the polar angle of q. Con-
sequently, the two-dimensional power spectrum of the
convergence P��

and of the shear P� are equal.

A similar relation holds in the all sky calculation, where
the angular power spectra satisfy [34]

C��

‘ ¼ ‘ð‘þ 1Þ
ð‘þ 2Þð‘� 1ÞC

�
‘ : (66)

These relations are modified by the velocity contribu-
tion. Galaxies’ peculiar velocities generate indeed a new
contribution to the convergence �v that is not related to the

potential �̂. On the other hand, it does not change the shear
at first order. Hence, in the flat sky approximation the
measured shear � and convergence �obs ¼ �� þ �v obey

�ð�Þ ¼ 1




Z
d2�0Dð�� �0Þð�obsð�0Þ � �vð�0ÞÞ: (67)

Since the correlations between �v and �� vanish, the
power spectra satisfy

P� ¼ P�obs
� P�v

: (68)
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Similarly in the all sky calculation, we have

‘ð‘þ 1Þ
ð‘þ 2Þð‘� 1ÞC

�
‘ ¼ C�obs

‘ � C
�v

‘ ¼ C�
‘ � Cv

‘

4ð�� 1Þ2 ; (69)

where we have used Eq. (46) for the second equality sign.
Consequently, if one measures both the shear C�

‘ and the

magnification C
�
‘ as functions of the redshift, Eq. (69)

allows one to extract the peculiar velocity contribution
Cv
‘. This provides a new way to measure directly peculiar

velocities of galaxies. Future surveys, like Euclid and the
SKA, should be able to deliver measurements of both the
shear and the magnification in the redshift range 0:2 � z �
1. Since at those redshifts the difference between the
velocity contribution and the potential contribution is at
least of the percent level, it seems feasible to extract
peculiar velocities from the measurements of C

�
‘ and C�

‘ .

A direct measure of the peculiar motion of galaxies
would be extremely interesting, since it allows one to
determine the underlying matter power spectrum.
Moreover, since the velocity contribution Cv

‘ peaks at

rather large angles, it provides a measurement of the
velocity field well inside the linear regime, where the
relation between peculiar velocity and matter overdensity
is simply given by Eq. (51). A more careful analysis is of
course necessary to determine if this method can compete
with actual or future observations of peculiar velocities,
from galaxy surveys (see e.g. [35] and references therein),
supernova surveys [36], or from the kinetic Sunyaev-
Zel’dovich effect in the cosmic microwave background
(see e.g. [37,38] and references therein).

VI. CONCLUSIONS

In this work we have studied the effect of peculiar
velocity on weak gravitational lensing. We have derived
a general formula for the shear and the convergence that
takes into account all relativistic effects of linear perturba-

tion theory. We have identified a new important contribu-
tion generated by the peculiar motion of galaxies.
We have shown that the shear component is affected

only at second order by peculiar velocity. Consequently
this contribution does not affect cosmic shear in a measur-
able way. However, we have found that the effect of
peculiar velocity on the convergence is important and
cannot be neglected, especially for redshift z & 1. At small
redshifts z & 0:4, the peculiar velocity contribution is even
larger than the lensing contribution. Hence measurements
of the convergence (or more particularly of the magnifica-
tion) at small and intermediate redshifts are affected by the
peculiar motion of galaxies. In the redshift range 0:2 �
z � 1 we expect an effect large enough to be detected by
future galaxy surveys, like, for example, the SKA and
Euclid.
We have also shown that peculiar motion modifies the

relation between cosmic shear and convergence. One way
to measure the effect of peculiar velocity would hence
consist in measuring both the shear and the convergence
at the same redshifts, and in comparing them to extract the
velocity contribution. This provides hence a new way of
measuring the velocity field directly.
Finally, we have found that the redshift dependence of

the velocity term is mainly given by the prefactor g2ðzÞ,
plotted in Fig. 7. Since this function depends directly on
cosmological parameters, it would be very interesting to
find a way to extract it from the data, in order to constrain
cosmological models.
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