
Gauging the cosmic microwave background

J. P. Zibin* and Douglas Scott†

Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, V6T 1Z1 Canada
(Received 15 August 2008; published 24 December 2008)

We provide a new derivation of the anisotropies of the cosmic microwave background (CMB), and find

an exact expression that can be readily expanded perturbatively. Close attention is paid to gauge issues,

with the motivation to examine the effect of super-Hubble modes on the CMB. We calculate a transfer

function that encodes the behavior of the dipole, and examine its long-wavelength behavior. We show that

contributions to the dipole from adiabatic super-Hubble modes are strongly suppressed, even in the

presence of a cosmological constant, contrary to claims in the literature. We also introduce a naturally

defined CMB monopole, which exhibits closely analogous long-wavelength behavior. We discuss the

geometrical origin of this super-Hubble suppression, pointing out that it is a simple reflection of

adiabaticity, and hence argue that it will occur regardless of the matter content.
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I. INTRODUCTION

The anisotropies in the cosmic microwave background
(CMB) reveal a great deal about our Universe, since they
persist essentially unscathed from the epoch when fluctua-
tions were well described by simple linear theory. The
comparison of CMB observations with theory has become
a mature subject, and has played an important role in
forming our current understanding of the Universe (see,
e.g., [1]).

Critical to that comparison is the accurate theoretical
calculation of the anisotropies. Since the pioneering work
of Sachs and Wolfe [2], the theoretical anisotropies have
been refined and recalculated using different formalisms
many times (see, e.g., [3–9]). Accurate calculations are
now readily available via public code packages such as
CAMB [10,11].

In the present work, we revisit the calculation of anisot-
ropies. While our results may not lead to more accurate or
efficient calculations, we hope that they will help to clarify
some of the conceptual issues surrounding the calculations.
In particular, our approach makes explicit the physical
meaning of the various contributions to the anisotropies.
Crucial to this is our use of the covariant approach to
cosmology (see [12,13] for reviews), which is ideal for
writing exact solutions and for physical clarity. We present
a remarkably simple but exact expression for the anisot-
ropy, which applies to arbitrary spacetimes and includes
the effects of tensor as well as scalar perturbations and any
line-of-sight integrated Sachs-Wolfe (ISW) effect. This
general result can be readily expanded perturbatively, and
here we turn to the metric formalism for computational
efficiency and show that we recover previous results in the
literature.

A main motivation for our work is in examining the
behavior of the anisotropies due to super-Hubble fluctua-
tions (we use the terms ‘‘super-Hubble’’, ‘‘long-
wavelength’’, and ‘‘large-scale’’ interchangeably, to mean
scales larger than the current Hubble or last scattering
radius), where gauge issues are paramount. This question
has been examined before in the context of the Grishchuck-
Zel’dovich effect [14], which describes the large-angular-
scale anisotropies that result from super-Hubble modes. In
the context of a matter-dominated universe with adiabatic
fluctuations, it was shown that the CMB dipole receives
strongly suppressed contributions from long-wavelength
modes. A claim was made in Ref. [15] that this suppression
would not occur in models with cosmological constant, so
that we could ‘‘see’’ very long-wavelength structure in the
dipole. It was also found that in the presence of isocurva-
ture perturbations, the suppression may not occur (see [16]
and references therein).
To study this issue, we construct a transfer function that

describes the scale dependence of contributions to the
dipole. Working by analogy, we carefully define a CMB
monopole perturbation, and find its transfer function. As is
well known, such a monopole cannot be observable, but we
show that its variance is well defined theoretically. Our
definitions have simple interpretations: the dipole mea-
sures the departure of radiation and matter comoving
worldlines, while the monopole measures how well radia-
tion and matter constant-density hypersurfaces coincide.
The usefulness of the monopole will be in examining its
long-wavelength behavior, where it will help to clarify the
dipole case.
We show that the contributions to both dipole and

monopole vanish for large-scale sources, even in the pres-
ence of a cosmological constant. We close by pointing out
that this is a direct consequence of adiabaticity, and hence
that this result is expected to hold regardless of the matter
content of the Universe, unless isocurvature modes are
present.
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Another potential reason that a careful treatment of the
monopole may be of interest involves the measurement of
the mean CMB temperature and its relation to constraints
on other cosmological parameters. The mean temperature
is currently measured to a precision of a few parts in 104

[17]. It has been pointed out that the precision of this
measurement could be improved by nearly 2 orders of
magnitude with currently available technology [18]. Such
a measurement would reach the naive cosmic variance
limit of a part in 105 as suggested by the observed ampli-
tude of fluctuations (see [19] for a related discussion). It
would then become necessary to be very careful about
exactly what information the mean temperature measure-
ment is giving us, and about the nature of monopole
fluctuations. Relevantly, recent studies have examined the
importance of the mean temperature measurement to our
ability to constrain the cosmological parameters [20,21].

Since the covariant approach to cosmology is essential
to this work, we begin in Sec. II with a summary of the
required formalism. Next, in Sec. III we present the deri-
vation of the Sachs-Wolfe effect, beginning with an exact
result before specializing to first order and recovering
previous results. In Sec. IV, we present calculations of
the dipole and monopole transfer functions, and we exam-
ine their long-wavelength behavior in Sec. V. Finally, we
discuss our results in Sec. VI. The Appendices summarize
relevant material in the metric formalism, and demonstrate
both the gauge invariance and the gauge dependence of our
results. We use signature ð�;þ;þ;þÞ, and greek indices
indicate four-tensors, while Latin indices indicate spatial
three-tensors.

II. COVARIANT COSMOLOGY

This section will contain a brief summary of the ele-
ments of the covariant approach to cosmology (see, e.g.,
the reviews [12,13]) that will be needed in the following
sections. (A collection of results from the metric-based
approach to cosmological perturbations, which will also
be needed, is presented in Appendix A.) Fundamental to
the covariant approach is the notion of a congruence of
worldlines, also known as a threading of the spacetime or
sometimes as a choice of frame. This is a family of world-
lines such that exactly one worldline passes through each
event. A useful example is the congruence of comoving
worldlines, when it is well defined. A timelike congruence
is described by a vector field u�, tangent everywhere to the
worldlines. We will assume that u� is normalized, u�u� ¼
�1. At each event we can define the spatial projection
tensor

h�� � ��
� þ u�u�; (1)

which projects orthogonal to u�. Hypersurfaces orthogonal
everywhere to u� will exist if the twist of the congruence
(defined below) vanishes [22], in which case h�� is the

(Riemannian) metric tensor for those spatial hypersurfaces.

It is useful to describe the geometrical properties of the
congruence by the covariant derivative u�;�. By virtue of

the normalization condition, this derivative satisfies

u�;�u
� ¼ 0: (2)

The derivative can be decomposed into parts parallel to and
orthogonal to u� in its second index using Eq. (1), giving

u�;� ¼ h��u�;� � u�u�u�;�: (3)

The temporal part can be written in terms of the accelera-
tion of the worldlines, defined by

a� � u�;�u
�: (4)

The field a� measures the departure of the worldlines from
geodesic. The spatial part h��u�;� can be decomposed into

trace, symmetric trace-free, and antisymmetric parts via

� � h��u�;� ¼ u�;�; (5)

��� � h�ð�u�Þ;� � 1

3
�h��; (6)

!�� � h�½�u��;�: (7)

The scalar � and tensors ��� and !�� measure the local

rates of expansion, shear, and twist of the congruence,
respectively. Combining Eqs. (3) to (7) we have

u�;� ¼ 1

3
�h�� þ ��� þ!�� � a�u�: (8)

For the case of a homogeneous and isotropic Friedmann-
Robertson-Walker (FRW) cosmology, if we choose u� to
be comoving then ��� ¼ !�� ¼ a� ¼ 0 and � ¼ 3H,

where H � _a=a is the Hubble rate, and a the scale factor.
Wewill also need two derivatives. For an arbitrary tensor

X, the covariant time derivative is defined by _X � X;�u
�,

and gives the proper time derivative along u�. The symbol
D� represents the spatial (orthogonal to u�) covariant

derivative defined using the spatial metric h��. For ex-

ample,

D�X
� � h��h

�
�X

�
;�; (9)

for any tensor X� orthogonal to u�.
A congruence u� can be used to describe the matter

content as observed locally by a family of observers, given
the energy-momentum tensor T��. The energy density �,

momentum density q�, pressure P, and anisotropic (shear)

stress ���, as viewed locally by an observer with four-

velocity u�, are defined by the projections

T��u
�u� ¼ �; (10)

T��u
�h�	 ¼ �q	; (11)
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T��h
�
�h

�
	 ¼ Ph�	 þ ��	; (12)

where ��� is defined to be trace free.

III. SACHS-WOLFE EFFECT

In this section, we will provide a calculation of the
anisotropies of the CMB radiation. The main goal will be
to clarify the issues of gauge and frame choice, which will
be critical to properly describing the dipole and monopole
anisotropies in the next section. For this reason, it will not
be necessary to consider here the finite thickness of the last
scattering surface, or the effect of reionization on the
anisotropies, which have negligible effect on the largest-
scale anisotropies. Thus we assume tight coupling in the
baryon-photon plasma before last scattering, followed by
instantaneous recombination of matter and free streaming
(i.e. unattenuated geodesic evolution) of the radiation.
Apart from this approximation the calculation will be
exact.

A. Exact expression

We are making the approximation that the CMB radia-
tion is emitted abruptly when the local plasma temperature
drops below some value TE at which recombination occurs
(E for ‘‘emission’’), and thereafter travels freely. This
temperature is defined with respect to the frame (or con-
gruence) u� which is comoving with the plasma (i.e. for
which the plasma momentum density vanishes). The
spacelike hypersurface defined by the moment of recom-
bination will be called the last scattering hypersurface,
�LS, while the intersection of �LS with an observer’s
past light cone defines the two-sphere commonly called
the observer’s last scattering surface (LSS). Via the Stefan-
Boltzmann law, �LS must be a hypersurface of constant
radiation energy density �ð
Þ, with the density again de-

fined with respect to the comoving congruence u� [23]. For
adiabatic perturbations at last scattering and on large
scales, �LS will also be at constant matter energy density,
and hence total energy density �. The definition of the last
scattering hypersurface is critical here: note, in particular,
that it does not contain colder and hotter regions which
contribute to the anisotropies observed at later times, as
some accounts state (see, e.g., [6,24,25]) [26]. Rather, it is
a hypersurface of constant (comoving) temperature.
Nevertheless, in a realistic cosmology, �LS is still a per-
turbed surface, with generally nonvanishing intrinsic and
extrinsic curvature and matter perturbations apart from
�ð
Þ, and these perturbations will source anisotropies.

Also, because of these perturbations, the comoving con-
gruence will not in general be orthogonal to �LS.

In order to calculate the anisotropies observed at late
times we must propagate the radiation along null geodesics
from the observer’s LSS. Consider a light ray following a
null geodesicO with tangent vector v� that extends from a
point of emission, E, on the observer’s LSS to a point of

reception, R, and also consider a timelike congruence u�

defined in the vicinity of O. We define the congruence in
order to provide a frame with respect to which a local
energy density (and hence temperature) can be expressed.
Then we can decompose v� at each point on O into parts
parallel and orthogonal to u� according to

v� ¼ 
ðu� þ n�Þ; (13)

with n�u� ¼ 0 and n�n� ¼ 1. The spatial vector n�

defines the spatial direction of propagation of the light
ray at each point along O. Figure 1 illustrates this
geometry.
Since the radiation is emitted from E with a thermal

spectrum, an observer at any point onO, with four-velocity
u�, will observe the radiation travelling along O to also
have a thermal spectrum with temperature

T / �u�v� ¼ 
: (14)

Because the temperature at emission, TE, is defined with
respect to the plasma frame and is constant on �LS, the
calculation will be simplest if we choose u� to be comov-
ing with the plasma on the observer’s LSS. Similarly, it will
be most natural to choose u� to be comoving at R, since
any observer will presumably be composed of matter and
comoving with it. Note that such an observer, comoving
with the total (effectively matter) energy density at R, will
generally not be comoving with the radiation, and so will
observe a dipole anisotropy. As wewill see, the congruence
can be freely chosen in between E and R, although some
choices will be computationally more efficient in practice.
In Sec. III B 1, we will relax the constraint that u� be
comoving at E and R.
Now we will derive an expression for the evolution of

the ‘‘redshift parameter’’ 
 alongO, which will tell us how
the observed temperature evolves, using only the geodesic
equation,

FIG. 1 (color online). A conformal spacetime diagram show-
ing a light ray O emitted from the LSS on �LS at event E and
received at R. A foliation �t is indicated together with its
orthogonal congruence u�, which is comoving on the LSS and
at R. For clarity, orthogonal vectors are displayed as if the
geometry was Euclidean.
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v�
;�v

� ¼ 0: (15)

Consider the quantity

Hn � 1


2
u�;�v

�v� ¼ u�;�n
�n� þ a�n

� (16)

¼ 1

3
�þ ���n

�n� þ a�n
�; (17)

which is related to the expansion rate of the congruence u�

projected into the plane defined by u� and n� [27] (indeed
Hn reduces to the familiar Hubble rate for the comoving
congruence in a homogeneous and isotropic spacetime).
Now, using Eqs. (14) and (15), we have

Hn ¼ 1


2
ðu�v�Þ;�v� (18)

¼ dð
�1Þ
d�

; (19)

where � is an affine parameter along O (note that this last
expression is independent of the affine parameter chosen).
The expression Eq. (19) gives the exact evolution of the
redshift parameter 
 along O with respect to the congru-
ence u� in an arbitrary spacetime. It describes the familiar
behavior of increasing redshift (decreasing 
) in an ex-
panding universe, with ‘‘expansion’’ now seen to mean
precisely that Hn > 0.

We can in principle integrate Eq. (19) alongO to find the
temperature TRðn�Þ observed at R in direction �n�, i.e.
the CMB temperature sky map. With an appropriate choice
of affine parameter [setting the proportionality constant
equal to unity in Eq. (14)], we have [28]

TRðn�Þ ¼
�
T�1
E þ

Z R

Eðn�Þ
Hnd�

��1
: (20)

However, in practice it would be very difficult to determine
Hn as a function of affine parameter along each null
geodesic in order to perform the integral in Eq. (20) for a
particular spacetime. Instead, if we define a time coordi-
nate t by foliating the spacetime into spacelike hypersur-
faces of constant t, �t, (see Fig. 1) we can transform the
integral into one that is more tractable in terms of the new
coordinate. The most convenient choice for the foliation is
that which is everywhere orthogonal to the congruence u�

[30].
Using Eq. (13), we can write

dð
�1Þ
d�

��������v�
¼ 


dð
�1Þ
d�

��������u�
(21)

¼ 


N

dð
�1Þ
dt

��������u�
(22)

¼ 


N

dð
�1Þ
dt

��������v�
: (23)

Here � is proper time,N is the lapse function for the slicing
�t, and the subscript v� or u� indicates the direction in
which the derivative is taken. In the intermediate steps, we
have chosen to define 
 away from O to be constant along
the�t. Integrating Eq. (23) alongO and using Eq. (19) and
the proportionality Eq. (14) between 
 and temperature,
we finally obtain

TRðn�Þ
TE

¼ exp

�Z tEðn�Þ

tR

HnNdt

�
; (24)

where tEðn�Þ is the value of t at the point of emission E on
the LSS corresponding to the observed direction�n� at R,
and tR is the time of observation. [Note that in general �LS

will not coincide with one of the slices �t; hence the
dependence tEðn�Þ.] This remarkably simple expression
is exact, and so is not restricted to linear, adiabatic, or
scalar fluctuations, and it applies to all scales (subject of
course to our basic assumption of abrupt recombination).
In particular, Eq. (24) encapsulates in principle the acoustic
peak structure of the CMB, any ISW contribution that may
arise, as well as the effect of gravitational waves. This
equation is a purely geometrical result, independent of
any dynamical input such as stress-energy conservation
or Einstein’s equations. To our knowledge Eq. (24) has
not been written down before, although a related expres-
sion appears in Ref. [7], and a related linearized expression
appears in Ref. [31].
Equation (24) tells us that the observed temperature in

some direction on the sky is determined entirely by the
integrated line-of-sight component of expansion (or num-
ber of ‘‘e-folds’’) along the null path from the LSS, of a
congruence that is comoving with the plasma at the LSS
and matches the observer’s four-velocity at R. Thus we can
interpret the observed anisotropic CMB sky as a uniform
temperature surface viewed through an anisotropically ex-
panding universe: the observed hot and cold spots on the
sky are simply ‘‘closer’’ and ‘‘farther’’, respectively, from
us, in terms of e-folds of expansion. Note, however, that we
cannot view the redshifting as uniquely defined at inter-
mediate points between E and R, since we are free to
deform the congruence between those endpoints. Rather,
it is only the total integral that is independent of the choice
of congruence u� between the endpoints, when we fix the
position and state of motion of the observer at R. For the
special case of a homogeneous and isotropic FRW cosmol-
ogy, and choosing the comoving congruence, for which
Hn ¼ H and N ¼ 1, we immediately recover from
Eq. (24) the familiar result for the cosmological redshift

TR

TE

¼ exp

�Z tE

tR

Hdt

�
¼ aE

aR
; (25)

for scale factor a.
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B. Linearized results

1. Arbitrary gauge

The result Eq. (24) is very general, but probably has
limited direct use for calculating anisotropies. However, it
can be straightforwardly expanded to linear (or even
higher) order in perturbation theory, and such a linearized
calculation will be very convenient, as linear theory cap-
tures very well the evolution of structure at early times and
very large scales today. In doing this it will prove helpful to
generalize the result to congruences u� that are noncomov-
ing at E and R. With such threadings it will then be
necessary to provide explicit boosts at the LSS and at the
reception point R to compensate. Similarly, at linear order
it will be simple to write the integral to the LSS in terms of
an integral to some constant time slice, plus a contribution
due to the linear temporal displacement to the actual LSS.
The boost at the LSS will constitute what is often termed
the ‘‘Doppler’’ or ‘‘dipole’’ contribution to the anisotro-
pies, while the temporal displacement contributes to what
is sometimes called the ‘‘monopole’’ contribution.

To calculate the boosts, consider the general noncomov-
ing congruence u� and the direction ~u� comoving with the
plasma at emission point E (see Fig. 2). If we temporarily
construct scalar fields t and ~t in the vicinity of E such that
u� ¼ �t;� and ~u� ¼ �~t;�, with ~t � t� �tB, then we
have

~u� ¼ u� þ �t
;�
B : (26)

While this expression is exact, the ‘‘boost displacement’’
�tB evaluated at linear order is simply the linear temporal
displacement between hypersurfaces orthogonal to u� and
~u�, in the vicinity of E (see Fig. 2); this can be readily
calculated in the metric formalism as the gauge transfor-

mation required to take the gauge specified by the slicing
orthogonal to u� into the plasma-comoving gauge. To
calculate the change in observed temperature due to the
boost, we require the quantity

~
 � �~u�v� ¼ 
ð1� n��t
;�
B Þ; (27)

which is valid at first order. To derive this expression we
have used the relation u��t

;�
B ¼ Oð2Þ, which follows from

the normalization of the four-velocities. Note that Eq. (27)
simply describes a local Lorentz transformation of photon
energy. This expression can also be applied at the reception
point R, although the direction ~u� is free in principle there.
If we choose the observer to be comoving with matter then
the displacement �tB at R will be given by the gauge
transformation required to take the gauge specified by u�

into the comoving gauge. The freedom to choose ~u� at R
only effects the dipole anisotropy at linear order, as shown
in Appendix C.
To calculate the temporal displacements at E and R, we

can write the integral in the exact expression Eq. (24) asZ tEðn�Þ

tR

HnNdt ¼
Z �tEþ�tDðEÞ
�tRþ�tDðRÞ

HnNdt; (28)

where �tE and �tR label particular slices �t, and can be
considered the background emission and reception times.
The displacement �tDðEÞ accounts for the separation be-
tween the background slice ��tE and the true last scattering

hypersurface �LS, and is a function of n�. Similarly, the
displacement �tDðRÞ accounts for the separation between
the background slice ��tR and the actual slice on which the

reception point R is located. �tDðRÞ can be considered a
function of position if we wish to evaluate the anisotropies
at various reception points R. At linear order, we can then
writeZ tEðn�Þ

tR

HnNdt ¼
Z �tE

�tR

HnNdtþ ð �H�tDÞ
��������

E

R
; (29)

where �HðtÞ is the zeroth order (background) Hubble rate
and we have assumed that the lapse equals unity at zeroth
order, so that the coordinate t is a perturbed proper time.
The displacement �tDðEÞ, like the boost displacements,

can be readily calculated in the metric formalism as the
gauge transformation required to take the gauge specified
by the slices �t (orthogonal to u

�) into the gauge specified
by �LS, i.e. the uniform radiation energy density gauge.
The displacement �tDðRÞ is not fixed uniquely by any such
physical prescription, but only affects the monopole an-
isotropy, as shown in Appendix C.
The temperature observed at R in direction �n� can

now be written using the boost relation Eq. (27) as

TRðn�Þ
TE

¼ ~
Rðn�Þ
~
E

¼ 
Rðn�Þ

Eðn�Þ

�
1� n��t

;�
B

��������
R

E

�
; (30)

at linear order. The prefactor on the right-hand side of this
equation is simply the redshift due to the expansion along

FIG. 2 (color online). A conformal spacetime diagram show-
ing a light ray O emitted from the LSS at E. The arbitrary
foliation �t is indicated together with its orthogonal congruence
u�. Also, the hypersurface �q orthogonal to the direction ~u�

comoving with the plasma is indicated, together with the boost
displacement �tB, which takes �tEðn�Þ into �q.
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the congruence u�, so it is given by Eq. (24). Writing

HnN ¼ �Hþ �ðHnNÞ (31)

and using Eq. (29), we have


Rðn�Þ

Eðn�Þ

¼ exp

�Z tEðn�Þ

tR

HnNdt

�
(32)

¼ �TR

TE

�
1þ

Z �tE

�tR

�ðHnNÞdtþ ð �H�tDÞ
��������

E

R

�
(33)

at linear order, where we have defined the ‘‘background’’
observed temperature �TR by

�T R � TE exp

�Z �tE

�tR

�Hdt

�
: (34)

Finally, combining Eqs. (30) and (33), and defining
�Tðn�Þ � TRðn�Þ � �TR, we can write

�Tðn�Þ
�TR

¼
Z �tE

�tR

�ðHnNÞdtþ ð �H�tD þ n��t
;�
B Þ

��������
E

R
: (35)

Equation (35) gives the observed temperature anisotropy
at linear order in terms of the line-of-sight expansion
perturbation �ðHnNÞ in an arbitrary gauge (specified by
the hypersurfaces orthogonal to u�) and the temporal
displacements �tB and �tD required to transform from
that arbitrary gauge to comoving and uniform density
gauges. The only approximations involved in Eq. (35) are
those of abrupt recombination and linearization. The terms
�H�tD and n��t

;�
B evaluated at the LSS are sometimes

called the monopole and Doppler contributions, respec-
tively. The geometrical nature of the terms in Eq. (35)
provides a clear and unambiguous interpretation of the
anisotropy, without reliance on coordinate-dependent no-
tions such as gravitational potentials (see Ref. [32] for a
related discussion).

Equation (35) is in a form that makes it easy to evaluate
the anisotropy using any gauge for the perturbations that
we choose. First, for the line-of-sight integral, by lineariz-
ing the exact expression Eq. (17) we have

�ðHnNÞ ¼ 1

3
��þ ���n

�n� þ a�n
� þ �H�N: (36)

The geometrical quantities in this expression can bewritten
in terms of the metric perturbations using Eqs. (A2), (A5),
(A6), and (A8), giving

�ðHnNÞ ¼ � _c þ�;�n
� þ �;��n

�n� þ 1

2
_H��n

�n�:

(37)

Here c is the curvature perturbation, � is the lapse per-
turbation,� is the shear scalar, andH�� is the tensor metric

perturbation. Equation (37) is valid in arbitrary gauges, i.e.
for arbitrary congruences u�, and it is now trivial to fix the
gauge, as we will see in Sec. III B 2. Second, for the

boundary terms in Eq. (35), we can work out the required
gauge transformations �tD and �tB using Eq. (A14) and
(A15). At the emission point E those transformations are
applied to the radiation quantities �ð
Þ, Pð
Þ, ��ð
Þ, and
qð
Þ, while at the observation point R the transformations

are determined by the hypersurface and state of motion of
the observer chosen, as we will see.
Since the quantity TRðn�Þ is observable, the general

expression Eq. (35) must be independent of the gauge or
congruence chosen, if the point R and the four-velocity of
the observer are held constant. This is demonstrated ex-
plicitly in Appendix B. However, if the observation point
and four-velocity are allowed to transform with the gauge
transformation, then the anisotropies will depend on the
gauge, as shown in Appendix C. Expanding the anisotropy
in terms of the spherical harmonics, Y‘mðn�Þ, the multipole
amplitudes are

a‘m �
Z �Tðn�Þ

�TR

Y�
‘mðn�Þd�: (38)

We show explicitly in Appendix C that only the dipole
anisotropy a1m and monopole perturbation a00 change in
the latter case, at linear order.

2. Recovering previous results in zero-shear or
longitudinal gauge

We will now illustrate the usefulness of the general
linear expression for the anisotropies, Eq. (35), by calcu-
lating in a particular gauge the anisotropy due to both
adiabatic scalar and tensor sources, recovering previous
results. We require both the line-of-sight integral in that
expression as well as the temporal displacements �tD and
�tB for the boundary terms. If we choose the congruence
u� such that the scalar-derived part of the shear ���

vanishes at linear order, then the integrand Eq. (37) takes
a particularly simple form. The frequently used longitudi-
nal gauge has this property, giving

�ðHnNÞ ¼ � _c � þ�;�
� n� þ 1

2
_H��n

�n�: (39)

In these expressions, the subscript � indicates a zero-shear
or longitudinal gauge quantity, and the overdot indicates
the proper time derivative in the direction of u�. Therefore,
using the first order expression

�;�n
� ¼ d�

dt

��������v�
� _�; (40)

we can write the integral in Eq. (35) as

Z �tE

�tR

�ðHnNÞdt¼
Z �tR

�tE

�
_c �þ _���1

2
_H��n

�n�
�
dtþ��

��������
E

R
:

(41)

It is simple to calculate the displacements �tD and �tB
for the case of large-scale adiabatic modes, for which the
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uniform radiation energy density and uniform total energy
density hypersurfaces coincide, and for which the plasma-
comoving and total comoving directions coincide.
(Additionally, these surfaces and directions coincide even
on small scales for the artificial case of a cold dark matter
free universe, in the tight coupling approximation.)
Although �LS is defined as a surface of constant �ð
Þ, it
will be easier to calculate the position of uniform total
density surfaces. The temporal displacement that takes us
from zero-shear to uniform total energy density gauge is,
using Eq. (A14) and the linearized energy constraint equa-
tion Eq. (A16) for the total energy density perturbation ��,

�tD ¼ ����

_�
¼ � 3 �Hð _c � þ �H��Þ � 1

a2
r2c �

12�G �Hð�þ PÞ : (42)

This expression can be applied at point E on the LSS as
well as at the reception point R if we choose to place R on a
surface of uniform energy density. The boost displacement
that transforms from zero-shear to comoving gauge is,
using Eq. (A15) and the linearized momentum constraint
equation Eq. (A17) for the total momentum density scalar
q,

�tB ¼ �
_c � þ �H��

4�Gð�þ PÞ : (43)

Again, this can be applied at both E and at R if we choose
the observer to be comoving.

Equations (41)–(43) with Eq. (35) completely specify
the anisotropies in terms of quantities in zero-shear or
longitudinal gauge. In practice it is common to make
approximations. If we assume that the anisotropic stress
is negligible (as is the case for matter or � domination),
then we have c � ¼ �� (see, e.g., [33]). As explained
above, the displacements �tD and �tB at the observation
point R only affect the observed monopole and dipole.
Dropping these terms, and using the background energy
constraint, the anisotropy for ‘ > 1 then becomes

�Tðn�Þ
�TR

¼
Z �tR

�tE

�
2 _c � � 1

2
_H��n

�n�
�
dtþ 1

3
c �

� 2

9

�
3
�H

_c � þ r2

a2 �H2
c �

�

� 2

3

1
�H2

ð _c � þ �Hc �Þ;�n�: (44)

All quantities outside the integral are to be evaluated at the
point on the LSS corresponding to viewing direction�n�.
This expression agrees precisely with Eq. (4.7) in Ref. [8],
for the case of adiabatic perturbations, including even a
term the authors of [8] describe as arising from ‘‘subtle
gauge effects.’’

Making further simplifications, we have _c � ¼ 0 at last
scattering if the pressure vanishes exactly there. If we
consider anisotropies on the largest angular scales, sourced
by modes with comoving wavenumber k � a �H, we can

drop all the gradient terms in Eq. (44). The result is

�Tðn�Þ
�TR

¼
Z �tR

�tE

�
2 _c � � 1

2
_H��n

�n�
�
dtþ 1

3
c �ðEÞ;

(45)

in agreement with the well-known result for the Sachs-
Wolfe effect due to large-scale scalar and tensor sources.
Note that this result includes a part that is evaluated at the
boundaryE, which comes from both the temporal displace-
ment �tDðEÞ and the integral in Eq. (35). The remainder of
that integral, which cannot be placed at the boundary,
appears in Eq. (45) as a contribution that is due to physical
metric fluctuations along the line of sight. The scalar part
of this contribution is known as the integrated Sachs-Wolfe
effect. During matter domination _c � ¼ 0, so all scalar
effects of the perturbed expansion along the line of sight
can be placed at the boundary.

IV. TRANSFER FUNCTIONS

A. Dipole

Next we will use the results derived so far to perform a
careful calculation of the CMB dipole due to scalar
sources. More precisely we will calculate the dipole power,
or the variance in the dipole anisotropy a1m, namely,

C1 � hja1mj2i � jha1mij2; (46)

over realizations of the assumed Gaussian random primor-
dial fluctuations. (The independence of C1 on m will
follow from statistical isotropy.) For the dipole the choice
of frame for the observer at R is critical, since a boost at
the observation point changes the dipole according to
Eq. (C12). For example, if we choose the observer’s frame
to be comoving with radiation, so that the radiation mo-
mentum density q�ð
Þ vanishes, then trivially the observed

dipole vanishes. Indeed, combining Eqs. (A12) and (C12)
we have

1

3

X
m

ja1mj2 ¼ �

4�2
ð
Þ

q�ð
Þq
ð
Þ
� ; (47)

so that the magnitude of the observed dipole in any frame is
proportional to the radiation flux observed in that frame.
We will adopt the most natural and physically best-
motivated choice, namely, the frame comoving with matter
(essentially the total comoving frame at late times) for the
calculation of C1. With this choice of frame, Eq. (47) has
the simple interpretation that the observed dipole is a
measure of how well worldlines comoving with radiation
and matter coincide.
We begin with the general linear result, Eq. (35). All of

the parts of this equation were carefully calculated in zero-
shear gauge for a comoving observer in Sec. III B 2. We can
ignore the monopole contribution �tDðRÞ since it only
affects the ‘ ¼ 0 mode. The displacements �tDðEÞ and
�tB were calculated in Eqs. (42) and (43). Combining these
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results with Eq. (41) for the line-of-sight integral, and
ignoring anisotropic stress at all times (so c � ¼ ��),
assuming matter domination at last scattering (so _c �ðEÞ ¼
0), and finally ignoring the term 1

a2
r2c �ðEÞ, we have

�Tðn�Þ
�TR

¼ 1

3
c �ðEÞ � 2

3

n�c
;�
� ðEÞ
�HE

þ
�
5

3
g�1
R � 1

�

� n�c
;�
� ðRÞ
�HR

þ 2
Z R

E

_c �dt: (48)

Here we have used Eq. (A21) for the growth function gR �
gðtRÞ and the relation Eq. (A24) to simplify the expression.
The approximation of matter domination at last scattering
(which implies zero anisotropic stress) results in errors in
C‘ for small ‘ on the order of 10% [34]. Neglecting the
term 1

a2
r2c �ðEÞ is entirely justified considering that

Eq. (42) for �tDðEÞ employed the approximation that the
uniform radiation energy density and uniform total energy
density hypersurfaces coincide, which is only valid on
large scales (scales that were super-Hubble at last scatter-
ing). The contribution to the dipole from last scattering will
be dominated by these large scales, as we will see.

To calculate the variance of the dipole, it will be helpful
to expand the function c �ðEÞ in spherical harmonics as

c �ðEÞ ¼ � 3

5

ffiffiffiffi
2

�

s

�
Z

dkkTðkÞX
‘m

Rpr
‘mðkÞj‘ðkrLSÞY‘mð�n�Þ:

(49)

Here j‘ is the spherical Bessel function of the first kind, rLS
is the comoving radius of the LSS, k is the comoving wave
number, and TðkÞ is the transfer function defined in
Eq. (A19). With the aim of expressing C1 in terms of the
primordial spectrum PRðkÞ, we have used Eq. (A22) to
write c � in terms of the primordial comoving curvature
perturbation Rpr. Similarly we will need the expansion of
the Doppler contributions at E and R,

n�c
;�ðEÞ ¼ 3

5

ffiffiffiffi
2

�

s
1

aE

�
Z

dkk2TðkÞX
‘m

Rpr
‘mðkÞj0‘ðkrLSÞY‘mð�n�Þ;

(50)

and

n�c
;�ðRÞ ¼ lim

r!0

3

5

ffiffiffiffi
2

�

s
gR
aR

�
Z

dkk2TðkÞX
‘m

Rpr
‘mðkÞj0‘ðkrÞY‘mð�n�Þ

(51)

¼ 1

5

ffiffiffiffi
2

�

s
gR
aR

Z
dkk2TðkÞX

m

Rpr
1mðkÞY1mð�n�Þ; (52)

where the prime indicates differentiation with respect to
the argument, and we have used the relation j0‘ð0Þ ¼ �1

‘=3.
Inserting these expressions into Eq. (48), we can evaluate
the dipole anisotropy using Eq. (38) (with ‘ ¼ 1) and the
orthonormality of the Y‘m. This gives

a1m ¼ � 1

5

ffiffiffiffi
2

�

s Z
dkkRpr

1mðkÞTðkÞT1ðkÞ; (53)

where T1ðkÞ is a new transfer function, called the dipole
transfer function, and defined by

T1ðkÞ � j1ðkrLSÞ þ 2k

aE �HE

j01ðkrLSÞ þ
�
gR � 5

3

�
k

aR �HR

þ 6
Z R

E
_gðtÞj1½krðtÞ�dt: (54)

Here rðtÞ is the comoving radial coordinate of the light ray
as a function of the time coordinate. Finally, using Eq. (46)
and the statistical relation Eq. (A25) for the primordial
power spectrum PRðkÞ, we find for the dipole power

C1 ¼ 4�

25

Z dk

k
PRðkÞT2ðkÞT2

1ðkÞ: (55)

Note the third term in Eq. (54), which is proportional to
k and dominates on small scales today. It might appear that
this term would lead to an ultraviolet divergence for the
dipole, but Eq. (55) is rendered finite by the function TðkÞ,
which decays like k�2 on small scales. This results in a
dipole amplitude

ffiffiffiffiffiffi
C1

p � 10�3 for standard cosmological
parameters.

B. Monopole

The monopole temperature perturbation is the ‘ ¼ 0
component of Eq. (38), i.e.

a00 ¼ 1ffiffiffiffiffiffiffi
4�

p
Z �Tðn�Þ

�TR

d�; (56)

and its variance over realizations of the primordial fluctua-
tions will be called C0. As discussed above Eq. (B14), the
monopole so defined is ambiguous in that different choices
of the background times �tE and �tR lead to different a00.
This well-known freedom is equivalent to our inability to
uniquely separate a background CMB temperature from
the observed mean temperature, which would be required
to define a monopole perturbation. Hence the monopole
perturbation in Eq. (56) cannot be observable.
Nevertheless, it is still possible to sensibly define a

monopole and consider its theoretical properties. Recall
that for the dipole it was necessary to fix the observer’s
frame by a physical prescription (namely that it be comov-
ing with matter). Analogously, to define a monopole the
key point is that we must fix, by a physical prescription, the
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spacelike hypersurface on which we place the observer.
Clearly there is freedom in how we choose this slice.
Recall that an observer chosen to comove with radiation
observes no dipole. The analogous situation with the
monopole is an observer placed on a uniform radiation
energy density hypersurface, for which the calculated C0

must vanish. Analogously to Eq. (47) for the dipole, we can
write

ja00j2 ¼ �

4�2
ð
Þ

ð��ð
ÞÞ2; (57)

where ��ð
Þ is the radiation energy density perturbation on
the same slicing used to define the monopole a00.
Therefore the monopole defined with respect to any slicing
is proportional to the radiation density perturbation for the
same slicing.

The simplest and most natural choice of slice on which
to place the observer is that of uniform matter (essentially
total) energy density. This choice is simplest because it
requires knowledge of just the local density, �, which acts
as a clock. It is natural because, as we will see, it exhibits
close analogy with the dipole. Comoving slices could also
be used, although their construction as hypersurfaces or-
thogonal to the comoving worldlines is more elaborate
[35]. Thus, while the dipole defined above is a measure
of the degree to which comoving radiation and matter
worldlines coincide, the monopole defined here has the
simple interpretation as a measure of how well hypersur-
faces of uniform radiation and matter energy density coin-
cide [36]. The arbitrariness in a00 mentioned above (due to
the freedom to choose the background times) only amounts
to a constant shift to a00, so its variance is unchanged. This
is why, although the monopole perturbation a00 is ambig-
uous and unobservable for any single observer, the vari-
ance C0 is still well defined theoretically (and could, in
principle, be approximated through observations [37]).

It should be clear immediately that there is a serious
problem with attempting to define the variance of the CMB
temperature on a uniform matter density slice. Namely,
matter has of course entered the nonlinear stage on small
scales, and hence hypersurfaces of constant matter density
cannot actually be defined. Nevertheless, smoothing over
small scales can recover meaningful linear results, at the
expense of further ambiguity in the form of the smoothing
scale. This issue arises because in calculating the mono-
pole as defined here, we will see that the dominant con-
tribution will be given by the variance hð��=�Þ2i evaluated
at R, which is dominated by small scales (where the slicing
is irrelevant). The important practical aspect of this brief
examination of the monopole will actually be in under-
standing the effects of long-wavelength sources, for which
the difficulties with small scales do not arise.

Proceeding as with the dipole above, the relevant con-
tributions to the general linear result Eq. (35) give

�Tðn�Þ
�TR

¼ 1

3
c �ðEÞ � 2

3

n�c
;�
� ðEÞ
�HE

þ
�
5

3
g�1
R � 2

�
c �ðRÞ

� 2

9�m

r2

a2R �H2
R

c �ðRÞ þ 2
Z R

E

_c �dt: (58)

We can ignore the Doppler contribution �tB at R since it
only affects the ‘ ¼ 1 mode, and the same approximations
have been applied here as for the dipole Eq. (48).
To calculate the variance of the monopole we will need,

in addition to Eqs. (49) and (50), the monopole term
evaluated at the reception point R,

c �ðRÞ ¼ � 3

5

ffiffiffiffi
2

�

s
gR

Z
dkkTðkÞX

‘m

Rpr
‘mðkÞj‘ð0ÞY‘mðn�Þ

(59)

¼ � 3

5

ffiffiffiffi
2

�

s
gR

Z
dkkTðkÞRpr

00ðkÞY00; (60)

using the relation j‘ð0Þ ¼ �0
‘. Proceeding as for the dipole

case, we find

a00 ¼ � 1

5

ffiffiffiffi
2

�

s Z
dkkRpr

00ðkÞTðkÞT0ðkÞ; (61)

where T0ðkÞ is the monopole transfer function defined by

T0ðkÞ � j0ðkrLSÞ þ 2k

aE �HE

j00ðkrLSÞ þ 5� 6gR

þ 2

3

gR
�m

k2

a2R �H2
R

þ 6
Z R

E
_gðtÞj0½krðtÞ�dt: (62)

Finally, using the statistical relation Eq. (A25) to evaluate
the variance we find

C0 ¼ 4�

25

Z dk

k
PRðkÞT2ðkÞT2

0ðkÞ: (63)

Note the presence of the Laplacian term ( / k2) in T0ðkÞ,
which will dominate on small scales, and implies that by
calculating C0 we are essentially calculating the (effec-
tively gauge independent) matter variance hð��=�Þ2i at the
observation point. In this monopole case the resulting
divergence is too strong to be saved by the transfer function
TðkÞ. Therefore we expect the variance C0 to diverge on
small scales, which is simply a reflection of the nonlinear
nature of matter fluctuations on small scales today, as
predicted above. That is, the monopole variance as we
have defined it cannot be quantified. Again, the importance
of Eq. (62) will lie in its long-wavelength behavior.

V. LONG-WAVELENGTH BEHAVIOR

Recall that all of our approximations have been good on
very large scales. In this section, we examine the long-
wavelength limit of the T1ðkÞ and T0ðkÞ transfer functions.
The dipole transfer function for a comoving observer,
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Eq. (54), is plotted in Fig. 3, together with the monopole
function for an observer on a uniform energy density slice,
Eq. (62), and the transfer functions for ‘ ¼ 2, 3, and 4. The
transfer functions for ‘ > 1 can be calculated from Eq. (48)
in exactly the same way as for the dipole, with the result

T‘ðkÞ ¼ j‘ðkrLSÞ þ 2k

aE �HE

j0‘ðkrLSÞ

þ 6
Z R

E
_gðtÞj‘½krðtÞ�dt: (64)

Note that the large-scale approximations involved in
Eq. (48) imply that this expression is only valid for scales
that are super-Hubble at last scattering. [The transfer func-
tions T1ðkÞ and T0ðkÞ are valid for small scales, since for
large krLS the second-to-last terms in both Eqs. (54) and
(62) dominate. These terms are generated locally at the
observation point R.] A value of �� ¼ 0:77 today was
used for all of these calculations.

Using asymptotic forms for the Bessel functions [38],
we can show from Eq. (64) that T‘ðkÞ should decay like k‘
as krLS ! 0, for ‘ > 1. This is verified in Fig. 3. However,
the figure also shows that T1ðkÞ does not decay like k for
small k; instead it decays like k3, which is faster than the
decay rate of T2ðkÞ.

To examine the behavior of the transfer function T1ðkÞ in
the limit k ! 0, we can use the small-argument approx-
imations to the Bessel functions [38] to give

T1ðkÞ ¼
��

gR � 5

3

�
1

aR �HR

� 5

3
R þ 2

Z R

0
gðÞd

�
k

þOðkrLSÞ3; (65)

where the conformal time , defined via d ¼ dt=a, has

been used to simplify the expression. In writing Eq. (65),
we have used the approximation gðtEÞ ¼ 1, although for
our numerical calculations we have evaluated Eq. (54)
without approximation. It is not obvious from Eq. (65)
that the OðkÞ term, in square brackets, vanishes.
However, the numerical calculation of Fig. 3 shows that
the OðkÞ term does indeed vanish, as pointed out above.
This is illustrated in greater detail in Fig. 4. There we

have plotted separately the first two terms in Eq. (54),
which originate at the LSS (called SWE in the plot), the
third term in Eq. (54), which comes from the observation
point R (SWR), and the line-of-sight ISW term. We can see
that each component separately does scale like k on large
scales, in particular, the LSS term SWE scales like the
predicted k‘, but the sum demonstrates that theOðkÞ terms
all cancel. It is the local contribution, SWR, which is not
present for ‘ > 1, which enables the cancellation. (Of
course the individual SW and ISW components are not
separately observable.) It is possible to show analytically
the Oðk3Þ dependence in the special case of a
cosmological-constant free Einstein-de Sitter universe.
Then Eq. (65) becomes

T1ðkÞ ¼ � k3

30
ðr3LS þ 3r2LSLSÞ þOðk5Þ: (66)

Figure 4 also illustrates that the source of the small-scale
increase in T1ðkÞ is due to the local contribution at R, as
explained above. The dipole transfer function, Eq. (54),
suggests a divergence in C1 like a power of k on small
scales, although this is moderated by the transfer function
TðkÞ. The result is that the observed dipole amplitude is a
factor �102 larger than the other multipoles. Figure 3
actually illustrates this directly: Eq. (55) generalizes to
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FIG. 3 (color online). Dipole transfer function T1ðkÞTðkÞ for a
comoving observer (solid curve). For comparison, the monopole
transfer functions for an observer on a uniform energy density
slice, T0ðkÞTðkÞ, and the transfer functions for ‘ ¼ 2, 3, and 4 are
also shown. Absolute values are plotted. The scales krLS ¼ 102

and krLS ¼ 1 correspond roughly to the Hubble scales at last
scattering and today, respectively.
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FIG. 4 (color online). Dipole transfer function T1ðkÞTðkÞ for a
comoving observer. Absolute values of individual contributions
from Sachs-Wolfe terms evaluated at emission, E, and at the
observation point, R, as well as the line-of-sight ISW contribu-
tion, are indicated.
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C‘ ¼ 4�

25

Z dk

k
PRðkÞT2ðkÞT2

‘ðkÞ (67)

for all ‘ � 0. Therefore the expected multipole amplitude
is simply proportional to the area under the appropriate
curve in Fig. 3 [assuming a nearly scale-invariant primor-
dial spectrumPRðkÞ]. Geometrically, the comoving matter
and radiation worldlines coincide on large scales, and
begin to diverge strongly on small scales. The contribution
to the dipole from last scattering, SWE, will vary smoothly
if the observer’s position is varied, whereas the local con-
tribution, SWR, will vary greatly.

These results indicate that the dipole defined with re-
spect to the comoving frame receives strongly suppressed
contributions from super-Hubble modes. This was in fact
noted some time ago [15] in relation to the Grishchuk-
Zel’dovich effect [14], but in the context of a matter-
dominated universe. In fact, it was claimed in [15] that
this cancellation would not persist in the presence of a
cosmological constant, so that super-Hubble modes would
have an observable imprint on the CMB, a claim which we
have now demonstrated to be incorrect.

As we did for the dipole, we can examine the behavior of
the monopole transfer function T0ðkÞ in the limit k ! 0,
giving

T0ðkÞ ¼
�
� 1

6
r2LS �

2rLS
3aE �HE

� 2

3a2E �H2
E

þ 2gR
3�m;Ra

2
R
�H2
R

�
Z R

E
_gðtÞr2ðtÞdt

�
k2 þOðk4Þ; (68)

where �m is the standard matter density parameter. In this
monopole case, we have thus shown analytically that the
leading-order terms in the transfer function, Eq. (62),
which go like k0, do cancel in the presence of a cosmo-
logical constant. However, Fig. 3 shows that an even

stronger result holds in the monopole case: theOðk2Þ terms
in Eq. (68) actually cancel as well. Again, this is shown in
greater detail in Fig. 5, where it is apparent that an exqui-
site cancellation occurs in the individual components,
which scale like k0 on large scales, to give the Oðk4Þ total
transfer function on large scales. Figure 5 also illustrates
the local source, SWR, of the strong small-scale divergence
discussed above. Geometrically, the hypersurfaces of uni-
form matter and radiation density coincide on large scales,
and begin to very strongly diverge on small scales. This
divergence makes it impossible to quantify the total power
C0 with our definition of the monopole.

VI. DISCUSSION

Our result in Sec. V that the dipole and monopole
receive suppressed contributions from large scales, even
in the presence of a dominant cosmological constant,
strongly suggests that the cancellations involved are not
accidental. To understand the origin of this behavior, con-
sider first the monopole case. Physically, the suppression as
k ! 0 in the monopole transfer function shown in Figs. 3
and 5 means that surfaces of uniform total and radiation
energy density coincide on the largest scales, according to
our definition of the monopole in Sec. IVB. But this is just
the statement of adiabaticity: an adiabatic matter-radiation
fluid is characterized by the condition

��

_�
¼ ��ð
Þ

_�ð
Þ
; (69)

on the largest scales. Therefore, Eq. (A14) shows that the
same gauge transformation takes us to both constant total
matter and constant radiation hypersurfaces; in other
words, those surfaces must coincide. It is important to
point out that adiabatic long-wavelength modes remain
adiabatic under evolution [33], and indeed the comoving
curvature perturbation R remains constant in time (see,
e.g., [39]). This trivial evolution on super-Hubble scales
means that when constant matter and radiation density
surfaces coincide on large scales at last scattering, due to
adiabatic initial conditions, they must also coincide today.
An analogous situation holds for the dipole. In this case,

the adiabaticity condition implies that, on large scales, the
radiation and total matter comoving worldlines coincide
(i.e. there is no ‘‘peculiar velocity’’ isocurvature mode
between the two components). According to our definition
of the dipole in Sec. IVA, this is simply the statement that
the dipole is suppressed on large scales.
This leads us to the important conclusion that this in-

sensitivity to long-wavelength sources must apply regard-
less of the matter content of the Universe, as long as
adiabaticity holds. Therefore the suppression we found
for the specific case of cosmological-constant (or
Einstein-de Sitter) universes must in fact occur in general.
Note that this may have relevance to very recent discus-
sions regarding a potential power asymmetry in the CMB
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FIG. 5 (color online). Monopole transfer function T0ðkÞTðkÞ,
for an observer on a uniform energy density slice. Absolute
values of individual contributions from Sachs-Wolfe terms eval-
uated at emission, E, and at the observation point, R, as well as
the line-of-sight ISW contribution, are indicated.
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[40]. The exquisite cancellations visible at large scales in
Figs. 4 and 5 between the SW and ISW components
illustrate a previously unrecognized relation between the
two, which is enforced by the condition of adiabaticity.

In brief, the dipole and monopole as defined here are just
measures of departures from the adiabaticity condition,
Eq. (69), which generally occur on small scales. Are these
results sensitive to the definitions of dipole and monopole
used? As long as the dipole and monopole are defined
physically, i.e. in relation to locally measureable quantities,
then the results must hold. An important example which
does not satisfy this criterion is the zero-shear, or longitu-
dinal gauge, since it is not defined in terms of local,
observable matter quantities. If the dipole (or monopole)
is defined with respect to a zero-shear frame, then it may
appear from theoretical calculations that the dipole is
sensitive to long-wavelength modes. However, this sensi-
tivity cannot be observable, since zero-shear frames cannot
be uniquely constructed locally. (A linear boost or ‘‘tilt’’ of
a zero-shear frame is still a zero-shear frame.) Thus great
care must be taken when considering behavior on large
scales with longitudinal gauge.

Indeed, another way to understand this result is to realize
that, in the limit k=ðaHÞ ! 0, an adiabatic perturbation
mode locally becomes essentially pure gauge, and can be
removed within any sub-Hubble region by a simple boost
coordinate transformation. Such a mode is indistinguish-
able locally from a homogeneous background, and hence
cannot have any observational consequences such as a
dipole anisotropy [41].

Finally, we note that when the condition of adiabaticity
is relaxed, then our conclusions no longer hold [16]. In the
presence of isocurvature perturbations, it is possible that a
physically defined dipole be sensitive to super-Hubble
modes, since the extra freedom allows for a relative tilt
between comoving matter and radiation comoving world-
lines on large scales.

While we have emphasized here the consequences of
adiabaticity, it is hoped that other applications will follow
from the exact formalism for CMB anisotropies that we
have developed. One possibility is the evaluation of an-
isotropies, in particular, the ISW effect, in void models of
acceleration [42] (see [43] for a brief review), which have
not yet been confronted with observations at the perturba-
tive level [44]. Note however that the present approach is
not limited to calculating CMB anisotropies, and that more
generally it is applicable to calculating redshifts in arbi-
trary spacetimes. Potential uses include calculating the
redshift-luminosity distance relation in perturbed space-
times (see, e.g., [45]).
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Note added.—When this work was essentially complete,
a related paper appeared [50], which appears to support our
conclusion that long-wavelength perturbations cannot ef-
fect the CMB dipole.

APPENDIX A: METRIC-BASED APPROACH

In this appendix, we will collect together several ele-
ments of the metric-based approach to cosmological per-
turbations that will be useful in describing the CMB
anisotropies at linear order (see, e.g., [33] for a review of
metric-based perturbation theory). In the metric approach a
set of coordinates are defined in the spacetime by a folia-
tion into spacelike hypersurfaces of constant t, �t, and a
threading into timelike worldlines of constant spatial co-
ordinates xi, where Latin indices run from 1 to 3. The
gauge freedom of perturbation theory is related to our
freedom to choose such a slicing and threading.
However, it can be shown (see [46,47]) that at linear order,
physical perturbations in FRW backgrounds are gauge
invariant under changes in the threading. Therefore the
gravitational dynamics can be entirely expressed in terms
of spatially gauge-invariant quantities. The reason for this
invariance is simply the homogeneity of the background
spacetime, and its importance is that it means that there is
effectively just a single degree of gauge freedom on FRW
backgrounds, namely, the temporal position of �t at each
event. Thus, to simplify expressions to follow, we will
choose the congruence of coordinate threads (with tangents
u�) to be orthogonal to the �t, so that the shift vector
(metric component g0i) vanishes. These spatial coordinates
are comoving at zeroth order, but may depart from comov-
ing at first order. With this choice, there is a direct corre-
spondence between the gauge freedom (i.e. the freedom to
choose the slicing) in the metric formalism, and the free-
dom to choose the congruence in the covariant formalism.
Evaluating the metric using Eq. (1) in the chosen coordi-
nates we have

g00 ¼ �N2; gij ¼ hij; (A1)

where N is the lapse function for the slicing. We consider
scalar and tensor perturbations only, as vectors are ordina-
rily thought to be cosmologically irrelevant.
The spacetime is completely described by the lapse

function, the intrinsic curvature of the spatial metric h��,

and the extrinsic curvature of the �t. We define the lapse
perturbation � through

N � 1þ�: (A2)

The only part of the intrinsic curvature of h�� that we will

need is the perturbed Ricci scalar, �ð3ÞR, for the spatial
slices �t, which defines the curvature perturbation c via
the relation

�ð3ÞR � 4

a2
r2c : (A3)
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Here r2=a2 � D�D
�, for background scale factor a, so

r2 is the comoving Laplacian. The extrinsic curvature of
the slicing is specified by the expansion and shear of the
normal congruence to the �t, and is related to the spatial
metric through [22]

1

3
�hij þ �ij ¼ 1

2
_hij; (A4)

where the overdot represents the proper time derivative
along u�. At linear order the trace of this equation gives for
the expansion perturbation

�� ¼ �3 �H�� 3 _c þ 1

a2
r2�; (A5)

where �H is the background Hubble rate. The shear scalar �
describes the scalar-derived part of the shear, with

�ij ¼ DiDj�� 1

3a2
r2�hij þ 1

2
_Hij; (A6)

where Hij is the transverse and traceless (tensor) part of

hij, and we have ignored the vector-derived part of the

shear. One further important quantity is the acceleration of
the worldlines normal to the �t, Eq. (4). It is related to the
lapse through the exact expression

a� ¼ 1

N
D�N; (A7)

which at linear order becomes

a� ¼ D��: (A8)

The various quantities defined above can be related to
the explicit component form of the metric at linear order
(ignoring the vector part),

�g00 ¼ �2�; �gij ¼ a2ð�2c
ij þ 2E;ij þHijÞ;
(A9)

where 
ij is the background spatial metric, and the trace-

free scalar part of Eq. (A4) gives � ¼ a2 _E.
Once the slicing �t is specified, i.e. the time coordinate

is chosen, then the perturbation in any exact quantity
Xðxi; tÞ is fixed via

�Xðxi; tÞ ¼ Xðxi; tÞ � �XðtÞ; (A10)

where �XðtÞ is the homogeneous background value.
Therefore our freedom to vary the �t (equivalently to
vary the orthogonal congruence u�) results in an inherent
ambiguity in our ability to specify any perturbation. This
temporal gauge freedom can be used to simplify calcula-
tions by choosing an appropriate congruence, as we see
with the Sachs-Wolfe calculation in Sec. III B 2. It is
straightforward to calculate the change in any perturbation
under a gauge transformation t ! t� �t (see, e.g., [47]).
A few results that we will need are, at linear order,

�� ! ��þ _��t; (A11)

q ! q� ð�þ PÞ�t; (A12)

c ! c � �H�t; (A13)

where q is the scalar fromwhich the momentum density q�

is derived, through q� ¼ D�q. These results imply that the
gauge transformation required to go from an arbitrary
initial gauge to uniform energy density gauge, defined by
�� ¼ 0, is

�t ¼ ���

_�
; (A14)

and the transformation that takes an arbitrary initial gauge
into comoving gauge, defined by q ¼ 0, is

�t ¼ q

�þ P
: (A15)

Unless otherwise stated, all expressions in this work will be
presented in an unspecified gauge, i.e. they will apply to
arbitrary gauges.
We will also need the Einstein constraint equations in

order to relate the matter perturbations to the metric per-
turbations. Projecting the Einstein equations twice along
u� and linearizing, we find the energy constraint,

3 �Hð _c þ �H�Þ � 1

a2
r2ðc þ �H�Þ ¼ �4�G��: (A16)

Similarly, projecting once with u� and once with h�� gives
the linearized (scalar) momentum constraint

_c þ �H� ¼ �4�Gq: (A17)

It is conventional to express the primordial power spec-
trum in terms of the comoving gauge curvature perturba-
tion, usually denoted R, since R is constant on large
(super-Hubble) scales for adiabatic modes and hence its
value at late times can be trivially related to the predictions
of an inflationary model (see, e.g., [39]). However, we will
see that it is simplest to perform the linear Sachs-Wolfe
calculation in terms of the zero-shear gauge curvature
perturbation, c �, where we denote zero-shear gauge per-
turbations by the subscript �. For matter domination, it is
simple to relate c � to R by performing a gauge trans-
formation from zero-shear to comoving gauge; using
Eqs. (A12) and (A13) gives

c � ¼ � 3

5
R: (A18)

In terms of Fourier modes at comoving wavevector k, on
large scales Rðk; tÞ ¼ RprðkÞ, where RprðkÞ is the con-
stant primordial value ofRðkÞ, i.e. the value at early times
sufficiently later than Hubble exit during inflation.
However, on small scalesR decays during radiation domi-
nation. The total decay incurred through to matter domi-
nation is described by a linear transfer function TðkÞ,
defined by
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R ðk; tmÞ ¼ TðkÞRprðkÞ; (A19)

where k � jkj and tm is some time during matter domina-
tion. (TðkÞ will be distinguished from the temperature T by
the presence of its argument, k.) The transfer function TðkÞ
approaches unity at small k, and decays roughly like k�2

for k * keq, where keq is the wave number which enters the

Hubble radius at matter-radiation equality (see, e.g., [39]).
TðkÞ can be calculated accurately numerically, e.g. using
packages such as CAMB [10,11]. Combining Eqs. (A18)
and (A19) gives

c �ðk; tmÞ ¼ � 3

5
TðkÞRprðkÞ: (A20)

The perturbation c � is constant during matter domina-
tion, but it decays once a cosmological constant becomes
important. This decay is independent of scale and can be
described by a function gðtÞ via

c �ðk; tÞ � gðtÞc �ðk; tmÞ; (A21)

which gives

c �ðk; tÞ ¼ � 3

5
gðtÞTðkÞRprðkÞ: (A22)

The function gðtÞ approaches unity and zero at early and
late times, respectively, and solving the linearized dynami-
cal Einstein equation for c � gives

gðtÞ ¼ 5

2

�m;0
�H2
0
�H

a

Z t dt0

a2 �H2
: (A23)

Here �H0 is the background Hubble rate today, and �m;0 is

the ratio of matter to total energy density today. Using this
last expression we can derive the useful relation

_g
�H
þ g ¼ �m

�
5

2
� 3

2
g

�
: (A24)

The statistics of the assumed Gaussian random primor-
dial fluctuations are completely described by the power
spectrum PRðkÞ, defined by

hRprðkÞRpr�ðk0Þi ¼ 2�2�3ðk� k0ÞPRðkÞ
k3

: (A25)

With this definition PRðkÞ is dimensionless, and it is
constant for a scale-invariant spectrum.

APPENDIX B: GAUGE INVARIANCE OF
ANISOTROPIES

The calculated temperature anisotropy cannot depend on
the coordinate choice (in the metric framework) or con-
gruence choice (in the covariant framework), since the
anisotropy is directly observable. A number of workers
have demonstrated this explicitly in the past in the metric
formalism (see, e.g., [9,31]). Nevertheless, it will be useful
to demonstrate the result explicitly using the present co-

variant framework, as it will help to illuminate the issues
involved.
We wish to demonstrate explicitly that the expression

Eq. (35) for the anisotropy observed at R, namely,

�Tðn�Þ
�TR

¼
Z �tE

�tR

�ðHnNÞdtþ ð �H�tD þ n��t
;�
B Þ

��������
E

R
; (B1)

is invariant under arbitrary linear gauge transformations, if
the point R and the four-velocity of the observer are held
constant. Such a transformation changes the hypersurfaces
of constant time according to

t ! t� �t; (B2)

for small temporal shift �t ¼ �tðx�Þ. Equivalently, it
changes the congruence orthogonal to the slicing by the
spatial gradient of �t,

u� ! u� þD��t; (B3)

at linear order. Under this change in u�, each term in the
integrand in Eq. (B1) will change, and the change in the
slices ��tE and ��tR implied by Eq. (B2) means that the

displacements �tD and �tB to the last scattering hypersur-
face �LS and to the reception point R will also change.
Straightforward but lengthy calculations using the defi-

nitions Eqs. (4)–(6) give the following transformations
under Eq. (B3), to first order:

� ! �þD2�tþ 3 _�H�t; (B4)

���n
�n� ! ���n

�n� þ n�n�D�D��t� 1

3
D2�t; (B5)

a�n
� ! a�n

� þ n�ð _�tÞ;�; (B6)

whereD2 � D�D� is the physical Laplacian. Note that, by

definition, after the gauge transformation (B2) all quanti-
ties in the integrand in Eq. (B1) are to be evaluated at the
new event temporally displaced by �t from the original
event. This makes no difference at linear order to quantities
that vanish at zeroth order (such as ��� and a�), but

accounts for the term 3 _�H�t in Eq. (B4). Next, considering
that the quantity Ndt is the proper time interval along u�

between hypersurfaces separated by coordinate time inter-
val dt, we can easily derive the linear transformation law
for the lapse perturbation,

�N ! �N þ _�t: (B7)

Combining Eqs. (B4)–(B7) with Eq. (36), we have the
linear transformation of the integrand of Eq. (B1),

�ðHnNÞ ! �ðHnNÞ þ ð �H�tÞ	 þ n�n�D�D��t

þ n�ð _�tÞ;� (B8)

¼ �ðHnNÞ þ d

dt
ð �H�tþ n��t

;�Þ
��������v�

: (B9)
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This last line follows from the previous line by straightfor-
ward algebra, and contains a coordinate time derivative
along the null geodesic O. Therefore the integral in
Eq. (B1) transforms according to

Z �tE

�tR

�ðHnNÞdt !
Z �tE

�tR

�ðHnNÞdtþ ð �H�tþ n��t
;�ÞjER:
(B10)

Now all we need are the transformations for the bound-
ary terms in the expression for the temperature anisotropy,
Eq. (B1). By Eq. (B2), the temporal displacement �tdisp
between any hypersurface of constant t and some fixed
hypersurface must transform like

�tdisp ! �tdisp � �t: (B11)

Applying this expression to �tdisp ¼ �tD and �tdisp ¼ �tB
gives for the transformation of the boundary terms

ð �H�tD þ n��t
;�
B ÞjER ! ð �H�tD þ n��t

;�
B ÞjER

� ð �H�tþ n��t
;�ÞjER: (B12)

Combining Eqs. (B10) and (B12) we finally find

�Tðn�Þ
�TR

! �Tðn�Þ
�TR

; (B13)

so that the temperature anisotropy is invariant under linear
transformations of the congruence u�, or equivalently the
slicing �t, used in the calculation, if the point of observa-
tion and the four-velocity of the observer are held constant.
This of course was to be expected since the anisotropies are
observable.

Note that we are free to vary the ‘‘background times’’ �tR
and �tE at first order. Through Eq. (34) this freedom simply
shifts the temperature perturbation �Tðn�Þ by an irrelevant
constant. Indeed, we can use this freedom to fix �Tðn�Þ
such that its mean over the whole sky vanishes for some
particular observation point R,Z

�Tðn�Þd� ¼ 0; (B14)

so that �TR coincides with the mean temperature over the
sky. Some authors consider it important to make this choice
(see, e.g., [7]).

APPENDIX C: GAUGE DEPENDENCE OF
ANISOTROPIES

After demonstrating in Appendix B the gauge invari-
ance of the anisotropies described by Eq. (B1) for fixed
observation point R and observer four-velocity, we will
now show how the anisotropies do depend on the gauge,
when R and the four-velocity are allowed to transform. At
linear order, we will see that such transformations will only
effect the monopole and dipole anisotropies, as is well
known.

Consider again the gauge transformation

t ! t� �t; (C1)

with corresponding change in the orthogonal congruence

u� ! u� þD��t: (C2)

Let us now evaluate the anisotropies using the general
linear expression, Eq. (B1), but moving the reception point
R according to Eq. (C1), and boosting the observer four-
velocity according to Eq. (C2). Since we move R, the
corresponding emission point E must also move. If R
moves to the future, then the corresponding LSS will
increase in diameter, and E will move radially outwards.
We can schematically indicate the contributions to the
change in the anisotropies under Eq. (C1) by

�
�Tðn�Þ

�TR

¼ @

@E

�Tðn�Þ
�TR

�Eþ @

@R

�Tðn�Þ
�TR

�R

þ @

@u�
�Tðn�Þ

�TR

�u�: (C3)

The first term in Eq. (C3) arises due to the change in
diameter of the LSS (and the entire past light cone). As the
LSS moves, it samples different perturbation modes, so the
observed anisotropies change. This effect is greatest for the
structures at the smallest scales (comoving and angular),
and was calculated in detail in [48]. There it was shown
that this contribution is of order

@

@E

�Tðn�Þ
�TR

�E� �HðtRÞ�t
�

�Tðn�Þ
�TR

; (C4)

where � is the angular scale of the feature in question.
Since �t and �Tðn�Þ are both first order quantities, this
effect can be considered to be second order, and so will not
be considered further here. However, for large changes in
observation time, substantial changes to the anisotropies
will be observed [48].
To calculate the second and third terms in Eq. (C3), note

first that by displacing the observation point by �t and the
observation four-velocity by D��t, the displacements �tD
and �tB at R do not change under Eq. (C1):

�tDðRÞ ! �tDðRÞ; (C5)

�tBðRÞ ! �tBðRÞ: (C6)

The displacements at the emission point E still transform
according to Eq. (B12),

ð �H�tD þ n��t
;�
B ÞjE ! ð �H�tD þ n��t

;�
B ÞjE

� ð �H�tþ n��t
;�ÞjE: (C7)

Combining Eqs. (C5)–(C7) with the transformation
Eq. (B10) for the integral, we find that the anisotropies
described by Eq. (B1) transform according to
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�Tðn�Þ
�TR

! �Tðn�Þ
�TR

� ð �H�tþ n��t
;�Þ

��������R
: (C8)

To illuminate the nature of this change in the anisotro-
pies, we can use the multipole expansion of the anisotropy,
Eq. (38). If we align the polar axis along D��t, we have

�H�t ¼ ffiffiffiffiffiffiffi
4�

p
�H�tY00ðn�Þ; (C9)

n��t
;� ¼

ffiffiffiffiffiffiffi
4�

3

s
j�u�jY10ðn�Þ; (C10)

where �u� � D��t. Combining these expressions with
Eq. (C8), the multipole expansion (38) gives

a00 ! a00 �
ffiffiffiffiffiffiffi
4�

p
�H�t; (C11)

a10 ! a10 �
ffiffiffiffiffiffiffi
4�

3

s
j�u�j; (C12)

and all other multipoles are invariant under the transfor-
mation. That is, only the monopole and dipole change.
Therefore the calculation of the higher multipoles is for-
giving with respect to the care taken regarding gauge.
However, in Sec. IV, where we calculate the dipole and
monopole, we must be completely explicit about the speci-
fication of the frame in which we evaluate the dipole and
the hypersurface on which we evaluate the monopole.
To close this discussion of gauge dependence, we note

that going beyond first order, a boost at the observation
point R transfers power to all multipoles, and also distorts
anisotropies through aberration [49].
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