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Several anomalies appear to be present in the large-angle cosmic microwave background (CMB)

anisotropy maps of the Wilkinson Microwave Anisotropy Probe. One of these is a lack of large-scale

power. Because the data otherwise match standard models extremely well, it is natural to consider

perturbations of the standard model as possible explanations. We show that, as long as the source of the

perturbation is statistically independent of the source of the primary CMB anisotropy, no such model can

explain this large-scale power deficit. On the contrary, any such perturbation always reduces the

probability of obtaining any given low value of large-scale power. We rigorously prove this result

when the lack of large-scale power is quantified with a quadratic statistic, such as the quadrupole moment.

When a statistic based on the integrated square of the correlation function is used instead, we present

strong numerical evidence in support of the result. The result applies to models in which the geometry of

spacetime is perturbed (e.g., an ellipsoidal universe) as well as explanations involving local contaminants,

undiagnosed foregrounds, or systematic errors. Because the large-scale power deficit is arguably the most

significant of the observed anomalies, explanations that worsen this discrepancy should be regarded with

great skepticism, even if they help in explaining other anomalies such as multipole alignments.
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I. INTRODUCTION

Observations of cosmic microwave background (CMB)
anisotropy, particularly the data from WMAP [1–4], have
revolutionized cosmology. These observations are a major
contributor to the emergence of a cosmological ‘‘standard
model’’ of a universe dominated by dark energy and cold
dark matter, with a nearly scale-invariant spectrum of
Gaussian adiabatic perturbations [5,6]. The overall consis-
tency of the CMB data with this model is quite remarkable,
but there appear to be some anomalies on the largest
angular scales, such as a lack of large-scale power
[2,7,8], alignment of low-order multipoles [8–11], and
hemispheric asymmetries [12,13].

The significance of and explanations for these puzzles
are hotly debated. In particular, it is difficult to know how
to interpret a posteriori statistical significances: when a
statistic is invented to quantify an anomaly that has already
been noticed, the low p values for that statistic cannot be
taken at face value. Nonetheless, the number and nature of
the anomalies (in particular, the fact that several seem to
pick out the same directions on the sky) seem to suggest
that there may be something to explain in the data. In this
paper, we will tentatively assume that there is a need for an
explanation and consider what that explanation might be.

Since the standard model is in general highly consistent
with the CMB and a wide variety of other observations, it is
natural to look for explanations of these puzzles that con-
sist of perturbations added onto the standard model. Such
explanations can be based on nonstandard cosmologies,

such as ellipsoidal models [14], large-scale magnetic fields
[15], and theories based on Bianchi VIIh spacetimes with
rotation and shear [16,17]. They can also involve phe-
nomena on much smaller scales (e.g., [18–21]), perhaps
even within the Solar System [22]. Any undiagnosed fore-
ground contaminant would fall into the class of explana-
tions we consider, as would many systematic errors.
All of these models can be described by assuming that

the observed CMB sky is the sum of two terms:

TobsðrÞ ¼ T0ðrÞ þ TcðrÞ; (1)

where T0 is a Gaussian CMB sky with a power spectrum
given by the standard model and Tc is a contaminant. The
contaminant can be a fixed function of sky position r or a
realization of a random process. In the latter case, we
assume nothing about the statistics of this process except
that it is independent of the Gaussian random process that
produced T0. We wish to consider the possibility that such
a model can explain some or all of the large-angle
anomalies.
In this article, wewill present strong evidence that on the

contrary all such models actually exacerbate one of the
anomalies, namely, the observed lack of power in the large-
angular-scale CMB anisotropy. This anomaly is formally
highly statistically significant, and as we will argue below
it is one for which the problems of a posteriori statistics are
not particularly severe. It is therefore arguably the most in
need of explanation of all of the large-angle CMB puzzles.
We conclude, therefore, that this entire category of possible
explanations should be regarded with great skepticism. In
particular, the absence of large-scale power in the WMAP
data is in fact a strong argument against the existence of*ebunn@richmond.edu
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undiagnosed foreground contamination, as well as system-
atic errors that would produce an additive contaminant to
the observed sky maps.

We can quantify the lack of power in the large-angle
CMB by considering either the power in low-order multi-
poles (especially the quadrupole) or a statistic based on the
two-point angular correlation function (see Fig. 1). In
either case, the p values (that is, the probabilities of getting
as low a value of the chosen statistic as the one in the actual
data) are low; in fact, for some choices of statistic, they are
less than 0.1% [7] (but see [23] for a contrasting analysis).
By definition, for an alternative theory to explain this
anomaly, it would have to generate larger p values. We
will show in this paper that all proposed models of the form
described above in fact reduce the p values based on these
statistics. Therefore, although such models might alleviate
some of the other large-angle anomalies, they worsen this
one.

At one level, this is not surprising. For the models
considered here, in which the observations are the sum of
two statistically independent terms, the observed power
spectrum is simply the sum of the standard model spectrum
and the spectrum of the contaminant. Addition of the
contaminant therefore biases all multipoles up, including
the quadrupole [24,25]. This is merely a statement about
mean-square values, however, and does not tell us about
the probability distribution of the multipoles. It is logically
possible that a (non-Gaussian) contaminant, even as it
biases the mean-square quadrupole up, widens the proba-
bility distribution for the quadrupole in such a way as to
enhance the probability of getting low values. Indeed, any
proposal to explain the lack of large-scale power through a
perturbation to the standard model must be proposing such
an effect, since this is what it would mean to ‘‘explain’’ the
discrepancy.

For example, suggestions have been made that the low
quadrupole might be explained by an extended local fore-
ground [20], by dust-filled local voids1 [18,19], or by an
‘‘ellipsoidal’’ universe that expands at different rates in
different directions [14]. Each such explanation assumes
that a chance anticorrelation between the contaminant and
the intrinsic CMB anisotropy has occurred. In order for this
to count as an explanation, however, such an anticorrela-
tion must be sufficiently probable that it raises the proba-
bility of finding the observed lack of power. Although this
is a logical possibility, we will argue below that it in fact
never occurs, whether the lack of power is quantified via
the quadrupole moment or the correlation function. For

some specific cases, such as the quadrupole moment in an
ellipsoidal universe, previous work [26] has already estab-
lished this; in this paper we prove it in general. In sum-
mary, such models cannot explain the lack of large-scale
power, and in fact always ‘‘antiexplain’’ it by reducing the
already-low probability.
Section II proves this general result in the case where the

lack of power is quantified via a quadratic estimator such as
the mean-square quadrupole moment. Section III presents
strong numerical evidence that the result is also true in the
case of a statistic based on the two-point correlation func-
tion. Section IV contains a brief discussion of the results,
and the Appendix proves a key mathematical result needed
in Sec. II.

II. QUADRATIC POWER ESTIMATORS

As noted above, the observed lack of large-scale power
in the CMB can be quantified in different ways. The
simplest, going all the way back to the Cosmic
Background Explorer (COBE) observations [27,28], is to
compute an estimator of the quadrupole power C2 ¼
hja2mj2i, where alm is a coefficient in a spherical harmonic
expansion. Quadrupole estimators applied to the WMAP
data are lower than theoretical predictions, although due to
the large cosmic variance, the significance of this anomaly
is only �5% [8], which is weaker than the correlation
function statistic described in the next section.
Nonetheless, because the quadrupole is one of the simplest
and most natural ways to quantify large-scale power, we
consider it in detail in this section. In particular, we will
demonstrate that any statistically independent contaminant
exacerbates the problem of an anomalously low quadru-
pole. This fact has been previously noted [24] in particular
cases, but as far as we know a general proof has never been
given
The quadrupole power is a positive definite quadratic

function q2 of the data. As noted in the previous section, a
contaminant always causes an upward bias in the expecta-
tion value of such a statistic; to be precise, the expectation

FIG. 1. The two-point correlation function for the WMAP
data. The solid curve shows the correlation function for the
three-year WMAP internal linear combination data at resolution
Nside ¼ 32, computed with the SpICE software [32]. The dashed
curves show the 95% confidence range in a set of simulations.
The simulations virtually never produce correlation functions
that are as close to zero at large angles as the real data.

1A suggestion is made in the cited work that the hypothesis
that the contaminant is uncorrelated with the primary signal may
not apply. If this is true, then the arguments in the present paper
would not apply to this model. It is not clear to us that a strong
correlation of the proposed form exists in the model under
consideration, and as far as we know no detailed calculation of
this effect has been performed.
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value is hq2i ¼ hq20i þ hq2ci, where the two terms on the

right are the expectation values due to the to contributors
T0, Tc. As noted in the previous section, however, this
statement is not sufficient to justify the claim that adding
a contaminant always exacerbates the problem of a low
quadrupole. We need to show that the probability of getting
a low quadrupole is always reduced by adding a contami-
nant—that is, for any given value q̂2, the probability that
the observed value is less than q̂2 is always lower with a
contaminant than without.

Let the vector y represent a list of data points that wewill
use to estimate the large-angle power in the CMB, for
example, the pixelized temperature values in the WMAP
data. Let q2 be a positive definite quadratic function of the
data (possibly with some noise bias removed):

q2ðyÞ ¼ y �A � y � b: (2)

HereA is a symmetric nonnegative definite matrix, and the
noise bias b is a constant.

We want to compare the null hypothesis, that y contains
only intrinsic CMB anisotropy and noise, with the hy-
pothesis that there is an additional statistically independent
contaminant. We can express these possibilities by writing

y ¼ xþ c; (3)

where x is the ‘‘uncontaminated’’ data (including noise)
and c represents a hypothetical contaminant. We assume
that x is drawn from a multivariate Gaussian distribution

fxðxÞ / expð�1
2x �M � xÞ (4)

for some symmetric positive definite matrix M. For the
null hypothesis, we set c ¼ 0. When considering contami-
nation, we assume c is a random variable with some
probability density fc. (This formulation includes the pos-
sibility that c is a fixed contaminant—that is, fc is allowed
to be a delta function.) No assumption is made about fc
other than independence of x and c, which means that the
joint probability density factors:

fðx; cÞ ¼ fxðxÞfcðcÞ: (5)

Let ŷ be the data actually measured, and let q̂2 ¼ q2ðŷÞ
stand for the power estimate obtained from it. Let Pc stand
for the probability of getting a value of q2 as low as the true
value, assuming a fixed value for the contaminant c:

Pc ¼ Pr½q2ðyÞ< q̂2jc� ¼
Z
ðxþcÞ2V

dxfxðxÞ; (6)

where the volume V is the ellipsoid consisting of all y with
y �A � y < q̂2 þ b.

Note that Pc is an integral over an ellipsoid centered at
x ¼ �c. Since the integrand peaks at the origin, we would
expect Pc to be maximized when the ellipsoid’s center is
placed at the origin. To be specific, we expect that

Pc � P0: (7)

This expectation is indeed correct; a proof of it may be
found in the Appendix.
This means that adding any fixed contaminant c always

reduces the probability of getting a low q2. As a conse-
quence, even if c is not fixed but is generated by some
random process, the probability is still lower than in the
case c ¼ 0. Formally, we can write

Pr½q2ðyÞ< q̂2� ¼
Z

dc Pr½q2ðyÞ< q̂2jc�fcðcÞ: (8)

Using inequality (7),

Pr½q2ðyÞ< q̂2� � P0

Z
fcðcÞdc ¼ P0: (9)

This inequality is the central result of this section. It
means that, if the power is anomalously low under the
assumption of no contamination, then introducing a con-
taminant can only make the problem worse.
Figure 2 illustrates this conclusion for the case of an

ellipsoidal universe. The figure shows the cumulative
probability distribution of the quadrupole power C2, based
on 1000 simulations of the CMB sky. The simulations were
performed using HEALPix [29] with Nside ¼ 32. The solid
curve shows the distribution for a Gaussian CMB with the
power spectrum given by the best-fit cosmological-
constant cold dark matter model from the three-year
WMAP data [30]. From bottom to top, the other three

FIG. 2. Cumulative probability distributions for the quadru-
pole power C2 in an ellipsoidal universe, in dimensionless
�T=T units. In the left panel, data from the entire sky were
used, and in the right panel the WMAP Kp0 cut was applied. The
solid curve shows a standard LCDM model with no eccentricity.
From bottom to top, the other three curves correspond to
eccentricities 5� 10�3, 6:2� 10�3, 7:4� 10�3. The horizontal
line shows the quadrupole found in the actual data.
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curves show models with the same power spectrum but
with eccentricities 5� 10�3, 6:2� 10�3, 7:4� 10�3.
According to the analysis of Ref. [14], eccentricities in
this range provide a better fit to the CMB quadrupole than
the standard model; however, as Gruppuso [26] has pointed
out, the calculations in Ref. [14] do not properly account
for all possible relative orientations of the ellipticity axis
and the intrinsic CMB anisotropy and hence overestimate
the goodness of fit of the ellipsoidal models. The horizontal
line indicates the value found in the actual WMAP data
(specifically, the three-year internal linear combination
data, downgraded to Nside ¼ 32). The curves in the left
panel were computed using the entire sky, while the right
curves were computed using the WMAP Kp0 cut [3].

The figure illustrates that the probability of getting a
quadrupole value below any given cutoff strictly decreases
as the size of the perturbation increases. As predicted by
inequality (9), the way to get the highest probability is to
have no perturbation at all. In particular, for the no-cut
data, the probability of getting a value as small as the actual
data is �5% in the standard model and drops to �3%,
1.5%, 0.2% as the ellipticity increases. When the Kp0 mask
is applied, the probabilities are lower in all cases than in the
full-sky case, but the same decrease in probability is ob-
served. These conclusions are consistent with those of
Ref. [26], but we have established the conclusion for a
much broader category of theories, not just this specific
case.

III. CORRELATION FUNCTION

The low quadrupole does not have particularly high
statistical significance, largely because of the high level
of cosmic variance in the quadrupole. The two-point an-
gular correlation function provides a much more signifi-
cant indication that there is an anomalous lack of large-
scale power in theWMAP data. In particular, the integrated
square of the correlation function,

S1=2 ¼
Z 1=2

�1
½Cð�Þ�2d cos�; (10)

which was first introduced in the analysis of the one-year
WMAP data [31], is extremely low in the WMAP data in
comparison with theoretical estimates, with p value of
order 0.1% [7]. Here Cð�Þ is the two-point correlation
function, that is, the average of all pairs of pixels with
angular separation �. Wewish to examinewhether adding a
perturbation to the standard model can solve this problem
(that is, raise the probability of getting the observed low
value of S1=2).

Since the statistic S1=2 is quartic, not quadratic, in the

data, the argument of the previous section does not apply to
it. However, it is extremely plausible to suppose that a
similar conclusion should hold, since any model with a
high probability of producing low values of this statistic
would presumably produce low values of the low-order

multipoles, and since any contaminant reduces the proba-
bility of such low multipoles.
We can of course test this conjecture numerically for any

particular model. For example, Fig. 3 shows the results of
simulations precisely like those shown in Fig. 2, but with
the statistic S1=2 used in place of the quadrupole. The

SpICE software [32] was used to compute the correlation
functions. Figure 4 shows the results of similar calcula-
tions, for the case of a model in which the spacetime
geometry is that of a rotating Bianchi VIIh model [17].
We have also performed computations for models in which
the contaminant consists of circular hot and cold spots of
varying amplitudes and radii, to simulate the effects of
local voids or similar features. In all of these cases, the
addition of a contaminant does not solve the problem of the
lack of large-scale power; in fact, it worsens it.
Rather than examining theories one at a time, it would

clearly be better to have a general argument that applied to
a broad class of theories. In the rest of this section, we
provide such an argument.

Suppose that the value of S1=2 for the actual data is Ŝ1=2.
Let V be the volume in the data space that yields values of
the statistic this low:

V ¼ fyjS1=2ðyÞ< Ŝ1=2g: (11)

Then, assuming a contaminant given by a fixed vector c,
the probability of getting such a low value of the statistic is

PðcÞ ¼
Z
ðxþcÞ2V

fxðxÞdx ¼
Z
y2V

fxðy � cÞdy: (12)

We want to know whether there are any vectors c such that

FIG. 3. Cumulative probability distributions for the statistic
S1=2. As in Fig. 2, the left panel is for full-sky data, while the

right panel is for the Kp0 cut. Curves are as in the previous
figure.
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PðcÞ> Pð0Þ, or in other words whether P has a global
maximum at c ¼ 0. It is straightforward to check that
rPð0Þ ¼ 0. We next consider whether the point c ¼ 0 is
a maximum, a minimum, or a saddle point. If we find that it
is a maximum, then the addition of any small contaminant
worsens the problem we are trying to solve.

To answer this question, we naturally consider the ma-
trix of second derivatives:

Hjk ¼ � @2P

@cj@ck

��������c¼0
: (13)

Then P has a local maximum at the origin if and only ifH
is positive definite. Moreover, if H is not positive definite,
then the eigenvectors corresponding to negative eigenval-
ues yield the directions in data space (i.e., particular forms
for the contaminant c) that alleviate the problem of low
S1=2.

To calculate these derivatives, it is convenient to trans-
form the data to a basis that diagonalizes the covariance
matrix in the Gaussian probability density fx. The most
natural way to accomplish this is to work in the spherical
harmonic basis, in which case each data point is a coeffi-
cient alm. We can normalize each data point according to

the power spectrum, setting xj ¼ alm=C
1=2
l , where the in-

dex j runs over all pairs lm. In this case the covariance
matrix is simply the identity matrix, and the second de-
rivative matrix elements can be written

Hjk ¼ �
Z
V
dxfxðxÞðxjxk � �jkÞ: (14)

This integral over the many-dimensional data space can
most easily be estimated by Monte Carlo integration. To be
specific, we draw vectors x from the appropriate Gaussian
distribution, calculate the corresponding values of S1=2,
and use the results to throw away all vectors that lie outside
of V. For all the rest, we average together the quantities
ðxjxk � �jkÞ.

In performing this Monte Carlo integration, we consider
HealPIX maps with Nside ¼ 32 and the same power spec-
trum as in the previous section. We apply Gaussian

smoothing with a 20� FWHM beam to the simulated
maps. This amount of smoothing results in significant
suppression (by more than e�1) of spherical harmonic
coefficients l � 10. Without significant smoothing, fluctu-
ations in high-l modes cause significant error in the
Monte Carlo calculation even at low l. The problem of
anomalously low S1=2 persists at about the same signifi-

cance (p values ’ 0:1%) even with such smoothing, so this
smoothing does not weaken our ability to draw conclusions
about possible explanations for the anomaly.
Figure 5 shows the eigenvalues of the matrix resulting

from this Monte Carlo integration, using the Kp0 mask.
The results look similar when data from the full sky are
used. The matrix used to compute the eigenvalues was
based on 80 000 simulations lying within the volume V.
Modes up to l ¼ 8 were used to compute the eigenvalues
shown in the figure, although modes up to l ¼ 64 (far
above the beam scale) were used in the simulations. To
test the numerical stability of the results, we used a second
set of 80 000 simulations to recompute the matrix H. We
then calculated v �H � v for each eigenvector v. The results

FIG. 5. Eigenvalues of the second derivative matrix H. Two
independent calculations of the matrix were performed, each
based on 80 000 simulations using the Kp0 cut. The matrices
were truncated to include only multipoles l ¼ 2 through 8. The
solid curve shows the eigenvalues computed from one matrix,
sorted from largest to smallest. The dashed curve shows the
quantities v �H � v, where v are the eigenvectors computed from
the first matrix and H is the second matrix. The difference
between the two curves gives an indication of the numerical
error in the Monte Carlo integration.

FIG. 4. Cumulative probability distributions for the statistic S1=2 for Bianchi VIIh (rotating universe) models. The values of the shear
are 0 (solid lines), 2:4� 10�10 (dotted lines), 5� 10�10 (dashed lines), and 1� 10�9 (dot-dashed lines). As in the previous figures,
no-cut probabilities are shown on the left, and Kp0-cut probabilities are shown on the right.
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are shown in the dashed curve. In the absence of numerical
error, the two curves would be identical.

Although there is some numerical error due to the
Monte Carlo integration, it appears that the matrix is not
positive definite. We wish to examine the eigenvectors
corresponding to the most negative eigenvalues, since
these describe particular contaminants that might solve
the problem of a lack of large-scale power. Figure 6 shows
the particular pattern on the sky corresponding to the most
negative eigenvalue. Most of the power in this contaminant
is found in multipole l ¼ 5, as is the power in all of the
most negative eigenvectors. To test the robustness of this
pattern, we computed the eigenvectors retaining varying
numbers of modes in the matrix H, ranging from lmax ¼ 5
to 15, and also using varying subsets of theMonte Carlos to
compute the matrix. The results are quite consistent, with
the most negative eigenvectors always having most of their
power at l ¼ 5 and looking quite similar to Fig. 6.

The existence of these negative eigenvalues seems to
contradict our assertion that no contaminant can explain
the low value of S1=2: modes such as the one shown in

Fig. 6, by construction, raise the probability of getting a
low value when added to the data. However, when we
assess the amount of improvement that these modes can
provide, we find it to be negligible. Consider a model in
which we add a contaminant of the form shown in Fig. 6
with some amplitude � to the standard model. The results
of this section have shown that the probability of getting a
low S1=2 is an increasing function of � at low �. However,
because the eigenvalue is fairly small, the increase might
be expected to be slight. Furthermore, for sufficiently large
value of �, the probability must start to decrease again.

Figure 7 shows that this is indeed the case, and further-
more that no choice of � leads to a significant increase in
the probability of getting a value as low as the actual data.
This probability remains virtually unchanged at�10�3 for
small � and then decreases dramatically for larger�. Since
all of the eigenvectors corresponding to significantly nega-
tive eigenvalues ofH give patterns quite similar to this one,
we can conclude with confidence that no such pattern can
significantly alleviate the problem of low S1=2.

IV. CONCLUSIONS

We have considered a broad class of cosmological mod-
els, obtained by adding a contaminant to the standard best-
fit inflation-based model. The only assumption we have
made about the contaminant is that it is statistically inde-
pendent of the cosmological signal. We have argued that all
such models exacerbate rather than alleviating the lack of
large-scale power in the WMAP data. We have proven this
result to be true when the lack of power is quantified by the
quadrupole moment and have presented strong numerical
evidence in support of it when the two-point correlation
function is used. Since the latter, in particular, is discrepant
at a highly significant level already, any theory that wor-
sens this discrepancy should be regarded with great
skepticism.
In addition to exotic cosmologies such as models with a

global ellipsoidal anisotropy, the class of models consid-
ered herein includes more mundane possibilities such as
undiagnosed foregrounds and many systematic errors. In
particular, since several of the observed anomalies seem to
‘‘pick out’’ the ecliptic plane as a preferred direction, some
attention has focused on a local foreground as a possible
explanation. The calculations presented here argue against
such models.
In any particular model with a contaminant, of course, it

is possible that a chance cancellation between the contami-
nant and the intrinsic CMB anisotropy can occur, leading
to the observed lack of large-scale power. What we have
shown is that such a chance cancellation is always unlikely,
and, in particular, that it is always more unlikely than the
lack of large-scale power occurring based on cosmic vari-
ance alone, without a contaminant.
The question of how seriously to take the various large-

angle CMB anomalies, including the lack of large-scale
power as well as the various other puzzles, has been much

FIG. 6 (color online). The sky pattern corresponding to the
most negative eigenvalue of H.

FIG. 7. Cumulative probability distributions for models in
which a fixed contaminant of the form shown in Fig. 6 is added
to the sky. This pattern corresponds to the most negative eigen-
value of the matrix H and so might be expected to increase the
probability of finding a low value of S1=2. The curves shown in

the figure are for varying amplitudes of the contaminant, with
root-mean-square pixel values of 0 (solid lines), 2 �K (dotted
lines), 4 �K (dashed lines), 8 �K (dot-dashed lines). No value
of the amplitude causes the probability of getting values as low
as those in the real data to increase noticeably.
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debated [33]. In particular, because they are all based on
a posteriori statistics (i.e., on statistical significances cal-
culated after the anomalies had already been noted), the
quoted significances cannot be taken at face value.
Arguably, however, the large-scale power deficit suffers
less from this problem of a posteriori statistics. After all,
for virtually the entire existence of the field of CMB
anisotropy studies, the two-point correlation function has
been regarded as one of the most natural statistics to use in
quantifying the level of structure in CMB maps as a
function of angular scale. For instance, upper limits on
CMB anisotropy in the pre-COBE era were usually pre-
sented as limits on the correlation function. Although the
particular statistic S1=2 is an a posteriori invention, it

merely quantifies the mean-square level of this function,
which was already regarded a priori as a natural function to
compute. Although one can certainly dispute the extent to
which the significance of the lack of large-angle correla-
tions is an artifact of the particular choice of statistic (for
instance, see [34], who do not use the S1=2 statistic and find
less significant discrepancies), nonetheless we believe that,
of all the observed anomalies, the large-scale power deficit
is one of the most in need of explanation.

Anomalies in a data set naturally prompt thoughts of
systematic errors or contaminants in the data. Perhaps
counterintuitively, this particular anomaly provides a
strong argument against such possibilities. In particular, a
foreground that was not removed from the data (due to
having a spectrum indistinguishable from the CMB, for
example) would fall precisely into the category considered
herein. Note, however, that if the foreground removal
procedure itself removes part of the cosmological signal,
the resulting error would not fall into the category consid-
ered herein. In particular, the internal linear combination
method does project out some of the intrinsic CMB signal
and so in principle does reduce the amount of large-scale
power. This effect is calculable and has been found to be
negligible, however.

There are of course a wide variety of possible explan-
ations for the anomalies that do not fall into the category
considered here. For example, simply modifying the pri-
mordial power spectrum at large scales naturally alleviates
the problem of a lack of large-scale CMB power (e.g.,
[35,36]). Some models with nontrivial topology (e.g.,
[37–41]) also have this effect, although such models have
other problems [42]. The framework of spontaneous iso-
tropy breaking [24] also provides a class of models that are
not based on simply adding a perturbation to the standard
cosmology. Models such as these (and many others) may
provide an explanation for the puzzles in the large-angle
CMB.
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APPENDIX: PROOF OF EQUATION (7)

We first express Eq. (6) in terms of the integration
variable y ¼ xþ c,

Pc ¼
Z
y2V

dyfxðy � cÞ: (A1)

We next apply a linear coordinate transformation that maps
the ellipsoid V onto the unit sphere. To be specific, we find
a matrix L such that A ¼ L �LT (e.g., by Cholesky de-

composition). We define y0 ¼ ðLT � yÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q20 þ b

q
and c0

similarly. Then

Pc /
Z
jy0j2�1

dy0fx0 ðy0 � c0Þ: (A2)

Here fx0 is a multivariate Gaussian probability density with
a new inverse covariance matrix M0, and the proportion-
ality constant is determined by the Jacobian of the coor-
dinate transformation. For convenience, we now make yet
another coordinate transformation: we apply a rotation that
diagonalizes M0. The result is

Pc /
Z
jy00j<1

dy00 exp
�
�X ðy00i � c00i Þ2

2�2
i

�
: (A3)

For the remainder of this section we drop the double
primes.
We now show that Pc has a maximum at c ¼ 0.

Differentiate the above expression for Pc with respect to
c1:

@Pc

@c1
/
Z
jyj<1

dy exp

�
�X ðyi � ciÞ2

2�2
i

�
y1 � c1
�2

1

(A4)

¼
Z

dy2 � � � dyn exp
�
�Xn

i¼2

ðyi � ciÞ2
2�2

i

�

Z Y1

�Y1

exp

�
�ðy1 � c1Þ2

2�2
1

�
y1 � c1
�2

1

dy1;

(A5)

where Y1 ¼ ð1�P
n
i¼2 y

2
i Þ1=2. Performing the y1 integral

yields

@Pc

@c1
/
Z

dy2 � � � dyn exp
�
�Xn

i¼2

ðyi � ciÞ2
2�2

i

�

� ðe�ðY1þc1Þ2=2�2
1 � e�ðY1�c1Þ2=2�2

1Þ: (A6)

The integrand (and hence the integral) is strictly positive
for c1 < 0 and negative for c1 > 0. That is, for any fixed
values of c2; . . . ; cn, the function Pc has its only maximum
at c1 ¼ 0. The same argument applies to each of the other
cj. Hence Pc has a global maximum at c ¼ 0.
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