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We develop a systematic derivation for the Limber approximation to the angular cross-power spectrum

of two random fields, as a series expansion in ð‘þ 1=2Þ�1. This extended Limber approximation can be

used to test the accuracy of the Limber approximation and to improve the rate of convergence at large ‘’s.

We show that the error in ordinary Limber approximation is Oð‘�2Þ. We also provide a simple expression

for the 2nd order correction to the Limber formula, which improves the accuracy to Oð‘�4Þ. This
correction can be especially useful for narrow redshift bins, or samples with small redshift overlap, for

which the 0th order Limber formula has a large error. We also point out that using ‘ instead of ‘þ 1=2, as

is often done in the literature, spoils the accuracy of the approximation to Oð‘�1Þ.
DOI: 10.1103/PhysRevD.78.123506 PACS numbers: 98.80.�k, 98.62.Py, 98.80.Es

I. INTRODUCTION

Many observations in cosmology are observations of
random fields [e.g. the cosmic microwave background
(CMB) anisotropy, fluctuations in the mass density or
galaxy distribution, the weak lensing shear or convergence
field, and 21 cm emission line fluctuations]. A primary
means to learn about the distribution and evolution of
large-scale structure are through correlation functions of
these fields, the simplest being the two point correlation
function or its Fourier transform, the power spectrum.
Many observations are given in terms of the angular corre-
lation function wABðn̂ � n̂0Þ or its spherical harmonic trans-
form, the angular power spectrum CABð‘Þ

wABðn̂ � n̂0Þ � hAðn̂ÞBðn̂0Þi ¼ X
‘

2‘þ 1

4�
CABð‘ÞP‘ðn̂ � n̂0Þ;

(1)

where A and B are line-of-sight projections of the fields
being correlated (e.g. the temperature anisotropy �T=T or
the mass fluctuation ��=�), n̂, n̂0 are unit vectors indicat-
ing the direction of observation and P‘ are the Legendre
polynomials.

Calculations of angular power spectra give expressions
in terms of several integrals which must be evaluated
numerically. The Limber approximation [1] and its gener-
alization to Fourier space [2,3] is a commonly used tech-
nique to simplify calculations. In implementing the Limber
approximation one assumes small angular separations (or
large multipole moment ‘) and that some of the functions
being integrated are more slowly varying than others. The
Limber approximation is a powerful method to accurately
estimate the magnitude and understand the analytic depen-
dencies of the projected power spectra. Also, since the

Limber approximation reduces the number of integrals,
numerical calculations are simpler.
In this paper, we present a systematic derivation of the

Limber approximation to the angular power spectrum as a
series expansion in ð‘þ 1

2Þ�1, which is a rigorous general-

ization of a technique introduced in [4]. While the first
term in the expansion is the usual Limber approximation,
higher order terms can be considered as an extension. We
apply this approximation to a few examples where keeping
additional terms in the expansion might be desirable. The
results presented here can be applied to the cross-
correlation of two random fields whose Fourier space
power spectra are isotropic. An analysis of the Limber
approximation and a proposed alternative approximation
for the real space correlation function is given in [5]. For
another discussion of some issues related to the validity of
the Limber approximation for lensing power spectra, the
reader can refer to Appendix C of [6].
In Sec. II, we present the derivation of the extended

Limber approximation for the angular cross-power spec-
trum of two random fields. In Sec. III, we make a com-
parison with the flat sky approximation. Section IVapplies
the derived first and second terms in the Limber approxi-
mation to a few examples: the galaxy autopower spectrum,
the cross-power spectrum of two redshift bins with small
overlap in redshift, and the cross-power spectrum of broad
and narrow redshift distributions. Concluding remarks are
given in Sec. V.

II. DERIVATION OF THE LIMBER
APPROXIMATION

We first develop the theoretical expectation value of the
cross-correlation of two random fields, projected on the
sky. Let us consider two random fields AðxÞ and BðxÞ with
their Fourier transforms defined as
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AðkÞ ¼
Z

d3xe�ik�xAðxÞ and

BðkÞ ¼
Z

d3xe�ik�xBðxÞ:
(2)

These fields could be, for instance, the density fluctuation
��ðxÞ=� or the Newtonian potential �ðxÞ. The cross-
correlation power spectrum, PABðkÞ (which is assumed to
be isotropic) is defined by

hAðk1ÞB�ðk2Þi ¼ ð2�Þ3�3ðk1 � k2ÞPABðk1Þ: (3)

The projections of A and B on the sky are defined using FA

and FB projection kernels

~Aðn̂Þ ¼
Z

drFAðrÞAðrn̂Þ; and

~Bðn̂Þ ¼
Z

drFBðrÞBðrn̂Þ:
(4)

Now, expanding ~A and ~B in terms of spherical harmonics,
the angular cross-power spectrum, CABð‘Þ is defined as

CABð‘Þ � h ~A‘m
~B�
‘mi

¼
Z

dr1dr2FAðr1ÞFBðr2Þ
Z d3k

ð2�Þ3 PABðkÞ

� ð4�Þ2j‘ðkr1Þj‘ðkr2ÞY‘mðk̂ÞY�
‘mðk̂Þ

¼
Z

dr1dr2FAðr1ÞFBðr2Þ

�
Z 2k2dk

�
j‘ðkr1Þj‘ðkr2ÞPABðkÞ

¼
Z

kdkPABðkÞ
Z

dr1fAðr1ÞJ‘þ1=2ðkr1Þ

�
Z

dr2fAðr2ÞJ‘þ1=2ðkr2Þ; (5)

where j‘’s are the spherical Bessel functions of rank ‘ and
Y‘m’s are the spherical harmonics. In the last step, we have
substituted the spherical Bessel functions in terms of the
Bessel functions of the first kind, J‘þ1=2, and defined:

fAðrÞ � FAðrÞffiffiffi
r

p ; fBðrÞ � FBðrÞffiffiffi
r

p : (6)

At the next step, we will develop a series representation for
the integral of an arbitrary function multiplied by the
Bessel function. We will use the fact that the Bessel
function (for � > 0) grows monotonically from zero at x ¼
0 to x ’ � and starts oscillating rapidly afterwards, to
write:

lim
�!0

Z 1

0
e��ðx��ÞfðxÞJ�ðxÞdx ¼ B0fð�Þ þ B1f

0ð�Þ
þ B2f

00ð�Þ þ B3f
000ð�Þ

þ . . . (7)

Using the Taylor expansion of fðxÞ around x ¼ � � ‘þ
1=2, we find:

Bn ¼ 1

n!
lim
�!0

Z 1

0
e��ðx��Þðx� �ÞnJ�ðxÞdx (8)

¼ ð�1Þn
n!

lim
�!0

@n

@�n

Z 1

0
e��ðx��ÞJ�ðxÞdx: (9)

The integral over the Bessel function is a standard Laplace
transform, which has a closed form:

Z 1

0
e��ðx��ÞJ�ðxÞdx ¼ e��

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p
þ �Þ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �2
p

¼ 1� �2

2
þ ��3

6
þ 3�4

8
� 19��5

120

þOð�6Þ; (10)

yielding:

B0 ¼ 1; B1 ¼ 0; B2 ¼ � 1

2
;

B3 ¼ ��

6
; B4 ¼ 3

8
; B5 ¼ 19�

120
; . . .

Therefore, we find

CABð‘Þ ¼
Z

dkkPABðkÞ
�
k�1fAðrÞ � k�3

2
f00AðrÞ

� �k�4

6
f000A ðrÞ þ . . .

��
k�1fBðrÞ � k�3

2
f00BðrÞ

� �k�4

6
f000B ðrÞ þ . . .

�
; (11)

where kr ¼ � ¼ ‘þ 1=2. Combining the parentheses and
collecting terms of the same order in � one finds,

CABð‘Þ ¼
Z dr

r
PAB

�
�

r

�
fAðrÞfBðrÞ

�
1� 1

�2

�
r2

2

�
f00AðrÞ
fAðrÞ

þ f00BðrÞ
fBðrÞ

�
þ r3

6

�
f000A ðrÞ
fAðrÞ þ

f000B ðrÞ
fBðrÞ

��
þOð��4Þ

�

(12)

After algebraic manipulations and some integrations by
parts, the two parentheses in the 1=�2 term can be com-
bined to find:

CABð‘Þ ¼
Z dk

k
PABðkÞfAðrÞfBðrÞ

�
1þ ��2

2

�
d lnfA
d lnr

� d lnfB
d lnr

sðkÞ � pðkÞ
�
þOð��4Þ

�
; (13)

where

sðkÞ ¼ d lnPABðkÞ
d lnk

; pðkÞ ¼ k2½3P00
ABðkÞ þ kP000

ABðkÞ�
3PABðkÞ :

(14)
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Equations (13) and (14) show the first systematic cor-
rection to the Limber approximation, which can be used to
reduce the error in the approximation from ‘�2 to ‘�4.
Moreover, we can use the relative magnitude of the sub-
leading term in the expansion as a criterion for the con-
vergence/reliability of the Limber approximation. We thus
see that the convergence of the Limber expansion depends
on both � ¼ ‘þ 1=2 and the fA, fB. If the two kernels fA
and fB are peaked at the same distance �r, the 1=�2 term is
subdominant when � * �r=max½�A;�B� where �A is the
width of fA and �B is the width of fB. However, if fA and
fB are peaked at different distances, say rA * rB þ �B,
where rA and rB are the locations of the maxima, truncating
the expansion requires � * �rðrA � rBÞ=�A�B [7].

III. FLAT SKYAND ‘þ 1=2

Let us now think about the 2D power spectrum in the flat
sky limit (for a comparison with the angular power spec-
trum see also [8]). To do this, we will use Cartesian
coordinates with xk the line-of-sight direction and x? the

perpendicular direction, and integrate along the xk direc-

tion

Aðx?Þ ¼
Z

dxkFAðxkÞAðx?; xkÞ; (15)

and

Aðk?Þ ¼
Z

d2x?e�ik?�x?
Z

dxkFAðxkÞAðx?; xkÞ; (16)

so the 2D power spectrum will be given by

hAðk?ÞBðk0
?Þi ¼

Z
dxAkFAðxAk Þ

Z
dxBkFBðxBk Þ

�
Z dkk

ð2�Þ e
ikkðxAk�xBk ÞPABðk?; kkÞ

� ð2�Þ2�ð2Þðk? þ k0
?Þ: (17)

Expanding the power spectrum about kk ¼ 0 (and assum-

ing PABðk?; kkÞ ¼ PABð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2? þ k2k

q
Þ) gives

P2Dðk?Þ ¼
Z

dxkFAðxkÞFBðxkÞPABðk?Þ
�
1þ 1

2

1

x2kk
2
?

�
�
d lnPAB

d lnk

d lnFAðxkÞ
d lnxk

d lnFBðxkÞ
d lnxk

�

þOððk?xkÞ�4Þ
�
; (18)

where the derivatives of PAB are evaluated at kk ¼ 0.
Notice that all of the PAB factors are independent of xk.
How to compare this to the angular power spectrum? We
expect

‘ð‘þ 1ÞC‘ � k2?Pðk?Þ (19)

for large ‘. Expanding 1
r2
Pð�=rÞ in Eq. (13) about r ¼ �r

where �r is, for example, the peak distance of FAðrÞFBðrÞ
and comparing with Eq. (18) we can see that indeed ‘ð‘þ
1ÞC‘ � k2?P2Dðk?Þ for ‘þ 1=2 ¼ �rk?. Notice that while

for large ‘’s, ‘þ 1=2 � ‘, at small ‘’s the factor of 1=2
actually makes a difference. Comparing the Laplacian in
spherical coordinates with the Laplacian in Fourier space

shows that indeed k�r ! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘ð‘þ 1Þp ¼ ‘þ 1=2þOð1=‘Þ

is the correct replacement.

IV. EXAMPLES AND COMPARISON OF LIMBER
AND EXACT RESULTS AT DIFFERENT ORDERS

Here we consider a few examples of calculations of
angular power spectra. For simplicity we will assume a
spatially flat cosmology so that r ¼ �ðzÞ is the comoving
distance. In all plots we assume a �CDM universe with
�m ¼ 0:27, �� ¼ 0:73, �b ¼ 0:046 as the fractional
densities of matter, cosmological constant and baryons,
Hubble constant today H0 ¼ 70 km=s=Mpc, scalar fluc-
tuation amplitude�8 ¼ 0:8, and scalar spectral index ns ¼
0:95. For the linear matter power spectrum we use the
transfer function of [9].

A. Power spectrum of a narrow redshift bin

From Eq. (13) we can see that keeping the first term in
the Limber approximation is accurate only so long as the
functions fAðrÞ and fBðrÞ are slowly varying. Here we
calculate the galaxy autopower spectrum (for instance,
[10–12]). In calculating the galaxy autopower spectrum
(ignoring nonlinear evolution), Cggð‘Þ these kernels take

the form

fgðrÞ ¼ HðzÞ
c

Wðz; z0Þffiffiffiffiffiffiffiffi
rðzÞp DðzÞ (20)

where HðzÞ is the Hubble parameter, DðzÞ is the linear
growth function with Dðz ¼ 0Þ ¼ 1, c is the speed of light
and Wðz; z0Þ is a normalized selection function centered at
z0. If we assume that the linear galaxy bias b ¼ 1, the
power spectrum in Eq. (13) is just the mass power spectrum
PðkÞ. If the selection function is too rapidly varying, one
will need to keep additional terms in the Limber approxi-
mation. To illustrate this we takeWðz; z0Þ to be a Gaussian
centered at z0 with variance �2

z and compare the exact
expression for Cggð‘Þ, Eq. (5) with the Limber approxima-

tion to zeroth and second order in 1=‘ Eq. (13). From the
discussion in Sec. II we expect the expansion to diverge for
� & �c � ðrðz0Þ=�rÞ. For �z ¼ 0:01, this gives �c � 15 at
z0 ¼ 0:3 and �c � 30 at z0 ¼ 0:6 . Comparison of the
exact C‘ with the Limber expansion at different orders is
shown in Fig. 1. For a given width, �, the Limber approxi-
mation is clearly more accurate for smaller z0 at a fixed ‘.
Very roughly, for ‘ > 5rðz0Þ=�r the 0th order Limber
approximation is accurate to �1%.
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B. Cross-correlation of populations with small redshift
overlap

Consider the cross-power spectrum between two source
distributions with a small redshift overlap. Here, we will
use two selection functions with the same width but differ-
ent mean redshifts. Cross-correlating different redshift bins
is a tool for calibrating photometric redshifts (see, for
example [13,14]). Distributions centered at different red-
shifts are also present in galaxy-lensing cross-correlation
(which would more accurately correspond to a very broad
and a narrow redshift distribution; for a review see [15]).
We then use the expression given in Eq. (20) for each
sample, but allow the central redshifts z0 to differ.
Comparison of the Limber and exact calculation at differ-
ent orders is shown in Fig. 2. As we had argued in Sec. II,
we see that the Limber approximation is less accurate for
more widely separated redshift bins. Consequently, in this

case, including the 2nd order correction in Eq. (13) could
lead to a significant improvement in the accuracy of the
Limber approximation

C. Cross-correlation of broad and narrow source
distributions

Here we consider the cross-power spectrum between
two sources with different redshift distributions, for ex-
ample, a broad and a narrow source distribution. This is
analogous to galaxy-lensing cross-correlation where the
lensing weight function is broadly distributed and the
galaxy selection function is narrow. The limit that one
source distribution becomes extremely broad is also analo-
gous to the galaxy-CMB cross-correlation. We use the
same Gaussian selection functions from the previous sec-
tions, but allow the widths of the two distributions to differ.
This calculation is shown in Fig. 3. Even though one

FIG. 1 (color online). Left Panel: The galaxy autocorrelation for a narrow redshift bin (�z ¼ 0:01) at redshifts z0 ¼ 0:3 (upper black
curves) and z0 ¼ 0:6 (lower cyan/gray curves). The solid lines are the exact C‘ [Eq. (5)] the dotted lines are the 0th order Limber
approximation, the dashed lines are the Limber approximation keeping the first Oð��2Þ term in Eq. (13). Right panel: The difference
between the Limber approximation at 0th and 2nd order (in 1=�) and the exact angular power spectrum in redshift bins at z0 ¼ 0:3
(black) and z0 ¼ 0:6 (cyan/gray). The radii of convergence for the Limber expansion are roughly at ‘� 15 and 30, respectively.

FIG. 2 (color online). Left panel: angular cross-power spectra between two samples with Gaussian width �z ¼ 0:05. Upper black
curves are for the cross-power spectrum between bins at z0 ¼ 0:3 and z0 ¼ 0:4, lower cyan/gray curves are for more widely separated
bins with z0 ¼ 0:3 and z0 ¼ 0:5. Solid lines show the exact power spectrum, dotted the 0th order Limber formula and dashed the
Limber approximation to 2nd order in 1=�. Right panel: the difference between the curves shown on left.
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redshift bin is narrow, since the other is broad the Limber
approximation still works very well.

V. CONCLUSIONS

We have provided a series expansion for angular power
spectra: The first term in this expansion gives the usual
Limber approximation [1–3], while the higher order terms
are an extension to the approximation. The expression for
the Limber approximation to second order in 1=� is given
in Eq. (13), higher order terms can be derived from Eqs. (5)
, (7), and (10). Figures 1–3 plot the accuracy of the Limber
approximation at 0th and 2nd order in 1=‘ for a few
examples. The Limber approximation is less accurate for
rapidly varying projection kernels fA and fB, or for fA and
fB with small redshift overlap. The extended Limber ap-
proximation derived here can be applied to a variety of
situations such as galaxy, weak lensing and CMB autocor-
relations or to cross-correlations between the different
projected distributions.

It is also worth pointing out that, even in the 0th order
Limber formula, replacing � ¼ ‘þ 1=2 by ‘ (as is often
done in the literature), will increase the error from Oð‘�2Þ
toOð‘�1Þ. Therefore, simply using ‘þ 1=2, as obtained in
our systematic derivation, can significantly improve the
accuracy of the approximation.
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