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We present an analytical calculation of the spectra of CMB anisotropies and polarizations generated by

relic gravitational waves (RGWs). As a substantial extension to the previous studies, three new ingredients

are included in this work. First, the analytic CTT
l and CTE

l are given; especially the latter can be useful to

extract signal of RGWs from the observed data in the zero-multipole method. Second, a fitting formula of

the decaying factor on small scales is given, coming from the visibility function around the photon

decoupling. Third, the impacts by the neutrino free-streaming (NFS) is examined, a process that occurred

in the early universe and leaves observable imprints on CMB via RGWs. It is found that the analytic CTT
l

and CTE
l have profiles agreeing with the numeric ones, except that CTT

l in a range l � 10 and the first

trough of CTE
l around l� 75 have some deviations. With the new damping factor, the analytic CEE

l and

CBB
l match with the numeric ones with the maximum errors only �3% up to the first three peaks for

l � 600, improving the previous studies substantially. The correspondence of the positions of peaks of

CXX
l and those of RGWs are also demonstrated explicitly. We also find that NFS reduces the amplitudes of

CXX
l by ð20%� 35%Þ for l ’ ð100� 600Þ and shifts slightly their peaks to smaller angles. Detailed

analyses show that the zero multipoles l0, where C
TE
l crosses 0, are shifted to larger values by NFS. This

shifting effect is as important as those caused by different inflation models and different baryon fractions.

DOI: 10.1103/PhysRevD.78.123005 PACS numbers: 98.70.Vc, 04.30.Nk, 95.85.Ry, 98.80.�k

I. INTRODUCTION

The observations on cosmic microwave background
(CMB) [1–8] are in good agreement with a spatially flat
universe with nearly scale-invariant spectrum of primordial
adiabatic perturbations predicted by the inflation model.
Generally, two kinds of perturbations of the spacetime
metric are of interest: density perturbations, i.e. scalar
type [9,10] and relic gravitational wave (RGW), i.e. ten-
sorial type [11–18], respectively. Both perturbations will
influence the CMB anisotropies and polarizations through
the Boltzmann equation for photons. Although the contri-
bution from density perturbation is dominant, RGWs may
have important contributions [7]. In particular, as a special
feature, RGWs can give rise to a magnetic type of CMB
polarizations, and this could provide a distinguished way to
directly detect RGWs of very long wavelength comparable
to the Hubble radius�1=H0. In comparison, the usual laser
interferometers, such as LIGO, probe the intermediate
frequency range � ¼ 50–1000 Hz [19], the waveguide
detectors probe the high frequency range � ¼
105–107 Hz [20,21], and the Gaussian laser beam detectors
probe in very high frequencies �� 1010 Hz [22,23].

The spectra of CMB anisotropies and polarizations gen-
erated by RGWs have long been computed [24–29]. In
particular, by approximate treatments of the photon decou-
pling, Refs. [30,31] have derived the analytic expressions
of the polarization spectra, CEE

l and CBB
l , which show

explicitly the influences of RGWs, the inflation, the decou-

pling process, the baryons, and the dark energy, etc. But,
compared with the numeric computations, these analytic
CEE
l and CBB

l have large errors and are valid only in a

limited region of l � 300. This is largely due to the fact
that the damping factor DðkÞ coming from the visibility
function during the decoupling is not accurate enough on
small scales. Thus, improvements of accuracy and exten-
sions to a broader range are certainly desired. We will
present a fitting formula of DðkÞ, which substantially im-
proves both the accuracy and the region of validity over the
previous studies.
Moreover, in the previous analytic calculations [30,31],

the cross spectrum CTE
l was not given, neither was the

temperature spectrum CTT
l . Theoretically, the magnetic

type of polarization CBB
l can only be generated by

RGWs. But the current observed data of CBB
l is not yet

sufficient to confirm the existence of RGWs [4–8]. On the
other hand, the cross spectrum CTE

l is about two orders

higher than CBB
l and also contains the contribution from

RGWs beside the density perturbations. More importantly,
WMAP5 has detected CTE

l [7]. This gives rise to the

possibility of extracting RGWs, since the contributions
from the scalar and tensorial perturbations behave differ-
ently. In particular, RGWs can change the value of the
multipole l0, whereC

TE
l first crosses 0. Thereby, one can, in

principle, tell whether there is a contribution from RGWs
and give constraints on the scalar/tensor ratio and other
cosmological parameters. This so-called zero-multipole
method relies on the detailed analysis of CTE

l [32,33].

Since CTE
l depends on several cosmological parameters,

analytic results are always helpful in exhibiting their prop-*yzh@ustc.edu.cn
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erties. In this paper we give the analytic CTE
l , as well as

CTT
l , due to RGWs.

As a source to CMB, the RGWs depend on the inflation
and on the dark energy [34]. Besides, they also depend on
physical processes in the radiation-dominated universe,
such as neutrino free-streaming (NFS) [35–38], the QCD
transition, and the e� annihilation [37,39,40]. While the
latter two processes are effective only on small scales � >
10�12 Hz and do not appear in the currently observed
CMB spectra, the former process is effective on large
scales with a frequency region � ’ ð10�17 � 10�10Þ Hz,
reducing the amplitude of RGWs by �20% [38]. This in
turn will have observable effects on the second and third
peaks of CXX

l . Thus, we will employ the RGWs spectrum

modified by NFS [38] to calculate CXX
l , improving the

previous calculation in Ref. [31] that did not consider the
effect of NFS.

In Sec. II we review briefly the result of RGWs spectrum
hð�;�Þ with modifications due to NFS. In Sec. III we will
use this hð�;�Þ to compute the spectra CTT

l , CTE
l , CEE

l , and

CBB
l . The Basko-Polnarev’s method will be used

[16,17,41,42]. In the process of the time integration, a
fitting formula of the damping factor DðkÞ on small scales
will be introduced, which gives a better representation of
the visibility function Vð�Þ during the photon decoupling.
Section IVexamines the influences on CXX

l due to NFS, the

spectrum index of inflation, and the fraction of baryon,
especially, the corresponding shifting of l0 of CTE

l is in-

vestigated. A summary is given in Sec. V. We use the unit
in which c ¼ @ ¼ kB ¼ 1 in this paper.

II. RGWS MODIFIED BY NFS

The expansion of a spatially flat (�� þ�m þ�r ¼ 1)
universe can be described by the Robertson-Walker metric

ds2 ¼ a2ð�Þ½�d�2 þ ð�ij þ hijÞdxidxj�; (1)

where � is the conformal time and the small perturbation
hij is RGWs and is taken to be traceless and transverse (TT

gauge)

hii ¼ 0; hij;j ¼ 0: (2)

The wave equation of RGWs is

@�ð ffiffiffiffiffiffiffi�g
p

@�hijÞ ¼ 0: (3)

By the Fourier decomposition

hijð�;xÞ ¼
X
�

Z d3k

ð2�Þ3 �
�
ijh

ð�Þ
k ð�Þeik�x (4)

for each mode k and each polarization� ¼ ðþ;�Þ, Eq. (3)
can be put into the form

€h k þ 2
_a

a
_hk þ k2hk ¼ 0; (5)

where _hk ¼ dhk=d�, the polarization index � has been

skipped for simplicity. Equation (5) holds for most of the
stages from the inflationary to the current accelerating
expansion. The explicit forms of the scale factor að�Þ are
given:

að�Þ ¼ aeð�� �eÞ; �s � � � �2 (6)

for the radiation-dominant stage,

að�Þ ¼ amð�� �mÞ2; �2 � � � �E (7)

for the matter-dominant stage, and

að�Þ ¼ lHj�� �aj��; �E � � � �0 (8)

for the accelerating stage up to the present time �0, where
� ’ 1:044 for a dark energy �� ’ 0:75, and lH ¼ �=H0

with H0 being the Hubble constant. The normalization of
að�Þ is such that j�0 � �aj ¼ 1, where �0 � 3:11. The
notations in Eqs. (7) and (8) are adopted from that in
Refs. [34,38,39]. In our convention, the conformal time
� is dimensionless and the scale factor að�Þ has the
dimension of length. The analytic solution of Eq. (5) and
the spectrum are obtained for the expanding universe with
the consecutive stages: inflationary, reheating, radiation-
dominant, matter-dominant, and accelerating, respectively,
in Ref. [34].
As also evidenced by the five-year WMAP [5–8], there

exists a cosmic neutrino background with the three light
species. By the standard scenario of big bang, during the
radiation stage, from the temperature T ’ 2 MeV up to the
beginning of the matter domination, the neutrinos are
decoupled from other components and start to freely
stream in space. This neutrino free-streaming gives rise
to an anisotropic portion of the stress tensor, which serves a
source for RGWs. Consequently, during this period ��d <
�< �2, Eq. (5) is modified to the following differential-
integral equation [35–38]

€h kð�Þ þ 2
_a

a
_hkð�Þ þ k2hkð�Þ

¼ �24f�

�
_a

a

�
2 Z �

��d

_hkð�0ÞKðkð�� �0ÞÞd�0; (9)

where the kernel of the integral is

KðxÞ � � sinx

x3
� 3 cosx

x4
þ 3 sinx

x5
(10)

and f� ¼ ��=�0 is the fractional energy density of neutri-
nos, whose initial value is f�ð� ¼ 0Þ ¼ 0:405 23 for the
effective number of species of neutrinos N� ¼ 3. The term
on the right-hand side of Eq. (9) represents the anisotropic
stress tensor due to NFS. ��d represents the conformal
time of neutrino decoupling.
Equation (9) has been solved by perturbations, yielding

the full analytic solution hkð�Þ, from the inflation up to the
present accelerating stage [38], and it has been found that
NFS causes a damping of hk by �20% in the frequency
range
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� ’ ð10�17; 10�10Þ Hz: (11)

Since � is related to the conformal wave number k as � ¼
H0

2�� k with H0 ¼ 3:24� 10�18h Hz being the Hubble fre-

quency, Eq. (11) corresponds to a range of the conformal
wave number

k ’ ð3� 101; 3� 108Þ (12)

for a Hubble parameter h ’ 0:7. NFS also slightly drags the
RGWs spectrum to small scales. This dragging effect can
be understood by a qualitative analysis. KðxÞ in Eq. (10)
has a peak around x� 0 and Kð0Þ � 0:07, and its deriva-
tive can be roughly approximated as K0ðxÞ ’ ��ðxÞ. The
integration on the right-hand side of Eq. (9) can be inte-
grated by partsZ �

��d

_hkð�0ÞKð�� �0Þd�0 ’ hkð�ÞðKð0Þ � 1Þ: (13)

Then Eq. (9) is approximately reduced to

€h k þ 2
_a

a
_hk þ

�
k2 � 24f�ð1� Kð0ÞÞ

�
_a

a

�
2
�
hk ¼ 0:

(14)

By comparing Eq. (14) with Eq. (5), one sees that NFS
modifies the squared wave number k2 to an effective one

�k 2 � k2 � 24f�ð1� Kð0ÞÞ
�
_a

a

�
2
< k2: (15)

If the mode hkð�Þ without NFS has a peak at k ¼ kp, then

the corresponding mode hkð�Þ with NFS will have a peak
at �kðkÞ ¼ kp, which yields k� ½1þ 12f�ð1� Kð0ÞÞ�

ð _aaÞ2�kp. The larger the kp is, the greater the shifting amount

is. This analysis qualitatively explains why NFS slightly
drags the peaks of RWGs to large k. It is expected that NFS
will cause a slight shift of CXX

l to large l via RGWs

consequently.
Since the damping range of RGWs is ð10�17; 10�10Þ Hz,

its lower frequency part just falls into the observable
domain of CXX

l . Therefore, in calculation of CMB spectra,

the RGWs damped by NFS should be used as the source.
As will be seen in the next section, the mode functions

hkð�dÞ and _hkð�dÞ at the photon decoupling time �d, i.e.,
z� 1100, will appear in the integral expressions of the
spectra of CMB anisotropies and polarizations. They are

plotted in Fig. 1. The modifications on hkð�dÞ and _hkð�dÞ
by NFS leave observable imprints in the spectra of CMB.
As the initial condition, the spectrum of RGWs at the

time �i of the horizon crossing during the inflation is
chosen to be [34,38]

hð�;�iÞ ¼ 2k3=2

�
jhkð�iÞj ¼ A

�
k

kH

�
2þ	inf

; (16)

where kH ¼ 2� is the comoving wave number and corre-
sponds to a physical wave 
H ¼ 2�að�0Þ=kH ¼ lH, the
constant A is to be fixed by the observed CMB anisotro-
pies, and the spectrum index	inf is a parameter determined
by inflationary models. The special case of 	inf ¼ �2 is
the de Sitter expansion of inflation. If the inflationary
expansion is driven by a scalar field, then the index 	inf

is related to the so-called slow-roll parameters, � and �
[43], as 	inf ¼ �2þ ð�� 3�Þ. For demonstration pur-
pose in our context, we allow the parameter 	inf to take

FIG. 1 (color online). The RGWs hkð�dÞ and _hkð�dÞ at the decoupling. NFS reduces the amplitudes and shifts the peaks to larger k.
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the values>� 2. In literature, the RGWs spectrum is often
written in terms of�2

hðkÞ, related to Eq. (16) by h2ð�;�iÞ ¼
8�2

hðkÞ. Without the running index, it is usually assumed to

have the form [1,2,44]

�2
hðkÞ ¼ AT

�
k

k0

�
nT
: (17)

Here the tensorial spectrum index nT ¼ 2	inf þ 4, k0 is
some comoving pivot wave number, whose corresponding
physical wave number is k0=að�HÞ ¼ 0:002 Mpc�1

[4,44], and the amplitude AT ¼ 2:95� 10�9rAðk0Þ with
Aðk0Þ � 0:8 as determined by the WMAP observations
accordingly [2], r being the tensor/scalar ratio. In general,
r is model dependent and frequency dependent [31,32].
The value of r has long been an important issue [45–49]. In
our treatment, for simplicity, r is only taken as a constant
parameter for normalization of RGWs. Currently, only
observational constraints on r have been given. The 1-
year WMAP gives r < 0:71 [1]. The 3-year WMAP con-
straint based on the CMB polarization gives r < 2:2
(95% C.L.) evaluated at k0 [4], and the full WMAP con-
straint is r < 0:55 (95% C.L.) [3,4]. Recently, the 5-year
WMAP data improves the upper limit to r < 0:43
(95% C.L.) [5], and combined with baryon acoustic oscil-
lation and SN gives r < 0:2 (95% C.L.) [6,7]. The combi-
nation from such observations, as of the Lyman-� forest
power spectrum from SDSS, 3-year WMAP, supernovae
SN, and galaxy clustering, gives an upper limit r < 0:22
(95% C.L.) and r < 0:37 (99.9% C.L.) [50]. For concrete-
ness, we take r ’ 0:37 in our calculation.

III. ANALYTICAL SPECTRA OF CMB

In the Basko-Polnarev’s method [16,17], the Boltzmann
equation of the CMB photon gas for the k mode is written
as a set of two coupled differential equations

_� k þ ½ik
þ q��k ¼ _hk; (18)

_	 k þ ½ik
þ q�	k ¼ qGk; (19)

where 	k represents the linear polarization, �k � �k � 	k

represents the anisotropy of radiation intensity, 
 ¼ cos�,
q is the differential optical depth, and Gkð�Þ ¼ 3

16 �R
1
�1 d


0½ð1þ
02Þ2	k � 1
2 ð1�
02Þ2�k� [31]. Note that

the gravitational wave _hk in Eq. (18) is the Sachs-Wolfe
term [51] and plays the role of source to the temperature
anisotropies. In the following, we omit the subscript k for
simplicity of notation. The formal solutions of Eqs. (18)
and (19) can be written as

�ð�;
Þ ¼
Z �

0

_hð�0Þe��ð�;�0Þeik
ð�0��Þd�0; (20)

	ð�;
Þ ¼
Z �

0
Gð�0Þqð�0Þe��ð�;�0Þeik
ð�0��Þd�0; (21)

where �ð�0; �Þ � R
�0
� qd� ¼ �ð�Þ � �ð�0Þ with �ð�Þ �

�ð�0; �Þ being the optical depth, such that qð�Þ ¼
�d�ð�0; �Þ=d�. To get rid of the angle dependence, �
and 	 are usually decomposed in terms of the Legendre
components

�lð�Þ ¼ 1

2

Z 1

�1
d
�ð�;
ÞPlð
Þ; (22)

	lð�Þ ¼ 1

2

Z 1

�1
d
	ð�;
ÞPlð
Þ; (23)

where Pl is the Legendre function. Using the expansion
formula

eix
 ¼ X1
l¼0

ð2lþ 1ÞiljlðxÞPlð
Þ

and the orthonormal relation for Legendre functions, one
obtains

�lð�0Þ ¼ il
Z �0

0
e��ð�Þ _hð�Þjlðkð�� �0ÞÞd�; (24)

	lð�0Þ ¼ il
Z �0

0
Gð�ÞVð�Þjlðkð�� �0ÞÞd�; (25)

both being evaluated at the present time �0, where

Vð�Þ ¼ qð�Þe��ð�Þ (26)

is the visibility function for the decoupling. As is known,
Vð�Þ is a narrow function peaked around the decoupling
time �d with a width ��d. It phenomenologically de-
scribes the details of the decoupling process [26,52,53].
Reference [30] uses a single Gaussian function to fit V
approximately. In Ref. [31], as an improvement, the fol-
lowing two pieces of the half Gaussian function are used

Vð�Þ ¼
8><
>:
Vð�dÞ exp

�
� ð���dÞ2

2��2
d1

�
; ð� � �dÞ;

Vð�dÞ exp
�
� ð���dÞ2

2��2
d2

�
; ð�> �dÞ;

(27)

where the decoupling time �d ’ 0:0707 corresponding to
the redshift zd ’ 1100, ��d1 ¼ 0:00639, ��d2 ¼ 0:0117,
and ð��d1 þ ��d2Þ=2 ¼ ��d is the thickness of the de-
coupling. In the absence of reionization, the coefficient
Vð�dÞ in Eq. (27) will be determined by the normalization

Z �0

0
Vð�Þd� ¼ 1: (28)

We have checked that the error between Eq. (27) to the
numerically fitted formula given in Refs. [26,52] is very
small, �3:9% in the interval �> �d. Compared with the
single Gaussian function in Ref. [30], Eq. (27) improves
the description of the visibility function by �10% in
accuracy. Substituting Eq. (27) into Eq. (25), after some
treatment of the integration over the variable � [31], the
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approximate analytic solution of 	l without reionization
has been arrived up to the second order of a small 1=q2 in
the tight coupling limit,

	lð�0Þ ¼ 1
17 ln

20
3 i

l��dDðkÞ _hð�dÞjlðkð�d � �0ÞÞ; (29)

where _hð�dÞ is the time derivative of RGWs at the decou-
pling, and

DðkÞ ¼ 1
2½e�cðk��d1Þ2 þ e�cðk��d2Þ2� (30)

is the Fourier transformation of Vð�Þ in Eqs. (27) with the
parameter c taking values in [0, 2]. Formally, the occur-
rence of the damping factorDðkÞ is due to the � integration

of Eq. (25) of the form
R1
�1 e��2

eip�d� ¼
e�ðp2=4Þ R1

�1 e��2
d� since the integrand factor

_hð�Þjlðkð�� �0ÞÞ contains a mixture of eik� and e�ik�.
From the viewpoint of physics, DðkÞ is generically ex-
pected [26,54], because the photons diffuse through the
baryons around the decoupling and the fluctuations are
severely damped within the thickness of the surface of
the last scattering. Therefore, DðkÞ is very sensitive to
the thickness ��d. However, as an approximation, the
fitting formula Eq. (30) is not accurate enough on the small
scales and will cause an overdamping of amplitudes ofCXX

l

for larger l. This is because, in the afore-mentioned deri-
vation of Eq. (30), other time-dependent factors in hkð�Þ
have been taken as constants during the decoupling.
Besides, other processes important on small scales were
not taken into account [26,55]. To improve Eq. (30), we
adopt the following simple fitting formula:

DðkÞ ¼ 1
2½e�cðk��d1Þb þ e�cðk��d2Þb�; (31)

where b is a parameter. It will find that a good fit with c ’
0:6 and b ’ 0:85, comparing with the numerical results.
One may even effectively simplify Eq. (31) by the follow-
ing:

DðkÞ ¼ e�cðk��dÞb : (32)

We find that Eqs. (31) and (32) yield the almost over-
lapping spectra CXX

l , and the error between them is only

� 1%. In comparison with the numeric computations, CXX
l

generated by both Eqs. (31) and (32) are much more
accurate than those by Eq. (30).

To evaluate the temperature anisotropies spectrum CTT
l ,

one needs an analytic solution for �l. The integrand in (24)

contains a factor e��ð�Þ, which can be treated approxi-
mately. Since the visibility function Vð�Þ is a narrow
function and can be roughly viewed as a Dirac delta

function, so by the relation Vð�Þ ¼ dðe��ð�0;�ÞÞ=d�, one
can treat the factor e��ð�Þ as the step function

e��ð�Þ ’
�
0 ð�< �dÞ;
1 ð�d < �< �0Þ: (33)

Substituting Eq. (33) into Eq. (24) yields

�lð�0Þ ¼ il
Z �0

�d

_hð�Þjlðkð�� �0ÞÞd�; (34)

which can be integrated by parts,

�lð�0Þ ¼ �ilhð�dÞjlðkð�d � �0ÞÞ
þ il

Z �0

�d

d�hð�Þ d

d�
jlðkð�� �0ÞÞ; (35)

where a term containing hð�0Þ from the upper limit at �0

has been neglected since the amplitude hð�0Þ is about three
orders smaller than that of hð�dÞ. The remaining integra-
tion term in Eq. (35) is small and can be neglected [41],
since hð�Þ is smaller during the late time ð�d � �0Þ and
d
d� jl is the oscillating function. Thus one has the following

approximate, analytic solution:

�lð�0Þ ¼ �ilhð�dÞjlðkð�d � �0ÞÞ: (36)

From Eqs. (29) and (36) follows the temperature anisotro-
pies:

�lð�0Þ ¼ �iljlðkð�d � �0ÞÞ½hð�dÞ
þ 1

17 ln
20
3 ��dDðkÞ _hð�dÞ�; (37)

to which both hð�dÞ and _hð�dÞ contribute. As our calcu-
lation shows, the contribution of _hð�dÞ is about two orders
smaller than that of hð�dÞ.
In terms of �l and 	l, one calculates CXX

l caused by

RGWs [29] straightforwardly. The temperature anisotro-
pies

CTT
l ¼ 1

8�

ðlþ 2Þ!
ðl� 2Þ!

Z
k2dk

�������� �l�2ð�0Þ
ð2l� 1Þð2lþ 1Þ

� 2�lð�0Þ
ð2l� 1Þð2lþ 3Þ þ

�lþ2ð�0Þ
ð2lþ 1Þð2lþ 3Þ

��������
2

; (38)

the electric type of polarization

CEE
l ¼ 1

16�

Z
k2dk

��������ðlþ 1Þðlþ 2Þ	l�2ð�0Þ
ð2l� 1Þð2lþ 1Þ

þ 6ðl� 1Þðlþ 2Þ	lð�0Þ
ð2l� 1Þð2lþ 3Þ þ lðl� 1Þ	lþ2ð�0Þ

ð2lþ 1Þð2lþ 3Þ
��������

2

;

(39)

where the second term in the integrand has the coefficient
6ðl� 1Þðlþ 2Þ, different from that in Ref. [29], the mag-
netic type of polarization

CBB
l ¼ 1

16�

Z
k2dk

��������2ðlþ 2Þ	l�1ð�0Þ
ð2lþ 1Þ

þ 2ðl� 1Þ	lþ1ð�0Þ
ð2lþ 1Þ

��������
2

; (40)

and the temperature-polarization cross correlation spec-
trum
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CTE
l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

8�

ðlþ 2Þ!
ðl� 2Þ!

s ffiffiffiffiffiffiffiffiffi
1

16�

s Z
k2dk

�
�l�2ð�0Þ

ð2l� 1Þð2lþ 1Þ

� 2�lð�0Þ
ð2l� 1Þð2lþ 3Þ þ

�lþ2ð�0Þ
ð2lþ 1Þð2lþ 3Þ

�

�
�ðlþ 1Þðlþ 2Þ	l�2ð�0Þ

ð2l� 1Þð2lþ 1Þ
þ 6ðl� 1Þðlþ 2Þ	lð�0Þ

ð2l� 1Þð2lþ 3Þ þ lðl� 1Þ	lþ2ð�0Þ
ð2lþ 1Þð2lþ 3Þ

�
;

(41)

where the second term in the integrand has the coefficient
6ðl� 1Þðlþ 2Þ, different from that in Ref. [29].
Substituting the explicit expressions �l and 	l of Eqs.
(29) and (36) into the above spectra, one finally has

CTT
l ¼ 1

8�

ðlþ 2Þ!
ðl� 2Þ!

Z
k2dkP2

Tlðkð�d � �0ÞÞ
��������hð�dÞ

þ 1

17
ln
20

3
��dDðkÞ _hð�dÞ

��������
2

; (42)

CEE
l ¼ 1

16�

�
1

17
ln
20

3

�
2 Z

k2dkP2
Elðkð�d � �0ÞÞ

� ��2
dD

2ðkÞj _hð�dÞj2; (43)

CBB
l ¼ 1

16�

�
1

17
ln
20

3

�
2 Z

k2dkP2
Blðkð�d � �0ÞÞ

� ��2
dD

2ðkÞj _hð�dÞj2; (44)

CTE
l ¼ 1

136
ffiffiffi
2

p
�

ln
20

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þ!
ðl� 2Þ!

s Z
k2dkPTlðkð�d � �0ÞÞ

� PElðkð�d � �0ÞÞ 12
��
�hð�dÞ � 1

17
ln
20

3

���dDðkÞ _hð�dÞ
�
_h	ð�dÞ þ

�
�h	ð�dÞ � 1

17
ln
20

3

���dDðkÞ _h	ð�dÞ
�
_hð�dÞ

�
��dDðkÞ; (45)

where the projection factors are defined as [42]

PTlðxÞ ¼ jl�2ðxÞ
ð2l� 1Þð2lþ 1Þ þ

2jlðxÞ
ð2l� 1Þð2lþ 3Þ

þ jlþ2ðxÞ
ð2lþ 1Þð2lþ 3Þ ¼

jlðxÞ
x2

; (46)

PElðxÞ ¼ ðlþ 1Þðlþ 2Þ
ð2l� 1Þð2lþ 1Þ jl�2ðxÞ � 6ðl� 1Þðlþ 2Þ

ð2l� 1Þð2lþ 3Þ jlðxÞ

þ lðl� 1Þ
ð2lþ 1Þð2lþ 3Þ jlþ2ðxÞ

¼ �
�
2� lðl� 1Þ

x2

�
jlðxÞ þ 2

x
jl�1ðxÞ; (47)

PBlðxÞ ¼ 2ðlþ 2Þ
ð2lþ 1Þ jl�1ðxÞ � 2ðl� 1Þ

ð2lþ 1Þ jlþ1ðxÞ

¼ 2jl�1ðxÞ � 2
l� 1

x
jlðxÞ: (48)

With hð�dÞ and _hð�dÞ given from the last section and
DðkÞ from Eq. (31), we compute CXX

l and plot them in

Fig. 2, where the following values of respective parameters
are taken: the inflationary index 	inf ¼ �2:02, the dark
energy �� ¼ 0:75, the baryon density �b ¼ 0:045, the
neutrino species N� ¼ 3, and the tensor/scalar ratio r ¼
0:37, c ¼ 0:6, and b ¼ 0:85. For comparison, in Fig. 2 the
numerical results from CAMB [25] are also plotted. It is
seen that the analytic CEE

l and CBB
l agree very well with the

numerical ones for the range l � 600 covering the first
three peaks, and the error is only �2%. Comparing with
the previous analytic evaluation in Refs. [30,31], our result
not only extends the range of validity from l � 300 to l �
600, but also improves accuracy substantially.
For the spectra CTT

l and CTE
l , the profiles of our analytic

result also agree with the numerical ones fairly well, except
that CTT

l is in a range l � 10 and the first trough of CTE
l

around l� 75 have some deviations. For the purpose of
extracting RGWs, more important isCTE

l , whose amplitude

at the first trough has a maximum deviation �20% from
that of the numerical CAMB. This is due to the approxi-
mation of the temperature anisotropies �lð�0Þ in Eq. (36),
which is not accurate enough for very large scales.
The profiles of CXX

l are largely determined by those of

hð�dÞ and _hð�dÞ, especially the peaks and troughs of CXX
l

correspond to those of RGWs. The integrands for CXX
l in

Eqs. (42)–(45) contain the respective projection factors,
PTl, PEl, PBl, which are made of the spherical Bessel’s
functions. Since jlðxÞ is rather sharply peaked around x ’ l
for large l, consequently, the projection factors as functions
of k are peaked around

kð�0 � �dÞ ’ k�0 ’ l: (49)

Therefore, CXX
l as integrations over k will receive major

contributions from the integration domain k� l=�0 [31]:

CTT
l / jhð�dÞj2k’l=�0

; (50)

CEE
l ; CBB

l / j _hð�dÞj2k’l=�0
D2ðkÞ; (51)

CTE
l / hð�dÞ _hð�dÞk’l=�0

DðkÞ: (52)

By Eq. (50), the locations of the peaks of CTT
l is mainly

determined by jhð�dÞj2. Indeed, the right panel in Fig. 3
shows that the peaks and troughs of CTT

l correspond to

those of jhð�dÞj2. Similarly, by Eq. (51), the locations of

the peaks of CEE
l and CBB

l correspond to those of j _hð�dÞj2,
shown in the left panel in Fig. 3. The similar correspon-
dence, as revealed by Eq. (52), of the locations of the peaks

of CTE
l to those of hð�dÞ _hð�dÞk is also confirmed, but the

T.Y. XIA AND Y. ZHANG PHYSICAL REVIEW D 78, 123005 (2008)

123005-6



graph is not presented though in order to save room.
Besides, CEE

l , CBB
l , and CTE

l also depend on the damping

factor DðkÞ, leading to the strong damping of CEE
l , CBB

l ,

and CTE
l at large l, as shown in Fig. 2 and 3. Overall, our

analytic formulation yields a good approximation of CXX
l

in comparison with the numerical results.
We use the data from 5-year WMAP [7,8] to limit the B-

mode polarization CBB
l generated by RGWs in Fig. 4. It is

seen that the current observational data can only put a
rather loose limit on RGWs. For r ¼ 0:37 the amplitude
of the predicted spectrum is about 2 orders below the upper
limit by WMAP5. Improvements on the limit, or possible
direct detections of CBB

l are expected from more sensitive

polarization measurements by upcoming experiments,
such as Clover [56], EBEX [57], Spider [58], and Planck
[59].

10 100 10 100

 log
10

 l(l+1)C
l

EE/(2π)

 log
10

 l(l+1)C
l

BB/(2π)

log
10

 |dh(η
d
)/dη|2

l,  or kη
0

l,  or kη
0

log
10

 l(l+1)C
l

TT/(2π)

log
10

|h
k
(η

d
)|2

FIG. 3 (color online). The left panel: the locations of peaks
CEE
l and CBB

l correspond to that of j _hkð�dÞj2. The right panel: the
locations of peaks of CTT

l correspond to that of jhkð�dÞj2. Here
j _hkð�dÞj2 and jhkð�dÞj2 have been plotted with the variable k�0,
which is �l by Eq. (49).

10 100

1E-4

1E-3

0.01

0.1

1
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numeric

5-Year WMAP

l

 l(
l+

1)
C

B
B

l 

FIG. 4 (color online). The predicted CBB
l is well below the

constraint of the 5-year WMAP data [7,8]. Here the tensor/scalar
ratio r ¼ 0:37 is taken in computation.
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FIG. 2 (color online). The analytic spectra CXX
l generated by RGWs are compared with the numeric ones from CAMB [25]. Here the

decay factor DðkÞ in Eq. (31) has been used.
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IV. INFLUENCES BY NFS, INFLATION, AND
BARYONS

A. The NFS

Let us analyze the effect of NFS on the spectra CXX
l . To

demonstrate this, the spectra CXX
l with and without NFS

are plotted in Fig. 5. The l � 100 portion of the spectra are
not affected much by NFS, only on the scales of l > 200
are the spectra modified effectively. The reduction of am-
plitudes of CTT

l , CEE
l , and CBB

l by NFS is noticeable only

starting from the second peak. For instance, the third peak
of CTT

l is reduced by�25% and the fourth peak by�35%.

Similar modifications also occur in the spectra CEE
l , CBB

l ,

and CTE
l . These features of modifications can be under-

stood as follows. As shown in Eq. (12), the damping of
RGWs is effective for the conformal wave numbers k >
30, which, by the relation in Eq. (49), means that only those
portions with l 
 100 of CMB spectra will be affected by
NFS. Besides, Fig. 5 also shows that NFS causes a slight
shift of the peak locations of CXX

l to larger l, a feature to be

expected, since NFS shifts the peaks of hð�dÞ and _hð�dÞ
slightly to large k, the peaks of CXX

l will be accordingly

shifted to larger l by Eqs. (49)–(52). Given the current
precision level of observations on CMB, these small mod-
ifications caused by NFS will be difficult to detect at the
moment.

As mentioned in the introduction, the cross spectrum
CTE
l can be useful in revealing the presence of RGWs in the

zero-multipole method [32,33,41,42,60]. The 5-year
WMAP [7,8] has given the observed CTE

l , which is nega-

tive (anticorrelation) in a range l ’ ð50; 220Þ.
Theoretically, it is a combination of contributions of the
density perturbations and the RGWs as well. To search for
the evidence of RGWs, one needs to disentangle the con-
tribution of RGWs from the total. The inclusion of NFS
into the calculation will cause a shifting of the position of
the peaks of CTE

l to larger values of l, and �l tends to

increase with l. For instance, Fig. 5 shows that, without
NFS, CTE

l < 0 for l � 136 and CTE
l > 0 for l ’ ð137; 179Þ.

When NFS is included, CTE
l < 0 for l � 136, CTE

l > 0 for

l ’ ð137; 183Þ. In this low l region the shifting due to NFS
is small �l � 4. But, in the large l region the shifting is
large, say, around l ’ 500, it is �l� 10. This analysis tells
us that the zero multipole around l0 � 50 is not strongly
affected by NFS. However, if we look at the second zero
multipole l� 220, at which CTE

l crosses 0 once again and

turns positive, the influence by NFS is rather strong, �l�
5. More accurate observations of CTE

l and a detailed analy-

sis are needed before a definite conclusion can be drawn on
the existence of RGWs.

B. The inflation

The CMB spectra generated by RGWs depend very
sensitively on the initial spectrum hð�;�iÞ during the infla-
tionary stage. For the power-law form of hð�;�iÞ in Eq.
(16), CXX

l depend on both the amplitude A and the index

	inf . Figure 6 shows CXX
l for the cases of 	inf ¼ �1:8 and

�2:02 with NFS being taken into account. A larger index
	inf yields higher amplitudes of CEE

l and CBB
l in the whole
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FIG. 5 (color online). The NFS modifications on CXX
l are demonstrated. For l � 600, the amplitudes are reduced by up to�35% and

the peaks are shifted to larger l by NFS.
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range of l, agreeing with the previous result [34], and
higher amplitude of CTT

l for the range l > 20. In the

zero-multipole method, one is more interested in CTE
l in

the narrow range l ’ ð40; 60Þ, in which the first zero multi-
pole l0 should appear. First, as Fig. 6 shows, CTE

l is

negative in this range, and moreover, a larger index 	infð¼
�1:8Þ yields a steeper, down slope of CTE

l of negative

amplitude. With other parameters being fixed, a larger

index 	inf tends to shift the value of the zero multipole l0
of CTE

l to larger l. For instance, our calculation shows that,
relative to the WMAP-preferred 	inf ¼ �2:02 case, the
exact de Sitter 	inf ¼ �2 case shifts l0 to a larger value by
�l� 1, and the less-preferred case 	inf ¼ �1:8 shifts l0
by �l� 8.
Notice that, for CTT

l around l� 20, the two curves for

	inf ¼ �1:8 and for 	inf ¼ �2:02 intercept. A similar

FIG. 6 (color online). CXX
l are sensitive to the inflation index 	inf of RGWs. Two cases are plotted for 	inf ¼ �1:8 and �2:02. A

larger 	inf yields higher amplitudes of CEE
l and CBB

l .

FIG. 7 (color online). The baryon fraction �b affects CXX
l . Two cases are given for �b ¼ 0:1 and 0.045. A larger �b yields lower

amplitudes of CEE
l , CBB

l , and CTE
l .
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interception also occurs for CTE
l as well. This behavior can

be understood as the following. The initial spectrum of
RGWs in Eq. (16) contains a factor ð kk0Þ2þ	inf with the

comoving pivot wave number k0 ’ 6h�1. On large scales
k < k0, one has ð kk0Þ2þ	inf < 1 for 	inf ¼ �1:8, and

ð kk0Þ2þ	inf > 1 for 	inf ¼ �2:02. By the relation in Eq.

(49), the corresponding pivot multipole is l ’ k�0 ’ 20.
Thus, in the region of l < 20, CTT

l and CTE
l have lower

amplitude for 	inf ¼ �1:8 and higher amplitude for
	inf ¼ �2:02.

C. The baryon density �b

The wave equation (5) of RGWs is not explicitly

coupled with the baryons. As a result, hkð�Þ and _hkð�Þ
are not very sensitive to the baryons. The impact on CMB
by the baryons are mainly through the Thompson scatter-
ing terms, q�k, q	k, and qGk, in Boltzmann’s equation of
photons (18) and (19). During the evolution of CMB, the
photon decoupling process is particularly important, which
depends sensitively on the baryon component. The fitting
formula of the visibility function Vð�Þ given in Ref. [26]
contains explicitly the baryon fraction �b. A larger �b

yields a larger decoupling time �d and a smaller decou-
pling width��d [31]. Moreover, in Eqs. (42) through (45),

the integrands contain hð�dÞ, _hð�dÞ, and ��dDðkÞ, which
are functions of �d and ��d. We plot CXX

l for�b ¼ 0:045
and 0.1 in Fig. 7. It is seen that the amplitudes of CEE

l and

CBB
l with �b ¼ 0:045 are slightly higher than those of

�b ¼ 0:1. Thus, a larger �b gives a lower amplitude of
CEE
l and CBB

l , agreeing with the previous calculations [31].

As a new result of this paper, Fig. 7 also shows that a
smaller�b yields a higher amplitude of CTE

l and shifts the

value of the zero multipole l0 to large l. For instance,�b ¼
0:045 shifts l0 to a large value by �l� 2 relative to the
�b ¼ 0:1 case. Besides, CTT

l is less sensitive to the value

of �b than the other three spectra.

V. SUMMARY

In this paper we have presented the approximate, ana-
lytical formulae of the four CMB spectra generated by
RGWs. This has been motivated by an attempt to extract
signals of RGWs possibly already contained in CXX

l , espe-

cially in the magnetic polarization spectrum CBB
l and the

cross spectrum CTE
l .

In our calculation, a fitting formula of the exponentially
damping factor DðkÞ, in Eqs. (31) or (32), has been intro-
duced to describe the decoupling process effectively. The
resulting analytic spectra CEE

l and CBB
l agree quite well

with the numerical ones from CAMB on large scales for
the first three peaks for l � 600, and the error is only�3%.
This improves substantially both the precision and the
range of validity in comparison with the previous analytic
studies. The spectra CTT

l and CTE
l are first analytically

computed in this paper. They have overall profiles agreeing
with the numerical ones, but their amplitudes have certain
deviations due to the approximation adopted in Eq. (36).
More relevant to us is CTE

l , whose amplitude of the 1st

trough at l� 75 has a maximum deviation �20%. An
analytic formulation of �ð�0Þ better than Eq. (36) should
be aimed at in future work.
For the Sachs-Wolfe term in the Boltzmann’s equation

for photons, we have included the damping effect of NFS
on the RGWs hkð�Þ as the source. As is expected, NFS
appreciably reduces the amplitudes of CXX

l for large l >
100 and, at the same time, shifts slightly the locations of
the peaks to large l. Thus, in the zero multiple method by
examining the positions where CTE

l crosses 0, the shifting

due to the NFS effect should be taken into account for a
complete analysis.
We have also demonstrated the influences on CXX

l by the

tensorial spectrum index 	inf of the inflation and the
baryon fraction �b. It is found that a larger 	inf leads to
a higher amplitude of CMB spectra, whereas the larger�b

gives a lower one. Both of them shift the locations of the
peaks of CXX

l . In regard to the shifting of the zero multi-

poles l0 of C
TE
l , NFS is as important as the inflation and the

baryons and should be included in any comprehensive
study.
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