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We write out the generic Dirac neutrino mass operator which possesses the Friedberg-Lee symmetry

and find that its corresponding neutrino mass matrix is asymmetric. Following a simple way to break the

Friedberg-Lee symmetry, we calculate the neutrino mass eigenvalues and show that the resultant neutrino

mixing pattern is nearly tri-bimaximal. Imposing the Hermitian condition on the neutrino mass matrix, we

also show that the simplified ansatz is consistent with current experimental data and favors the normal

neutrino mass hierarchy.
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Recent solar, atmospheric, reactor, and accelerator neu-
trino experiments have provided us with very convincing
evidence that neutrinos are slightly massive and lepton
flavors are significantly mixed [1]. The flavor mixing of
three lepton families can be described by a 3� 3 unitary
matrix U [2], which is usually parametrized as

U¼
c12c13 s12c13 s13e

�i�

�s12c23�c12s23s13e
i� c12c23�s12s23s13e

i� s23c13
s12s23�c12c23s13e

i� �c12s23�s12c23s13e
i� c23c13

0
B@

1
CA;

(1)

where cij � cos�ij and sij � sin�ij (for ij ¼ 12, 13 and

23), and � is the CP-violating phase. If neutrinos are
Majorana particles, U should contain two more
CP-violating phases, which are referred to as the
Majorana phases and have nothing to do with neutrino
oscillations. The latest global analysis of current neutrino
oscillation data yields 30:9� � �12 � 37:8�, 35:1� �
�23 � 53:4� and 0� � �13 < 12:4� with 3� uncertainty
[3], but the phase � remains entirely unconstrained.
While the absolute mass scale of three neutrinos is not
yet fixed, their two mass-squared differences have already
been determined to quite a good degree of accuracy [3]:
�m2

21 � m2
2 �m2

1 ¼ ð7:14 � � � 8:19Þ � 10�5 eV2 and
�m2

32 � m2
3 �m2

2 ¼ �ð2:06 � � � 2:81Þ � 10�3 eV2 with

3� uncertainty.
Many theoretical and phenomenological attempts have

been made to interpret the smallness of three neutrino
masses and the largeness of two neutrino mixing angles
[4]. Among them, the flavor symmetry approach is, in
particular, simple and predictive. A new and intriguing
flavor symmetry is the one proposed by Friedberg and
Lee (FL) [5]. In the basis where the mass eigenstates of
three charged leptons are identified with their flavor eigen-

states, the Dirac neutrino mass operator can be written as

L FL ¼ X
�;�

Y��ð ��� � ���Þð�� � ��Þ; (2)

where � and � run over e, �, and �. The FL symmetry
means that LFL is invariant under the translational trans-
formations �e ! �e þ z, �� ! �� þ z, and �� ! �� þ z,

where z is a constant element of the Grassmann algebra
independent of space and time [5]. The corresponding
neutrino mass matrix is a symmetric matrix,

MFL ¼
bþ c �b �c
�b aþ b �a
�c �a aþ c

0
@

1
A; (3)

where a ¼ Y�� þ Y��, b ¼ Ye� þ Y�e, and c ¼
Y�e þ Ye�. Note that the determinant of MFL is vanishing
[i.e., DetðMFLÞ ¼ 0], and thus one of the neutrinos must be
massless. One may explicitly break the FL symmetry of
LFL to make realistic predictions for both neutrino masses
and flavor mixing angles. So far some interesting works
have been done to apply the FL symmetry to the Majorana
neutrino mass operator [6–8], to combine the FL symmetry
with the seesaw mechanism [9,10], to extend the FL sym-
metry to the quark sector [11], and to generalize the FL
symmetry in a specific model containing some scalar fields
[12].
Here let us clarify two points associated with the FL

symmetry itself and its applications. First, the FL symme-
try is not a symmetry of the full Lagrangian of electroweak
interactions LEW. Although the kinetic term of LEW is
invariant under the transformations �� ! �� þ z (for � ¼
e, �, �) with z being independent of space and time, other
terms of LEW do not have such a symmetry. In this sense,
the FL symmetry is actually a phenomenological constraint
or assumption imposed on the neutrino mass term of LEW

(after electroweak symmetry breaking) in order to organize
the texture of the neutrino mass matrix. Second, a similar
constraint can be imposed on the mass term of charged
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leptons, but this treatment will in general give rise to small
lepton flavor mixing angles. The reason is simply that the
lepton flavor mixing matrixU is a measure of the mismatch
between two unitary matricesUl andU� used, respectively,
to diagonalize the charged lepton and neutrino mass ma-

trices; i.e., U ¼ Uy
l U� [13]. If both mass matrices had the

same symmetry (or equivalently, the parallel textures), a

large cancellation would occur between Uy
l and U� such

that U would be very close to the identity matrix [14]. It is
therefore a purely phenomenological assumption to im-
pose the FL symmetry only on the neutrino sector so as
to make a sufficient mismatch between two sectors. In the
chosen basis, where the charged lepton mass matrix is
diagonal and positive,Ul turns out to be the identity matrix
and thus U ¼ U� holds. The latter is then possible to
accommodate large neutrino mixing angles if the neutrino
mass matrix takes the form of MFL or its slight variations,
as already shown in Refs. [5–8].

We notice that LFL in Eq. (3) is not the most generic
mass operator of Dirac neutrinos which obeys the FL
symmetry. The Dirac neutrino mass operator

L 0
FL ¼ X

�;�

X
�0;�0

Y��
�0�0 ð ��� � ���Þð��0 � ��0 Þ; (4)

where the Greek superscripts and subscripts run over e, �,
and �, is more general than LFL and also invariant under
the translational transformations �e ! �e þ z, �� !
�� þ z, and �� ! �� þ z. Its corresponding neutrino

mass matrix M0
FL takes the form

M0
FL ¼

Bþ C �B�D �CþD
�BþD Aþ B �A�D
�C�D �AþD Aþ C

0
@

1
A; (5)

where

A ¼ 1
2½�ðY��

�e þ Y
��
e� � Y

��
e� � Y

��
�e Þ þ ðY�e

e� þ Y
e�
�e � Y

�e
�e � Y

e�
e� Þ � ðYe�

�� þ Y�e
�� � Ye�

�� � Y�e
��Þ � ðY��

e� þ Y
��
�e

� Y
��
�e � Y

��
e� Þ � ðY�e

�� þ Y
e�
�� � Y

�e
�� � Y

e�
��Þ þ ðYe�

�e þ Y�e
e� � Ye�

e� � Y�e
�eÞ� þ ðY��

�� þ Y
��
�� � Y

��
�� � Y

��
��Þ;

B ¼ 1
2½�ðY��

�e þ Y
��
e� � Y

��
e� � Y

��
�e Þ � ðY�e

e� þ Y
e�
�e � Y

�e
�e � Y

e�
e� Þ þ ðYe�

�� þ Y�e
�� � Ye�

�� � Y�e
��Þ þ ðY��

e� þ Y
��
�e

� Y
��
�e � Y

��
e� Þ � ðY�e

�� þ Y
e�
�� � Y

�e
�� � Y

e�
��Þ � ðYe�

�e þ Y�e
e� � Ye�

e� � Y�e
�eÞ� þ ðY�e

�e þ Y
e�
e� � Y

�e
e� � Y

e�
�eÞ;

C ¼ 1
2½ðY��

�e þ Y��
e� � Y��

e� � Y��
�e Þ � ðY�e

e� þ Ye�
�e � Y�e

�e � Ye�
e� Þ � ðYe�

�� þ Y�e
�� � Ye�

�� � Y�e
��Þ � ðY��

e� þ Y��
�e

� Y��
�e � Y��

e� Þ þ ðY�e
�� þ Ye�

�� � Y�e
�� � Ye�

��Þ � ðYe�
�e þ Y�e

e� � Ye�
e� � Y�e

�eÞ� þ ðYe�
e� þ Y�e

�e � Ye�
�e � Y�e

e� Þ;
D ¼ 1

2½ðY��
�e þ Y��

e� � Y��
e� � Y��

�e Þ þ ðY�e
e� þ Ye�

�e � Y�e
�e � Ye�

e� Þ þ ðYe�
�� þ Y�e

�� � Ye�
�� � Y�e

��Þ � ðY��
e� þ Y��

�e

� Y��
�e � Y��

e� Þ � ðY�e
�� þ Ye�

�� � Y�e
�� � Ye�

��Þ � ðYe�
�e þ Y�e

e� � Ye�
e� � Y�e

�eÞ�: (6)

We see that M0
FL is an asymmetric matrix and its asymme-

try is characterized by nonvanishing D. GivenD ¼ 0,M0
FL

turns out to be equivalent to MFL.
Based on the above observation, we are going to focus

our interest on the phenomenological implications of L0
FL

for Dirac neutrinos. We shall follow a simple way to break
the FL symmetry of L0

FL and obtain the neutrino mass
matrixM� ¼ M0

FL þm01 with 1 being the identity matrix.
Then we shall show that a nearly tri-bimaximal neutrino
mixing pattern, which is favored by current neutrino oscil-
lation data, can always be obtained from M�. A simpler
and Hermitian form of M� will also be discussed in detail.

Although M0
FL in Eq. (5) is asymmetric, one can easily

verify that its determinant vanishes as MFL does. Hence
one of the mass eigenvalues of M0

FL must be zero. For
simplicity, here we follow Ref. [5] to break the FL sym-
metry of L0

FL:

L � ¼ L0
FL þm0

X
�

�����; (7)

where m0 is in general a complex parameter, and � runs
over e, �, and �. Corresponding to L�, the Dirac neutrino
mass matrix reads

M� ¼ M0
FL þm01

¼
Bþ C �B�D �CþD
�BþD Aþ B �A�D
�C�D �AþD Aþ C

0
@

1
A

þm0

1 0 0
0 1 0
0 0 1

0
@

1
A: (8)

We see thatL� orM� can possess the exact�-� symmetry
only when both B ¼ C and D ¼ 0 are satisfied. To derive
the neutrino mass spectrum and the flavor mixing pattern
from M�, we consider the following unitary transforma-

tion: UyM�M
y
�U ¼ Diagfm2

1; m
2
2; m

2
3g, where mi (for i ¼

1, 2, 3) stand for three neutrino masses. Because we have
taken the basis in which the mass and flavor eigenstates of
three charged leptons are identical, the unitary matrix U is
just the neutrino mixing matrix linking the neutrino mass
eigenstates ð�1; �2; �3Þ to the neutrino flavor eigenstates
ð�e; ��; ��Þ.
A salient feature ofM� is that the sum of three elements

in its any row or column equalsm0, implying that one of its
three eigenvalues must be m0. For this reason, the unitary
transformationU used to diagonalize the Hermitian matrix
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M�M
y
� must have an eigenvector which contains three

equal components 1=
ffiffiffi
3

p
. It is then possible to express U

as a production of the tri-bimaximal mixing matrixU0 [15]
and a complex rotation matrix U� in the (1,3) plane:

U ¼ U0 	U�

¼
2ffiffi
6

p 1ffiffi
3

p 0

� 1ffiffi
6

p 1ffiffi
3

p 1ffiffi
2

p

� 1ffiffi
6

p 1ffiffi
3

p � 1ffiffi
2

p

0
BB@

1
CCA

	
cos� 0 sin�e�i�

0 1 0
� sin�ei� 0 cos�

0
B@

1
CA; (9)

in which � signifies CP violation and is equivalent to the
one defined in Eq. (1). After a straightforward calculation,
we obtain

� ¼ � argðT13Þ; � ¼ 1

2
arctan

�
2jT13j

T33 � T11

�
; (10)

where

T11 ¼ 3ðjBj2 þ jCj2 þRe½B
C� þ jDj2 �Re½ðC� BÞD
�Þ
þ 3Re½ðBþCÞm


0� þ jm0j2;
T33 ¼ jBj2 þ jCj2 � Re½B
C� þ 4jAj2 þ 2Re½ðBþCÞA
�

þ 3Re½ðC�BÞD
� þ 3jDj2 þ 4Re½Am

0�

þRe½ðBþCÞm

0� þ jm0j2;

T13 ¼
ffiffiffi
3

p ðjCj2 � jBj2 � i Im½B
C�Þ þ ffiffiffi
3

p
Re½ðBþCÞD
�

þ 2
ffiffiffi
3

p
i Im½ðBþCÞD
� þ ffiffiffi

3
p ðC� BÞA
 � 2

ffiffiffi
3

p
A
D

þ ffiffiffi
3

p
Re½ðC�BÞm


0� � 2
ffiffiffi
3

p
i Im½Dm


0�: (11)

Furthermore, three mass eigenvalues ofM� are found to be
m2 ¼ jm0j and

m1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2ðT11 þ T33Þ � 1

2ðT33 � T11Þ cos2�� jT13j sin2�
q

;

m3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2ðT11 þ T33Þ þ 1

2ðT33 � T11Þ cos2�þ jT13j sin2�
q

:

(12)

Comparing between Eqs. (1) and (9), one may easily arrive
at the analytical results of three mixing angles:

sin�12 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ cos2�

p ;

sin�23 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ cos2�� ffiffiffi

3
p

sin2� cos�
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2þ cos2�Þp ;

sin�13 ¼ 2ffiffiffi
6

p j sin�j:

(13)

In addition, we find that the Jarlskog invariant of leptonic

CP violation [16] is given by J ¼ sin2� sin�=ð6 ffiffiffi
3

p Þ in
this phenomenological scenario of Dirac neutrino mixing.

Given the asymmetric form of M� in Eq. (8), the

Hermitian relation My
� ¼ M� can be achieved if and only

if A, B, C, and m0 are all real and D is purely imaginary
(i.e., D
 ¼ �D). Let us define D ¼ iD0 and rewriteM� as

M�¼
BþC �B� iD0 �Cþ iD0

�Bþ iD0 AþB �A� iD0
�C� iD0 �Aþ iD0 AþC

0
@

1
Aþm0

1 0 0
0 1 0
0 0 1

0
@

1
A;

(14)

where A, B, C, D0, and m0 are all real. Now M� is
Hermitian and only contains five free parameters. We are
going to show that this interesting texture ofM� is actually
compatible with current neutrino oscillation data.
With the help of Eqs. (10)–(13), it is easy to obtain three

neutrino masses and three flavor mixing angles from
Hermitian M� given in Eq. (14). First, we have m2 ¼
jm0j and
m1 ¼ jðAþ Bþ Cþm0Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA2 þ B2 þ C2Þ � ðABþ BCþ CAÞ þ 3D02

q
j;

m3 ¼ jðAþ Bþ Cþm0Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA2 þ B2 þ C2Þ � ðABþ BCþ CAÞ þ 3D02

q
j:

(15)

Second, the expressions of sin�12, sin�23, and sin�13 are
the same as those shown in Eq. (13) with � and � being
now given by

�¼ arctan

�
2D0

C�B

�
; �¼1

2
arctan

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3½ðC�BÞ2þ4D02�p

2A�B�C

�
:

(16)

Note that � is just the CP-violating phase of U, and � has
been restricted to the range �	=4 � � � 	=4. Note also
that � > 0 and � < 0 correspond to the options of ‘‘�’’
signs in the expression of m1 (or the options of ‘‘�’’ signs
in the expression of m3) in Eq. (15). Taking account of
current experimental constraints on three mixing angles
[3], we obtain j�j< 18�. The smallness of j�j implies that
U is a nearly tri-bimaximal mixing pattern.
If both B ¼ C and D0 ¼ 0 hold, then M� possesses the

exact �-� symmetry which gives rise to the exact tri-
bimaximal neutrino mixing pattern U0. There are two
simpler ways to produce the deviation of U from U0:
(1) B � C and D0 ¼ 0. Then we have �13 � 0� and

�23 � 45� together with � ¼ 0�.
(2) B ¼ C and D0 � 0. Then we have � ¼ �	=2,

�23 ¼ 45� and �13 � 0�.
The second possibility is more interesting in the sense that

jJ j ¼ sin2�=ð6 ffiffiffi
3

p Þ can be as large as a few percent for
j�j � 3� and may lead to observable CP-violating effects
in long-baseline neutrino oscillations.
To illustrate, we carry out a simple numerical analysis of

the parameter space of Hermitian M� by using current
neutrino oscillation data on ð�m2

21;�m
2
32Þ and
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ð�12; �13; �23Þ as the inputs. Without loss of generality, we
assume m0 > 0. Our numerical results indicate that only
the normal neutrino mass hierarchy (i.e., �m2

32 > 0) is

favored in this Hermitian ansatz. The allowed regions of
A, B, C, D0, and m0 are shown in Fig. 1, where m0 &
0:2 eV has been taken as a generous upper bound on the
absolute neutrino mass scale [17]. Because of m0 ¼ m2,

the lower bound of m0 is m0 >
ffiffiffiffiffiffiffiffiffiffiffiffi
�m2

21

q
 0:09 eV as one

can see from Fig. 1. The Jarlskog invariant J may vary
from 0 to 0.057 in the obtained parameter space.

Let us make some concluding remarks. This work is a
simple but useful generalization of the original FL sym-
metry for Dirac neutrinos. Such a generic FL symmetry
can be applied to the quark sector to obtain generic (or
Hermitian) quark mass matrices. But it will have no influ-
ence on the neutrino mass matrix if massive neutrinos are
Majorana particles, because a Majorana neutrino mass
matrix must always be symmetric.

Moreover, the FL symmetry is essentially a phenome-
nological constraint on the texture of the neutrino mass
matrix at low energies. One may certainly consider impos-
ing such a symmetry on the neutrino mass matrix at a
superhigh energy scale. In this case, however, one has to
carefully take account of radiative corrections to the results
of neutrino masses and flavor mixing angles when they are
confronted with current experimental data. It is generally
expected that radiative corrections are negligible if three
neutrino masses have a normal and strong hierarchy, and

they may be significant if three neutrino masses are nearly
degenerate [18]. For the ansatz discussed in this paper,
which only favors the normal neutrino mass hierarchy,
the same behaviors of radiative corrections can be expected
if it is prescribed at a high energy scale instead of low
scales.
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FIG. 1 (color online). The parameter space of A, B, C, and D0
versus m0 (all of them in unit of eV) in the scenario of Hermitian
M�, where only the normal neutrino mass hierarchy (i.e.,
�m2

32 > 0) is allowed.

BRIEF REPORTS PHYSICAL REVIEW D 78, 117301 (2008)

117301-4


