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M. Zdráhal1,2,* and J. Novotný1,†

1Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2,
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We generalize the reconstruction theorem of Stern, Sazdjian, and Fuchs based on the dispersion

relations to the case of the (2 ! 2) scattering of all the pseudoscalar octet mesons ð�;K; �Þ. We formulate

it in a general way and include also a discussion of the assumptions of the theorem. It is used to obtain the

amplitudes of all such processes in the isospin limit to the one-loop order (and can be straightforwardly

extended to two loops) independently on the particular power-counting scheme of the chiral perturbation

theory in question. The results in this general form are presented.
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I. INTRODUCTION

In low-energy QCD the chiral perturbation theory (�PT,
cf. [1]) has gained great prominence as a tool for descrip-
tion interactions of the lightest (pseudoscalar) mesons, �,
K and �. Within this framework these mesons are under-
stood as Goldstone bosons of the spontaneous breaking of
the chiral symmetry SUð3ÞL � SUð3ÞR (appearing if all
three lightest quarks were massless) down to SUð3ÞV , gain-
ing the masses through the explicit breaking of the sym-
metry due to the nonzero quark masses, whereas all the
other hadrons (with mass at least of order �� 1 GeV) are
included only effectively. Using the symmetry properties
and the basic properties like analyticity, unitarity, and the
crossing symmetry, the Lagrangian of this effective theory
is constructed. It contains an infinite number of terms. Nev-
ertheless, the Weinberg power-counting scheme assigns to
a given diagram of this theory (and term of the Lagrangian)
its importance by means of the chiral dimension OðpDÞ
(see [2]), and so for computations to a given order in low
energies it is sufficient to use only a finite number of them.

However, we can try to find the amplitudes of a process
using the required properties directly with no need of the
Lagrangian to be explicitly written (with all the advantages
and disadvantages that this involves), which is the main
goal of this paper. We extend the reconstruction theorem
given by Stern, Sazdjian, and Fuchs in [3] and widely used
in [4]. Their work was originally motivated by the prob-
lem1 of possible smallness of the scalar condensate B0 as
the power-counting independent way to compute the am-
plitude of �� scattering in the 2 flavor case. Even though

the problem is not yet satisfactorily closed,2 the method is
interesting also in itself. The extension of this method to
the 3 flavor case of the �K amplitude has been given by
Ananthanarayan and Büttiker [7,8]. We have worked out a
generalization to the processes of all the pseudo-Goldstone
bosons (PGB) in the three flavor case.
In contrast to these previous papers, we have extracted

from the theorem the entire information about the isospin
structure and assumed just the needed crossing symmetry.
The isospin properties are used afterwards separately for
particular processes. Furthermore, the theorem is formu-
lated formally generally by pointing out all the properties
essential for the theorem. This should simplify the discus-
sion of validity of the theorem and its eventual further
extensions to more complicated cases. In the simple case
of processes from the pure strong �PT (conserving the
strong isospin), we have discussed the assumptions and
showed their reasonability and concluded with the con-
struction of their amplitudes to two loops (with results
explicitly written just to the one loop) in a way independent
of the particular power-counting scheme in use. In this
aspect our work is thus also an extension of the work of
Osborn [9] to higher orders.
The plan of the paper is as follows. In Sec. II we

establish our notation; the fundamental content of the
paper is Sec. III, where we reformulate the reconstruction
theorem with its assumptions and give the proof of it. In
Sec. IV we use the theorem (and Appendix A) to compute
the amplitudes describing all the 2-PGB scattering pro-
cesses to the Oðp4Þ chiral order (explicitly written in the
Appendix B). Finally, in Sec. V we provide a further
discussion of the assumptions and discussion of the results.
Appendix A summarizes all the needed amplitudes to
describe the 4-PGB processes and lists a general parame-
trization of them to the Oðp2Þ order. Appendix B gives the
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1The standard power counting is based on the presumption that

the value of B0 is of order �. So there also appeared approaches
extending the �PT to the case including the possibility of small
B0 too, which have a lesser predictive power connected with
larger number of low-energy constants (LECs)—namely the
generalized �PT [5].

2The only direct answer given by experiment is still the con-
firmation of the standard power counting in the 2 flavor case by
the Kl4 measurement at Brookhaven National Laboratory [6].
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results of the application of the theorem to computation of
amplitudes to the Oðp4Þ order. In Appendix C we give
relations between our parameters and renormalized LEC of
the standard �PT [10] in a particular renormalization
scheme [11]. The main points of the analysis of validity
of dispersion relations and the regions of analyticity of
amplitudes that are used in the theorem are briefly sum-
marized in Appendix D.

II. NOTATION

We consider a scattering process of two-PGB of the type

AðpAÞBðpBÞ ! CðpCÞDðpDÞ (1)

and write its amplitude according to3

hCðpCÞDðpDÞjfAðpAÞBðpBÞii
¼ �if þ ið2�Þ4�ð4ÞðpC þ pD � pA � pBÞAðs; t; uÞ:

(2)

In the relations where we want to distinguish between
more processes, we write explicitly Ai!fðs; t; uÞ or

AAB!CDðs; t; uÞ.
Later on, we will use the crossing symmetry, so let

us define the amplitude of the crossed processes. The
amplitude of the direct process will be denoted by
Sðs; t; uÞ, i.e. AAB!CDðs; t; uÞ ¼ Sðs; t; uÞ. The amplitude
of the T-crossed channel will be AA �C! �BDðs; t; uÞ ¼
fTTðs; t; uÞ, where the phase factor fT is defined so that
Tðs; t; uÞ fulfils the crossing relation Sðs; t; uÞ ¼ Tðt; s; uÞ
and similarly for the U-crossed channel.

The transition from the CMS variables s and cos� to the
Mandelstam variables s, t, u for the process (1) is possible
using the relation

cos� ¼ sðt� uÞ þ �AB�CD

�1=2
AB ðsÞ�1=2

CDðsÞ
; (3)

where �ij is a difference of the masses squared �ij ¼
m2

i �m2
j and

�ijðxÞ ¼ x2 þm4
i þm4

j � 2xðm2
i þm2

j Þ � 2m2
i m

2
j (4)

refers to the Källen’s quadratic form (also called the tri-
angle function).

The sum of squared masses of all the particles appearing
in the process is denoted as M, i.e.

sþ tþ u ¼ m2
A þm2

B þm2
C þm2

D ¼ M: (5)

We will use the partial wave decomposition of the
amplitudes in the form

Ai!fðs; cos�Þ ¼ 32�
X
l

Ai!f
l ðsÞð2lþ 1ÞPlðcos�Þ; (6)

where Pl are Legendre polynomials.
From the unitarity of S-matrix (and real analyticity of

the physical amplitude as well as T-invariance) there fol-
lows the unitarity relations. Assuming that the only rele-
vant intermediate states are those containing two particles
� and � with masses m� and m�, its form for the partial

wave of amplitudes reads

ImAi!f
l ðsÞ ¼ X

�;�

2

SF

�1=2
�� ðsÞ
s

Ai!ð�;�Þ
l ðsÞ

� ½Af!ð�;�Þ
l ðsÞ���ðs� ðm� þm�Þ2Þ: (7)

Here, SF denotes the symmetry factor (SF ¼ 1 if the two
intermediate states are distinguishable and SF ¼ 2 if they
are not).
Finally, we use the definition of the (signs of) meson

fields given in the matrix

	ðxÞ ¼ �a	aðxÞ

¼
�0 þ 1ffiffi

3
p � � ffiffiffi

2
p

�þ � ffiffiffi
2

p
Kþffiffiffi

2
p

�� ��0 þ 1ffiffi
3

p � � ffiffiffi
2

p
K0ffiffiffi

2
p

K� � ffiffiffi
2

p
�K0 � 2ffiffi

3
p �

0
BB@

1
CCA: (8)

The meson states are chosen so that the matrix element of
mesons gets one minus sign for each charged particle in the
final state.

III. RECONSTRUCTION THEOREM

A. Statement of the theorem

In this section we prove the following theorem: The
amplitude Sðs; t; uÞ of a given process Aþ B ! CþD
fulfilling all the conditions from the next subsection can
be reconstructed to (and excluding) Oðp8Þ order just from
the knowledge of imaginary parts of s and p partial waves
of all crossed amplitudes and some polynomial

Sðs; t; uÞ ¼ �0ðsÞ þ ½sðt� uÞ þ�AB�CD��1ðsÞ þ�0ðtÞ
þ ½tðs� uÞ þ �AC�BD��1ðtÞ þ�0ðuÞ
þ ½uðt� sÞ þ �AD�BC��1ðuÞ þ R4ðs; t; uÞ
þOðp8Þ; (9)

where R4ðs; t;uÞ is a third-order polynomial in Mandel-
stam variables [obeying exactly the same symmetries as
the original amplitude Sðs; t; uÞ] and

�0ðsÞ ¼ 32s3
Z �2

�

dx

x3
ImS0ðxÞ
x� s

; (10)

3This process depends on two independent kinematical quan-
tities only. It is convenient to choose the total energy squared s
and the angle � between the momenta pA and pC in the center of
mass system (CMS) or two of three Mandelstam variables s, t, u.
In order to express the crossing and Bose symmetry properties in
a simple way in what follows, we keep writing the dependence
on all three Mandelstam variables explicitly.
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�1ðsÞ ¼ 96s3
Z �2

�

dx

x3
1

x� s
Im

S1ðxÞ
�1=2
AB ðxÞ�1=2

CDðxÞ
; (11)

�0ðtÞ ¼ 32t3
Z �2




dx

x3
ImT0ðxÞ
x� t

; (12)

�1ðtÞ ¼ 96t3
Z �2




dx

x3
1

x� t
Im

T1ðxÞ
�1=2
AC ðxÞ�1=2

BDðxÞ
; (13)

�0ðuÞ ¼ 32u3
Z �2

�

dx

x3
ImU0ðxÞ
x� u

; (14)

�1ðuÞ ¼ 96u3
Z �2

�

dx

x3
1

x� u
Im

U1ðxÞ
�1=2
AD ðxÞ�1=2

BC ðxÞ
: (15)

S0 and S1 are s and p partial waves of the process in
question, similarly T0 and T1 and U0 and U1 the partial
waves of the T and U crossed processes. �, 
, � are the
minima of squared invariant mass of all possible inter-
mediate states in the S, T, and U channels [see (18)].
Finally, � is the scale from the assumptions.

B. Assumptions of the theorem

We use this theorem in the (strong part of) chiral per-
turbation theory, but for better understanding of it, we are
formulating all the assumptions in the general way and
then discussing their validity in �PT separately. The as-
sumptions of the theorem are:

(1) There exists a threshold � up to which we can re-
gard the theory under consideration to be complete;
this means, for example, that under this threshold
there appears no particle of other types than those
which are already explicitly included in the theory
and all the influence of such extra particles is al-
ready taken into account effectively or negligible
under the threshold. In chiral perturbation theory the
threshold � is the threshold of production of non-
PGB states, i.e. �� 1 GeV.

(2) There exists a well-behaved expansion of the am-
plitude in powers of p=�. In �PT it is enough to
have any chiral expansion, not necessarily the stan-
dard Weinberg one. As is common in �PT, instead
of Oððp=�ÞnÞ we write just OðpnÞ for short.

(3) We can write a 3 times4 subtracted dispersion re-
lation for the amplitude Sðs; t;uÞ in the complex
s plane for fixed value of u [in the form (16)].
This is the essential assumption of the proof—the
theorem stands or falls by it. This assumption is also

connected with the validity of the partial wave ex-
pansion (for the sake of simplicity, we assume that
this expansion can be also analytically continued
below the physical threshold where needed). The
legitimacy of these assumptions in the case of �PT
is discussed in Appendix D.

(4) We further assume that the amplitude considered as
a function of a single Mandelstam variable (with the
other fixed at some appropriate value) is analytic in
some unempty open region. The regions where this
and the previous assumptions are valid are discussed
(and plotted) in Appendix D.

(5) The crossing relations given in the form of the pre-
vious section are valid, i.e. Sðs; t; uÞ ¼ Tðt; s; uÞ ¼
Uðu; t; sÞ. That is a widely accepted assumption,
whose validity for a general 2 ! 2 process has
been proven from axiomatic theory by Bross, Ep-
stein, and Glaser [12].

(6) The absorptive parts of the l � 2 partial amplitudes
are suppressed to the Oðp8Þ order—thanks to that
we can (up to this order) deal just with the first two
partial waves in the theorem. In our case that follows
from the (pseudo-)Goldstone boson character of the
particles under consideration. In �PT the ampli-
tudes behave dominantly as Oðp2Þ and do not con-
tain any bound state poles. The unitarity relation (7)
then implies that its imaginary part behaves as
Oðp4Þ, i.e. the amplitudes are dominantly real.
According to the analyticity of the amplitude, its
leading Oðp2Þ part should be a polynomial in
Mandelstam variables. Moreover, it has to be a poly-
nomial of the first order; otherwise its coefficient
would grow up as mass of the PGB went to zero, and
that would contradict the finiteness of the S-matrix
in the chiral limit with the external momenta fixed.5

However, the first-order polynomial could not con-
tribute to l � 2 partial waves, thus these partial
waves should behave in the chiral limit as Oðp4Þ,
thereby again using the unitarity relation, the imagi-
nary parts of these partial waves are at least of the
Oðp8Þ order.

C. Proof of the theorem

One of our assumptions is that for the amplitude we can
write the 3 times subtracted dispersion relation in the form

Sðs; t; uÞ ¼ P3ðs; t;uÞ þ s3

�

Z 1

�

dx

x3
ImSðx;M� x� u;uÞ

x� s

þ t3

�

Z 1




dx

x3
ImSðM� x� u; x; uÞ

x� t
; (16)

4As discussed later on, the exact number of subtractions is not
so relevant.

5We will see that the finiteness of the S-matrix in the chiral
limit deserves to be regarded as one of the full-valued assump-
tions by itself.
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where Pnðs; t; uÞ is a polynomial of the (n� 1)-th order in
s and t.6� is the minimum of the squared invariant mass of
all the possible intermediate states ð�;�Þ in the S channel
(or rather the lowest mass of the state with the same
quantum numbers as the in and out state in the S channel),7

� ¼ min
ð�;�Þ

ðm� þm�Þ2; (18)

and analogically 
 for the T channel (later on we will
also need the same for theU channel, what will be denoted
by �).

Thanks to the crossing symmetry we can replace the
Sðs; t;uÞ amplitude in the second integral with the
Tðt; s; uÞ. Further, since we assume that we know the com-
plete theory only up to some threshold �, we have to split
the dispersion integral into two parts—the low-energy
(x � �2) and the high-energy (x � �2) part. We consider
the region where s � �2, i.e. in the high-energy part,
s � x, we have8

s3

�

Z 1

�2

dx

x3
ImSðx;�x� u;uÞ

x� s
¼ s3H�ðuÞ þOðp8Þ; (19)

where

H�ðuÞ ¼ 1

�

Z 1

�2

dx

x3
ImSðx;M� x� u; uÞ

x
(20)

is a function of u only. We can proceed similarly for the
high-energy part of the integration of Tðs; t;uÞ. Hence,
these high-energy parts can be to the order Oðp8Þ added
to the subtraction polynomial now thereby of the third
order.9 Afterwards, the dispersion relation is of the form

Sðs; t; uÞ ¼ P4ðs; t;uÞ þ s3

�

Z �2

�

dx

x3

� ImSðx;M� x� u;uÞ
x� s

þ t3

�

Z �2




dx

x3

� ImTðx;M� x� u; uÞ
x� t

þOðp8Þ: (21)

We decompose the (imaginary parts of) amplitudes into
the partial waves

Sðs; t; uÞ ¼ 32�ðS0ðsÞ þ 3 cos�S1ðsÞ þ Sl�2ðs; t; uÞÞ:
(22)

The terms Sl�2ðs; t; uÞ incorporate contributions of all the
higher (l � 2) partial waves and are suppressed to Oðp8Þ
according to our assumptions.
From the integrals of the P partial waves, we can extract

functions depending just on u and include them in the
polynomial, e.g.

Z �2

�

dx

x3
xðsþ t� x� uÞ

x� s
Im

S1ðxÞ
�1=2
AB ðxÞ�1=2

CDðxÞ

¼
Z �2

�

dx

x3
xðt� uÞ
x� s

Im
S1ðxÞ

�1=2
AB ðxÞ�1=2

CDðxÞ

�
Z �2

�

dx

x2
Im

S1ðxÞ
�1=2
AB ðxÞ�1=2

CDðxÞ
: (23)

Finally, we use this rearrangement of the fractions

xðt� uÞ
x� s

¼ sðt� uÞ
x� s

þ t� u; (24)

where the second term gives after integration a contribu-
tion in the form t� u times a function of u only and
therefore as a polynomial in t can also be included into
the subtraction polynomial P4.
After that, the amplitude reads

Sðs; t; uÞ ¼ P4ðs; t; uÞ þ�0ðsÞ þ ½sðt� uÞ
þ �AB�CD��1ðsÞ þ�0ðtÞ þ ½tðs� uÞ
þ �AC�BD��1ðtÞ þOðp8Þ; (25)

where �0ðsÞ, �1ðsÞ, �0ðtÞ, and �1ðtÞ are given by
(10)–(13).
In order to implement the s $ u crossing symmetry, we

add and subtract the following polynomial in s and t (with
coefficients depending on u)

�0ðuÞ þ ½uðt� sÞ þ �AD�BC��1ðuÞ; (26)

with �0ðuÞ and �1ðuÞ given by (14) and (15) and we
include the subtraction of this polynomial in the polyno-
mial P4ðs; t; uÞ and thereby get the amplitude in the sym-
metric form (9).
Until now, we have proved the whole theorem except for

the u-dependence of the polynomial P4ðs; t; uÞ. However,

6The coefficients of this polynomial depend on u. Thanks to
the relation for the sum of the Mandelstam variables, such
polynomials could be written in the form

Pnðs; t; uÞ ¼ �ðuÞ þ �ðuÞðs� tÞ þ 	 	 	 þ!ðuÞðs� tÞn�1:

(17)

7In this relation we anticipate again that we will consider
the problems under conditions implying relevance of the two-
particle intermediate states only.

8The fact that the remainder
P

n�4s
nRnðuÞ is of order at least

Oðp8Þ follows again from the finiteness of the amplitude in the
chiral limit (the importance of this assumption stems from here)
and the crossing symmetry.

9The consequence of that is also that we can formally extend
the validity of the original theory even beyond threshold � and
compute the dispersion integral up to infinity, pretending that the
original theory is really complete (naturally with the appropriate
modification of the third-order polynomial). Similar arguments
would appear even if we introduced the cutoff � by other
reasons, e.g. by reason of numerical integration.

M. ZDRÁHAL AND J. NOVOTNÝ PHYSICAL REVIEW D 78, 116016 (2008)

116016-4



we could write similar relations also for the amplitudes
Tðs; t; uÞ and Uðs; t;uÞ with the polynomials in ðs; uÞ and
the coefficients depending on variable t. Thanks to the
crossing symmetry and to the symmetric form of the rest
of the formula, these polynomials should obey the same
crossing symmetry. From this and from the analyticity of
the amplitudes in a neighborhood of u for some fixed s in
our kinematic region, we can conclude that P4ðs; t;uÞ are
polynomials in respect to all Mandelstam variables.

IV. APPLICATION OF THE THEOREM TO THE
4-MESON PROCESSES TO THE Oðp4Þ ORDER

As we have already outlined, in the case of 2 ! 2
scattering processes of pseudoscalar octet mesons, we
can use the theorem and the unitarity relation to a self-
consistent construction of all those amplitudes to (and
excluding) Oðp8Þ order. We need just a parametrization
of Oðp2Þ amplitudes as its input.

In the following we will consider the strong isospin
conservation limit,10 where Ward identities imply that
there are just 7 independent processes. From them the
amplitudes of all the possible physical processes can be
determined as summarized in Appendix A. Since we want
to keep the independence on the specific power-counting
scheme, we have parametrized theOðp2Þ amplitudes in the
most general form obeying their symmetries (crossing,
Bose, and isospin)—given also in Appendix A. Inserting
them into the unitarity relations (7) (assuming that we have
amplitudes of all the needed intermediate processes), we
get the imaginary parts to Oðp4Þ order, which can be
installed into the theorem and we receive thereby the am-
plitudes in that order. With the same procedure (though
more technically involved), we can proceed with the sec-
ond iteration and obtain thereby the amplitudes to (and
excluding) Oðp8Þ order. For the sake of simplicity, in this
paper we confine ourselves to the first iteration and thus to
the results to Oðp4Þ order.

It remains to show that we already have the amplitudes
of all the relevant intermediate processes, i.e. the self-
consistency of this procedure. We are concerned with the
processes to (and excluding) Oðp8Þ chiral order and (in
accordance with the first assumption of the theorem) in the
region bellow the appearance of all non-Goldstone parti-
cles and thereby away from poles and cuts of such inter-
mediate states. Therefore, their effect is included just in the
polynomial of the reconstruction theorem and in the higher
orders. The intermediate states with an odd number of
Goldstone bosons are forbidden by the even intrinsic parity
of the effective Lagrangian—because the effect of the
axial anomaly enters at the Oðp4Þ order (Wess, Zumino,
and Witten [13,14]), such intermediate states induce the

contribution of the order at least Oðp8Þ. Furthermore,
the contribution of the states with more than two Gold-
stone bosons is also suppressed to Oðp8Þ order since the
n-Goldstone-boson invariant phase space scales like p2n�4

and amplitudes with an arbitrary number of external Gold-
stone boson legs behave dominantly as Oðp2Þ. Conse-
quently, the contribution of such (n > 2) intermediate
states to the imaginary part of the amplitude is according
to the unitarity relation at least Oðp8Þ. Thus, we can con-
sider the two-Goldstone-boson intermediate states only.
Further simplification in the Oðp4Þ order computa-

tion appears. Using again the arguments of finiteness of
S-matrix in the chiral limit with the external momenta
fixed, the coefficients of the polynomial in the theorem
should be at least Oðp0Þ, and so the polynomial in the
Oðp4Þ amplitude is maximally of the second order in
Mandelstam variables.

A. The application schematically

The Oðp2Þ amplitudes can be written [cf. with (17), and
Appendix A with use of (5)] in the form11

A ¼ 1

F2
�

ð�ðsÞ þ �ðt� uÞÞ: (27)

The decomposition into the partial waves can be obtained
using (3) and (22)

A0 ¼ 1

32�

1

F2
�

�
�ðsÞ � �

�AB�CD

s

�
; (28)

A1 ¼ 1

32�

1

3F2
�

�
�1=2
AB ðsÞ�1=2

CDðsÞ
s

: (29)

The (right) discontinuity of our function S0 and S1 of the
theorem, given by the unitarity relation, is therefore in the
Oðp4Þ case very simple:

ImS0ðsÞ ¼
X
k

2

SFk

�1=2
k ðsÞ
s

�
1

32�

�
2 1

F4
�

�
��

�ikðsÞ � �ik

�AB�k

s

�

�
�
�kfðsÞ � �kf

�k�CD

s

��
�ðs� stkÞ; (30)

10Recall that in this case the validity of the required dispersion
relations can be proven directly from the axiomatic theory as
discussed in Appendix D.

11Let us remind that in the Oðp2Þ case �ðsÞ ¼ �0 þ �1s, i.e. it
is just the first-order polynomial in s.
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ImS1ðsÞ

¼ X
k

2

SFk

�1=2
k ðsÞ
s

�
1

32�

�
2 1

9F4
�

�
�
�ik

�1=2
AB ðsÞ�1=2

k ðsÞ
s

�kf

�1=2
k ðsÞ�1=2

CDðsÞ
s

�
�ðs� stkÞ;

(31)

where the sums go over all the possible (two-PGB) inter-
mediate states k with its symmetry factor SFk

, and all the

objects with lower index k are the quantities relating to this
intermediate state; similarly indices i and f refer to initial
and final state. Finally stk is a threshold of this intermedi-

ate state.
Thanks to the behavior of square root of the triangle

function, �1=2ðsÞ ! s for s ! 1 and the fact that �ðsÞ is
the polynomial maximally of the first order in s, we know
that not all the terms (in the brackets) need all the sub-
tractions to give finite integrals (10)–(15) (e.g. the parts
with negative power of s in the polynomial in the brackets
do not even need any subtraction). Any subtraction redun-
dant in this aspect then gives just a polynomial, which can
be included into the polynomial R4ðs; t; tÞ of the theorem
(9) and into the contributions of higher orders. Further-
more, if the integrals rising on both sides of rearrangement
(24) have a good mathematical sense, we can pull out the
polynomial in front of the integral again with possible
change of the polynomial R4ðs; t; tÞ. Therefore, applying
the reconstruction theorem, we can write�0 and�1 in the
minimal12 form [except for the polynomial included to
R4ðs; t; tÞ]:

�0ðsÞ ¼ 1

16�2

1

F4
�

X
k

1

SFk

�
�ikðsÞ�kfðsÞs

Z 1

st
k

dx

x

1

x� s

� �1=2
k ðxÞ
x

þ �ik�kf�
2
k�AB�CD

Z 1

st
k

dx

x2
1

x� s

� �1=2
k ðxÞ
x

� ð�kfðsÞ�ik�AB

þ �ikðsÞ�kf�CDÞ�k

Z 1

st
k

dx

x

1

x� s

�1=2
k ðxÞ
x

�
;

(32)

�1ðsÞ ¼ 1

16�2

1

3F4
�

X
k

1

SFk

�ik�kf

�
ðs� 2�kÞ

Z 1

st
k

dx

x

� 1

x� s

�1=2
k ðxÞ
x

þ�2
k

Z 1

st
k

dx

x2
1

x� s

�1=2
k ðxÞ
x

�
:

(33)

In addition, in the P wave function �1 we have used
�kðxÞ ¼ x2 � 2x�k þ �2

k, where �k is the sum of the sec-

ond powers of masses of the two particles in the inter-
mediate state k.
In the integrals we recognize the once and twice sub-

tracted dispersion integrals from Appendix B [(B1) and
(B2)], i.e.

�0ðsÞ ¼ 1

F4
�

X
k

1

SFk

�
�ik�kf

�2
k

s2
�AB�CD

��JkðsÞ

þ
�
�ikðsÞ�kfðsÞ � ð�kfðsÞ�ik�AB

þ �ikðsÞ�kf�CDÞ ks
�
�JkðsÞ

�
; (34)

�1ðsÞ ¼ 1

3F4
�

X
k

1

SFk

�ik�kf

��
1� 2

�k

s

�
�JkðsÞ

þ �2
k

s2
��JkðsÞ

�
: (35)

Using the change of the polynomial for the last time (in

the replacement of
��JðsÞ
s with

�JðsÞ
s ), we have the result

�0ðsÞ þ ½sðt� uÞ þ �AB�CD��1ðsÞ

¼ 1

3F4
�

X
k

1

SFk

�
4�AB�CD�ik�kf�

2
k

��JkðsÞ
s2

þ ð3�ikðsÞ�kfðsÞ þ �ik�kfððt� uÞðs� 2�kÞ
þ �AB�CDÞÞ �JkðsÞ þ ð�ik�kfððt� uÞ�2

k

� 2�AB�CD�kÞ � 3ð�kfðsÞ�ik�AB

þ �ikðsÞ�kf�CDÞ�kÞ
�JkðsÞ
s

�
: (36)

We get similar results also for the T- andU-crossed parts.13

Final results of this procedure for all the amplitudes are
given in Appendix B.

V. SUMMARYAND DISCUSSIONS

In this paper we have worked out a generalization of the
dispersive analysis from [3] to the processes involving all
the light octet mesons. We have formulated the reconstruc-
tion theorem for their amplitudes free of the particular
isospin structure of the processes (which is used afterwards
for the individual processes separately) and have provided
(an outline of) its proof. We have also attempted to point
out exactly the properties of the theory which are needed

12With the minimal number of subtractions needed to get a
finite nonpolynomial part, i.e. here with one or two subtractions.

13If we carry out the same extraction of polynomial also for
them, we get again these results by the change s $ t respectively
s $ u and appropriate permutation in ABCD and then the
symmetries of the polynomial of theorem remain the same.
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for its proof mainly due to better understanding of it as well
as of its further generalization on more complicated cases
(as below). In our particular case we have succeeded in
justifying most of them practically from the first principles
of axiomatic quantum field theory—at least in the regions
from Fig. 1.

The amplitudes of 4-octet-meson processes (on con-
dition of the strong isospin conservation) form a self-
consistent system with respect to the theorem and the
unitarity relations, thanks to the fact that we can simply
construct these amplitudes to (and excluding14) Oðp8Þ or-
der [in this work explicitly computed only to Oðp4Þ order]
independently on the specific power-counting model in
use. The amplitudes for the particular model can be ob-
tained with the specific choice of the parameters. For
example, we can compare the nonpolynomial part of our
results (with the standard choice of Oðp2Þ constants from
Appendix A) with that part of the standard chiral pertur-
bation results (given by [11])—we see an agreement except
for the different sign convention.15 We can also use their
result to get a relation between our Oðp4Þ polynomial
parameters and low-energy constants (LECs) of the stan-
dard chiral perturbation theory in the particular renormal-
ization scheme used therein just by comparison of the
polynomial parts, as is discussed and given in Appen-
dix C.16 It is worth mentioning that by subtracting the
center of the Mandelstam triangle in the second-order
polynomial part of our results, the parameters of the first-
order polynomial, i.e. �’s, �’s, and �’s, do not depend in
the subtraction scheme used by [11] in Oðp4Þ order on the
LECs of operators with four derivatives from L4 in [10],
i.e. Lr

1, L
r
2, and L3.

Some of the computed amplitudes (KK ! anything,
processes involving �’s) have not been computed in such
a general form yet. However, this newness is connected
with one problem of the assumptions of the theorem. We
have assumed the existence of a threshold separating the
processes containing just those 8 mesons from the pro-
cesses in which particles of other types (e.g. resonances)
appear, and then we focus on a kinematical range far below

that threshold. However, in the case of the processes with
the exception of �� ! �� and �K ! �K, this range is
very narrow or does not even exist (e.g. in the process
KK ! KK with a kinematical threshold of 990 MeV there
can appear the � resonance with its mass of 770 MeV). The
significance of our result thereby decreases. Nevertheless,
beside the elegance of our construction due to its intrinsic
self-consistency, our results can become useful for a check
of complicated models or simulations, where one can
separate (or completely turn off) the effects of these reso-
nances. [The advantage is that even in the most general
case in (to and excluding)Oðp8Þ order, there is a small total
number ( ¼ 47) of parameters, coupling different pro-
cesses together.]
To that end it would be naturally preferable to perform

also the second iteration and get thereby the whole infor-
mation achievable from the reconstruction theorem. As has
been already mentioned, the completion of the second it-
eration is conceptually straightforward; however, there ap-
pear certain technical complications which are connected
with the computation of partial waves of amplitudes, where
we need to compute integrals of the type

R
tn �JðtÞdt and

then to ‘‘dispersively integrate’’ them. Because of the ap-
pearance of the three different masses, the results are much
more complicated than in the 2 flavor �� case (with only
one mass) and so will be presented with all the technical
details in a separate paper.
The careful reader has surely noticed that in the relation

(21) or (11) and the other similar (in opposition to the
verbal formulation of the theorem), we have emphasized
that the required imaginary part is not of the partial wave

but of the partial wave divided by �1=2
AB �

1=2
CD, i.e. in principle

in the higher order there could appear a problem under the

physical threshold of the amplitudes where �1=2
AB �

1=2
CD could

be imaginary. There presents itself a question whether we
can obtain this quantity also from the unitarity relations.
But we should remind that the origin of the relation (7)
where the imaginary part of the partial wave times the
relevant Legendre polynomial also occurs. So the only
question is whether we can believe the analytical continu-
ation of the partial wave decomposition and of the unitarity
relation under the physical threshold. If we do so, then the
unitarity relation gives exactly what we need to the theo-
rem, i.e. what we call the imaginary part of partial wave for
simplicity.
The further important question is of the number of sub-

tractions in the dispersive relations. Jin and Martin [15]
have shown that thanks to the Froissart bound [16] it
suffices to consider just two subtractions. However, the
Froissart bound deals with the complete theory (full QCD),
and in an effective theory one does not know (or more
exactly one does not deal with) what is above�, and so the
situation can occur that more than two subtractions are
needed. In other words Froissart tells us two subtractions
are sufficient if we supply the dispersive integral above �

14Since we also want to include the power countings where the
contributions of odd chiral orders appear (like generalized chiral
power counting), we write [instead of valid to Oðp6Þ order (what
will be case if odd orders do not appear) or to Oðp7Þ order
(where the odd orders are included)] just valid to and excluding
Oðp8Þ order to avoid misunderstanding. We should also remind
that in this odd chiral order power counting, the one-loop result
is not Oðp4Þ but Oðp5Þ—we can get such a result by simple
modification of the results presented keeping the ��� and �KK
parameters also in the intermediate processes.
15When comparing, one should pay attention to their caption of
the 4-kaon process �K0K0 ! KþK�, which gives us a false illu-
sion about the value of the Mandelstam variables, whereas the
right value would be better evoked by the caption �K0K0 !
K�Kþ.
16If we thereby obtained Oðp4Þ parameters in the unitarity part,
we would be already counting a part of the Oðp6Þ corrections.
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with the complete theory. How to deal with this unknown,
we have already seen near the relation (19)—for n sub-
tractions we get a series of infinite order beginning with the
n-th power of Mandelstam variable. Fortunately, we have
shown that the terms with more than fourth power are at
least of Oðp8Þ order. And so, if we assume the finiteness of

the S-matrix in the chiral limit (and the other assumptions
used there), we end up with the third-order polynomial and
the remainder of Oðp8Þ order no matter with how many
subtraction we have begun.
From the possible extensions of the theorem we find

especially interesting two of them, the extension to the

FIG. 1. The regions of validity of fixed u dispersion relations (complex u-plane) in the multiples of m2
� and therefore also regions

where the assumptions of our theorem are valid. With the bold lines, the intervals of validity coming from the use of just the Lehmann
theory (ellipses) are depicted. (a) �� ! ��; (b) KK ! KK; (c) �� ! ��; (d) �K ! K�; (e) �� ! ��; (f) K� ! �K;
(g) �� ! KK and �K ! K�; (h) �� ! �� and �� ! ��; (i) KK ! �� and K� ! K�; ( j) KK ! �� and K� ! K�; and
(k) K� ! �K.
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analysis of the meson form factors and the computation of
amplitudes of K ! 3� decays (with appearance of cusps).
The latter of them is the subject we are recently working
on [17,18].
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APPENDIX A: Oðp2Þ AMPLITUDES AND THE
SYMMETRY PROPERTIES OF AMPLITUDES

OF THE PHYSICAL MESONS

From the isospin Ward identities it follows that all the
physical amplitudes could be expressed in terms of the
7 independent amplitudes. In our convention:

(1) �� ! ��

Að�� ! ��Þ ¼ A��ðs; t; uÞ: (A1)

(2) �� ! ��

Að�
� ! �
�Þ ¼ A��ðs; t; uÞ; (A2)

Að�0� ! �0�Þ ¼ A��ðs; t; uÞ: (A3)

(3) �� ! ��

Að�þ�� ! �0�0Þ ¼ �A��ðs; t; uÞ; (A4)

Að�þ�� ! �þ��Þ ¼ A��ðs; t;uÞ þ A��ðt; s; uÞ;
(A5)

Að�0�0 ! �0�0Þ ¼ A��ðs; t; uÞ
þ A��ðt; s;uÞ þ A��ðu; t; sÞ:

(A6)

(4) KK ! ��

Að �K0K0 ! ��Þ ¼ �AðK�Kþ ! ��Þ
¼ A�Kðs; t;uÞ: (A7)

(5) KK ! ��

AðK�Kþ ! �0�Þ ¼ �A��Kðs; t; uÞ; (A8)

Að �K0K0 ! �0�Þ ¼ �A��Kðs; t; uÞ; (A9)

AðK�K0 ! ���Þ ¼ � ffiffiffi
2

p
A��Kðs; t;uÞ; (A10)

Að �K0Kþ ! �þ�Þ ¼ � ffiffiffi
2

p
A��Kðs; t;uÞ: (A11)

(6) �� ! KK

Að�0�0 ! �K0K0Þ ¼ �Að�0�0 ! K�KþÞ
¼ A�Kðs; t; uÞ; (A12)

Að���0 ! K�K0Þ ¼ ffiffiffi
2

p
B�Kðs; t;uÞ; (A13)

Að�þ�0 ! �K0KþÞ ¼ � ffiffiffi
2

p
B�Kðs; t;uÞ; (A14)

Að���þ ! K�KþÞ ¼ A�Kðs; t; uÞ þ B�Kðs; t; uÞ;
(A15)

Að���þ ! �K0K0Þ ¼ �A�Kðs; t;uÞ þ B�Kðs; t;uÞ:
(A16)

For these processes there are two important
amplitudes—the symmetric one A�Kðs; t; uÞ and
the antisymmetric one B�Kðs; t; uÞ. In fact, we can
consider the only independent amplitude as (A15)
and then extract these amplitudes as the symmetric
and the antisymmetric part of it in respect to the
exchange of t and u.

(7) KK ! KK

AðK�Kþ ! �K0K0Þ ¼ �AKKðs; t; uÞ; (A17)

AðK�Kþ ! K�KþÞ ¼ Að �K0K0 ! �K0K0Þ
¼ AKKðs; t;uÞ þ AKKðt; s; uÞ:

(A18)

A. The most general form of the
Oðp2Þ [Oðp3Þ] amplitudes

The Oðp2Þ amplitudes could be constructed as the most
general invariant amplitudes satisfying the crossing, Bose,
and isospin symmetries and using the fact that they should
be polynomials of the first order in the Mandelstam vari-
ables obeying (5). [In fact, it is the form of the Oðp3Þ am-
plitudes, because this should hold also for them.] This form
is independent of the power-counting used:

A�� ¼ � M2
�

3F2
�

���

�
1� 4M2

�

M2
�

�
; (A19)

A�� ¼ 1

3F2
�

ð���ð3t� 2M2
� � 2M2

�Þ þ ���M
2
�Þ; (A20)
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A�� ¼ 1

3F2
�

ð���ð3s� 4M2
�Þ þ ���M

2
�Þ; (A21)

A�K ¼ 1

4F2
�

�
��Kð3s� 2M2

K � 2M2
�Þ

þ ��K

�
2M2

� � 2

3
M2

K

��
; (A22)

A��K ¼ 1

4
ffiffiffi
3

p
F2
�

½���Kð3s� 2M2
K �M2

� �M2
�Þ

� ð2M2
K �M2

� �M2
� þ ���KM

2
�Þ�; (A23)

A�K ¼ 1

12F2
�

½��Kð3s� 2M2
K � 2M2

�Þ þ 2ðMK �M�Þ2

þ 4��KM�MK�; (A24)

B�K ¼ 1

4F2
�

��Kðt� uÞ; (A25)

AKK ¼ 1

6F2
�

ð�KKð4M2
K � 3uÞ þ 3�KKðs� tÞ

þ 2�KKM
2
KÞ: (A26)

After a deeper analysis one can show that in Oðp2Þ order
the amplitude A�� is t-independent, so the constant ��� is

of the Oðp3Þ order and similarly for �KK, which is also
equal to zero in the Oðp2Þ case in an arbitrary power
counting. So, generally

��� �Oðp1Þ and �KK �Oðp1Þ: (A27)

The particular power countings differ in the particular
values of the (13þ 2) constants in those relations. For
example, the standard power counting gives [to Oðp3Þ]

�st
�� ¼ �st

�� ¼ �st
�� ¼ �st

�K ¼ �st
�K ¼ �st

KK ¼ 1; (A28)

�st
�� ¼ �st

�K ¼ �st
��K ¼ �st

�K ¼ �st
�K ¼ �st

KK ¼ 1;

(A29)

�st
��K ¼ 0; (A30)

�st
�� ¼ �st

KK ¼ 0: (A31)

APPENDIX B: RESULTS

In the results we have denoted the once subtracted integral

�J PQðsÞ ¼ s

16�2

Z 1

�

dx

x

1

x� s

�1=2
PQ ðxÞ
x

(B1)

in the S channel (analogically for the other crossed channels) and similarly the twice subtracted integral

��J PQðsÞ ¼ s2

16�2

Z 1

�

dx

x2
1

x� s

�1=2
PQ ðxÞ
x

: (B2)

The amplitudes using the first iteration of the reconstruction procedure read:
(i) �� ! ��

A�� ¼ 1

3F2
�

���ð4M2
� �M2

�Þ þ 1

3F4
�

���ðs2 þ t2 þ u2 � 4M4
�Þ

þ
�

1

6F4
�

ðZ��
�� �J��ðsÞ þ Z��

��
�J��ðsÞ þ ZKK

�� ðsÞ �JKKðsÞÞ
�

þ ½s $ t� þ ½s $ u� þOðp5Þ: (B3)

Z��
�� ¼ 1

3
�2
��ðM2

� � 4M2
�Þ2; (B4)

Z��
�� ¼ �2

��M
4
�; (B5)
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ZKK
�� ðsÞ ¼ 3

4

�
3��Ks� 2

�
��K þ 1

3
��K

�
M2

K þ 2ð��K � ��KÞM2
�

�
2
: (B6)

(ii) �0� ! �0�

A�� ¼ 1

3F2
�

ð���ð3t� 2M2
� � 2M2

�Þ þM2
����Þ þ 1

3F4
�

ð���ððs�M2
� �M2

�Þ2 þ s $ uÞ

þ "��ðt� 2M2
�Þðt� 2M2

�ÞÞ þ 1

72F4
�

ðZKK
�� ðtÞ �JKKðtÞ þ Z��

�� �J��ðtÞ þ Z��
��ðtÞ �J��ðtÞÞ

þ
�

1

9F4
�

ðY��
�� �J��ðsÞ þ YKK

�� ðsÞ �JKKðsÞÞ
�
þ ½s $ u� þOðp5Þ: (B7)

ZKK
�� ðtÞ ¼ ð9��Kt� 2ð3��K þ ��KÞM2

K þ 6ð��K � ��KÞM2
�Þð3��Kt

þ 2ð1� ��KÞðM2
K þM2

�Þ þ 4ð��K � 1ÞM�MKÞ; (B8)

Z
��
�� ¼ �4������M

2
�ðM2

� � 4M2
�Þ; (B9)

Z��
��ðtÞ ¼ 4���M

2
�ð6���tþ ð5��� � 8���ÞM2

�Þ; (B10)

Y��
�� ¼ �2

��M
4
�; (B11)

YKK
�� ðsÞ ¼ 3

8
ð3���Ks� 2ð1þ ���KÞM2

K þ ð1� ���K � ���KÞM2
� þ ð1� ���KÞM2

�Þ2: (B12)

(iii) �þ�� ! �0�0

A�� ¼ 1

3F2
�

ð���ð3s� 4M2
�Þ þ ���M

2
�Þ þ 1

F4
�

ð���ðs� 2M2
�Þ2 þ "��ððt� 2M2

�Þ2 þ ðu� 2M2
�Þ2ÞÞ

þ 1

72F4
�

ðZ��
��ðsÞ �J��ðsÞ þ Z

��
�� �J��ðsÞ þ ZKK

��ðsÞ �JKKðsÞÞ

þ
�

1

72F4
�

ðYKK
�� ðt; uÞ �JKKðtÞ þ Y��

�� ðt; uÞ �J��ðtÞÞ
�
þ ½t $ u� þOðp5Þ: (B13)

Z��
��ðsÞ ¼ 4ð3���sþ ð7��� � 4���ÞM2

�Þð3���sþ ð��� � 4���ÞM2
�Þ; (B14)

Z��
�� ¼ 4�2

��M
4
�; (B15)

ZKK
��ðsÞ ¼ ð3��Ksþ 2ð1� ��KÞðM2

K þM2
�Þ þ 4ð��K � 1ÞM�MKÞ2; (B16)

YKK
�� ðt; uÞ ¼ 3�2

�Kðt� 4M2
KÞð4M2

� � t� 2uÞ; (B17)

Y��
��ðt; uÞ ¼ 4ð3�2

��tðt� uÞ þ 6���ð2���u� ���tÞM2
� þ 2ð�2

�� þ 4���ð��� � 2���ÞÞM4
�Þ: (B18)

(iv) �K0K0 ! ��
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A�K ¼ 1

4F2
�

�
��Kð3s� 2M2

K � 2M2
�Þ þ ��K

�
2M2

� � 2

3
M2

K

��
þ 1

4F4
�

ð��Kðs� 2M2
�Þðs� 2M2

KÞ þ "�Kððt�M2
� �M2

KÞ2

þ ðu�M2
� �M2

KÞ2ÞÞ þ
1

24F4
�

ðZ��
�KðsÞ �J��ðsÞ þ Z��

�KðsÞ �J��ðsÞ þ ZKK
�K ðsÞ �JKKðsÞÞ þ

�
1

32F4
�

ðY�K
�K ðt; uÞ �J�KðtÞ

þ YK�
�K ðt; uÞ �JK�ðtÞÞ � 3

32F4
�

1

t
ðX�K

�K ðuÞ �J�KðtÞ þ XK�
�K ðuÞ �JK�ðtÞÞ þ 3

16F4
�

1

t2
�2

K�ðW�K
�K

��J�KðtÞ þWK�
�K

��JK�ðtÞÞ
�

þ ½t $ u� þOðp5Þ: (B19)

W�K
�K ¼ �2

K��
2
�K; (B20)

WK�
�K ¼ �2

K��
2
��K; (B21)

X
�K
�K ðuÞ ¼

�
��Kuþ 2

�
��K � 2

3
��K

�
M2
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(v) �K0K0 ! �0�
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APPENDIX C: STANDARD CHIRAL
PERTURBATION THEORY Oðp4Þ VALUES
OF THE POLYNOMIAL PARAMETERS

In this appendix we give the values of our polynomial
parameters which reproduce the Oðp4Þ results of the stan-
dard chiral perturbation theory. To that end we have used
the computation of [11], which contains all the considered
amplitudes and its advantage is also that their results are in
the unitary form.

The form of our results is in terms of physical observ-
ables and thus has to be scale-independent and the same for
all the possible regularization schemes. The only thing
which can change by an eventual change of the scheme
is the relation between the parameters of our parametriza-
tion and the (renormalized) constants of the Lagrangian
theory (LECs). By the change of the scale, the values of the
LEC change, but their combinations giving the value of our
parameters remain scale-independent—what can be an-
other test of the results obtained from the Lagrangian
theory. A further difference between (Lagrangian theory)
results of different authors can rise from a different choice
of the way they parametrize the Oðp2Þ constants (bare
masses and decay constants) using the physical parameters,
e.g. in [11] they expand FK and F� decay constants in

terms of F�, L
r
4, and Lr

5.

In [11] they have used the Gell-Mann-Okubo relation
(GMO) to get their results more simplified. In the standard

chiral power counting the GMO formula has correction of
the Oðp4Þ order and thus we could also use it to simplify
our results in some places, where it would give only
correction of theOðp6Þ order at least. However, to let these
relations be closely connected to the results [11], we have
not done it and the only place where we refer to the GMO
formula [and its Oðp4Þ order correction] is in those places
where we want to emphasize the validity of the Oðp2Þ
values of the parameters from Appendix A. Nevertheless,
the use of

�GMOðM2
� �M2

�Þ ¼ 4M2
K �M2

� � 3M2
�; (C1)

which is in the standard power counting of theOðp4Þ order,
can also be understood just as a (more complicated) nota-
tion of the right-hand side of this definition.
Other objects appearing in the relations are the chiral

logarithms, given in accordance with [11] by

i ¼ M2
i

32�2F2
�

log
M2

i

2
with i ¼ �;K; �: (C2)

(As has been already stated, its dependence on the scale 
is compensated on the right-hand side of the following
relations by the scale-dependence of LEC Lr

i as listed in
[10].)
By the comparison of [11] with our results from the

previous appendix we get the following relations:
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(ii) ��
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In [11] they believeKþK� ! KþK� to be independent on
KþK� ! K0 �K0, but we know that isospin structure (Fierz-
like identities) and the crossing symmetry dictate the rela-
tion between these two processes given by (A18) together
with (A17). Therefore, we have used the values of our
parameters obtained from their KþK� ! K0 �K0 amplitude
to explicitly check their KþK� ! KþK� result Tch.

APPENDIX D: SHORT COMMENT ON THE
ASSUMPTIONS OF THE ANALYTICITY OF THE
AMPLITUDE AND THE DISPERSION RELATIONS

The most important assumptions of the theorem—the
existence of dispersion relations and the analyticity of the
amplitude and its absorptive parts—are results of a com-
plicated theory of analytic properties of scattering ampli-
tudes, which is even older than QCD itself. A good and still
valid summary of it is the article by Sommer [19].

We will not address this theory in more detail, just
summarizing results interesting for us (details can be found
in [19,20]).

From the principles of axiomatic field theory (even
without use of the unitarity of S-matrix), Lehmann has
proven that the amplitude with s fixed at some physical
value is holomorphic in some finite region of the u-plane
(if s is above the physical threshold, this region is the
so-called small Lehmann ellipse). Absorptive parts of am-
plitudes [ImAðs; uÞ for s � � and similarly for t] are
holomorphic in the large Lehmann ellipses in the u-plane
(depending on s) and there this absorptive part has also
a convergent partial wave decomposition. Further, the
N-times subtracted u-fixed dispersion relations can be
proven on the intersection of those large Lehmann ellipses
for s � � and t � 
 (if not empty). Since its semiminor

axis tends to zero for s ! 1, this intersection is just an
interval on the negative real u-axis.
Taking into account the unitarity, Martin and others have

succeeded in enlarging the validity of the dispersion rela-
tions into the circle juj<R with some fixed radius R.
There exist further methods to enlarge the region of

validity as well as the analyticity domain. Using the ones
given in [19], we end up with the results of Table IV there.
We are interested in their specific application for our
processes. If we assume the isospin conservation and that
all the mesons �, K, � are thereby stable (and forget about
resonances), we get the validity of fixed u dispersion
relations within the regions depicted in Fig. 1 (the inter-
sections of Lehmann ellipses are marked by bold lines
there). These regions are glued ellipses and have been
obtained analytically in [20] using procedures from [19].
Let us remind that these regions are only the minimal
domains where the dispersive relations are valid, proven
directly from the axiomatic theory. Using further methods,
we could also extend these regions—e.g. we have not taken
into account the further specific crossing (and Bose) sym-
metries of some of the amplitudes. Finally, let us once
more emphasize that the method described in this appendix
is ineffective if we allow e.g. the � ! 3� decay and such
cases have to be proven e.g. using the unphysical mass of �
and then analytically continued in it.
Another assumption of our theorem was the existence of

a point s where the amplitude is analytic with respect to all
the values of variable u for which the theorem should be
valid—but in all the cases one can show that there exists a
value s for which the small Lehmann ellipse is larger than
the regions from the Fig. 1 and so we can conclude that
both the assumptions of the theorem are valid within these
regions.
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