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Using recent precise hadronic �-decay data on the V � A spectral function, and general properties of

QCD such as analyticity, the operator product expansion, and chiral perturbation theory, we get accurate

values for the QCD chiral order parameters Lr
10ðM�Þ and Cr

87ðM�Þ. These two low-energy constants appear
at order p4 and p6, respectively, in the chiral perturbation theory expansion of the V � A correlator. At

order p4 we obtain Lr
10ðM�Þ ¼ �ð5:22� 0:06Þ � 10�3. Including in the analysis the two-loop (order p6)

contributions, we get Lr
10ðM�Þ ¼ �ð4:06� 0:39Þ � 10�3 and Cr

87ðM�Þ ¼ ð4:89� 0:19Þ � 10�3 GeV�2.

In the SU(2) chiral effective theory, the corresponding low-energy coupling takes the value �l5 ¼ 13:30�
0:11 at order p4, and �l5 ¼ 12:24� 0:21 at order p6.
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I. INTRODUCTION

The precise hadronic �-decay data provided in Refs. [1–
6] are a very important source of information, both on
perturbative and nonperturbative QCD parameters. The
theoretical analysis of the inclusive � decay width into
hadrons allows one to perform an accurate determination
of the QCD coupling �sðM�Þ [7–11], which becomes the
most precise determination of �sðMZÞ after QCD running.
In this case, nonperturbative QCD effects parametrized by
power corrections are strongly suppressed. Another ex-
ample of the use of hadronic �-decay data is the study of
SU(3)-breaking corrections to the strangeness-changing
two-point functions [12–16]. The separate measurement
of the j�Sj ¼ 0 and j�Sj ¼ 1 tau decay widths provides
accurate determinations of fundamental parameters of the
standard model, such as the strange quark mass and the
Cabibbo-Kobayashi-Maskawa quark mixing jVusj [16].

Very important phenomenological hadronic matrix ele-
ments and nonperturbative QCD quantities can also be
obtained from �-decay data. Of special interest is the
difference of the vector and axial-vector spectral functions,
because in the chiral limit the corresponding V � A corre-
lator is exactly zero in perturbation theory. The �-decay
measurement of the V � A spectral function has been used
to perform [17–19] phenomenological tests of the so-called
Weinberg sum rules (WSRs) [20], to compute the electro-
magnetic mass difference between the charged and neutral
pions [18], and to determine several QCD vacuum con-
densates [21,22]. From the same spectral function, one can
also determine the �I ¼ 3=2 contribution of the �S ¼ 1
four-quark operators Q7 and Q8 to "0K="K, in the chiral
limit [23].

Using chiral perturbation theory (�PT) [24–26], the
hadronic �-decay data can also be related to order parame-
ters of the spontaneous chiral symmetry breaking (S�SB)
of QCD [27]. �PT is the effective field theory of QCD at
very low energies; it describes the S�SB Nambu-
Goldstone boson physics through an expansion in external
momenta and quark masses. The coefficients of that ex-
pansion are related to order parameters of S�SB. At lowest
order (LO), i.e. Oðp2Þ, all low-energy observables are
described in terms of the pion decay constant f� ’
92:4 MeV and the light quark condensate. At next-to-
leading order (NLO), Oðp4Þ, the SU(3) �PT Lagrangian
contains 12 low-energy constants (LECs), Li¼1;...;10 and

H1;2 [26]. At Oðp6Þ, 94 (23) additional parameters

Ci¼1;...;94 (C
W
i¼1;::;23) appear in the even (odd) intrinsic parity

sector [28]. These LECs are not fixed by symmetry require-
ments alone and have to be determined phenomenologi-
cally or using nonperturbative techniques. The Oðp4Þ Li

couplings have been determined in the past to an accept-
able accuracy; a recent compilation can be found in
Ref. [29]. Much less well determined are the Oðp6Þ cou-
plings Ci.
There has been a lot of recent activity to determine the

chiral LECs from theory, using as much as possible QCD
information [30–39]. This strong effort is motivated by the
precision required in present phenomenological applica-
tions, which makes necessary to include corrections of
Oðp6Þ. The huge number of unknown couplings is the
major source of theoretical uncertainty.
In this paper we present an accurate determination of the

�PT couplings L10 and C87, using the most recent experi-
mental data on hadronic � decays [1]. Previous work on
L10 using �-decay data can be found in Refs. [18,19,21,40].
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Our analysis is the first one which includes the known two-
loop �PT contributions and, therefore, provides also the
Oðp6Þ coupling C87.

II. THEORETICAL FRAMEWORK

The basic objects of the theoretical analysis are the two-
point correlation functions of the vector and axial-vector
quark currents, defined as follows:

�
��
ij;J ðqÞ � i

Z
d4xeiqxh0jTðJ �

ijðxÞJ �
ijð0ÞyÞj0i

¼ ð�g��q2 þ q�q�Þ�ð1Þ
ij;J ðq2Þ

þ q�q��ð0Þ
ij;J ðq2Þ: (1)

Here, we just need the nonstrange correlators, i.e. J �
ijðxÞ

denotes the Cabibbo-allowed vector or axial-vector cur-
rents, V�

udðxÞ ¼ �u��d and A�
ud ¼ �u���5d. Moreover, our

analysis will concentrate in the difference,

�ðsÞ � �ð0þ1Þ
ud;V�AðsÞ ¼ �ð0þ1Þ

ud;V ðsÞ ��ð0þ1Þ
ud;A ðsÞ

� 2f2�
s�m2

�

þ ��ðsÞ; (2)

where we have made explicit the contribution of the pion
pole to the longitudinal axial-vector two-point function.
We will work in the isospin limit mu ¼ md where

�ð0Þ
ud;Vðq2Þ ¼ 0.

The correlator ��ðsÞ is analytic in the entire complex s
plane, except for a cut on the positive real axis which starts
at the threshold sth ¼ 4m2

�. Applying Cauchy’s theorem to
the circuit in Fig. 1, one gets the exact relation:

Z s0

sth

dssn
1

�
Im�ðsÞ þ 1

2�i

I
jsj¼s0

dssn�ðsÞ

¼ 2f2�m
2n
� þ Res½sn�ðsÞ; s ¼ 0�: (3)

For non-negative values of the integer power n, the pion
pole is the only singularity within the contour and one gets
the so-called finite energy sum rules (FESR), widely used
in the literature. When n takes negative values, the weight
factor sn introduces a pole at the origin which gives rise to
the additional contribution in the right-hand side of the
equation, given by the residue of sn�ðsÞ at s ¼ 0.

In the chiral limit (mu ¼ md ¼ 0) the correlator �ðsÞ
vanishes identically to all orders in perturbation theory. For

large enough Euclidean values of s ¼ �Q2 its operator
product expansion (OPE), �ðQ2Þ ¼ P

kC
V�A
2k =Q2k, con-

tains only power-suppressed contributions from dimension
d ¼ 2k operators, starting at d ¼ 6. The nonzero up and
down quark masses induce tiny corrections with dimen-
sions two and four, which are negligible at high values of
Q2. Therefore, with n � 0 and s0 large enough so that the
OPE can be applied in the entire circle s ¼ s0, the integral
over the spectral function from sth to s0 is equal to the pion
pole term 2f2�m

2n
� plus the OPE contribution ð�1ÞnCV�A

2ðnþ1Þ
generated by the integration along the circle. For n ¼ 0 and
n ¼ 1, CV�A

2ðnþ1Þ is zero in the chiral limit and one gets the

celebrated first and second WSRs [20], respectively.
For negative values of n � �m< 0, the OPE does not

give any contribution to the integration along the circle s ¼
s0. One gets then

Z s0

sth

ds

sm
1

�
Im�ðsÞ ¼ 2f2�

m2m
�

þ 1

ðm� 1Þ!�
ðm�1Þð0Þ

¼ 1

ðm� 1Þ!
��ðm�1Þð0Þ; (4)

where ��ðm�1Þð0Þ denotes the ðm� 1Þth derivative of ��ðsÞ
at s ¼ 0. The interest of this relation stems from the fact
that at low values of s the correlator can be rigorously
calculated within �PT. At present�ðsÞ is known toOðp6Þ
[41], in terms of the LECs that we want to determine. The
choices m ¼ 1 and m ¼ 2 allow us then to relate the
spectral function measured in � decays with the theoretical

expressions of ��ð0Þ and ��0ð0Þ, which can be derived from
the results obtained in Ref. [41]:

Leff
10 � � 1

8
��ð0Þ ¼ Lr

10ð�Þ þ 1

128�2

�
1� log

�
�2

m2
�

�
þ 1

3
log

�
m2

K

m2
�

��

þ 4m2
�ðCr

61 � Cr
12 � Cr

80Þð�Þ þ 4ð2m2
K þm2

�ÞðCr
62 � Cr

13 � Cr
81Þð�Þ � 2ð2�� þ�KÞðLr

9 þ 2Lr
10Þð�Þ

þG2Lð�; s ¼ 0Þ þOðp8Þ; (5)

s0sth

Re q2

Im q2

FIG. 1 (color online). Analytic structure of ��ðsÞ.
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Ceff
87 � 1

16
��0ð0Þ ¼ Cr

87ð�Þ þ 1

7680�2

�
1

m2
K

þ 2

m2
�

�
� 1

64�2f2�

�
1� log

�
�2

m2
�

�
þ 1

3
log

�
m2

K

m2
�

��
Lr
9ð�Þ

� 1

2
G0

2Lð�; s ¼ 0Þ þOðp8Þ; (6)

where �i ¼ m2
i logðmi=�Þ=ð16�2f2�Þ.

To a first approximation the effective parameters Leff
10

and Ceff
87 correspond to the LECs Lr

10ð�Þ and Cr
87ð�Þ,

respectively. At Oðp4Þ, the only relevant correction is
given by the logarithmic terms in the first line of (5), which
cancel the �PT renormalization scale dependence of
Lr
10ð�Þ; these contributions are suppressed by one power

of 1=NC with respect to Lr
10ð�Þ, where NC is the number of

quark colors. The rest of the lines in (5) contain the Oðp6Þ
corrections: the tree-level contributions from the Oðp6Þ
�PT Lagrangian are given in the second line, the term
proportional to ðLr

9 þ 2Lr
10Þð�Þ in the same line is the

one-loop contribution of the Oðp4Þ �PT Lagrangian, and
the function G2Lð�; s ¼ 0Þ in the last line, which does not
depend on any LEC, contains the proper two-loop
contributions.

In Eq. (6) the tree-level contribution is given by Cr
87ð�Þ,

whereas the term proportional to Lr
9ð�Þ is a one-loop

correction, which is suppressed by one power of 1=NC,
and the two-loop contributions are contained in
G0

2Lð�; sÞ � d
dsG2Lð�; sÞ. The derivative operation, when

acting over the one-loop contribution to �ðsÞ, generates
the terms proportional to inverse powers of the pion and
kaon masses in the second line. For simplicity, we omit the
explicit analytic forms of G2Lð�Þ and G0

2Lð�Þ, which are
very lengthy and not too enlightening; these two functions
contain a 1=N2

C suppression factor with respect to Lr
10ð�Þ

and Cr
87ð�Þ.

III. DETERMINATION OF EFFECTIVE
COUPLINGS

We will use the 2005 ALEPH data on semileptonic �
decays [1], which provides the most recent and precise
measurement of the V � A spectral function. The effective
chiral couplings can be directly extracted from the follow-
ing integrals over the hadronic spectrum:

� 8Leff
10 � ��ð0Þ ¼ 1

�

Z s0

sth

ds

s
Im�ðsÞ; (7)

16Ceff
87 � ��0ð0Þ ¼ 1

�

Z s0

sth

ds

s2
Im�ðsÞ: (8)

These relations are exactly satisfied at s0 ! 1. At finite
values of s0, they assume that the OPE approximates well
the correlator �ðsÞ over the entire complex circle [42]
jsj ¼ s0. The OPE is expected to be a valid approximation
for high-enough values of s0 and away from the real axis.
While the kinematics of � decay restrict the upper limit of

integration to the range s0 � m2
�, the main source of theo-

retical uncertainty in the contour integration originates in
the region close to the point s ¼ s0 in the real axis.
Studying the sensitivity to s0 of the integrals (7) and (8),
one can test validity of the OPE and assess the size of the
associated systematic errors.
In Fig. 2, we plot the value of Leff

10 obtained from Eq. (7)

for different values of s0. The band between the continuous
lines shows the corresponding experimental uncertainties
(at one sigma). As expected, the result is far from a
horizontal line at low values of s0, where the applicability
of the OPE is suspect. The oscillatory behavior stabilizes
quite fast reaching a rather stable and flat result at values of
s0 between 2 and 3 GeV2. The weight factor 1=s decreases
the impact of the high-energy region, minimizing the size
of quark-hadron duality violations around s0. This integral
appears then to be much better behaved than the corre-
sponding FESRs with sn (n � 0) weights.
There are several possible strategies to estimate the

central value for Leff
10 and the unavoidable theoretical un-

certainties. One is to give the predictions fixing s0 at the so-
called ‘‘duality points,’’ where the first and second WSRs
happen to be satisfied. Owing to the oscillatory behavior of
the WSRs results, this happens at two different values of
s0. At the highest ‘‘duality point,’’ which is obviously the
more reliable, we obtain Leff

10 ¼ �ð6:45� 0:09Þ � 10�3,

where the quoted error only includes the experimental
uncertainty. Being very conservative, one could also take
into account the first ‘‘duality point’’; performing a
weighted average of both results, we get Leff

10 ¼ �ð6:50�
0:13Þ � 10�3, where the uncertainty covers the values
obtained at the two ‘‘duality points.’’

0.5 1.0 1.5 2.0 2.5 3.0 s0 GeV
2

0.010

0.008

0.006

0.004

0.002

L10
eff

FIG. 2 (color online). Determinations of Leff
10 at different val-

ues of s0. The continuous lines show the results obtained from
Eq. (7). The modified expressions in Eqs. (9) and (10) give rise to
the dashed and dot-dashed lines, respectively. For clarity, we do
not include their corresponding error bands.
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Assuming that the integral (7) oscillates around his
asymptotic value with decreasing oscillations, one can
get another estimate performing an average between the
maxima and minima of the successive oscillations. This
procedure gives a value Leff

10 ¼ �ð6:5� 0:2Þ � 10�3, that

is perfectly compatible with the previous results based on
the ‘‘duality points.’’ Our last method of estimating the
quark-hadron duality violation uses appropriate oscillating
functions defined in [43] which mimic the real quark-
hadron oscillations above the data. These functions are
defined such that they match the data at approximately
3 GeV2, go to zero with decreasing oscillations, and satisfy
the first and second WSRs. We find in this way Leff

10 ¼
�ð6:50� 0:12Þ � 10�3, where the error spans the range
generated by the different functions used. This result
agrees well with our previous estimates.

We can take advantage of the WSRs to construct modi-
fied sum rules with weight factors proportional to ð1�
s=s0Þ, in order to suppress numerically the role of the
suspect region around s� s0 [8]:

� 8Leff
10 ¼ 1

�

Z s0

sth

ds

s

�
1� s

s0

�
Im�ðsÞ þ �1ðs0Þ; (9)

¼ 1

�

Z s0

sth

ds

s

�
1� s

s0

�
2
Im�ðsÞþ 2�1ðs0Þ��2ðs0Þ: (10)

The factors �1ðs0Þ ¼ ð2f2� þ CV�A
2 Þ=s0 and �2ðs0Þ ¼

ð2f2�m2
� � CV�A

4 Þ=s20 are small corrections dominated by

the f2� term, since CV�A
2;4 vanish in the chiral limit. The sum

rule (10) has been previously used in Refs. [21,40].
The dashed and dot-dashed lines in Fig. 2 show the

results obtained from Eqs. (9) and (10), respectively. As
already found in Refs. [21,40], the modified weight factors
minimize the theoretical uncertainties in a very sizable
way, giving rise to very stable results over a quite wide
range of s0 values. One gets then L

eff
10 ¼ �ð6:51� 0:06Þ �

10�3 using Eq. (9), and Leff
10 ¼ �ð6:45� 0:06Þ � 10�3

from Eq. (10).
Taking into account all the previous discussion, we

quote as our final result:

Leff
10 ¼ �ð6:48� 0:06Þ � 10�3: (11)

We have made a completely analogous analysis to de-
termine the effective coupling Ceff

87 . The results are shown

in Fig. 3. The continuous lines, obtained from Eq. (8), are
much more stable than the corresponding results for Leff

10 ,

owing to the 1=s2 factor in the integrand. The discontinu-
ous and dotted lines correspond to the results obtained
from the modified sum rules:

16Ceff
87 ¼ 1

�

Z s0

sth

ds

s2

�
1� s2

s20

�
Im�ðsÞ þ �1

s0
; (12)

¼ 1

�

Z s0

sth

ds

s2

�
1� s

s0

�
2
�
1þ 2

s

s0

�
Im�ðsÞ

þ 3�1 � 2�2

s0
: (13)

The agreement among the different estimates is quite
remarkable. We quote as our final conservative result,

Ceff
87 ¼ ð8:18� 0:14Þ � 10�3 GeV�2: (14)

IV. DETERMINATION OF Lr
10 AND Cr

87

The �PT coupling Lr
10ð�Þ can be obtained from

Leff
10 , using the relation (5). At Oðp4Þ the determination is

straightforward, since one only needs to subtract from Leff
10

the term ½1� logð�2=m2
�Þ þ 1

3 logðm2
K=m

2
�Þ�=ð128�2Þ.

Taking � ¼ M� as the reference value for the �PT renor-

malization scale, one gets

Lr
10ðM�Þ ¼ �ð5:22� 0:06Þ � 10�3: (15)

At order p6, the numerical relation is more subtle be-
cause it gets small corrections from other LECs. It is useful
to classify the Oðp6Þ contributions through their ordering
within the 1=NC expansion. The tree-level term
4m2

�ðCr
61 � Cr

12 � Cr
80ÞðM�Þ, which is the only Oðp6Þ cor-

rection in the large-NC limit, is numerically small because
it appears suppressed by a factor m2

�. The three relevant
couplings have been determined phenomenologically
with a moderate accuracy: Cr

61ðM�Þ ¼ ð1:24� 0:44Þ �
10�3 GeV�2 [34] [from �ð0þ1Þ

ud;V ð0Þ ��ð0þ1Þ
us;V ð0Þ],

Cr
12ðM�Þ ¼ ð0:4� 6:3Þ � 10�5 GeV�2 [44] (from the

K� scalar form factor) and Cr
80ðM�Þ ¼ ð2:1� 0:5Þ �

10�3 GeV�2 [45] (from a1=K1 mass and width differ-
ences). These determinations agree reasonably well with
published meson-exchange estimates [35,41] and lead to a
total contribution 4m2

�ðCr
61 � Cr

12 � Cr
80ÞðM�Þ ¼ �ð6:7�

5:2Þ � 10�5. The scale dependence of this combination of
Oðp6Þ couplings [28] between � ¼ 0:6 GeV and � ¼
1:1 GeV is within its quoted uncertainty.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 s0 GeV
2

0.002

0.004

0.006

0.008

0.010

0.012

C87
eff GeV

2

FIG. 3 (color online). Determinations of Ceff
87 at different val-

ues of s0. The continuous lines show the results obtained from
Eq. (8). The modified expressions in Eqs. (12) and (13) give rise
to the dashed and dot-dashed lines, respectively. For clarity, we
do not include their corresponding error bands.

GONZÁLEZ-ALONSO, PICH, AND PRADES PHYSICAL REVIEW D 78, 116012 (2008)

116012-4



At NLO in 1=NC we need to consider the tree-level
contribution proportional to the combination of LECs
ðCr

62 � Cr
13 � Cr

81ÞðM�Þ. We are not aware of any pub-

lished estimate of these 1=NC suppressed couplings, be-
yond the trivial statement that they do not get any tree-level
contribution from resonance exchange [35]. We will adopt
the conservative range jCr

62 � Cr
13 � Cr

81jðM�Þ � jCr
61 �

Cr
12 � Cr

80jðM�Þ=3, which gives a contribution 4ð2m2
K þ

m2
�ÞðCr

62 � Cr
13 � Cr

81ÞðM�Þ ¼ ð0:0� 5:8Þ � 10�4. The

scale dependence between � ¼ 0:6 GeV and � ¼
1:1 GeV of this combination of Oðp6Þ couplings [28] is
within its quoted uncertainty. The uncertainty on this term
will dominate our final error on the Lr

10ðM�Þ determination.

At the same NLO in 1=NC, there is also a one-loop cor-
rection proportional to Lr

9ðM�Þ; using the Oðp6Þ determi-

nation Lr
9ðM�Þ ¼ ð5:93� 0:43Þ � 10�3 [46], this

contribution can be estimated to be 2ð2�� þ
�KÞLr

9ðM�Þ ¼ �ð1:56� 0:11Þ � 10�3. Finally, the 1=N2
C

suppressed two-loop function which collects the nonana-
lytic contributions takes the value G2LðM�Þ ¼ �0:524�
10�3, 1 order of magnitude smaller than Leff

10 , but still 8

times larger than the uncertainty quoted for Leff
10 in (11).

Taking all these contributions into account, we finally get
the wanted Oðp6Þ result:
Lr
10ðM�Þ ¼ �ð4:06� 0:04Leff

10
� 0:39LECsÞ � 10�3

¼ �ð4:06� 0:39Þ � 10�3; (16)

where the uncertainty has been split into its two main

components. The final error is completely dominated by
our ignorance on the 1=NC suppressed LECs of Oðp6Þ.
The determination of Cr

87 from Ceff
87 does not involve any

unknown LEC. The relation (6) contains a one-loop cor-
rection of size �ð3:15� 0:13Þ � 10�3, which only de-
pends on Lr

9ðM�Þ and the pion and kaon masses, and

small nonanalytic two-loop contributions collected in the
term G0

2LðM�Þ ¼ �0:277� 10�3 GeV�2. In spite of its

1=NC suppression, the one-loop correction is very sizable,
decreasing the final value of the Oðp6Þ LEC:

Cr
87ðM�Þ ¼ ð4:89� 0:19Þ � 10�3 GeV�2: (17)

V. SU(2) �PT

Up to now, we have discussed the LECs of the usual
SU(3) �PT. It turns useful to consider also the effective
low-energy theory with only two flavors of light quarks. In
some cases, this allows one to perform high-accuracy
phenomenological determinations of the corresponding
LECs at NLO. Moreover, recent lattice calculations with
two dynamical quarks are already able to obtain the SU(2)
LECs with sufficient accuracy and this is an important
check for them.
In SU(2) �PT, there are ten LECs, li¼1;...;7 and h1;2;3, at

Oðp4Þ (NLO) [25]. Using theOðp6Þ relation between lr5ð�Þ
and Lr

10ð�Þ, recently obtained in Ref. [47], and the defini-

tion of the invariant couplings �li adopted in [25], we get

�l5 ¼ �192�2Leff
10 þ 1þ log

�
mK

m̂K

�
þ 768�2m2

�ðCr
61 þ Cr

62 � Cr
12 � Cr

13 � Cr
80 � Cr

81Þð�Þ
þ 1536�2ðm2

K � m̂2
KÞðCr

62 � Cr
13 � Cr

81Þð�Þ � 384�2ð2�� þ�K � �̂KÞðLr
9 þ 2Lr

10Þð�Þ

� xK

�
� 67

48
þ 21

16
�1 þ 5

8
log

�
4

3

�
� 17

4
log

�
�2

m̂2
K

�
þ 3

4
log2

�
�2

m̂2
K

��
þ 192�2G2Lð�Þ þOðp8Þ; (18)

where m̂2
K ¼ m2

K �m2
�=2 is the kaon mass squared in

the limit mu ¼ md ¼ 0, xK ¼ m̂2
K=ð16�2f2�Þ, �̂K ¼

m̂2
K logðm̂K=�Þ=ð16�2f2�Þ, and �1 ’ 1:416 02.
The first three terms in the right-hand side of Eq. (18) are

the Oðp4Þ contributions; the determination of �l5 at this
order is then straightforward. The full Oðp6Þ result, with
the different tree-level, one-loop, and two-loop corrections,
is given by the rest of the terms. Following the same
procedure as in the SU(3) case, we get the results

�l 5 ¼
�
13:30� 0:11; Oðp4Þ;
12:24� 0:21; Oðp6Þ: (19)

VI. SUMMARY

Using the most recent hadronic �-decay data [1] on the
V � A spectral function, and general properties of QCD
such as analyticity, the OPE, and �PT, we have determined

very accurately the chiral LECs Lr
10ðM�Þ and Cr

87ðM�Þ.
Performing an Oðp4Þ analysis, we obtain

Lr
10ðM�Þ ¼ �ð5:22� 0:06Þ � 10�3; (20)

while a more elaborate study, including the Oðp6Þ �PT
corrections provides the values

Lr
10ðM�Þ ¼ �ð4:06� 0:04Leff

10
� 0:39LECsÞ � 10�3

¼ �ð4:06� 0:39Þ � 10�3; (21)

and

Cr
87ðM�Þ ¼ ð4:89� 0:19Þ � 10�3 GeV�2: (22)

Our error estimate includes a careful analysis of the theo-
retical uncertainties associated with the use of the OPE in
the dangerous region close to the physical cut. Moreover,
in (21) we have explicitly separated the error into its two
main components, showing that our present ignorance on
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the 1=NC suppressed LECs dominates the final uncertainty
of the Lr

10ðM�Þ determination at Oðp6Þ.
Several determinations of L10 have been performed

before [18,19,40], using the older 1998 ALEPH data
[2,3]. In Ref. [18] the result Lr

10ðM�Þ ¼ �ð5:13� 0:19Þ �
10�3 was obtained to Oðp4Þ, through a simultaneous fit of
this parameter and the OPE corrections of dimensions six
and eight to several spectral moments of the hadronic
distribution. This determination is in good agreement
with our Oðp4Þ result (20). Our quoted uncertainty has a
smaller experimental contribution and includes a better
assessment of the theoretical uncertainties. The value
Leff
10 ¼ ð�5:8� 0:2Þ � 10�3 (3:2	 smaller than ours)

was extracted from � data in Ref. [19] using the first
‘‘duality point’’ of the WSRs. The difference comes from
underestimated theoretical uncertainties in this reference,
as can be easily seen by choosing instead the second
duality point or varying slightly the value of the first dual-
ity point. In fact the same reference [19] [see Eq. (10)
therein] presents also a different estimate of Leff

10 that is in

very good agreement with our result. In Ref. [40] both Leff
10

and Ceff
87 were determined, in good agreement with our

findings which use the most recent 2005 data. An updated
value of Leff

10 , using the 2005 data, has also been given in

Ref. [21].
Our determinations of Lr

10ð�Þ and Cr
87ð�Þ at � ¼ M�

agree within errors with the large-NC estimates based on
lowest-meson dominance [31,36,41,48]:

L10 ¼ � F2
V

4M2
V

þ F2
A

4M2
A

	 � 3f2�
8M2

V

	 �5:4� 10�3; (23)

C87 ¼ F2
V

8M4
V

� F2
A

8M4
A

	 7f2�
32M4

V

	 5:3� 10�3 GeV�2: (24)

Equation (22) is also in good agreement with the result of
Ref. [38] for C87 based on Padé approximants. These
predictions, however, are unable to fix the scale depen-
dence which is of higher order in 1=NC. More recently, the
resonance chiral theory Lagrangian [36,49] has been used
to analyze the correlator �ðsÞ at NLO order in the 1=NC

expansion [39]. Matching the effective field theory descrip-
tion with the short-distance QCD behavior, the two LECs
are determined, keeping full control of their� dependence.
The theoretically predicted values Lr

10ðM�Þ ¼ �ð4:4�
0:9Þ � 10�3 and Cr

87ðM�Þ ¼ ð3:6� 1:3Þ � 10�3 GeV�2

[39] are in perfect agreement with our determinations,
although less precise. A recent lattice estimate [50] finds
Lr
10ðM�Þ ¼ �ð5:2� 0:5Þ � 10�3 at Oðp4Þ, which is also

in good agreement with our Oðp4Þ result in (20).

A recent reanalysis of the decay�þ ! eþ�� [45], using
new experimental data, has provided quite accurate values
for the combination of Oðp4Þ LECs L9 þ L10. To Oðp4Þ
one finds Lr

9ðM�Þ þ Lr
10ðM�Þ ¼ ð1:32� 0:14Þ � 10�3,

while the Oðp6Þ result Lr
9ðM�Þ þ Lr

10ðM�Þ ¼ ð1:44�
0:08Þ � 10�3 is slightly more precise [45]. Combining
these numbers with our results for Lr

10ðM�Þ, one obtains

Lr
9ðM�Þ ¼

� ð6:54� 0:15Þ � 10�3; Oðp4Þ;
ð5:50� 0:40Þ � 10�3; Oðp6Þ; (25)

in perfect agreement with the Oðp4Þ result Lr
9ðM�Þ ¼

ð6:9� 0:7Þ � 10�3 of Ref. [29] and the Oðp6Þ result
Lr
9ðM�Þ ¼ ð5:93� 0:43Þ � 10�3 of Ref. [46]. This last

comparison represents an indirect check (in fact the only
possible one for the moment) of our Oðp6Þ result for L10.
We have also determined the corresponding LEC of L10

in the SU(2) effective theory, both at LO and NLO:

�l 5 ¼
�
13:30� 0:11; Oðp4Þ;
12:24� 0:21; Oðp6Þ: (26)

From a phenomenological analysis of the radiative decay
� ! l�� within SU(2) �PT, the authors of Ref. [51] ob-
tained �l6 � �l5 ¼ 2:57� 0:35 at Oðp4Þ, and �l6 � �l5 ¼
2:98� 0:33 at Oðp6Þ. Using these results and our deter-
minations for �l5 in (26), one gets

�l 6 ¼
�
15:87� 0:37; Oðp4Þ;
15:22� 0:39; Oðp6Þ: (27)

At Oðp4Þ the comparison of these estimates of SU(2)
LECs with previous results is straightforward, since they
are proportional to the corresponding SU(3) couplings, that
we have already discussed. Our determination of �l5 is the
first one obtained at Oðp6Þ, whereas for �l6 Ref. [52] finds
�l6 ¼ 16:0� 0:5� 0:7, where the last error is purely theo-
retical, in good agreement with ours, although less precise.
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