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We consider the Higgs sector of multi-Higgs-doublet models in the presence of simple symmetries

relating the various fields. We construct basis-invariant observables which may in principle be used to

detect these symmetries for any number of doublets. A categorization of the symmetries into classes is

required, which we perform in detail for the case of two and three Higgs doublets.
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I. INTRODUCTION

Many features of the standard model of electroweak
interactions have been accurately tested. Still, the Higgs
sector remains largely unknown. Indeed, even after one
scalar particle is directly detected, there may well be
further scalars awaiting discovery (as required, for ex-
ample, by supersymmetry). It is easy to construct an N-
Higgs-doublet model (NHDM), but the number of parame-
ters in the Higgs potential grows very rapidly with N. A
generic two-Higgs-doublet model (THDM) has 14 real
parameters in the Higgs potential, while the generic
three-Higgs-doublet model (3HDM) already has 54 real
parameters.

The number of parameters will be reduced if the theory
has discrete (or continuous) symmetries relating the vari-
ous Higgs fields, which we denote by Higgs Family sym-
metries or HF symmetries. Besides parameter reduction,
such symmetries may also be desirable features of a theory
in order to preclude flavor changing neutral currents or to
explain relations among different observables. This article
presents some features of HF symmetries in the NHDM.

Two deceptively simple questions about HF- symme-
tries arise. First, classifying the symmetries by their impact
on the Higgs potential, one would like to know how many
distinct classes of symmetries may be implemented.
Surprisingly, this turns out to be a rather nontrivial ques-
tion. Second, a simple basis change among the various
Higgs fields alters the Lagrangian but, obviously, not its
physical consequences. Signals of HF symmetries should
be invariant under these transformations.

The need to seek basis-invariant observables in models
with many Higgs was pointed out by Lavoura and Silva [1],
and by Botella and Silva [2], stressing applications to CP
violation. References [2,3] indicate how to construct basis-
invariant quantities in a systematic fashion for any model,
including multi-Higgs-doublet models. Work on basis in-
variance in the THDM was much expanded upon by
Davidson and Haber [4], by Gunion and Haber [5,6], and
by Haber and O’Neil [7]. Basis invariance in the THDM
was also considered in Refs. [8–11]. In particular,

Davidson and Haber [4] develop several strategies to con-
struct basis-invariant descriptions of HF symmetries, in the
context of the THDM [12]. One of our aims is to extend
their work into multi-Higgs systems.
The paper is organized as follows. In Sec. II we intro-

duce our notation and show that a simple HF symmetry
may always be reduced to a standard diagonal form
through a basis transformation. Then, we turn to the prob-
lem of classifying the HF symmetries according to their
action on the Higgs potential. We cover the THDM in
Sec. III, and we discuss the 3HDM in Sec. IV. In Sec. V
we define a set of basis-invariant observables applicable to
any NHDM, which may in principle be used in order to
identify the presence of HF symmetries. We present our
conclusions in Sec. VI. Appendix A includes the implica-
tions that the different classes of symmetries of the 3HDM
have on the quadratic and quartic coupling coefficients.
This provides the fingerprint database against which the
basis-invariant observables of Sec. V should be compared.

II. THE SCALAR SECTOR OFA GENERIC N-
HIGGS-DOUBLET MODEL

A. The scalar potential and basis transformations

In this article we follow the notation of Refs. [2–4]. Let
us consider a SUð2Þ �Uð1Þ gauge theory with N-Higgs
doublets �i, with the same hypercharge 1=2, and with
vacuum expectation values

h�ii ¼ 0
vi=

ffiffiffi
2

p
� �

: (1)

The index i runs from 1 to N, and we use the standard
definition for the electric charge, whereby the upper com-
ponents of the SUð2Þ doublets are charged and the lower
components neutral.
The scalar potential may be written as

VH ¼ Yijð�y
i �jÞ þ Zij;klð�y

i �jÞð�y
k�lÞ; (2)

where Hermiticity implies
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Yij ¼ Y�
ji; Zij;kl � Zkl;ij ¼ Z�

ji;lk: (3)

The number of independent parameters of this potential are
shown in Table I.

The stationarity conditions are

½Yij þ 2Zij;klv
�
kvl�vj ¼ 0 ðfor i ¼ 1; � � � ; NÞ: (4)

Multiplying by v�
i leads to

Yijðv�
i �jÞ ¼ �2Zij;klðv�

i vjÞðv�
kvlÞ: (5)

We may rewrite the potential in terms of new fields �0
i,

obtained from the original ones by a simple basis trans-
formation

�i ! �0
i ¼ Uij�j; (6)

where U is an N � N unitary matrix. Under this unitary
basis transformation, the gauge-kinetic terms remain the
same but the coefficients Yij and Zij;kl are transformed as

Yij ! Y0
ij ¼ UikYklU

�
jl; (7)

Zij;kl ! Z0
ij;kl ¼ UimUkoZmn;opU

�
jnU

�
lp; (8)

and the vacuum expectation values are transformed as

vi ! v0
i ¼ Uijvj: (9)

Thus, the basis transformations U may be utilized in order
to absorb some of the parameters in Y and/or Z, meaning
that not all parameters in Table I have physical
significance.

B. Higgs Family symmetries

Let us assume that the scalar potential in Eq. (2) has
some explicit internal symmetry. That is, we assume that
the coefficients of VH stay exactly the same under a trans-
formation

�i ! �S
i ¼ Sij�j: (10)

S is a unitary matrix, so that the gauge-kinetic couplings
are also left invariant by this HF symmetry. As a result of
this symmetry

Yij ¼ YS
ij ¼ SikYklS

�
jl; (11)

Zij;kl ¼ ZS
ij;kl ¼ SimSkoZmn;opS

�
jnS

�
lp: (12)

Notice that this is not the situation considered in Eqs. (6)–
(8). There, the coefficients of the Lagrangian do change.
What we said there was that, although the coefficients do
change, the quantities which are physically measurable
cannot. What we consider in Eqs. (10)–(12) is different.
Here we consider the possibility that VH has some HF
symmetry S which leaves the coefficients unchanged.
We now turn to the complicated interplay between HF

symmetries and basis transformations. Let us imagine that,
when written in the basis of fields �i, VH has a symmetry
S. Then we perform a basis transformation from the basis
�i to the basis �0

i, as given by Eq. (6). Clearly, when
written in the new basis, VH does not remain invariant
under S. Rather, it will be invariant under

S0 ¼ USUy: (13)

As we change the basis, the form of the potential changes
in a way which may obscure the presence of an HF
symmetry. Equation (13) means that many HF symmetries
which might look distinct on the surface, will actually
imply exactly the same physical predictions. Any two
symmetries S and S0 related by Eq. (13), for some basis
transformation U, will make the same predictions. Now S,
S0, and U are all matrices of the UðNÞ group, within which
Eq. (13) constitutes a conjugacy relation. Thus, Eq. (13)
means that HF symmetries associated with matrices S and
S0 in the same conjugacy class of UðNÞ correspond to the
same model. This result is easy to generalize because an
overall phase transformation on U or S has no impact on
the potential VH. This can be seen directly from Eqs. (7),
(8), (11), and (12), and is due to the fact that the Higgs
potential VH in Eq. (2) only depends on the Higgs fields
through bilinear combinations. So, symmetries S and S0
belonging to conjugacy classes related by a global phase
transformation lead to the same physics.

C. A special basis

One can show that aN � N complex matrix S belongs to
UðNÞ if and only if there exists a unitary matrixU such that
S0 in Eq. (13) is diagonal, with all entries of magnitude 1
[13]. This means that, by a suitable basis transformation,
any symmetry S may be brought to the form

ei�1

ei�2

. .
.

ei�N

0
BBBB@

1
CCCCA; (14)

where 0 � �i < 2� (i ¼ 1 . . .N). The conjugacy classes
can thus be classified by matrices of the type in Eq. (14).
In the basis where the symmetry is represented by Eq.

(14), the coefficients must obey

Yij ¼ eið�i��jÞYij; (15)

TABLE I. Number of parameters in the Y and Z coefficients of
the Higgs potential.

Parameters Magnitudes Phases

Y N2 NðNþ1Þ
2

NðN�1Þ
2

Z N2ðN2þ1Þ
2

N2ðN2þ3Þ
4

N2ðN2�1Þ
4

Y and Z N2ðN2þ3Þ
2

N4þ5N2þ2N
4

N4þN2�2N
4
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Zij;kl ¼ eið�i��jÞeið�k��lÞZij;kl; (16)

where there is no sum over repeated indexes. This result is
obtained by substituting the special form of S in Eq. (14)
onto Eqs. (11) and (12). The result in Eq. (15) applies not
only to the matrix Y but to any matrix whose two indexes
transform as Uy and U, as shown for Y in Eq. (7). In
particular, in this special basis, the matrices

Zð1Þ
ij ¼ X

k

Zik;kj; (17)

Zð2Þ
ij ¼ X

k

Zij;kk; (18)

introduced by Davidson and Haber [4] must also obey a
relation like Eq. (15). (Although sum over repeated indexes
is assumed unless explicitly stated, we have shown it here
explicitly for clarity.)

For symmetries corresponding to �i � �j for all i � j,

Eq. (15) implies that the matrix Y is diagonal. If the Higgs
potential only had quadratic terms, this information would
be useless, since any Hermitian matrix can be diagonalized
by a suitable unitary basis change. Said otherwise, without
quartic terms in the potential, imposing HF symmetries (or
not) would make no difference. Thus, any sign of HF
symmetries must necessarily involve the quartic terms.
For the special case of the THDM, this can be seen ex-
plicitly in Eqs. (39–50) of Ref. [4].

But given two matrices (for example, A ¼ Y and B ¼
Zð1Þ), Eq. (15) already gives crucial information in the case
where �i � �j for all i � j. Indeed it states that, in the

special basis, A and B are simultaneously diagonal. As a
result, their commutator vanishes; ½A; B� ¼ 0. Now, the
commutator is a matrix and the null matrix is always
mapped onto the null matrix, regardless of which basis
transformation one chooses. Thus, we conclude that sym-
metries which are represented in the special basis by �i �

�j (for all i � j) will lead to the basis-invariant result

½A; B� ¼ 0. This can be used to define basis-invariant
fingerprints of HF symmetries, explaining Eqs. (39–41)
of Ref. [4]

One could now ask whether all possible impositions due
to HF symmetries can be cast in the form ½A;B� ¼ 0 for
suitably chosen matrices A and B. The answer is negative,
as Davidson and Haber found when trying to disentangle
the Peccei-Quinn [14] symmetry from the usual Z2 sym-
metry [15][c.f. their Eq. (46)].

D. Further simplifications due to global phase
invariance

Because the Lagrangian is invariant under global phase
transformations, there are infinitely many conjugacy
classes which imply the same physical predictions.
Indeed, classes represented by the diagonal elements

ei�1

1
ei�2

. .
.

ei�N

0
BBB@

1
CCCA (19)

for fixed values of �j (j ¼ 2 . . .N) lead to the same physi-

cal predictions, regardless of the value of �1. This means
that we can concentrate on symmetries of the type shown in
Eq. (19), without the prefactor ei�1 . Thenceforth, we shall
classify each class of symmetries by their diagonal repre-
sentative:

S ¼
1

ei�2

. .
.

ei�N

0
BBB@

1
CCCA: (20)

Alternatively, we could use the ei�1 phase freedom in order
to restrict our attention to symmetries in SUðNÞ.
A first question now arises: do classes corresponding to

different values of �j (j ¼ 2 . . .N) necessarily imply dif-

ferent physical predictions? The answer is negative. A
second question arises: can one classify the different types
of HF symmetries according to their impact on the Higgs
potential? The answer is affirmative, but that must be done
separately for each value of N. We review the case of N ¼
2 in Sec. III, and we turn to the more difficult case of N ¼
3 in Sec. IV.

III. HF SYMMETRIES IN THE THDM

A. Simple symmetries

In the previous sections we learned the following. Two
symmetries in the same conjugacy class yield the same
physics. Thus, we can go into a special basis and consider a
diagonal matrix with complex entries of unit magnitude. In
fact, there are infinitely many such diagonal matrices
which yield the same physics, because global phase trans-
formations have no impact on the Lagrangian. Therefore,
we can concentrate on symmetries of the type

S ¼ 1
ei�

� �
: (21)

Substituting into Eq. (15), we obtain

Y11 Y12

Y21 Y22

� �
¼ Y11 e�i�Y12

ei�Y21 Y22

� �
: (22)

We conclude that the Y matrix elements come affected by
the following phase factors:

0 ��
� 0

� �
: (23)

This table is a shorthand notation to keep track of the
exponents which appear in Eq. (22). If S is indeed a
symmetry of the potential, then these phase factors must
equal 0 (mod 2�) for any nonzero value of the correspond-
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ing entry in the Yij matrix. If � ¼ 0, we have the unin-

teresting identity transformation. We shall ignore this pos-
sibility henceforth. If 0<�< 2�, then any matrix in the
problem (built from the coefficients in the scalar potential)
must be diagonal. This leads to conditions of the type
½A; B� ¼ 0 discussed above. Notice that this condition
does not distinguish � ¼ �, corresponding to the Z2 sym-
metry

S1 ¼ 1 0
0 �1

� �
; (24)

from the transformation with � ¼ �=3, etc. Accordingly,
Davidson and Haber [4] were unable to find a condition to
distinguish Z2 from Peccei-Quinn based exclusively on
matrix conditions of the type ½A;B� ¼ 0.

The Z2 symmetry will only be distinguished from the
symmetries with other values of � by the quartic terms.
Substituting Eq. (21) into Eq. (16), we conclude that the Z
matrix elements come affected by the following phase
factors:

0 ��
� 0

� � �� �2�
0 ��

� �

� 0
2� �

� �
0 ��
� 0

� �
2
6664

3
7775: (25)

This is represented as a table of tables. The uppermost-
leftmost table corresponds to the phases affecting Z11;kl.

The next table along the same line corresponds to the
phases affecting Z12;kl, and so on. If S is indeed a symmetry

of the potential, then these phase factors must equal 0
(mod 2�) for any nonzero value in the corresponding entry
of the Zij;kl tensor. Unlike what happened for the quadratic

terms (and, in general, for any matrix built out of quadratic
and/or quartic terms) we see that there is a distinction
between two cases, according to whether 2� ¼ 2� or
2� � 0; 2�. If � ¼ �, then the terms Z12;12 and Z21;21

(which are related to a parameter denoted by �5 in usual
presentations of the THDM) may be different from zero. In
contrast, �5 must vanish for symmetries with � � 0, �.

So, the quartic terms do distinguish S1 in Eq. (24) from

S2 ¼ 1 0
0 ei�

� �
ð��0;�Þ

: (26)

But they do not distinguish among the symmetries

S2=3 ¼ 1 0
0 ei2�=3

� �
; S2=5 ¼ 1 0

0 ei2�=5

� �
: (27)

These symmetries are actually quite curious. Suppose we
impose the symmetry S2=3 on the Lagrangian. Clearly,

applying the symmetry again must also leave the
Lagrangian invariant. As a result, the Lagrangian is invari-
ant under S2=3, S

2
2=3, and S32=3 ¼ 1, which form a closed

group. The Lagrangian is always invariant under a group; if
it is invariant under symmetries Sa and Sb, it is obviously

also invariant under SaSb. And if we choose �=� irratio-
nal, the group S2; S

2
2; S

3
2; . . . will even have an infinite

number of elements.
But there is a further important point. We have just

shown that if the potential is invariant with respect to a
symmetry S2 for some value of � � 0, �, then it will
necessarily be invariant with respect to a symmetry S2
with any other value of �. That is, we have imposed a
discrete symmetry but the resulting potential is invariant
with respect to a continuous symmetry—the Peccei-Quinn
symmetry [14]. This is an important point because con-
tinuous symmetries, if broken, imply the presence of mass-
less Goldstone bosons. Suppose we build an NHDM with
an innocent-looking discrete symmetry. It may happen that
imposing this symmetry has the same effect on the poten-
tial as a global symmetry and, thus, the possibility exists
for undesired massless scalars. We have just seen one such
example. We impose the discrete symmetry S2=3 (the cor-

responding group of symmetries, to be precise) only to find
that the resulting potential is invariant under the continuous
Peccei-Quinn symmetry.
Notice that the analysis of the quartic terms is sufficient

to isolate all cases of interest. Indeed, the uppermost-
leftmost 2� 2 block of Eq. (25) coincides with Eq. (23).
A similar situation occurs for any other value of N.
In conclusion, as far as simple HF symmetries are con-

cerned, we have only three possibilities. Either we have the
most general Lagrangian, or we have the Z2 symmetry, or
we have the Peccei-Quinn symmetry. This exhausts all
simple symmetries. We are not considering here CP-type
symmetries, and we comment briefly on multiple symme-
tries in Sec. .

B. Multiple symmetries

In this article we concentrate on what we call simple
symmetries. By this we mean the following: we choose
some symmetry S and we impose only that symmetry on
the Higgs potential; the Higgs potential is the most general
consistent with invariance under

�1 ! S11�1 þ S12�2; �2 ! S21�1 þ S22�2: (28)

In our notation, a multiple symmetry arises if and only if
the Higgs potential is invariant under Eq. (28), and also
under

�1 ! T11�1 þ T12�2; �2 ! T21�1 þ T22�2;

(29)

for some symmetry T which forces new and independent
constraints on the Higgs potential.
We recall two points. First, under a basis change, a

symmetry S will look different. For example, if we impose
the symmetry �1 ! �1, �2 ! ��2 on some basis, then
that symmetry will turn into �0

1 $ �0
2 if we change into

the basis �0
1 ¼ ð�1 þ�2Þ=

ffiffiffi
2

p
, �0

2 ¼ ð�1 ��2Þ=
ffiffiffi
2

p
.

Indeed,
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D ¼ 0 1
1 0

� �
¼ 1ffiffiffi

2
p 1 1

1 �1

� �
1 0
0 �1

� �
1ffiffiffi
2

p 1 1
1 �1

� �

(30)

is the corresponding Eq. (13)
Second, it may be that imposing a symmetry S alone will

yield a potential with a larger symmetry. We are not refer-
ring only to the obvious possibility that the potential be-
comes automatically invariant to the group of all powers of
S (as exemplified above in connections with S2=3). It may

be that the potential becomes automatically invariant under
other symmetries, such as continuous symmetries, as in-
deed happens in the THDM.

All the possibilities discussed thus far fall under what we
call simple symmetries. But we may have more compli-
cated situations. We may impose simultaneously two sym-
metries. For example, we may ask that the potential be
invariant both under S1 in Eq. (24) andD in Eq. (30), in the
same basis. Notice that now it is irrelevant that S1 and D
are in the same conjugacy class when considered individu-
ally. We are imposing both in the same basis. Bringing one
to diagonal form will make the other off diagonal, and

vice-versa. In this case, the potential becomes automati-
cally invariant under the group of four symmetries S1, D,
S1D, and 1. This case is considered by Davidson and Haber
[4] after their Eq. (37). Other multiple symmetries of the
THDM were studied by Ivanov [11]. The general analysis
of such cases in the NHDM is much more difficult and it is
not considered in this article. Indeed, what we dubbed
simple symmetries will prove surprisingly demanding,
even for N ¼ 3.

IV. HF SYMMETRIES IN THE 3HDM

The analogues of Eqs. (21), (23), and (25), forN ¼ 3 are

S ¼
1

ei�

ei�

0
@

1
A; (31)

0 �� ��
� 0 �� �
� �� � 0

2
64

3
75; (32)

and

0 �� ��
� 0 �� �
� �� � 0

2
64

3
75

�� �2� ��� �
0 �� ��

�� � �� 2� ��

2
64

3
75

�� ��� � �2�
�� � �� �� 2�

0 �� ��

2
64

3
75

� 0 �� �
2� � 2�� �

�þ � � �

2
64

3
75

0 �� ��
� 0 �� �
� �� � 0

2
64

3
75

�� � �� �� 2�
2�� � �� � 2�� 2�

� 0 �� �

2
64

3
75

� �� � 0
�þ � � �
2� 2�� � �

2
64

3
75

�� � �� 2� ��
� �� � 0

2�� � 2�� 2� �� �

2
64

3
75

0 �� ��
� 0 �� �
� �� � 0

2
64

3
75

2
66666666666666664

3
77777777777777775

; (33)

respectively.
Let us first look at the impact of the symmetries on the

quadratic terms in Eq. (32). One interesting situation is
� ¼ 0, � � 0. In this situation �1 and �2 have the same
transformation, while�3 transforms differently. One could
think of � � 0, � ¼ 0 as a different situation, but it is not.
It is the same as the previous situation, with the interchange
of fields 2 and 3. Since such a field permutation corre-
sponds to a basis change (achievable through some unitary
matrix U), the two situations correspond to exactly the
same symmetry viewed in different basis, and lead to the
same physics. Now we consider � � 0, � � 0. The (2, 3)
and (3, 2) entries in Eq. (32) show that we must distinguish
� ¼ � from � � �. But � ¼ � corresponds to the sym-
metry

1
ei�

ei�

0
@

1
A ¼ ei�

e�i�

1
1

0
B@

1
CA; (34)

which, aside from the irrelevant overall phase, is just a 1 $

3 permutation of the situation already considered. In con-
clusion, the quadratic terms in the Higgs potential distin-
guish among the following two types of symmetries:

1

1

ei�

0
BB@

1
CCA ð��0Þ;

1
ei�

ei�

0
@

1
A

ð��0j���;0Þ
:

(35)

As happened forN ¼ 2, looking at the quartic terms will
further open up these classes of symmetries. Said other-
wise, two symmetries may have the same impact on the
quadratic terms but different impact on the quartic terms.
The zeros in Eq. (33) correspond to the entries of the Z
tensor which are real. In order to see how the symmetries
affect the quartic terms we start by collecting all distinct
combinations in Eq. (33): �, 2�, �, 2�, �þ �, �� �,
2�� �, �� 2�, and 2�� 2�. Each may be equal to 0
(mod 2�) or not. We study all possible combinations,
making sure that each new class of symmetries found
does not correspond to a mere basis transformation of a
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class considered previously. Proceeding in this fashion, we
find that (as far as simple HF symmetries are concerned,
and aside from the most general Lagrangian) there are
seven types of symmetries having distinct impacts on the
Higgs potential:

S1 ¼
1

1
�1

0
@

1
A;

S2 ¼
1

1
ei�

0
@

1
A

ð��0;�Þ
;

S3 ¼
1

e2i�=3

e�2i�=3

0
@

1
A;

S4 ¼
1

i
�i

0
@

1
A;

S5 ¼
1

ei�

e�i�

0
@

1
A

ð��0;�=2;2�=3;�Þ
;

S6 ¼
1

�1
ei�

0
@

1
A

ð��0;�Þ
;

S7 ¼
1

ei�

ei�

0
@

1
A

ð��0;�j��	�;0;�Þ
:

(36)

Comparing with Eq. (35), we see that S1 and S2 have the
same impact on the quadratic terms. This is different from
the impact of S3–S7 on the quadratic terms. The impact of
the symmetries S1–S7 on the coefficients of the Higgs
potential is presented in the Appendix.

Recall that the potential is always invariant under a
group of symmetries. For example, imposing S3, the po-
tential is automatically invariant under S3, S

2
3, and S33 ¼ 1.

The symmetries S2, S5, and S6 are special in this respect.
Imagine that we impose S2 from some value of � � 0, �.
Then, the potential is automatically invariant with respect
to S2 with any other value for �. That is, we wish to impose
a discrete symmetry, but the resulting potential turns out to
be invariant under a Uð1Þ continuous symmetry. The case
for S7 is even worse. Imposing S7 for some chosen nu-
merical values for �ð� 0; �Þ and �ð� 	�; 0; �Þ will au-
tomatically generate a potential invariant under all
symmetries S7 for any values of � and �.

V. BASIS-INVARIANT DESCRIPTIONS OF THE
SYMMETRY CLASSES IN THE NHDM

Let us look back at Eq. (35). We recall that the analysis
of the quadratic terms applies equally well to any matrix

(even if built out of the quartic terms, as Zð1Þ and Zð2Þ).

Therefore, a (basis-invariant) commutator type condition
will distinguish one symmetry of the first type in Eq. (35)
(S1 � S2, where ½A; B� � 0) from one of the second type
(S3 � S7, where ½A; B� ¼ 0). But it will not distinguish
among two symmetries of the same type in Eq. (35). For
example, it will not distinguish S3 from S7, even though
they have a different impact on the quartic terms. As a
result, commutator conditions, which were so central to
Davidson and Haber’s study of the THDM [4], have a very
limited use for N 
 3.
Basis-invariant fingerprints of the HF symmetries may

be found by combining eigenvectors of the matrix of
quadratic couplings Y with the quartic couplings Z. In
the context of the THDM this seemed a curiosity and
was left by Davidson and Haber [4] to the end of their
Appendix B; Eqs. (B17–B22). Inspired by this remark, we
developed a technique which, when suitably extended and
interpreted, will become central to our definition of the
basis-invariant observables identifying HF symmetries.
Consider a general 3HDM. We define the three eigen-

vectors of the matrix Y by ŷ1, ŷ2, and ŷ3. For simplicity, we
assume that the matrix Y does not have degenerate eigen-
values. The components of the ŷ� eigenvector are denoted
by ŷ�i . Under a basis change U, the components of the
eigenvectors change as

ŷ �
i ! Uijŷ

�
j : (37)

Combining this with Eq. (8) we see that the quantities

I��;�� � Zij;klðŷ�i Þ�ðŷ�j Þðŷ�k Þ�ðŷ�l Þ (38)

are basis invariant for any values of �, �, �, and � between
1 and 3. Therefore, we can evaluate them in any basis. In
particular, in a basis where Y is diagonal, we may choose
the eigenvectors as

ŷ 1 ¼
1
0
0

0
@

1
A; ŷ2 ¼

0
1
0

0
@

1
A; ŷ3 ¼

0
0
1

0
@

1
A: (39)

That is, ŷ�i ¼ ��i, where ��i is the Kronecker symbol. In
the basis of Eq. (39), the quantities in Eq. (38) become

I��;�� � Zij;klðŷ�i Þ�ðŷ�j Þðŷ�k Þ�ðŷ�l Þ ¼ Z��;��

ðmod permutationsÞ:
(40)

This means that the quantities I��;�� (permutations aside)
equal the quartic couplings Z��;�� calculated in the basis

where Y is diagonal. As a result, I��;�� has the same
symmetries of the Z couplings and, according to Table I,
only N2ðN2 þ 1Þ=2 of these are independent.
Before we proceed, we must point out a subtlety con-

cerning Eqs. (38)–(40). Suppose that we have a Y matrix
whose eigenvalues are not degenerate, and that we find its
three eigenvectors. Now we have a problem in attributing
to them the labels 1, 2, and 3. There are six possibilities,
which differ by permutations. What one author chooses as
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I1;1;1;2 may be what another author chooses as I2;2;2;1. Once
this choice is made, then the quantity is basis invariant. But
the choices of different authors may differ by permutations
connected with their specific choices for the ordering of the
eigenvectors. Equation (40) identifies one possibility; the
other five possibilities differ by permutations in the choice
of basis eigenvectors in Eq. (39). Thus, permutations must
be considered when using the Appendix, as explained
below.

We now show how the quantities in Eq. (38) can be used
to identify the various discrete symmetries. Let us assume
that the Higgs potential is invariant under some symmetry
S3–S7; for example S3. The potential may be originally
written in a basis where this symmetry is not diagonal. But
that is irrelevant; we may always consider what happens in
a basis where the symmetry has the form in Eq. (36). In this
basis the Z coefficients have the structure (of zero and
nonzero entries) presented in the Appendix for the S3
symmetry. Also in this basis, the Y matrix is diagonal.
Therefore, its eigenvectors are given by Eq. (39) or some
permutation thereof. We conclude from Eq. (40) that the
observables in Eq. (38) must fall into the pattern shown in
the Appendix which corresponds to S3 (or some permuta-
tion thereof).

The discussion in the previous paragraph invoked a
special basis, only to show that the presence of a symmetry
S3 � S7 will force the observables of Eq. (38) to fall onto
the corresponding pattern shown in the Appendix (or some
permutation thereof). But the invariant need not be calcu-
lated in this basis. Because it is basis invariant, it can be
calculated in any basis whatsoever; the result must be the
same. So, the algorithm to identify the presence of a
symmetry is straightforward:

(i) We start with the potential in some original basis.
The potential has the symmetry Si in that basis (in
general Si will not have the simple diagonal form
when written in that original basis).

(ii) We find the eigenvectors of Y (which, in general, will
also not be diagonal in the original basis).

(iii) We combine the Y eigenvectors with Z to calculate
the basis-invariant I��;�� observables in Eq. (38).

(iv) We check whether the resulting pattern matches the
patterns in the Appendix (or some permutation
thereof).

This procedure identifies which symmetry we have, even
when the potential is written in an original basis where Si
has a very obscure form.

We have postponed the proof that this procedure also
works for Si (i ¼ 1, 2) because the basis where this sym-
metry is diagonal does not guarantee that Y is diagonal.
Indeed, in a basis where S1 (say) is diagonal, Y is block
diagonal, c.f. the Appendix. In order to make Y diagonal
and guarantee that its eigenvectors can be cast in the form
of Eq. (39) (aside from permutations), we need a further
diagonalization of the uppermost-leftmost 2� 2 block of
Y. But because the two first eigenvalues of S1 and S2 are

degenerate, a unitary 2� 2 rotation on the uppermost-
leftmost block has no effect on the form of the symmetry.
This shows that a basis may be found where S1 � S2 have
the form in Eq. (36) and Y is diagonal, completing our
proof.
Clearly, Eqs. (38) and (40) hold for any value of N. As a

result, we have succeeded in defining basis-invariant quan-
tities which can in principle be utilized in order to identify
any HF symmetry in NHDM, for any value of N. But in
order to perform this identification in practice we need to
have a set of textures to compare with, as we have done in
the Appendix for N ¼ 3. The problem of categorizing the
different classes of HF symmetries which may affect the
Higgs potential (and, thus, the corresponding textures)
becomes demanding as N increases. For example, in a
cursory analysis of N ¼ 4 we have identified at least 15
distinct classes of symmetries.
One final remark concerns the possibility that the matrix

Y has degenerate eigenvalues. In this case we must define

new I�;�;�;� parameters invoking the eigenvectors of Zð1Þ

(or Zð2Þ) rather than the eigenvectors of Y. Some regions of
parameter space may require special care. These types of
questions were already present in the various methods
proposed for the THDM [4].
An apt analogy to our procedure is the following. We

wish to identify a symmetry. The I��;�� in Eq. (38) provide
us with a (basis-independent) fingerprint of the symmetry.
But we can only use this information in order to identify
the symmetry, if we have a database with all the distinct
fingerprints which may show up, one for each symmetry
class. This is what we provide explicitly in the Appendix
for N ¼ 3. Anyone interested may construct a similar
database for N 
 4.

VI. CONCLUSIONS

We have constructed a set of basis-invariant quantities
which may in principle be used to identify the presence of
HF symmetries in an NHDM, regardless of the value of N.
HF symmetries can be classified according to their impact
on the Higgs potential. Surprisingly, this classification is
already involved forN ¼ 3. We have discussed the cases of
N ¼ 2 and N ¼ 3 in detail showing how to combine the
I��;�� observables with the classification scheme in order
to identify any HF symmetry, regardless of the basis in
which the Higgs potential may be originally written in. Our
basis invariants I��;�� may be applied to any other value of
N, by constructing the database of the classes of symme-
tries possible for that value of N.
This classification is also important because sometimes

one imposes a discrete symmetry only to find that the
potential becomes automatically invariant under a much
larger class of symmetries. These may even be continuous,
implying the danger that Goldstone bosons might appear.
We provide explicit examples of this problem. This may
even be relevant for studies of the fermion sector. For
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example, Grimus et al. discuss very general symmetry
realizations of texture zeros in the fermion sector with
the help of scalar fields onto which certain discrete sym-
metries are imposed [16]. When using such techniques, one
must inspect also the Higgs potential in some detail, in-
cluding the symmetry breaking, lest there be undesired
massless scalars.
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APPENDIX: COUPLING STRUCTURES FOR THE
DIFFERENT CLASSES OF SYMMETRIES

In this appendix we discuss the impact that the seven
classes of symmetries identified in the 3HDM have on the
coupling constants in the scalar potential. We show the
result in the special basis in which the symmetry has one of
the diagonal forms in Eq. (36). In Sec. V we show how to
turn this information into a basis-invariant fingerprint for
the discrete symmetries.

The quadratic couplings distinguish three cases: i) the
most general potential, where all entries of Yij may be

nonzero; ii) the potential with one of the symmetries S1 �
S2, where the matrix Yij is block diagonal and the

uppermost-leftmost 2� 2 block is left unconstrained;
and iii) the potential with one of the symmetries S3 � S7,
where the matrix Yij is diagonal. The first case corresponds

to three real and three complex parameters (for a sum of
nine real variables); the second case corresponds to three
real and one complex parameters (five real variables); and
the third case corresponds to three real parameters.

To see the impact on the quartic potential, we organize
the Zij;kl tensor into a matrix of matrices. The uppermost-

leftmost matrix corresponds to the phases affecting Z11;kl.

The next matrix along the same line corresponds to the
phases affecting Z12;kl, and so on. We use the following

notation for the various entries

r1 c1 c2
c�1 r4 c6
c�2 c�6 r5

2
64

3
75

c1 c3 c4
r7 c7 c8
c�9 c12 c13

2
64

3
75

c2 c4 c5
c9 c10 c11
r8 c14 c15

2
64

3
75

c�1 r7 c9
c�3 c�7 c�12
c�4 c�8 c�13

2
64

3
75

r4 c7 c10
c�7 r2 c16
c�10 c�16 r6

2
64

3
75

c6 c8 c11
c�12 c16 c17
c�14 r9 c18

2
64

3
75

c�2 c�9 r8
c�4 c�10 c�14
c5 c�11 c�15

2
64

3
75

c�6 c12 c14
c�8 c�16 r9
c�11 c�17 c�18

2
64

3
75

r5 c13 c15
c�13 r6 c18
c�15 c�18 r3

2
64

3
75

2
66666666666666664

3
77777777777777775

;

(A1)

where ri (i ¼ 1 . . . 9) are real and ci (i ¼ 1 . . . 18) are
complex. In the basis of Eq. (36), the symmetries S1 �
S7 set different combinations of ci to zero but leave the real
coefficients ri unconstrained.
The most general 3HDM has nine real and 18 complex

quartic couplings for a total of 45 real variables.
Combining with the quadratic parameters, we have 12
real and 21 complex parameters, for a total of 54 real
variables (33 magnitudes and 21 phases). However, not
all the variables have physical significance due to the
possibility of changing basis through any 3� 3 unitary
matrix (which can be parametrized with three magnitudes,
five relative phases, and one global phase). Thus, the most
general 3HDM has 30 magnitudes and 16 phases with
physical significance.
If the potential obeys the symmetry S1, in the basis of

Eq. (36) the quartic couplings have the following structure,

r1 c1 0
c�1 r4 0
0 0 r5

2
64

3
75

c1 c3 0
r7 c7 0
0 0 c13

2
64

3
75

0 0 c5
0 0 c11
r8 c14 0

2
64

3
75

c�1 r7 0
c�3 c�7 0
0 0 c�13

2
64

3
75

r4 c7 0
c�7 r2 0
0 0 r6

2
64

3
75

0 0 c11
0 0 c17
c�14 r9 0

2
64

3
75

0 0 r8
0 0 c�14
c5 c�11 0

2
64

3
75

0 0 c14
0 0 r9
c�11 c�17 0

2
64

3
75

r5 c13 0
c�13 r6 0
0 0 r3

2
64

3
75

2
66666666666666664

3
77777777777777775

:

(A2)

This corresponds to nine (12) real and eight (nine) complex
parameters in the quartic couplings (in the scalar
potential).
If the potential obeys the symmetry S2, in the basis of

Eq. (36) the quartic couplings have the following structure,

r1 c1 0
c�1 r4 0
0 0 r5

2
64

3
75

c1 c3 0
r7 c7 0
0 0 c13

2
64

3
75

0 0 0
0 0 0
r8 c14 0

2
64

3
75

c�1 r7 0
c�3 c�7 0
0 0 c�13

2
64

3
75

r4 c7 0
c�7 r2 0
0 0 r6

2
64

3
75

0 0 0
0 0 0
c�14 r9 0

2
64

3
75

0 0 r8
0 0 c�14
0 0 0

2
64

3
75

0 0 c14
0 0 r9
0 0 0

2
64

3
75

r5 c13 0
c�13 r6 0
0 0 r3

2
64

3
75

2
66666666666666664

3
77777777777777775

:

(A3)

This corresponds to nine (12) real and five (six) complex
parameters in the quartic couplings (in the scalar
potential).
If the potential obeys the symmetry S3, in the basis of

Eq. (36) the quartic couplings have the following structure,
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r1 0 0
0 r4 0
0 0 r5

2
64

3
75

0 0 c4
r7 0 0
0 c12 0

2
64

3
75

0 c4 0
0 0 c11
r8 0 0

2
64

3
75

0 r7 0
0 0 c�12
c�4 0 0

2
64

3
75

r4 0 0
0 r2 0
0 0 r6

2
64

3
75

0 0 c11
c�12 0 0
0 r9 0

2
64

3
75

0 0 r8
c�4 0 0
0 c�11 0

2
64

3
75

0 c12 0
0 0 r9
c�11 0 0

2
64

3
75

r5 0 0
0 r6 0
0 0 r3

2
64

3
75

2
66666666666666664

3
77777777777777775

:

(A4)

This corresponds to nine (12) real and three (three) com-
plex parameters in the quartic couplings (in the scalar
potential).

If the potential obeys the symmetry S4, in the basis of
Eq. (36) the quartic couplings have the following structure,

r1 0 0
0 r4 0
0 0 r5

2
64

3
75

0 0 c4
r7 0 0
0 0 0

2
64

3
75

0 c4 0
0 0 0
r8 0 0

2
64

3
75

0 r7 0
0 0 0
c�4 0 0

2
64

3
75

r4 0 0
0 r2 0
0 0 r6

2
64

3
75

0 0 0
0 0 c17
0 r9 0

2
64

3
75

0 0 r8
c�4 0 0
0 0 0

2
64

3
75

0 0 0
0 0 r9
0 c�17 0

2
64

3
75

r5 0 0
0 r6 0
0 0 r3

2
64

3
75

2
66666666666666664

3
77777777777777775

:

(A5)

This corresponds to nine (12) real and two (two) complex
parameters in the quartic couplings (in the scalar
potential).

If the potential obeys the symmetry S5, in the basis of
Eq. (36) the quartic couplings have the following structure,

r1 0 0
0 r4 0
0 0 r5

2
64

3
75

0 0 c4
r7 0 0
0 0 0

2
64

3
75

0 c4 0
0 0 0
r8 0 0

2
64

3
75

0 r7 0
0 0 0
c�4 0 0

2
64

3
75

r4 0 0
0 r2 0
0 0 r6

2
64

3
75

0 0 0
0 0 0
0 r9 0

2
64

3
75

0 0 r8
c�4 0 0
0 0 0

2
64

3
75

0 0 0
0 0 r9
0 0 0

2
64

3
75

r5 0 0
0 r6 0
0 0 r3

2
64

3
75

2
66666666666666664

3
77777777777777775

:

(A6)

This corresponds to nine (12) real and one (one) complex
parameter(s) in the quartic couplings (in the scalar poten-
tial). The single complex parameter appears in four entries.
If the potential obeys the symmetry S6, in the basis of

Eq. (36) the quartic couplings have the following structure,

r1 0 0
0 r4 0
0 0 r5

2
64

3
75

0 c3 0
r7 0 0
0 0 0

2
64

3
75

0 0 0
0 0 0
r8 0 0

2
64

3
75

0 r7 0
c�3 0 0
0 0 0

2
64

3
75

r4 0 0
0 r2 0
0 0 r6

2
64

3
75

0 0 0
0 0 0
0 r9 0

2
64

3
75

0 0 r8
0 0 0
0 0 0

2
64

3
75

0 0 0
0 0 r9
0 0 0

2
64

3
75

r5 0 0
0 r6 0
0 0 r3

2
64

3
75

2
66666666666666664

3
77777777777777775

:

(A7)

This corresponds to nine (12) real and one (one) complex
parameter(s) in the quartic couplings (in the scalar poten-
tial). Unlike what happened for S5, here the single complex
parameter appears in two entries.
If the potential obeys the symmetry S7, in the basis of

Eq. (36) the quartic couplings have the following structure,

r1 0 0
0 r4 0
0 0 r5

2
64

3
75

0 0 0
r7 0 0
0 0 0

2
64

3
75

0 0 0
0 0 0
r8 0 0

2
64

3
75

0 r7 0
0 0 0
0 0 0

2
64

3
75

r4 0 0
0 r2 0
0 0 r6

2
64

3
75

0 0 0
0 0 0
0 r9 0

2
64

3
75

0 0 r8
0 0 0
0 0 0

2
64

3
75

0 0 0
0 0 r9
0 0 0

2
64

3
75

r5 0 0
0 r6 0
0 0 r3

2
64

3
75

2
66666666666666664

3
77777777777777775

:

(A8)

This corresponds to nine (12) real parameters in the quartic
couplings (in the scalar potential). All complex parameters
in the scalar potential vanish.
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