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Based on the previous work in Y. Jiang, Y.M. Shi, H. T. Feng, W.M. Sun, and H. S. Zong, Phys. Rev. C

78, 025214 (2008) on the quark-meson vertex and pion properties at finite quark chemical potential, we

provide an analytical analysis of the weak decay constant of the pion (f�½��) and the pion mass (m�½��)
at finite quark chemical potential using the model quark propagator proposed in R. Alkofer, W. Detmold,

C. S. Fischer, and P. Maris, Phys. Rev. D 70, 014014 (2004). It is found that when � is below a threshold

value �0 (which equals 0.350, 0.377, and 0.341 GeV, for the 2CC, 1R1CC, and 3R parametrizations of the

model quark propagator, respectively), f�½�� and m�½�� are kept unchanged from their vacuum values.

The value of �0 is intimately connected with the pole distribution of the model quark propagator and is

found to coincide with the threshold value below which the quark-number density vanishes identically.

Numerical calculations show that when � becomes larger than �0, f�½�� exhibits a sharp decrease

whereasm�½�� exhibits a sharp increase. A comparison is given between the results obtained in this paper

and those obtained in previous literature.
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The in-medium modification of the properties of the
pion is of fundamental interest in hadron physics. The
pion is identified as a Goldstone boson arising from the
spontaneous breakdown of chiral symmetry which is es-
sential for describing low-energy hadronic phenomena.
Since chiral symmetry is expected to be restored at high
enough density, the change of pion properties in medium
will provide crucial information on the restoration of chiral
symmetry. Among these, the weak decay constant of the
pion f� and the pion mass m� are the two most important
quantities, since they are closely related to the spontaneous
breakdown of chiral symmetry of quantum chromodynam-
ics (QCD). Unfortunately, so far it has not been possible to
obtain detailed information about modification of pion
properties in medium directly from QCD. In this situation,
different models have been used to study this sort of
problem [1–10]. Just as was pointed out in Ref. [11], the
pion has a dual role: it can be identified as a quark-
antiquark bound state as well as a Goldstone boson arising
from the spontaneous breakdown of chiral symmetry. From
the point of view that the pion can be regarded as a quark-
antiquark bound state, the full dynamical information of
the pion is contained in the corresponding Bethe-Salpeter
amplitude: ��ðk; pÞ (k is the relative and p the total mo-
mentum of the quark-antiquark pair), which is the one-
particle-irreducible, fully amputated quark-meson vertex.
The Dyson-Schwinger equations (DSEs) of QCD provide a
nonperturbative, continuum framework for analyzing such
quark-meson vertices directly [11–15]. The aim of this
paper is to study the change of f� and m� with quark
chemical potential � in the framework of this nonpertur-
bative QCD model.

The DSEs of QCD have been used extensively at zero
temperature and zero quark chemical potential to extract
hadronic observables [12–15]. However, this is very diffi-
cult at finite quark chemical potential due to the fact that
the number of independent Lorentz structures of the quark-
meson vertex at finite � is much larger than that of the
corresponding one at� ¼ 0. In Ref. [16], using the method
of studying the dressed quark propagator at finite � given
in Ref. [17], the authors have given a new approach for
tackling this problem. Based on the rainbow-ladder ap-
proximation of the DSEs and the assumption of analyticity
of the quark-meson vertex in the neighborhood of � ¼ 0
and neglecting the � dependence of the dressed gluon
propagator, the authors show that the general quark-meson
vertex at finite � can be obtained from the corresponding

one at � ¼ 0 by a shift of variable: �½��ðk; pÞ ¼ �ð~k; pÞ,
where ~k ¼ ð ~k; k4 þ i�Þ. From this result the authors of
Ref. [16] numerically calculated f�½�� and m�½�� for
�< 300 MeV. It is found that f�½�� increases slowly
(with an increase of less than about 0.01%) and m�½��
falls slowly (with a decrease of less than about 0.06%) with
increasing�. Numerically the change of f�½�� andm�½��
is so small that one can think f�½�� and m�½�� do not
change with � for �< 300 MeV within numerical errors.
One of our motivations for this work is to explore the
mathematical reason behind this. Based on the work in
[16], in this paper we provide an analytic analysis of f�½��
andm�½��. It is found that when� is below a critical value
�0, f�½�� and m�½�� are kept unchanged from their
vacuum values. Moreover, numerical calculations show
that when � becomes larger than �0, f�½�� exhibits a
sharp decrease whereas m�½�� exhibits a sharp increase.
According to Ref. [16], the pion decay constant at finite

� can be expressed as the following:*zonghs@chenwang.nju.edu.cn
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where S½��ðqÞ is the full dressed quark propagator at finite
� and SðqÞ is the full dressed quark propagator at zero �,

~q� ¼ ~q� p=2, ~q ¼ ð ~q; q4 þ i�Þ, �i

2 are the flavor SUð2Þ
generators, and

R
q �

R
d4q=ð2�Þ4. In the present paper we

will not write the renormalization constants explicitly be-
cause one would find that in the final result the renormal-
ization constants cancel each other. In fact, Eq. (1) is the
expression of f� which is independent of the renormaliza-
tion point and the regularization mass scale [11]. Before
proceeding we shall give some remarks concerning the
range of validity of Eq. (1). In the calculation of f�½��
in this work, we shall make use of the following two
relations:

S½��ðq�Þ ¼ S½~q��; �j
�½��ðq;pÞ ¼ �j

�ð~q;pÞ:
In deriving these two relations we have assumed that� lies
within the circle of convergence of Taylor expansion of

S½��ðq�Þ [or �j
�½��ðq;pÞ] around � ¼ 0 (for details, see

Refs. [16,17]). But mathematically the relation S½���
ðq�Þ ¼ S½~q�� [or �j

�½��ðq;pÞ ¼ �j
�ð~q;pÞ] in fact holds

in the whole domain of analyticity of S½��ðq�Þ [or

�j
�½��ðq;pÞ] in the complex � plane, not only within the

circle of convergence of � expansion. This is a result of a
well-known theorem in complex analysis [18]: Suppose
each of two functions fðzÞ and gðzÞ is analytic in a common
domain D. If fðzÞ and gðzÞ coincide in some subportion
D0 � D, then fðzÞ ¼ gðzÞ everywhere in D. So, under the
assumptions and approximations we have taken (adopting

the rainbow approximation of the DSEs, assuming the
analyticity of the dressed quark propagator and the
quark-meson vertex in the neighborhood of � ¼ 0, and
neglecting the � dependence of the dressed gluon propa-
gator), Eq. (1) is valid in the whole range of �. However,
physically, when � is large enough, it is not a good
approximation to neglect the � dependence of the dressed
gluon propagator. Therefore when one uses Eq. (1) to
calculate f�½�� at very large �, one should be cautious.
The integral of the right-hand side of Eq. (1) can be

rewritten as Z
q
�

Z d4q

ð2�Þ4 �
Z d4~q

ð2�Þ4 : (2)

Contracting both sides of Eq. (1) with p� and using Eq. (2),
we obtain the following:

�ijf�½��¼ 1
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(3)

where the integration path C1 is depicted in Fig. 1.
Let us use zn ¼ �n þ i!n (!n > 0), n ¼ 1; 2 � � � to de-

note the poles of the function

Fijðq4Þ � 1

p2
tr

�
�i

2
�5p6 SðqþÞ�j

�ðq;pÞSðq�Þ
�

(4)

located in the upper half complex q4 plane. According to
Cauchy’s theorem we obtain the following from Eq. (3):
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d3 ~q

ð2�Þ3
X
n

�ð��!nÞResfFijðzÞ; zng: (5)

From Eq. (5) it is easily seen that when �<minf!ng, the
function Fijðq4Þ has no pole in the region � (the region
enclosed by C1 and C0, see Fig. 1), and therefore f�½�� ¼
f�, which means that for small enough � the pion decay
constant should be independent of�. Of course, when�>
minf!ng the pion decay constant can have an explicit �
dependence.

In the chiral limit, expanding the trace term of the right-
hand side of Eq. (4) toOðp2Þ near p ¼ 0 [12], we have the

following:

Fijðq4Þ ¼ 1

p2
tr

�
�i

2
�5p6

�
Sþ 1

2
p � @S

�
½�j

�ðq; 0Þ

þOðpÞ�5�
�
S� 1

2
p � @S

��
; (6)

where we have adopted the approximation [12]

�j
�ðq; pÞ ¼ �j

�ðq; 0Þ þOðpÞ�5: (7)
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With this approximation �j
�ðq; 0Þ can be expressed as

[12,19]

�j
�ðq; 0Þ ¼ �j�5 � iBðq

2Þ
f�

; (8)

where Bðq2Þ is the scalar part of S�1ðqÞ. Noticing that
tr½�5p6 S�5S� ¼ 0, we obtain the following:

Fijðq4Þ ¼ 1

p2
tr

�
�i

4
�5p6 ½p � @S�j

�ðq; 0ÞS

� S�j
�ðq; 0Þp � @S�

�
þOðpÞ: (9)

Substituting Eq. (8) into Eq. (9) and using trð�i�jÞ ¼ 2�ij,
we obtain

Fijðq4Þ ’ 1

2p2
�ij iBðq2Þ

f�
trf�5p6 ½p � @S�5S� S�5p � @S�g:

(10)

The dressed quark propagator at � ¼ 0 can be written as

SðqÞ ¼ 1

iq6 Aðq2Þ þ Bðq2Þ ¼ �iq6 	vðq2Þ þ 	sðq2Þ; (11)

which contains two independent Lorentz structures. The
introduction of a nonzero � to Euclidean QCD breaks the
originalOð4Þ symmetry of the theory toOð3Þ symmetry. In
this case, the most general form of the dressed quark
propagator reads (due to the presence of the medium)

S�1½��ðpÞ ¼ i ~� � ~pAðp2; u � pÞ ���4Cðp2; u � pÞ
þBðp2; u � pÞ ���4 ~� � ~pDðp2; u � pÞ;

where u� denotes the relative velocity of the medium

which in the rest frame of the medium can be written as

u� ¼ ð~0; 1Þ. Therefore, at finite� the dressed quark propa-

gator contains four independent Lorentz structures.
However, based on the rainbow approximation of DSEs
and the assumption of the analyticity of the dressed quark

propagator at � ¼ 0 and neglecting the � dependence of
the dressed gluon propagator, one can show [17] that the
dressed quark propagator at finite � is obtained from the
� ¼ 0 propagator by a simple shift of variable q4 ! q4 þ
i�: S½��ðqÞ ¼ Sð~qÞ ¼ �i~6q	vð~q2Þ þ 	sð~q2Þ and thus only
two Lorentz structures may be used here. From Eqs. (10)
and (11), we obtain

Fijðq4Þ ’ 1

2
�ij 1

f�

8	s

	2
vq

2 þ 	2
s

�
	s	v þ 2ðp � qÞ2

p2

� ð	s	
0
v � 	0

s	vÞ
�

(12)

¼ �ij 1

f�
Fðq4Þ; (13)

where 0 means d=dq2 and

Fðq4Þ � 4	s

	2
vq

2 þ 	2
s

�
	s	v þ 2

ðp � qÞ2
p2

� ð	s	
0
v � 	0

s	vÞ
�
: (14)

Then Eq. (5) can be written as

f�½�� ’ f� � i

f�

Z þ1

�1
d3 ~q

ð2�Þ3
X
n

�ð��!nÞResfFðzÞ; zng:

(15)

To determine the pole distribution of function Fðq4Þ, we
should first specify the form of the dressed quark propa-
gator. Here, as in Refs. [16,20] we adopt the following
propagator proposed in Ref. [21]:

SðqÞ ¼ XnP
j¼1

�
rj

iq6 þ aj þ ibj
þ rj

iq6 þ aj � ibj

�
: (16)

The propagator of this form has nP pairs of complex
conjugate poles located at aj � ibj. When some bj is set

to zero, the pair of complex conjugate poles degenerates to
a real pole. The restrictions of the parameters rj, aj, and bj
in the chiral limit are [21]

XnP
j¼1

rj ¼ 1

2
; (17)

XnP
j¼1

rjaj ¼ 0: (18)

If we are not in the chiral limit, the right-hand side of Eq.
(18) should be replaced by the current quark mass. The
value of these parameters is shown in Table I, where 2CC,
1R1CC, and 3R stand for three meromorphic forms of the
quark propagator, respectively: two pairs of complex con-
jugate poles, one real pole and one pair of complex con-
jugate poles, three real poles.

FIG. 1. The integration path in the complex q4 plane.
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Without losing generality we assume p� ¼ ð~0; pÞ (i.e.
the pion is at rest) and write

ðp � qÞ2
p2

¼ q24p
2

p2
¼ q24: (19)

Now let us calculate Fðq4Þ. With the quark propagator
given in Eq. (16) we can obtain

Fðq4Þ¼ �ðq24ÞQ
j
½q2þðajþ ibjÞ2�2½q2þðaj� ibjÞ2�2

Q
k

ðq2þ
2
kÞ
;

(20)

where� is a polynomial of q24 [for the detailed calculation
of Fðq4Þ, �, and 
k, see the Appendix]. The values of 
k

are shown in Table II (
k are ordered from small to large
according to their real part).

Here it should be noticed that when some bj ¼ 0 (the

quark propagator has a real pole), some 
k must exactly
equal the corresponding jajj (see the Appendix). For

1R1CC case, b1 ¼ 0 and 
1 ¼ ja1j. For 3R case, all bj ¼
0 and 
1 ¼ ja1j, 
3 ¼ ja2j, 
4 ¼ ja3j. For 2CC case,
because b1 ¼ 0:08 GeV is very close to zero, the value
of 
1 is very close to a1.

Because q2 ¼ q24 þ ~q2, according to Eq. (20) the poles
of Fðq4Þ: zn ¼ �n þ i!n are decided by the following
equation:

ð�n þ i!nÞ2 þ ~q2 þ ð�nR þ i�nIÞ2 ¼ 0; (21)

where �nR and �nI are the real and imaginary part of 
k or
aj � ibj. One can easily find

!n¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~q2þ�2

nR��2
nIÞþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~q2þ�2

nR��2
nIÞ2þ4�2

nR�
2
nI

q
2

vuut
;

(22)

�n ¼ ��nR�nI

!n

: (23)

From Eq. (22) we find that for�< j�nRj the corresponding
!n is always larger than �, irrespective of ~q. For �>
j�nRj, !n < � when ~q2 <�2 � ð�2

nR�
2
nI=�

2Þ � �2
nR þ

�2
nI, and !n > � when ~q2 >�2 � ð�2

nR�
2
nI=�

2Þ � �2
nR þ

�2
nI. Therefore Eq. (15) can be written as

f�½�� ¼ f� � i

2�2f�

X
n

�ð�� j�nRjÞ

�
Z �nð�Þ

0
dj ~qj ~q2 ResfFðzÞ; zng; (24)

where

�nð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � ð�2

nR�
2
nI=�

2Þ � �2
nR þ �2

nI

q
: (25)

From Eq. (24) and the values of aj, bj, and 
k in Tables I

and II we find that when � is below some threshold value
�0, the pion decay constant at finite chemical potential
f�½�� is kept unchanged from its vacuum value. The
threshold value �0, which equals the minimum of the
real part of aj � ibj and 
k, is shown in Table III.

Here we note that in Ref. [22] it is found that when � is
below the same threshold value �0, the quark-number
density vanishes identically. Namely, � ¼ �0 is a singu-
larity which separates two regions with different quark-
number densities. In fact, in Ref. [23], based on a universal
argument, it is pointed out that the existence of some
singularity at the point � ¼ �0 and T ¼ 0 is a robust
and model-independent prediction. Below � ¼ �0, the
QCD system at finite � remains in the vacuum (ground
state) of QCD at � ¼ 0, so the properties of the Goldstone
boson excited from this vacuum does not change with �.
Thus the result that f�½�� is kept unchanged from its
vacuum value is just to be expected. Here it should also
be noticed that in our method the value of �0 is intimately
connected with the pole distribution of the quark
propagator.
In Ref. [20], with the same quark propagator the authors

find that the quark condensate at finite chemical potential
is kept unchanged from its vacuum value when
�<�0. From the Gell-Mann-Oakes-Renner relation
f2�½��m2

�½�� ¼ 2mh �qqi0½�� þOðm2Þ [11,16] (where
m�½�� is the pion mass at finite �, m is the current quark
mass and h �qqi0½�� is the quark condensate in the chiral
limit at finite �) one would also conclude that m�½�� is
kept unchanged from its value at � ¼ 0 when �<�0. In
Ref. [16], the authors did not made an analytical analysis of
f�½�� and m�½�� by the method of pole analysis, but
instead made a direct numerical calculation. There exist
numerical errors in this calculation. Within numerical er-
rors f�½�� and m�½�� do not change with � for �<
300 MeV. The analytical analysis made in this paper ex-
plains the numerical results obtained in [16]. This result is
quite different from the result in previous literature. For

TABLE I. The parameters used in the calculation of Fðq4Þ and f�. These parameters are taken directly from Ref. [21].

Parametrization r1 a1 (GeV) b1 (GeV) r2 a2 (GeV) b2 (GeV) r3 a3 (GeV)

2CC 0.360 0.351 0.08 0.140 �0:899 0.436 � � � � � �
1R1CC 0.354 0.377 � � � 0.146 �0:91 0.45 � � � � � �
3R 0.365 0.341 � � � 1.2 �1:31 � � � -1.06 -1.40
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example, in a recent work [7], the authors also investigated
f� and m� at finite density within the framework of the
nonlocal quark model from the instanton vacuum. Their
results show that in the range 0 � � � 320 MeV, f� falls
slowly whereas m� increases slowly. This behavior of f�
and m� is qualitatively different from that found in this
paper.

In [16], we only calculated f�½�� and m�½�� for �<
300 MeV, and in the present work we try to go beyond
�	 300 MeV. For �>�0 one can calculate f�½�� and
m�½�� numerically based on Eq. (24) and the Gell-Mann-
Oakes-Renner relation. As was pointed out earlier in this
paper, one should be cautious when using our approach to
calculate f�½�� at large �. However, let us now assume
that the calculation based on Eq. (24) in the vicinity of� ¼
�0 is still reasonable and see what results it will give. The
results for the behaviors of f�½�� and m�½�� for �>�0

are shown in Figs. 2 and 3. One sees that f�½�� exhibits a
sharp decrease whereas m�½�� exhibits a sharp increase
near �0 for all three cases.

Finally, we should emphasize that in obtaining our re-
sults about f�½��, m�½��, and h �qqi0½�� in this paper, we

have made these approximations and assumptions: (1) we
adopt the rainbow-ladder approximation of the DSEs;
(2) we assume the quark propagator and quark-meson
vertex are analytic in the neighborhood of � ¼ 0; (3) we
have neglected the � dependence of the dressed gluon
propagator (for a discussion about these approximations
and assumptions, see Ref. [16]). For further study one
should consider improvements on these approximations.
To summarize, based on the previous work in Ref. [16]

on the quark-meson vertex and pion properties at finite
quark chemical potential, we provide an analytical analysis
of the weak decay constant of the pion (f�½��) and the
pion mass (m�½��) at finite quark chemical potential using
the model quark propagator proposed in Ref. [21]. It is
found that when � is below a threshold value �0 (which
equals 0.350 GeV, 0.377 GeV, and 0.341 GeV, for the 2CC,
1R1CC, and 3R parametrizations of the model quark
propagator, respectively), f�½�� and m�½�� are kept un-
changed from their vacuum values. The value of �0 is
intimately connected with the pole distribution of the
model quark propagator and is found to coincide with the
threshold value below which the quark-number density
vanishes identically. Numerical calculations show that
when � becomes larger than �0, f�½�� exhibits a sharp
decrease whereas m�½�� exhibits a sharp increase. These
results are quite different from those obtained in previous
literature. For example, our results are qualitatively differ-
ent from those reported in Ref. [7], which uses the nonlocal
chiral quark model from the instanton vacuum to inves-
tigate f� and m� at finite density.

TABLE II. The calculated values of 
k.

Parametrization 
1 (GeV) 
2 (GeV) 
3 (GeV) 
4 (GeV) 
5 (GeV)

2CC 0.350 0:723� 0:351i 0:723þ 0:351i � � � � � �
1R1CC 0.377 0:723� 0:328i 0:723þ 0:328i � � � � � �
3R 0.341 0.617 1.31 1.40 1.849

FIG. 3. The � dependence of m� near �0.FIG. 2. The � dependence of f� near �0.

TABLE III. The calculated values of �0.

Parametrization �0 (GeV)

2CC 0.350

1R1CC 0.377

3R 0.341
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APPENDIX A: THE ANALYSIS OF THE POLES

1. General analysis

With the quark propagator given by Eq. (16) one can find
the following:

	v ¼ X
j

�
rj

q2 þ ðaj þ ibjÞ2
þ rj

q2 þ ðaj � ibjÞ2
�
¼ fv

f0
;

(A1)

	s ¼
X
j

�
rjðaj þ ibjÞ

q2 þ ðaj þ ibjÞ2
þ rjðaj � ibjÞ

q2 þ ðaj � ibjÞ2
�
¼ fs

f0
;

(A2)

with

fv ¼ X
j

2rjðq2 þ a2j � b2j Þ
Y
k�j

½q2 þ ðak þ ibkÞ2�

� ½q2 þ ðak � ibkÞ2�; (A3)

fs ¼
X
j

2rjajðq2 þ a2j þ b2j Þ
Y
k�j

½q2 þ ðak þ ibkÞ2�

� ½q2 þ ðak � ibkÞ2�; (A4)

f0 ¼
Y
j

½q2 þ ðaj þ ibjÞ2�½q2 þ ðaj � ibjÞ2�: (A5)

Then one has

Fðq4Þ ¼ 4	s

	2
vq

2 þ 	2
s

½	s	v þ 2q24ð	s	
0
v � 	0

s	vÞ�

¼ 1

f0

�

f2vq
2 þ f2s

; (A6)

where

� ¼ 4fs½fsfv þ 2ðq2 � ~q2Þðfsf0v � f0sfvÞ�: (A7)

For convenience let us use x2 ¼ q2 with x a complex
number. Then the denominator of the right-hand side of
Eq. (A6) can be decomposed as

f2vx
2 þ f2s ¼ ðfvxþ ifsÞðfvx� ifsÞ: (A8)

fv and fs can be expressed as

fv ¼ X
j

rj

�
f0

x2 þ ðaj þ ibjÞ2
þ f0

x2 þ ðaj � ibjÞ2
�
; (A9)

fs ¼
X
j

rj

�
f0ðaj þ ibjÞ

x2 þ ðaj þ ibjÞ2
þ f0ðaj � ibjÞ

x2 þ ðaj � ibjÞ2
�
; (A10)

so one has the following:

ðfvxþ ifsÞðfvx� ifsÞ ¼
�X

j

rjf0

�
xþ iðaj þ ibjÞ
x2 þ ðaj þ ibjÞ2

þ xþ iðaj � ibjÞ
x2 þ ðaj � ibjÞ2

��

�
�X

j

rjf0

�
x� iðaj þ ibjÞ
x2 þ ðaj þ ibjÞ2

þ x� iðaj � ibjÞ
x2 þ ðaj � ibjÞ2

��

¼
�X

j

rjf0

�
1

x� iðaj þ ibjÞ þ
1

x� iðaj � ibjÞ
���X

j

rjf0

�
1

xþ iðaj þ ibjÞ þ
1

xþ iðaj � ibjÞ
��
:

(A11)

f0 can be expressed as

f0 ¼
Y
k1

½xþ iðak1 þ ibk1Þ�½xþ iðak1 � ibk1Þ�
Y
k2

½x� iðak1 þ ibk1Þ�½x� iðak1 � ibk1Þ�: (A12)

Therefore one obtains

X
j

rjf0

�
1

x� iðaj þ ibjÞ þ
1

x� iðaj � ibjÞ
�
¼ X

j

frj½x� iðaj � ibjÞ þ x� iðaj þ ibjÞ�
Y
k1

½xþ iðak1 þ ibk1Þ�

� ½xþ iðak1 � ibk1Þ�
Y
k2�j

½x� iðak2 þ ibk2Þ�½x� iðak2 � ibk2Þ�g

¼ Y
k1

½xþ iðak1 þ ibk1Þ�½xþ iðak1 � ibk1Þ�
X
j

2rjðx� iajÞ

�Y
k�j

½x� iðak þ ibkÞ�½x� iðak � ibkÞ� (A13)

and
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X
j

rjf0

�
1

xþ iðaj þ ibjÞ þ
1

xþ iðaj � ibjÞ
�
¼ X

j

frj½xþ iðaj � ibjÞ þ xþ iðaj þ ibjÞ�
Y
k1�j

½xþ iðak1 þ ibk1Þ�

� ½xþ iðak1 � ibk1Þ�
Y
k2

½x� iðak2 þ ibk2Þ�½x� iðak2 � ibk2Þ�g

¼ Y
k2

½x� iðak2 þ ibk2Þ�½x� iðak2 � ibk2Þ�
X
j

2rjðxþ iajÞ

�Y
k�j

½xþ iðak þ ibkÞ�½xþ iðak � ibkÞ�: (A14)

With Eq. (A12) one can find the following:

f2vx
2 þ f2s ¼ ðfvxþ ifsÞðfvx� ifsÞ

¼ f0

�X
j

2rjðx� iajÞ
Y
k�j

½x� iðak þ ibkÞ�

� ½x� iðak � ibkÞ�
��X

j

2rjðxþ iajÞ

�Y
k�j

½xþ iðak þ ibkÞ�½xþ iðak � ibkÞ�
�
:

(A15)

Hence, in order to determine the poles of Fðq4Þ, one should
solve the following three equations:

f0 ¼
Y
j

½x2 þ ðaj þ ibjÞ2�½x2 þ ðaj � ibjÞ2� ¼ 0;

(A16)

X
j

2rjðx� iajÞ
Y
k�j

½x� iðak þ ibkÞ�½x� iðak � ibkÞ� ¼ 0;

(A17)

X
j

2rjðxþ iajÞ
Y
k�j

½xþ iðak þ ibkÞ�½xþ iðak � ibkÞ� ¼ 0:

(A18)

Here it should be noted that if some bj ¼ 0, then x ¼ iaj
(or x ¼ �iaj) must be the solution of Eq. (A17) [or Eq.

(A18)]. One should also be aware that after finding the
roots of the above equations one should substitute them
into � to ensure that �ðxÞ � 0 (we will see it in the
discussion of 1R1CC and 3R case below). For general nP
Eq. (A17) [or Eq. (A18)] is an equation of degree 2nP � 1
in x, and it is almost impossible to give the analytic form of
the solution for general rj, aj, and bj when nP 
 2.

2. Detailed calculation of the poles

For 2CC case one can find the following:

fv ¼ q6 þ dv1q
4 þ dv2q

2 þ dv3; (A19)

fs ¼ ds1q
4 þ ds2q

2 þ ds3; (A20)

f0 ¼ ½q4 þ 2ða21 � b21Þq2 þ ða21 þ b21Þ2�
� ½q4 þ 2ða22 � b22Þq2 þ ða22 þ b22Þ2�; (A21)

where dv1, dv2, dv3, ds1, ds2, ds3 are coefficients decided
by rj, aj, bj. With parameters shown in Table I the solu-

tions of Eqs. (A17) and (A18) are found to be 
1 ¼
0:350 GeV, 
2;3 ¼ ð0:723� 0:351iÞ GeV. Of course,

one can directly verify

f2vq
2 þ f2s ¼ f0ðq2 þ 
2

1Þðq2 þ 
2
2Þðq2 þ 
2

3Þ: (A22)

So the poles of Fðq4Þ for 2CC parameters (in the upper half
complex q4 plane) are

z1 ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~q2 þ 
2

1

q
ðsimple poleÞ; (A23)

z2 ¼ �2 þ i!2 ðsimple poleÞ; (A24)

z3 ¼ �3 þ i!3 ðsimple poleÞ; (A25)

z4 ¼ �4 þ i!4 ðdouble poleÞ; (A26)

z5 ¼ �5 þ i!5 ðdouble poleÞ; (A27)

z6 ¼ �6 þ i!6 ðdouble poleÞ; (A28)

z7 ¼ �7 þ i!7 ðdouble poleÞ; (A29)

with

!2 ¼ !3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~q2 þ ðRe
2Þ2 � ðIm
2Þ2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½ ~q2 þ ðRe
2Þ2 � ðIm
2Þ2�2 þ 4ðRe
2Þ2ðIm
2Þ2
p

2

s
; (A30)

�2 ¼ ��3 ¼ �ðRe
2ÞðIm
2Þ
!2

; (A31)
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!4 ¼ !5 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~q2 þ a21 � b21 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~q2 þ a21 � b21Þ2 þ 4a21b

2
1

q
2

vuut
; (A32)

�4 ¼ ��5 ¼ �a1b1
!4

; (A33)

!6 ¼ !7 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~q2 þ a22 � b22 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~q2 þ a22 � b22Þ2 þ 4a22b

2
2

q
2

vuut
; (A34)

�6 ¼ ��7 ¼ �a2b2
!6

: (A35)

For 1R1CC (and 3R) case, the analysis is similar except
a little modification for correctly analyzing the degree of
the poles. Because b1 ¼ 0 for 1R1CC case (for 3R case, all
bj equal zero), the functions fv and fs both have a factor of

q2 þ a21 [see Eqs. (A3) and (A4)] which would be canceled
by the same factor in f0. Therefore for 1R1CC case one
should adopt the following modified expressions:

fv1 ¼ fv
q2 þ a21

¼ 2r1½q2 þ ða2 þ ib2Þ2�½q2 þ ða2 � ib2Þ2�
þ r2ðq2 þ a21Þ½q2 þ ða2 � ib2Þ2�
þ r2ðq2 þ a21Þ½q2 þ ða2 þ ib2Þ2�; (A36)

fs1 ¼ fs
q2 þ a21

¼ 2r1a1½q2 þ ða2 þ ib2Þ2�½q2 þ ða2 � ib2Þ2�
þ r2ða2 þ ib2Þðq2 þ a21Þ½q2 þ ða2 � ib2Þ2�
þ r2ða2 � ib2Þðq2 þ a21Þ½q2 þ ða2 þ ib2Þ2�; (A37)

f1 ¼ f0
q2 þ a21

¼ ðq2 þ a21Þ½q4 þ 2ða22 � b22Þq2 þ ða22 þ b22Þ2�:
(A38)

According to the decomposition in Eq. (A15) one has

f2vq
2 þ f2s ¼ f0ðq2 þ 
2

1Þðq2 þ 
2
2Þðq2 þ 
2

3Þ (A39)

with
1;2;3 being obtained by solvingEqs. (A17) and (A18).

Then

Fðq4Þ ¼ 4fs½fsfv þ 2ðq2 � ~q2Þðfsf0v � fvf
0
sÞ�

f20ðq2 þ 
2
1Þðq2 þ 
2

2Þðq2 þ 
2
3Þ

(A40)

¼ 4fs1½fs1fv1 þ 2ðq2 � ~q2Þðfs1f0v1 � fv1f
0
s1Þ�

f21ðq2 þ 
2
1Þðq2 þ 
2

2Þðq2 þ 
2
3Þ

� ðq2 þ a21Þ: (A41)

Because 
1 equal a1 exactly, one would find that

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~q2 þ a21

q
is a double pole. The analysis for 3R case is

similar.
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