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We estimate the accuracy with which the coefficient of the CP even dimension-six operators involving

Higgs and two vector bosons (HVV) can be measured at linear eþe� colliders. Using the optimal

observables method for the kinematic distributions, our analysis is based on the five different processes.

First is the WW fusion process in the t-channel (eþe� ! ��e�eH), where we use the rapidity y and the

transverse momentum pT of the Higgs boson as observables. Second is the ZH pair production process in

the s channel, where we use the scattering angle of the Z and the Z decay angular distributions,

reproducing the results of the previous studies. Third is the t-channel ZZ, fusion processes (eþe� !
eþe�H), where we use the energy and angular distributions of the tagged eþ and e�. In the fourth, we

consider the rapidity distribution of the untagged eþe�H events, which can be approximated well as the

�� fusion of the bremsstrahlung photons from eþ and e� beams. As the last process, we consider the

single-tagged eþe�H events, which probe the �e� ! He� process. All the results are presented in such a

way that statistical errors of the constraints on the effective couplings and their correlations are read off

when all of them are allowed to vary simultaneously, for each of the above processes, formH ¼ 120 GeV,

at
ffiffiffi
s

p ¼ 250 GeV, 350 GeV, 500 GeV, and 1 TeV, with and without e� beam polarization of 80%. We

find, for instance, that the HZZ and HWW couplings can be measured with 0.6% and 0.9% accuracy,

respectively, for the integrated luminosity of L ¼ 100 fb�1 at
ffiffiffi
s

p ¼ 250 GeV, 350 GeV, and L ¼
500 fb�1 at

ffiffiffi
s

p ¼ 500 GeV, 1 TeV, for the luminosity uncertainty of 1% at each energy. We find that

the luminosity uncertainty affects only one combination of the nonstandard couplings, which are

proportional to the standard HWW and HZZ couplings, while it does not affect the errors of the other

independent combinations of the couplings. As a consequence, we observe that a few combinations of the

eight dimension-six operators can be constrained as accurately as the two operators, which have been

constrained by the precision measurements of the Z and W boson properties.
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I. INTRODUCTION

The standard model (SM) of the elementary particles
based on the SUð3Þ � SUð2Þ � Uð1Þ gauge symmetry has
proved to be a successful theory to interpret all the preci-
sion data available to date. SM predicts a light Higgs boson
whose discovery is one of the prime tasks of the upcoming
future colliders.

In fact, the present electroweak precision measurements
indicate the existence of a light Higgs boson [1,2].
Experiments at the CERN Large Electron Positron collider
(LEP) set the lower bound on its mass of 114.1 GeV at the
95% confidence level (CL) [1]. The Fermilab Tevatron,
which collides proton and antiproton at

ffiffiffi
s

p ¼ 2 TeV, is
currently the only collider that can produce low mass
Higgs bosons. Analysis with Run IIb data samples by the
CDF and D0 detectors indicates that the Tevatron experi-
ments can observe the Higgs boson with about 10 fb�1

total integrated luminosity for the mass of around 120 GeV
[3]. The LHC at CERN will start colliding two protons at

ffiffiffi
s

p ¼ 14 TeV in the year 2008, and is geared to detect the
Higgs boson in gluon-gluon and vector-boson fusion pro-
cesses. It will measure ratios of various Higgs-boson cou-
plings through variety of decay channels at accuracies of
order 10 to 15% with 100 fb�1 luminosity [4].
Despite the success, SM presents the naturalness prob-

lem due to the quadratic sensitivity of the Higgs-boson
mass to the new physics scale at high energies, which
implies that there is a need of subtle fine-tuning to keep
the electroweak symmetry breaking theory below the TeV
scale. To put it in another way, this may suggest an exis-
tence of a new physics scale� not far above the TeV scale.
The key to probe the new physics beyond the SM theory is
to clarify the origin of the electroweak symmetry breaking,
the Higgs mechanism. Therefore, it is necessary to mea-
sure the Higgs-boson properties as precisely as possible,
especially the HVV couplings, because they are expected
to be sensitive to the symmetry breaking physics that gives
rise to the weak-boson masses.
With this motivation, we re-examine the potential of the

future eþe� linear collider, the International Linear
Collider (ILC) in the precise measurement of the HVV
couplings. Clean experimental environment, well-defined
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initial state, tunable energy, and beam polarization render
ILC to be the best machine to study the Higgs-boson
properties with high precision. In this paper, we study the
sensitivity of the ILC measurements on all the HVV
(HWW, HZZ, HZ�, and H��) couplings comprehen-
sively and semiquantitatively by using all the available
processes with a light Higgs-boson (mH & 120 GeV);
eþe� ! �e ��eH with t-channel W exchange, eþe� !
ZH with s-channel Z exchange, eþe� ! eþe�H with
t-channel Z exchange, no-tag eþe� ! ðeþe�ÞH process
from �� fusion, and single-tagged eþe� ! ðe�Þe�H pro-
cess that probes �e� ! He� via t-channel � and Z
exchange.

In order to quantify the ILC sensitivity to measure
various HVV couplings simultaneously, we adopt the
powerful technique of the optimal observables method
[5–8]. It allows us to measure several couplings simulta-
neously as long as the nonstandard couplings give rise to
different observable kinematic distributions. The results
can be summarized in terms of the covariance matrix of
the measurement errors, from each process at each energy,
that scales inversely as the integrated luminosity.

In order to combine results from different processes and
at different energies, we adopt the effective Lagrangian of
the SM particles with operators of mass dimension six to
parametrize all the HVV couplings [9–11]. This allows us
not only to compare the significance of the measurements
of various HVV couplings at different energies and at
different colliders, but also to study what ILC can add to
the precision measurements of the Z and W boson proper-
ties in the search for new physics via quantum effects. We
therefore parametrize the HVV couplings as linear combi-
nation of all the dimension-six operators that are allowed
by the electroweak gauge symmetry and CP invariance.

Some of the previous studies based on the optimal
observables method are found for CP-violating effects in
eþe� ! ZH viaHZZ and HZ� couplings [8,12], and also
in eþe� ! t�tH [8]. CP conserving and CP violating ef-
fects in the eþe� ! ZH process have been studied in
Refs. [13,14]. In Refs. [8,13,14] all the relevant couplings
are varied simultaneously, and their correlations are
studied. More recently, the ILC sensitivity to the HZZ
and HWW couplings has been studied in Refs. [15–17].
Bounds on the coefficients of the Higgs-vector-boson
dimension-six operators have been found in Refs. [18,19]
based on nonobservation of the Higgs-boson signal at the
Tevatron. Whenever relevant, we compare our results with
the previous observations.

This paper is organized as follows: In Sec. II, we de-
scribe the low-energy effective interactions among the
Higgs boson and the electroweak gauge bosons arising
from new physics that is parametrized in terms of the
effective Lagrangian of the SM particles with operators
up to mass dimension six. In Sec. III, we introduce the
optimal observables method and explain how we perform

the phase-space integration when some of the kinematic
distributions are unobservable, such as neutrino momenta
and a distinction between quark and antiquark jets.
Although we present numerical results for unpolarized
beams and for 80% polarized e� beam only, all the for-
mulas are presented for an arbitrary polarization of e� and
eþ beams. After introducing final state cuts, such as those
for the e� tagging and those for selecting or excluding Z !
f �f events, we present the total cross sections for all the five
processes at

ffiffiffi
s

p ¼ 200 GeV–1 TeV for mH ¼ 120 GeV,
and at

ffiffiffi
s

p ¼ 250 GeV, 500 GeV, 1 TeV for mH ¼
100–200 GeV. Then in Sec. IV we compute the statistical
errors of the nonstandard HWW couplings extracted from
measurements of theWW-fusion process, eþe� ! �e ��eH.
In Sec. V, we study the constraints on the HZZ and HZ�
couplings extracted from ZH production. In Sec. VI, not
only the HZZ and HZ� couplings but also the H��
coupling are studied in the double-tag eþe� ! eþe�H
process via t-channel Z and � exchange. In Sec. VII, we
obtain the constraints on the H�� coupling from the ��
fusion, in no-tag eþe� ! ðeþe�ÞH events, using the
equivalent real photon approximation. In Sec. VIII, we
consider the single-tag eþe� ! ðe�Þe�H process to con-
strain theH�� andH�Z couplings. In Sec. IX, we address
the implication of luminosity uncertainty on the measure-
ment of these couplings. In Sec. X, we summarize all our
results, compare them with previous studies, and present
our estimates for the ILC constraints on the dimension-six
operators, which are then compared with the constraints
from the precision electroweak measurements of the W
and Z boson properties. In the appendices, we present
our parameterizations of the 3-body phase space
(Appendix A), and the explicit forms the t-channel and
s-channel currents and their contractions that appear in the
helicity amplitudes (Appendix B).

II. GENERALIZED HVV VERTEX WITH
DIMENSION-SIX OPERATORS

In our study, we adopt the effective Lagrangian of the
Higgs and the gauge bosons with operators up to mass
dimension six

Leff ¼ LSM þX
i

fð6Þi

�2
Oð6Þ

i ; (1)

where LSM denotes the renormalizable SM Lagrangian and

Oð6Þ
i ’s are the gauge-invariant operators of mass dimension

six. The index i runs over all operators of the given mass
dimension. The mass scale is set by �, and the coefficients

fð6Þi are dimensionless parameters, which are determined
once the full theory is known. Excluding the dimension-
five operators for the neutrino Majorana masses, and the
dimension-six operators with quark and lepton fields, we
are left with the following eight CP-even operators that
affect the HVV couplings. Notation of the operators are
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taken from the Ref. [20].

OWW ¼ �y �W�� �W���; (2a)

OBB ¼ �y �B�� �B���; (2b)

OBW ¼ �y �B�� �W���; (2c)

OW ¼ ðD��Þy �W��ðD��Þ; (2d)

OB ¼ ðD��Þy �B��ðD��Þ; (2e)

O�1 ¼ ½ðD��Þy��½�yðD��Þ�; (2f)

O�4 ¼ ð�y�ÞðD��ÞyðD��Þ; (2g)

O�2 ¼ 1

2
@�ð�y�Þ@�ð�y�Þ: (2h)

Here, � denotes the Higgs doublet field with the hyper-

charge Y ¼ 1=2, and the covariant derivative is D� ¼
@� þ iĝWT

aŴa
� þ iĝYYB̂�, where the gauge couplings

and the gauge fields with a caret represent those of the

SM, in the absence of higher-dimensional operators. The
gauge-covariant and invariant tensors �W�� and �B��, re-

spectively, are �W�� ¼ iĝWT
aŴa

��, and �B�� ¼ i
2 ĝYB̂��.

The coefficients of the operators (2a)–(2h), which are

denoted as fð6Þi =�2 in the effective Lagrangian of Eq. (1),
should give us information about physics beyond the SM.
So far, the precision measurements of the weak-boson
properties [2] constrained the operators OBW and O�1,

which have been useful in testing some models of the
electroweak symmetry breakdown [10,21]. In this report,
we explore the accuracy with which the ILC experiments
can measure the coefficients of all these eight operators
when a light Higgs boson exists.
When the Higgs field acquires the vacuum expectation

value h�i ¼ 1ffiffi
2

p ð0; vÞT , the bilinear part of the effective

Lagrangian of Eq. (1) is expressed as

Leff ¼ � 1

4

�
1þ ĝ2Wv

2

2�2
fWW

�
Ŵa

��Ŵ
a�� � 1

4

�
1þ ĝ2Yv

2

2�2
fBB

�
B̂��B̂

�� þ ĝWĝYv
2

8�2
fBWB̂��Ŵ

3��

þ ĝ2Wv
2

8

�
1þ v2

2�2
f�4

�
ðŴ1

�Ŵ
1� þ Ŵ2

�Ŵ
2�Þ þ v2

8

�
1þ v2

2�2
ðf�1 þ f�4Þ

�
ðĝWŴ3

� � ĝYB̂�ÞðĝWŴ3� � ĝYB̂
�Þ

þ 1

2

�
1þ v2

2�2
ðf�1 þ f�4 þ 2f�2Þ

�
ð@�Ĥ0Þð@�Ĥ0Þ � 1

2
m̂2

HĤ
2
0 þ � � � : (3)

After renormalization of gauge fields and their couplings,

Wa
� ¼

�
1þ ĝ2Wv

2

4�2
fWW

�
Ŵa

�; gWW
a
� ¼ ĝWŴ

a
�; (4a)

B� ¼
�
1þ ĝ2Yv

2

4�2
fBB

�
B̂�; gYB� ¼ ĝYB̂�; (4b)

and after diagonalization of the mass squared matrices, the
effective Lagrangian reads

Leff ¼�1

2
Wþ

��W
����1

4
Z��Z

���1

4
A��A

��

þgWgYv
2

8�2
fBWB��W

3��þm2
WW

þ
�W

��

þm2
Z

2
Z�Z

��1

2
ð@�HÞð@�HÞ�1

2
m2

HH
2þ��� ; (5)

where

m2
W ¼ g2Wv

2

4

�
1þ v2

2�2
f�4

�
; (6a)

m2
Z ¼ g2Zv

2

4

�
1þ v2

2�2
ðf�1 þ f�2Þ

�
; (6b)

m2
H ¼ m̂2

H

�
1� v2

2�2
ðf�1 þ f�4 þ 2f�2Þ

�
; (6c)

H ¼
�
1þ v2

4�2
ðf�1 þ f�4 þ 2f�2Þ

�
1=2

Ĥ0: (6d)

All the remaining terms in the effective Lagrangian, de-
noted by dots in Eq. (5), are expressed in terms of the
renormalized fields, couplings and masses, as defined in
Eqs. (4) and (6). The standard gauge interactions are
dictated by the covariant derivative

D� ¼ @� þ i
gWffiffiffi
2

p ðTþWþ
� þ T�W�

� Þ þ igZðT3 � s2WQÞZ�

þ ieQA�; (7)

where T� ¼ ðT1 � iT2Þ=2, Q ¼ T3 þ Y, and e ¼
gWsW ¼ gYcW ¼ gZcWsW .
Before expressing the HVV interactions of Leff , let us

briefly review the observable consequence of new physics
in the gauge boson two point functions in Eq. (5). First, the
ratio of the neutral current and the charged current inter-
actions at low energies deviate [21,22] from unity,

�

�
¼ 1

1� �T

�
¼ GN:C:

GC:C:

¼ g2Z=m
2
Z

g2W=m
2
W

¼ 1� f�1

2�2
: (8)

Second, the extra kinetic mixing between B�� and W3
��

modifies the � and Z boson propagators

��QQ
T ðq2Þ ¼ 2��3Q

T ðq2Þ ¼
�
� v2

2�2
fBW

�
q2 (9)

in the notation of Ref. [23], which contributes to the S
parameter [21]
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S ¼ 16�

�
�s2ðm2

ZÞ �c2ðm2
ZÞ

�e2ðm2
ZÞ

� 1

�g2Zð0Þ
�
¼ � 4�v2

�2
fBW: (10)

Here, the over-lined couplings �e2ðq2Þ, �s2ðq2Þ ¼
1� �c2ðq2Þ, and �g2Zðq2Þ are the effective couplings that
contain the gauge-boson propagator corrections at the
momentum transfer q2 [23]. We will examine the con-

straints on f�1 and fBW from the precision measurements

of the weak-boson properties in the last section of this
report.
The terms describing theHVV couplings in the effective

Lagrangian are now expressed as

LHVV
eff ¼ ð1þ c1WWÞgmWHWþ

�W
�� þ ð1þ c1ZZÞ gZmZ

2
HZ�Z

�

þ gZ
mZ

�
c2WWHWþ

��W
��� þ c3WW

2
fðð@�HÞW�

� � ð@�HÞW�
� ÞWþ�� þ H:c:g

�

þ gZ
mZ

�
c2ZZ
2

HZ��Z
�� þ c3ZZ

2
ðð@�HÞZ� � ð@�HÞZ�ÞZ��

�
þ gZ

mZ

�
c2��
2

HA��A
��

�

þ gZ
mZ

�
c2Z�HZ��A

�� þ c3Z�ðð@�HÞZ� � ð@�HÞZ�ÞA��

�
. . . ; (11)

where the 9 dimensionless couplings, ci, parametrize all
the nonstandard HVV interactions:

c1ZZ ¼ v2

4�2
ð3f�1 þ 3f�4 � 2f�2Þ; (12a)

c1WW ¼ v2

4�2
ð�f�1 þ 3f�4 � 2f�2Þ; (12b)

c2ZZ ¼ m2
Z

�2
ð�s4WfBB � s2Wc

2
WfBW � c4WfWWÞ; (12c)

c2Z� ¼ m2
Z

�2

�
s2WfBB þ 1

2
ðc2W � s2WÞfBW � c2WfWW

�
sWcW;

(12d)

c2�� ¼ m2
Z

�2
ð�fBB þ fBW � fWWÞc2Ws2W; (12e)

c2WW ¼ m2
Zc

2
W

�2
ð�fWWÞ; (12f)

c3ZZ ¼ m2
Z

2�2
ð�s2WfB � c2WfWÞ; (12g)

c3Z� ¼ m2
Z

4�2
ðfB � fWÞsWcW; (12h)

c3WW ¼ m2
Zc

2
W

2�2
ð�fWÞ: (12i)

From the effective Lagrangian of Eq. (11), we obtain the
Feynman rule for V�

1 ðp1Þ � V�
2 ðp2Þ �HðpHÞ vertex as

�HV1V2
�� ðpH; p1; p2Þ ¼ gZmZ

�
hV1V2

1 g�� þ hV1V2

2

m2
Z

p2�p1�

�
;

(13)

where all three momenta are incoming, p1 þ p2 þ pH ¼
0, as shown in Fig. 1. V1 and V2 can be ðV1V2Þ ¼ ðZZÞ,
ðZ�Þ, ð�ZÞ, ð��Þ, ðWþW�Þ, or ðW�WþÞ. The coefficients
hV1V2

i ðp1; p2Þ are

hZZ1 ðp1; p2Þ ¼ 1þ c1ZZ þ p2
1 þ p2

2 �m2
H

m2
Z

c2ZZ þm2
H

m2
Z

c3ZZ;

(14a)

hZZ2 ðp1; p2Þ ¼ 2ðc2ZZ � c3ZZÞ; (14b)

for the HZZ couplings,

h��1 ðp1; p2Þ ¼ p2
1 þ p2

2 �m2
H

m2
Z

c2��; (15a)

h��2 ðp1; p2Þ ¼ 2c2��; (15b)

for the H�� couplings,

hZ�1 ðp1;p2Þ ¼ p2
1 þp2

2 �m2
H

m2
Z

c2Z� �p2
1 �p2

2 �m2
H

m2
Z

c3Z�;

(16a)

h�Z1 ðp1;p2Þ ¼ p2
1 þp2

2 �m2
H

m2
Z

c2Z� ��p2
1 þp2

2 �m2
H

m2
Z

c3Z�;

(16b)

hZ�2 ðp1;p2Þ ¼ h�Z2 ðp1;p2Þ ¼ 2ðc2Z� � c3Z�Þ; (16c)

for the HZ� couplings. It is to be noted that the HZ�
coupling c3Z� has the Feynman rule, which is not symmet-

ric under an interchange of p1 and p2. For the HWW

FIG. 1 (color online). The HVV Vertex.

SUKANTA DUTTA, KAORU HAGIWARA, AND YU MATSUMOTO PHYSICAL REVIEW D 78, 115016 (2008)

115016-4



couplings,

hW
þW�

i ðp1; p2Þ ¼ hW
�Wþ

i ðp1; p2Þ ¼ hWW
i ðp1; p2Þ

ði ¼ 1; 2Þ; (17a)

hWW
1 ðp1; p2Þ ¼ ð1þ c1WWÞcos2�W

þ p2
1 þ p2

2 �m2
H

m2
Z

c2WW þm2
H

m2
Z

c3WW;

(17b)

hWW
2 ðp1; p2Þ ¼ 2ðc2WW � c3WWÞ: (17c)

Although we do not consider off-shell Higgs-boson con-
tributions in this report, m2

H should be replaced by ðp1 þ
p2Þ2 in the above Feynman rules when the Higgs boson is
off shell.

III. OPTIMAL OBSERVABLES AND PHASE SPACE

A. Optimal observables method

The optimal observables method [8] makes use of all the
kinematic distributions that are observable in experiments.
We therefore summarize our phase-space parameteriza-
tions for all the Higgs-boson production processes in
eþe� collisions considered in this study, which can be
generically written as

e�
�
k1;

	1

2

�
þ eþ

�
k2;

	2

2

�
! f

�
p1;


1

2

�
þ �f

�
p2;


2

2

�
þHðpHÞ: (18)

Here, ki and 	i=2 are the e� four momenta and helicities,
respectively, and p

�
i and 
i=2 are the four momenta and

helicities, respectively, of the produced fermion (i ¼ 1)
and antifermion (i ¼ 2). For f � e, �e, the processes
(18) occur only through the ZH production diagram as
shown in Fig. 2(a), whereas for f ¼ e or �e, both the
diagrams Figs. 2(a) and 2(b) contribute. The effective
HVV vertex is depicted by the solid circle in the
Feynman diagrams. The ZH production process (a) is
sensitive to the HZZ and HZ� couplings, while the
vector-boson fusion processes (b) are sensitive to the

HWW coupling for f ¼ �e, and the HZZ, HZ�, H��
couplings for f ¼ e.
The matrix elements for the processes Eq. (18) can in

general be expressed as

M
1
2
	1	2

¼ ðMSMÞ
1
2
	1	2

þXn
i¼1

ciðMiÞ
1
2
	1	2

; (19)

where ðMSMÞ
1
2
	1	2

denotes the SM helicity amplitude, and
ci denotes the nonstandard couplings of Eq. (12) that

contribute to the process. The matrix elements ðMiÞ
1
2
	1	2

give the helicity amplitudes, which are proportional to the
coupling ci. If the e

� and eþ beam polarizations are P and
�P (jPj, j �Pj � 1), respectively, the differential cross section
can be expressed as

d	ðP; �PÞ ¼
�
�SMðP; �P;�3Þ þ

Xn
i¼1

ci�iðP; �P;�3Þ
�
d�3;

(20)

where the nonstandard couplings ci are assumed to be real
and small, and hence the terms quadratic in couplings are
dropped. Here, d�3 is the 3-body phase-space volume of
the f �fH system, and

�SMðP; �P; �3Þ ¼ 1

2s

X
	1;	2;
1;
2

�
1þ 	1P

2

�

�
�
1þ 	2

�P

2

�
jðMSMÞ
1
2

	1	2
j2 (21)

gives the differential cross section of the SM. The term
proportional to ci,

�iðP; �P;�3Þ ¼ 1

2s

X
	1;	2;
1;
2

�
1þ 	1P

2

�

�
�
1þ 	2

�P

2

�
2Re½ðMiÞ
1
2

	1	2
ðM�

SMÞ
1
2
	1	2

�
(22)

gives the differential distribution, which is proportional to
ci.

FIG. 2 (color online). Feynman diagrams for e�eþ ! f �fH.
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In the optimal observables method, we make full use of
the distribution �iðP; �P; �3Þ in order to constrain ci. For
instance, if all �iðP; �P;�3Þ have different shapes from
each other, then in principle, we can constrain all the

coefficients ci simultaneously. For a given integrated lu-
minosity L, the statistical errors of the ci measurement can
be obtained from a �2 function

�2ðciÞ ¼
XN
k¼1

�
Nk

expðP; �PÞ � Nk
thðP; �P; ciÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Nk
expðP; �PÞ

q �
2
; (23a)

¼ XN
k¼1

�
L�expðP; �P;�k

3Þ�� L½�SMðP; �P; �k
3Þ þ

P
n
i¼1 ci�iðP; �P; �k

3Þ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L�expðP; �P;�k

3Þ�
q �

2
; (23b)

where Nk
expðP; �PÞ is the number of events in the k’th bin,

and Nk
thðP; �P; ciÞ is the corresponding prediction of the

theory, which depends on the parameters of the SM and
ci. In the second line (23b), �k

3 for k ¼ 1 to N gives the
representative phase-space point of a bin number kwith the
bin size �. Now, if all the coefficients ci are tiny, the
experimental result in the k’th bin should be approximated
by the SM prediction as

�expðP; �P; �k
3Þ 	 �SMðP; �P;�k

3Þ: (24)

The �2 function can then be expressed as

�2ðciÞ ¼ �2
min þ

X
i;j

ðci � �ciÞ½V�1
ðP; �PÞ�ijðcj � �cjÞ; (25)

where

½V�1
ðP; �PÞ�ij ¼ L0

XN
k¼1

�iðP; �P; �k
3Þ�jðP; �P; �k

3Þ
�SMðP; �P; �k

3Þ
�; (26a)

!N!1
L0

Z �iðP; �P; �3Þ�jðP; �P; �3Þ
�SMðP; �P; �3Þ

d�3; (26b)

where we take L0 ¼ 100 fb�1 as a nominal integrated
luminosity throughout this report. If the total number of
events is sufficiently large, the integral representation in
Eq. (26b) gives a good approximation for the V�1 matrix.
The value of �2

min and the mean value �ci depend on the
actual experimental results, or the small deviation from the
equality in Eq. (24). If the SM prediction gives a reason-
ably good description of the data in most of the phase-
space region, then the statistical errors of ci and their
correlations are determined solely in terms of the covari-
ance matrices V, which is the inverse of the matrix given in
Eq. (26);

ci � �ci ¼ ��ci ¼ � ffiffiffiffiffiffi
Vii

p
; �ij ¼ Vij=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ViiVjj

q
: (27)

In practice, however, we should address the following
subtleties:

(i) If the statistical error becomes small, systematic
errors need to be considered.

(ii) The results depend on how we split the total lumi-
nosity to different beam polarizations.

(iii) Not all the 3-body phase-space points are observ-
able in experiments.

As for the first issue, we assume that the energy and
angular resolutions of ILC detectors are good enough to
justify our integral approximation of Eq. (26), and consider
only the impacts of the luminosity uncertainty as a source
of the systematic error, which is discussed in Sec. IX. We
leave the difficult problem of background contaminations
and the spectrum distribution due to bremsstrahlung and
beamstrahlung photon emissions to future studies. In short,
our results should be regarded as an ultimate accuracy of
theHVV couplings measurement for a perfect detector in a
background-free environment, when the SM predictions
are accurately known.
On the second point, we provide numerical results for

the two very simple cases only:
(1) Unpolarized e� beam: The total integrated luminos-

ity L is given for collisions with ðP; �PÞ ¼ ð0; 0Þ at
each collider energy

ffiffiffi
s

p
. However, in order to save

the length of this article, we provide the unpolarized
results specifically only for s-channel ZH produc-
tion at

ffiffiffi
s

p ¼ 250 GeV. They are calculated for all
the processes at all energy choices and are used to
evaluate the significance of the beam polarization
after all the channels and energies are combined in
Sec. X.

(2) 80% polarized e� beam: Exactly half of the total
luminosity L is given for collisions with ðP; �PÞ ¼
ð0:8; 0Þ, and the remaining half with ðP; �PÞ ¼
ð�0:8; 0Þ.

In general, the covariance matrix depends on the partition
of the total luminosity into experiments with different sets
of e� and eþ beam polarizations. If the e� and eþ beams
with polarizations P ¼ �jPj and �P ¼ �j �Pj, respectively,
are available and if the integrated luminosity of LðP; �PÞ is
distributed for each case, then by using the definition of the
inverse of the covariance matrix for the beam polarization
ðP; �PÞ in Eq. (26), the inverse of the total covariance matrix
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is obtained as

V�1 ¼ LðjPj; �jPjÞ
L0

V�1
ðjPj; �jPjÞ þ

Lð�jPj; �jPjÞ
L0

V�1
ð�jPj; �jPjÞ

þ LðjPj;� �jPjÞ
L0

V�1
ðjPj;� �jPjÞ þ

Lð�jPj;� �jPjÞ
L0

V�1
ð�jPj;� �jPjÞ:

(28)

Our first case is simply Lð0; 0Þ ¼ Ltotal and the second case
stands for

LðP¼0:8; �P¼0Þ ¼ LðP¼�0:8; �P¼0Þ ¼
Ltotal

2
: (29)

It should be noted that an equal partition of the total
luminosity as above is advantageous for the asymmetry
measurements, and hence for discriminating among differ-
ent couplings, while LðP¼�jPj; �P¼j �PjÞ ¼ Ltotal maximizes the

WW-fusion cross section.
We address the third point of limited observable kine-

matic distributions in the following subsection.

B. Observable phase space for each process

The observability of the three-body phase-space point
depends on species of f �f pair, and also on their energy and
the scattering angle in the laboratory frame. Let us discuss
the following 4 cases one by one:

(1) f ¼ �, �
(2) f ¼ e
(3) f ¼ �e, ��, ��

(4) f ¼ u, d, s, c, b
First, for f ¼ � and �, all the four momenta p1, p2, pH

are measured and used in evaluating V�1 to estimate the
experimental sensitivity. Since only one diagram Fig. 2(a)
contributes to the cross section, a very tiny fraction of ��
and �� escape detection along the beam pipe. We therefore
use the whole phase-space region to evaluate the inverse of
the covariance matrix Eq. (26). We also assume that the
majority of �þ��H events can be made background free by
selecting the events, in which the �þ�� invariant mass is
reconstructed and required to match the Z-boson mass.
Although this reconstruction is not possible when the
Higgs-boson decay has significant missing momentum,
such as H ! �þ�� and H ! WþW�, we do not take
account of resulting reduction of the number of events,
since it can be considered as part of detection efficiency.

We do not consider the � polarization in our analysis,
because it was found in Ref. [13] that its impact is not
significant once the e� beam polarization is available.

Second, for f ¼ e, we can also measure both p1 and p2

uniquely. For this process both the diagrams Figs. 2(a) and
2(b) contribute to the cross section because of the possible
escape of eþ or e� (or both) along the beam pipe, the
events can be divided into the following four classes:

(1) ZH events are selected by requiring

j cos�e�j< 0:995; jmeþe� �mZj< 5�Z:

(30)

(2) Both outgoing e� are detected (double-tag events)
when

pTðe�Þ> 1 GeV; j cos�e�j< 0:995;

jmeþe� �mZj> 5�Z:
(31)

(3) When a photon is exchanged either from electron or
positron in the t channel, the corresponding out-
going e� tends to escape detection (single-tag
events). Those events are selected by requiring

pTðe�Þ> 1 GeV;

j cos�e�j< 0:995< j cos�eþj;
(32a)

or

pTðeþÞ> 1 GeV;

j cos�eþj< 0:995< j cos�e�j:
(32b)

(4) When a photon is exchanged from both the e� legs
in the t channel, both of the outgoing e� tend to
escape detection (no-tag event). The selection con-
ditions are

j cos�e�j> 0:995: (33)

Although the above classification misses a part of
the phase space where j cos�e�j< 0:995 and
pTðe�Þ< 1 GeV, we find that less than 0.001%
(0.02%) of the total eþe�H events escape from
this region of phase space at

ffiffiffi
s

p ¼
500 GeVð250 GeVÞ.

For the ZH production case (30) and for the double-
tagged eeH events (31), we assume that the whole 3-body
phase space is observable, and the inverse of the covariance
matrix V�1 is calculated by integrating over the phase
space with the selection cuts. In the case of no-tagged
events (33), most of the events are due to �� fusion, and
it is sensitive to the H�� coupling. We estimate the cross
section by using the equivalent real photon approximation
in Sec. VII. Since typical transverse momentum of the
Higgs boson is smaller than the experimental resolution,
the only observable kinematic variable is the Higgs-boson
rapidity

yH ¼ 1

2
ln
EH þ pHZ

EH � pHZ

; (34)

where pHZ is the momentum component along the e�
beam direction. The cross section for the no-tag ðeeÞH
events can then be expressed as
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d	

dyH
¼ �SMðyHÞ þ

X
i

ci�iðyHÞ (35)

and accordingly, the inverse covariance matrix elements
are calculated in terms of �SMðyHÞ and �iðyHÞ. In our
study, we find in Sec. VII that �iðyHÞ ¼ constant�
�SMðyHÞ, and hence only the total production cross section
constrains the H�� coupling.

The single-tag ðeÞeH events, where either e� or eþ
escapes detection, are sensitive to both H�� and HZ�
couplings. We can again use the equivalent real photon
approximation for the emission from untagged e�, and the
differential cross section is expressed as

d	 ¼ d	̂ðŝ ¼ szÞD�=eðzÞdz; (36)

where D�=eðzÞ is the number density of an equivalent real

photon of momentum fraction z, and the subprocess cross
section for �e ! He can be expressed as

d	̂

d cos�̂
¼ �̂SMðcos�̂Þ þ

X
i

ci�̂iðcos�̂Þ; (37)

where �̂ is the scattering angle in the observed eH rest
frame. By inserting Eq. (37) into Eq. (36), we find

d	 ¼
�
D�=eðzÞ�̂SMðcos�̂Þ

þX
i

ciD�=eðzÞ�̂iðcos�̂Þ
�
dzd cos�̂; (38a)



�
�SMðz; cos�̂Þ þ

X
i

ci�iðz; cos�̂Þ
�
dzd cos�̂: (38b)

The inverse covariance matrix is then obtained by replac-

ing �fSM;igð�3Þ by �fSM;igðz; cos�̂Þ in Eq. (26), and d�3 by

dzd cos�̂.
When f ¼ �e, �� or ��, we can measure neither p1 nor

p2, but only the sum p1 þ p2 from the four-momentum
conservation. In this case, only the Higgs-boson energy
and momentum are observable when Higgs boson decays
to b �b pair, and the observable cross section in the labora-
tory frame is

d	 ¼ BðH ! b �bÞ
�
�SMðEH; cos�HÞ

þX
i

ci�iðEH; cos�HÞ
�
dEHd cos�H: (39)

The covariance matrix is obtained by using the above
distributions. In practice, the Higgs-boson energy EH

from ZH production is peaked in the region

jm� �� �mZj ¼ jðsþm2
H � 2

ffiffiffi
s

p
EHÞ1=2 �mZj< 5�Z;

(40)

and only the cos�H dependence of the distributions is
effective.
In the case of f ¼ �e, in addition, the W boson fusion

diagram in Fig. 2(b) contributes. Since this amplitude is
rather large at high energies,

ffiffiffi
s

p
* 500 GeV, we make a

careful study of the W-fusion contribution by using the
Higgs-boson rapidity yH and the transverse momentum
pTH;

d	 ¼ BðH ! b �bÞ
�
�SMðyH; pTHÞ

þX
i

ci�iðyH; pTHÞ
�
dyHdpTH: (41)

The W-fusion events are selected by requiring

jm� �� �mZj ¼ jðsþm2
H � 2

ffiffiffi
s

p
EHÞ1=2 �mZj> 5�Z;

(42)

and in order to avoid contamination with the �� fusion
events, we impose an additional constraint

pTH > 10 GeV: (43)

When f ¼ q ¼ u, d, s, c, b we cannot distinguish f
from �f efficiently. In Ref. [13], impacts of partial identi-
fication of b from �b have been studied, and they are found
to be negligibly small. In this study, therefore, we do not
distinguish q from �q at all, and we do not distinguish quark
flavors. In this limit, the hadronic decays of the Z boson
gives two jets with momenta p1 and p2 for q and �q,
respectively, but we cannot distinguish the events from
those where q jet has the momentum p2 and �q jet has p1.
The appropriate optimal observables are then obtained as
follows:

d	 ¼ 1

2

�
�SMð�3Þ þ�SMð ~�3Þ

þX
i

ci½�ið�3Þ þ �ið ~�3Þ�
�
d�3; (44)

where ~�3 is obtained from the phase-space point �3 by
interchanging p1 and p2. The three-body phase-space vol-
ume d�3 is divided by 2 in order to account for the double
counting. The inverse covariance matrix is calculated as in

Eq. (26), while �’s are replaced by �ð�Þ þ �ð ~�Þ, and the
phase-space measure is divided by 2.

C. Cross section for each process

Before we start examining the above processes one by
one, we present here the total cross section of all the five
processes for mH ¼ 120 GeV in Fig. 3 as a function of the
c.m. energy

ffiffiffi
s

p
. All the curves show the SM prediction,

which are obtained by setting all ci to zero. As for e
þe� !

ZH, we plot the cross section for the sum of all the Z boson
decay modes when jmf �f �mZj< 5�Z. The �Z ¼ 0 limit
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result is given by the thin curve. The cross section for
eþe� ! �e ��eH is obtained by requiring jm� �� �mZj>
5�Z, Eq. (42), and pTH > 10 GeV, Eq. (43), in order to
suppress the contribution from Z ! � �� and �� ! H,
respectively. The contribution from the WW fusion
(t-channel W exchange) process only without the m� �� cut
is given by the thin curve, in order to show the relevance of
the interference effects and the m� �� cut at low energies.
The cross section for the process eþe� ! eþe�H is sepa-
rated into four cases; Z ! eþe� (jmee �mZj< 5�Z),
double-tag (jmee �mZj> 5�Z), single-tag and no-tag
events, where the final eþ and e� are tagged when
j cos�e�j< 0:995 and pTe� > 1 GeV. The thin curve for
the double-tag eþe�H cross section gives the contribution
from the ZZ fusion only without the mee cut. The sign of
the interference effect is opposite between the �e ��eH and
eþe�H process, because of the opposite relative sign of the
coupling factors between the t-channel and s-channel am-
plitudes. In addition, when

ffiffiffi
s

p
& mH þmZ þ 5�Z, only

the mf �f �mZ < 0 region contribute with positive (nega-

tive) interference in �e ��eH (eþe�H) events, while at highffiffiffi
s

p
the negative (positive) interference from the mf �f �

mZ > 0 region dominates because the magnitude of the
t-channel amplitudes grow with mf �f.

For the SM cross sections, we use the physical masses,
mW ¼ 80:423 GeV, and mZ ¼ 91:1876 GeV [2], and the

MS couplings at the mZ scale, �̂ðmZÞ ¼ 1=128:0 and

sin2�̂WðmZÞ ¼ 0:2312 for the gauge couplings, except
when we use the equivalent real photon distribution, which
is evaluated with � ¼ 1=137. All the calculations are done
in the leading order of the perturbation theory, since none
of our results (errors and correlations) are sensitive to small
differences in the cross sections. We leave the important
task of evaluating the impacts of initial state radiation, both
from bremsstrahlung and beamstrahlung, for future
studies.
We study the significance of each process in constrain-

ing the HVV couplings quantitatively at four representa-
tive energies,

ffiffiffi
s

p ¼ 250, 350, 500 GeV, and 1 TeV. The
statistical errors are estimated for a nominal integrated
luminosity of L0 ¼ 100 fb�1 at each energy. For

ffiffiffi
s

p ¼
250 and 350 GeV, we consider only the ZH, �e ��eH and
double-tag eþe�H processes, because the single-tag and
no-tag eþe�H cross sections do not give sufficient number
of events in the SM. It should be noted that theWW fusion
overtakes the ZH production contribution at

ffiffiffi
s

p ¼
500 GeV, and even the cross section of the double-tag
eeH events from ZZ fusion becomes comparable to that
of the ZH production at

ffiffiffi
s

p ¼ 1 TeV. The single and no-
tag eþe�H events, which are sensitive to the HZ� and
H�� couplings, respectively, give sufficiently large cross
sections only at

ffiffiffi
s

p ¼ 500 GeV and 1 TeV. When we
combine results from all the processes and from all the
energies, we examine the impacts of higher luminosity, by
giving L ¼ 500 fb�1 at

ffiffiffi
s

p ¼ 500 GeV and at
ffiffiffi
s

p ¼
1 TeV.
The total cross sections are shown in Fig. 4 as functions

of the Higgs-boson mass between 100 GeV and 200 GeV
for (a)

ffiffiffi
s

p ¼ 250 GeV, (b) 500 GeV and (c) 1 TeV. The
cross sections do not depend strongly on mH for mH <
200 GeV, except for the dominant ZH production cross
section at

ffiffiffi
s

p ¼ 250 GeV, which drops sharply from
100 fb at mH � 150 GeV down to 1 fb at mH ¼
165 GeV, and vanishes at mH ¼ ffiffiffi

s
p �mZ þ 5�Z �

170 GeV because of the final state cut jmf �f �mZj<
5�Z; see Eq. (30). The thin curve shows the zero-width
limit. The ZH production process is dominant up to mH �
165 GeV, above which the WW-fusion process becomes a
main process, and its cross section is above �1 fb up to
mH � 180 GeV.
In Fig. 4(a), we show two curves for the �e ��eH and

double-tag eeH processes. The thick curves gives the cross
sections when the Z ! f �f exclusion cut Eq. (42) is ap-
plied, and hence they may be regarded as those ofWW and
ZZ fusion events. On the other hand, the thin curves give
the total cross sections without the Z ! f �f exclusion cut,
and hence they receive contribution from the ZH produc-
tion amplitudes with Z ! �e ��e or e

þe� transitions. Along
the thick curves for the WW and ZZ fusion events, the

 200  250  300  350  400  500  600  700  800  900  1000

σ[
fb

]

√s [GeV]

e+ e-→ ZH

e+ e-→ e+ e- H
[double-tag e+e-H]

e+ e-→νeνe H [WW fusion]

e+ e-→ (e+ e-) H [no-tag (γγ fusion)]

e+ e-→ (e+) e- H + (e-) e+ H

[single-tag (Zγ+γγ fusion)]

mH =120 GeV

103

102

101

100

10-1

10-2

−

FIG. 3 (color online). Total cross sections versus eþe� colli-
sion energy

ffiffiffi
s

p
for the five processes that are sensitive to the

HVV couplings at ILC. All the curves are for mH ¼ 120 GeV.
The ZH production cross section is the sum over all Z ! f �f
decay modes with jm� �� �mZj< 5�Z, while the solid thin
curves show the �Z ¼ 0 limit. The � ��H and the double-tag
eþe�H events satisfy jmf �f �mZj> 5�Z, and the tagged e� has

j cos�e�j< 0:995 and pTe� > 1 GeV, while pTH > 10 GeV is
imposed on � ��H process. The solid thin curves for eþe� !
�e ��eH and eþe� ! eþe�H give the cross sections calculated
from the t-channel W and Z-boson exchange amplitudes only
without imposing the invariant mass cut.
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exclusion cut affects the fusion cross sections belowmH ¼
170 GeV� ffiffiffi

s
p �mZ þ 5�Z, which remain almost con-

stant down to mH ¼ 150 GeV� ffiffiffi
s

p �mZ � 5�Z, where
the increase of the overall phase space is compensated by
the increase in the cutout phase-space region.

At
ffiffiffi
s

p ¼ 500 GeV in Fig. 4(b), all the cross sections of
the t-channel processes increase, and that of the s-channel
ZH production process decreases. The ZH production and
the WW-fusion processes have almost the same cross
section, over 30 fb up to mH ¼ 200 GeV, and the cross
section of the double-tag eeH event is about 1 order of
magnitude smaller than that of �e ��eH. The cross sections
of the no-tag and the single-tag eeH events are still small,
whose maximum is 1 fb and 0.2 fb, respectively, for mH �
2mW , where the one-loop H�� and HZ� vertices receive
the W pair threshold enhancement.

At
ffiffiffi
s

p ¼ 1 TeV in Fig. 4(c), the cross section of the
WW-fusion process is above 100 fb, while those of the ZH
production and the double-tag eeH processes are �10 fb,
almost independent of mH up to mH ¼ 200 GeV. As in
Fig. 4(b) for

ffiffiffi
s

p ¼ 500 GeV, the cross section of the no-tag
and single-tag eeH processes take the maximum values of
2 fb and 0.2 fb, respectively, around mH � 2mW .

IV. eþe� ! �e ��eH WW-FUSION PROCESS

The HWW coupling is best measured in WW-fusion
production of the Higgs boson, see Fig. 2(b), in the process

e�
�
k1;

	1

2

�
þ eþ

�
k2;

	2

2

�
! �e

�
p1;


1

2

�
þ ��e

�
p2;


2

2

�
þHðpHÞ; (45)

where ki and pi denote four momenta of each particles,
	i=2 demote e� helicities, and 
i=2 demote �e or ��e

helicities. The WW-fusion process contribute only to
one helicity amplitude, 	1 ¼ �	2 ¼ 
1 ¼ �
2 ¼ �.
Contamination of the HZZ couplings via s-channel ZH
production followed by Z ! � �� decays, see Fig. 2(a), can
be avoided by choosing suitable cuts on the observed
Higgs-boson energy Eq. (40). Therefore, the process with
‘‘a Higgsþmissing energy’’ in eþe� annihilation can
probe HWW couplings independently of the other
vector-boson couplings. Once the branching fraction of
H ! WW� decay is known, the measurement of the
HWW coupling determines the total decay width of the
Higgs boson in a model-independent manner. It then al-
lows us to translate all the Higgs-boson branching ratio
measurements into the measurements of the partial widths,
from which we can determine the magnitude of various
Higgs-boson couplings. It is also worth repeating here, that
the sensitivity of the HWW coupling measurement is ex-
pected to be better at high energies, because the cross
section grows as logðs=m2

HÞ with energy, in contrast to
the ZH production cross section, which decreases as 1=s;
see Fig. 3.

 100  120  140  160  180  200

σ[
fb

]

mH [GeV]

(a) √s=250 GeV

e+ e-→ νe νe H
−

[WW fusion]

e+ e-→ ZH

e+ e-→ e+ e- H

[double-tag (ZZ fusion)]

e+ e-→ (e+ e-) H
[no-tag (γγ fusion)]

e+ e-→ (e+) e- H + (e-) e+ H
 [single-tag (Zγ+γγ fusion)]
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100
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10-2
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(b) √s=500 GeV

e+ e-→ νe νe H [WW fusion]
−

e+ e-→ ZH

e+ e-→ e+ e- H
[double-tag (ZZ fusion)]

e+ e-→ (e+ e-) H
[no-tag (γγ fusion)]

e+ e-→ (e+) e- H
+  (e-) e+ H

 [single-tag (Zγ+γγ fusion)]
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100

10-1

10-2
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(c) √s=1 TeV

e+ e-→ νe νe H [WW fusion]
−

e+ e-→ ZH

e+ e-→ e+ e- H
[double-tag (ZZ fusion)]

e+ e-→ (e+ e-) H
[no-tag (γγ fusion)]

e+ e-→ (e+) e- H
+  (e-) e+ H

 [single-tag (Zγ+γγ fusion)]
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FIG. 4 (color online). Total cross sections versus mH for the five processes, which are sensitive to the HVV couplings at ILC, at
(a)

ffiffiffi
s

p ¼ 250 GeV, (b) 500 GeV, and (c) 1 TeV. The tagged e� has j cos�e�j< 0:995 and pTe� > 1 GeV in the laboratory frame.
jmf �f �mZj< 5�Z for ZH production and jmf �f �mZj> 5�Z for �e ��eH and double-tag eþe�H. The thin curves in (a) for � ��H and

eþe�H show the cross sections when the Z ! f �f exclusion cut is removed, and that for ZH shows the �Z ¼ 0 limit. pTH > 10 GeV is
imposed on � ��H process.
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A. Helicity amplitudes and backgrounds

The helicity amplitudes for the process given in Eq. (45)
can be written as

M
1
2
	1	2

¼ g2W
2

	1�	2þ
1�
2þj
�
e�ð	1;
1Þ�

HWW
�� j�

eþð	2;
2Þ

�DWðt1ÞDWðt2Þ; (46)

where DWðtiÞ ¼ 1=ðti �m2
WÞ are the propagator factors

with ti ¼ ðki � piÞ2, (i ¼ 1, 2) and

j
�
e�ð�;�Þ ¼ �u

�
p1;� 1

2

�
��PLu

�
k1;� 1

2

�
; (47a)

j�
eþðþ;þÞ ¼ �v

�
p2;þ 1

2

�
��PLv

�
k2;þ 1

2

�
; (47b)

are the leptonic charged currents. The explicit form of the
nonzero components of the massless currents in the labo-
ratory frame are given in Eqs. (B1) in Appendix B. The
HWW coupling can be read from Eqs. (13) and (17) and
expressed as

�HWW
�� ¼ gZmZ

��
1þ c1WW

� 2

m2
Z

�
1

2
ðm2

H � t1 � t2Þc2WW �m2
Hc3WWÞ

�
g��

þ 2

m2
Z

ðc2WW � c3WWÞq2�q1�
�
; (48)

where q�i ¼ k�i � p�
i (i ¼ 1, 2). By contracting the

t-channel currents with the generalizedHWW vertex using
Eqs. (B2) in Appendix B, we can write the helicity ampli-
tude (46) as

M�þ�þ ¼ MSM

�
1þ c1WW

þ 1

m2
Z

�
c2WW

�
t1 þ t2 �m2

H þ sG
4

�

þ c3WW

�
2m2

H � sG
4

���
; (49)

where

MSM ¼ g3WmW

2
DWðt1ÞDWðt2ÞF ð�1; �2Þ; (50a)

F ð�1; �2Þ ¼ 2s
ffiffiffiffiffiffiffiffiffi
x1x2

p
cos

�1
2
sin

�2
2
; (50b)

Gð�1; �2;�Þ ¼
�
2� x1ð1þ cos�1Þþ x1 sin�1 cot

�2
2
e�i�

�

�
�
2� x2ð1� cos�2Þþ x2 sin�2 tan

�1
2
ei�

�
:

(50c)

Here, � ¼ �1 ��2, and xi, �i, �i are the energy fraction,
polar, and azimuthal angles, respectively, of �e (i ¼ 1) and

��e (i ¼ 2) in the laboratory frame; see Eq. (A1) in
Appendix A.
The SM contribution to the squared matrix element is

FSM ¼ jM�þ
SM�þj2 ¼ jMSMj2

¼ g6m2
W

4
jDWðt1ÞDWðt2ÞF ð�1; �2Þj2; (51)

and the distributions Fi for each nonstandard effective
couplings are

Fc1WW
¼ 2Re½Mc1WW�þ�þðMSM�þ

�þÞ?� ¼ 2FSM; (52a)

Fc2WW
¼ 2Re½Mc2WW�þ�þðMSM�þ�þÞ?�
¼ 2

m2
Z

�
t1 þ t2 �m2

H þ s

4
ReG

�
FSM; (52b)

Fc3WW
¼ 2Re½Mc3WW�þ�þðMSM�þ

�þÞ?�
¼ 2

m2
Z

�
2m2

H � s

4
ReG

�
FSM: (52c)

As explained in Sec. III, since we cannot observe �e and
��e momenta, we cannot make use of all the distributions Fi

in Eq. (52) to constrain the couplings ciWW . In fact, we can
measure only the Higgs-boson momenta, EH and cos�H, or
pTH and yH. In order to obtain the observable weight
functions, we perform the integration over the �e and ��e

momenta by using the 3-body phase-space parametrization
in Eq. (A8c) as

d�3 ¼
ffiffiffi
s

p
512�4

��

�
m2

� ��

s
;
m2

H

s

�
dðcos��Þd��dpTHdyH; (53)

where m2
� �� ¼ sþm2

H � 2
ffiffiffi
s

p
EH, and EH ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
TH þm2

H

q
.

The observable differential cross section with initial e�
and eþ beam polarizations P and �P, respectively, is

d2	ðP; �PÞ
dyHdpTH

¼ BðH ! b �bÞ
�
�SMðP; �P; yH; pTHÞ

þX
i

ci�ciðP; �P; yH; pTHÞ
�
: (54)

Since only the left-handed e� and right-handed eþ con-
tribute to the cross section, the weight functions are

�iðP; �P; yH; pTHÞ ¼ 1

2s

�
1� P

2

��
1þ �P

2

�

� 1

512�4
��

�m2
ff

s
;
m2

H

s

�

�
Z

Fiðx1; x2; �1; �2; �Þd cos��d��;

(55)

where i ¼ SM, c1WW , c2WW , and c3WW . The covariance
matrix for the measurements of ci ¼ c1WW , c2WW , c3WW

with an integrated luminosity of LðP; �PÞ is now expressed as
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½V�1
ðP; �PÞ�ij ¼ BðH ! b �bÞLðP; �PÞ

Z �iðP; �P; yH; pTHÞ�jðP; �P; yH; pTHÞ
�SMðP; �P; yH; pTHÞ

dyHdpTH: (56)

In the following numerical studies, we set BðH ! b �bÞ ¼
0:9 for the branching fraction at mH ¼ 120 GeV.

Before proceeding to the sensitivity analysis of the
anomalous couplings, we briefly remind ourselves of the
potential backgrounds to this measurement.

(1) No tag events in the process eþe� ! eþe�H via
the t-channel ��, �Z or ZZ fusion contribute, but
the Higgs boson cannot have large pTH in order for
the e� to escape detection. We impose a selection
cut pTH > 10 GeV, Eq. (43), which is sufficient to
suppress the no-tag ðeeÞH contribution even at

ffiffiffi
s

p �
1 TeV. Contribution from �� fusion is negligibly
small at pT * a few GeV, as we will show in
Sec. VII, and that from ZZ fusion is estimated to
about 5.4%, 4.8%, and 3.9% of the signal, respec-
tively, in the three smallest pTH bins, 10–20, 20–30,
and 30–40 GeV at

ffiffiffi
s

p ¼ 1 TeV.
(2) The s-channel ZH production process, where the Z

boson decays into a � �� pair, can also be a back-
ground to this measurement at low energies. Since
the background events have missing mass peaked at
mZ, we impose the EH cut, Eq. (42), which removes
those events whose missing mass lies within 5 �Z of
the Z boson mass.

Although a small number of background events will sur-
vive the above cuts, especially in the presence of initial
state radiation and finite detector resolution, we expect that
their effect can be controlled and that they will not affect
the main conclusions of the following analysis.

B. Sensitivity analysis of the HWW couplings

1. Sensitivity at ILC-I for
ffiffiffi
s

p ¼ 500 GeV

We first perform the binned analysis for single and
double distribution at

ffiffiffi
s

p ¼ 500 GeV. Since the weight
functions of Eq. (54) depend only on yH and pTH, we
calculate the expected number of events in a ðyH; pTHÞ
bin with the bin width of �yH ¼ 0:05 and �pTH ¼
10 GeV.

We show in Fig. 5 the weight functions �’s integrated
over the rapidity, yH. This plot shows that the contribution
from the operators corresponding to the couplings, c1WW ,
c2WW , and c3WW can in principle be differentiated by using
the pTH distribution, because they have different shapes.
�c1WW

and �c3WW
has a peak at different pTH, while �c2WW

changes sign. It is not clear, however, how well they can be
distinguished.

The covariance matrix method gives a quantitative an-
swer to this question. Using the pTH distribution, we obtain
the matrix elements of the inverse covariance matrix as

ðV�1Þij ¼ BðH ! b �bÞL0

X
k

�iðpTH
ðkÞÞ�jðpTH

ðkÞÞ
�SMðpk

THÞ
�pTH;

(57)

where pTH
ðkÞ denotes the center of each pTH bin. Since the

covariance matrix is the same for the unpolarized case P ¼
�P ¼ 0, and for the polarized e� beam case with equipar-
tition of the total luminosity into P ¼ jPj and P ¼ �jPj,
as in Eq. (29), we show our results without specifying the
beam polarization. It should be noted, that, because of the
simple polarization dependence of the WW fusion cross
section, as shown in Eq. (55), the covariance matrix for the
general case of asymmetric partition of the total luminosity
is simply obtained by adjusting an overall normalization
factor, which is proportional to the total number of events.
We find for

ffiffiffi
s

p ¼ 500 GeV and L0 ¼ 100 fb�1,

�c1WW ¼ �:15
�c2WW ¼ �:16
�c3WW ¼ �:045

1
:9986 1
:9989 :9982 1

0
@

1
A : (58)

We observe that the magnitudes of the correlation matrix
elements are quite large, implying that there is at least one
combination of the three couplings that cannot be mea-
sured accurately as compared with the others. In order to
identify which combination of the couplings are measured
accurately and inaccurately, we obtain the eigenvalues 
i

and the associated eigenvector ~ai of the covariance matrix,
in terms of which V�1 and V are expressed as
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FIG. 5 (color online). Histogram showing the pT distributions
of the Higgs boson, where the differential cross section is
integrated over yH in each pTH bin of 10 GeV width at

ffiffiffi
s

p ¼
500 GeV for mH ¼ 120 GeV. �SM gives the SM distribution,
and �ci shows the coefficients of the nonstandard HWW cou-

plings ci ¼ ðc1WW; c2WW; c3WWÞ.
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V�1 ¼X
i


�1
i ~ai ~a

T
i ; or V ¼ X

i


i ~ai ~a
T
i : (59)

The resolving power of the measurements can be studied
best by showing the eigenvectors and their errors � ffiffiffiffiffi


i

p
,

:22c1WW þ :061c2WW � :97c3WW ¼ �:0020; (60a)

:69c1WW � :71c2WW þ :12c3WW ¼ �:0058; (60b)

:68c1WW þ :70c2WW þ :20c3WW ¼ �:22: (60c)

As anticipated, we find that the error of the combination
(60c) is 2 orders of magnitude larger than those of the other
two. In fact, if we sum over the weight functions given in
Eq. (55), for the combination of Eq. (60c), we find that the
sum almost cancels out and hence this combination is
poorly measured.

As above, whenever the correlation matrix elements are
large, the eigenvectors and their errors reveal much more
information. Henceforth, we present our results in terms of
the eigenvectors and their errors of the covariance matrix
V, whenever they are more informative.

In order to obtain the maximum information from ex-
periments, we further study the two-dimensional distribu-
tions of yH and pTH variables. We present the scatter
plots of the weight functions of c1WW , c2WW , and c3WW in
Figs. 6(a)–6(c), respectively, on the yH, pTH plane. We find
that adding the rapidity distribution does not help much in
resolving the degeneracy, because the yH dependence of
the weight functions for c1WW , c2WW , and c3WW are all
similar. Only Fig. 6(b) gives some hint of an additional
independent measurement as it has nonfactorizable depen-
dencies in terms of yH and pTH, unlike the other two cases.

By using the double differential distributions, we obtain
the optimal covariance matrix from

ðV�1Þij¼BðH!b �bÞL0

�X
l;m

�
�iðyðlÞH ;pTH

ðmÞÞ�jðyðlÞH ;pTH
ðmÞÞ

�SMðyðlÞH ;pTH
ðmÞÞ �yH�pTH

�
;

(61)

where we set the bin size �yH ¼ 0:1 and �pTH ¼
20 GeV. For the cross section of 77 fb (see Fig. 3) at

ffiffiffi
s

p ¼
500 GeV, we expect 7700 events with L0 ¼ 100 fb�1,
when e� and eþ beams are unpolarized, P ¼ �P ¼ 0. The
eigenvectors and their errors are

:24c1WW þ :045c2WW � :97c3WW ¼ �:0020; (62a)

:69c1WW � :71c2WW þ :13c3WW ¼ �:0059; (62b)

:68c1WW þ :70c2WW þ :20c3WW ¼ �:15; (62c)

or in the standard representation

c1WW ¼ �:099
c2WW ¼ �:10
c3WW ¼ �:029

1
:997 1
:997 :995 1

0
@

1
A : (63)

When we compare the optimal result (63) with the
previous one (58) that used only the pTH distribution, we
find more than 30% improvements in the errors of all the
couplings and slight decrease in the correlations. While by
comparing the eigenvectors and their errors of the optimal
results (62) with (60), we find that the only effect of using
the additional information is to reduce the error of the least
constrained combination by about 30%. Neither the eigen-
vectors nor the errors of the two accurately constrained
combinations are affected much by the optimization.
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FIG. 6 (color online). Scatter plot in the yH-pTH plane for the coefficient of (a) c1WW , (b) c2WW , and (c) c3WW . The measure gives
ðd2	=dyHdpTHÞ�yH�pTH in units of fb for the bin size of pTH ¼ 10 GeV and yH ¼ 0:05, at

ffiffiffi
s

p ¼ 500 GeV for mH ¼ 120 GeV.
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2. Sensitivity at
ffiffiffi
s

p ¼ 250 GeV and 350 GeV
with t channel only

The cross section for the WW fusion is small at lower
energies; 9.2 fb at

ffiffiffi
s

p ¼ 250 GeV and 33.2 fb at 350 GeV
as can be seen from the solid thin curve in Fig. 3, which
further reduces to 5.8 fb and 31.4 fb, respectively, after
imposing the Z ! � �� exclusion cut jm� �� �mZj> 5�Z.
Not only the cross section is small but also contributions
from the ZH production amplitudes and the interference
terms, as well as the effects due to the Z ! � �� exclusion
cut, are significant at low energies, as can be seen from the
dashed thick curve in Fig. 3. We first show the results of
‘‘theoretical’’ studies based on theWW fusion events only,
which helps us understand the energy dependence of the
WW fusion amplitudes when compared with the results atffiffiffi
s

p ¼ 500 GeV and 1 TeV. A more realistic study will be
given in the next subsection.

At
ffiffiffi
s

p ¼ 250 GeV, we will have only 580 events from
WW fusion with L0 ¼ 100 fb�1 and with 100% efficiency.
Thus, our integral approximation for the covariance ma-
trix, Eq. (56), may not be reliable. In order to examine the
sensitivity of our results on the bin size, we enlarge the bin
size to �yH ¼ 0:15 and �pTH ¼ 30 GeV and count only
the contributions from these bins with more than 10 events
for the nominal luminosity of L0 ¼ 100 fb�1. We find the
eigenvectors and their 1	 errors at

ffiffiffi
s

p ¼ 250 GeV with
L0 ¼ 100 fb�1 and P ¼ �P ¼ 0 to be

:61c1WW � :045c2WW � :79c3WW ¼ �:016; (64a)

:58c1WW � :65c2WW þ :49c3WW ¼ �:029; (64b)

:54c1WW þ :76c2WW þ :38c3WW ¼ �1:1: (64c)

We observe that the nature of the eigenvectors are similar
to those at

ffiffiffi
s

p ¼ 500 GeV in Eq. (62), and also the hier-
archy between the largest error and the other two persist.
The overall magnitude of the errors are larger than those of
Eq. (62) at

ffiffiffi
s

p ¼ 500 GeV by a factor of 8, half of which
can be attributed to the reduction of the cross section by a
factor of 13:5� ð3:7Þ2. We confirm that both the eigenvec-
tors and the eigenvalues of Eq. (64) obtained with the large
bin size do not differ much from those in the integral
(infinitesimal bin size) limit. The errors of the two most
accurately measured combinations are especially insensi-
tive to the details of our binning procedure.

We also examine the case at
ffiffiffi
s

p ¼ 350 GeV with L0 ¼
100 fb�1, since it is natural to study the top-quark property
in detail near the t�t threshold. We will have about 3140
events, and the eigenvectors and their 1	 errors for P ¼
�P ¼ 0 are

:44c1WW � :068c2WW � :89c3WW ¼ �:0050; (65a)

:63c1WW � :68c2WW þ :37c3WW ¼ �:011; (65b)

:63c1WW þ :73c2WW þ :26c3WW ¼ �:44: (65c)

Again, we observe the similar hierarchy pattern.

3. Sensitivity at
ffiffiffi
s

p ¼ 250 GeV and 350 GeV
with ZH interference

Since the cross sections of t-channelWW fusion process
are small at

ffiffiffi
s

p ¼ 250 and 350 GeV, contribution from the
ZH production amplitudes is rather significant despite the
Z ! � �� exclusion cut jm� �� �mZj> 5�Z. At

ffiffiffi
s

p ¼
250 GeV, the cross section grows from 5.8 fb to 6.2 fb
mainly because of the 0.7 fb contribution from the
s-channel amplitude squared, which overcomes the
�0:3 fb contribution from the destructive interference be-
tween the t-channel and s-channel amplitudes. On the
other hand, the cross section at

ffiffiffi
s

p ¼ 350 GeV decreases
slightly from 31.4 fb to 30.1 fb because of the destructive
interference. In addition, ZH production followed by Z !
�� ��� and Z ! �� ��� contributes with 1.4 fb at

ffiffiffi
s

p ¼
250 GeV, and 1.0 fb at

ffiffiffi
s

p ¼ 350 GeV, after the Z ! � ��
exclusion cut. These events are experimentally indistin-
guishable from the WW fusion �e ��eH process. Therefore,
the total cross sections become 7.6 fb and 31.1 fb at

ffiffiffi
s

p ¼
250 GeV and 350 GeV, respectively.
We show in Fig. 7 the pTH distribution of the SM, �SM,

and the weight functions �i at
ffiffiffi
s

p ¼ 250 GeV. The thin
lines show theWW fusion contribution only, which are the
yH integral of the two-dimensional weight functions used
to obtain the results of Eqs. (64) and (65). The thick dashed
lines are obtained after the interference between the
t-channel WW fusion and the s-channel ZH production
amplitudes are taken into account. Since we can safely
neglect the nonstandard contributions in the subdominant
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FIG. 7 (color online). pT distribution of the weight function
for the � ��H process, where the differential distributions are
integrated over yH at

ffiffiffi
s

p ¼ 250 GeV for mH ¼ 120 GeV. �SM

gives the SM distribution, and �ci shows the coefficients of the

nonstandard HWW couplings ci 
 c1WW , c2WW , c3WW . The
thick dashed lines show the weight functions that include both
the t- and s-channel contributions, while the thin lines are those
with the t-channel contribution only. The thick dashed curve for
the SM distribution, �SM, is the sum over all the neutrino species
ð�e; ��; ��Þ.
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ZH production amplitudes, we can constrain the HWW
couplings by using the two-dimensional weight functions
�iðyH; pTHÞ of Eq. (55), including the interference contri-
butions, where only the SM amplitudes in Eq. (52) are
replaced by the sum of the WW fusion and the ZH pro-
duction amplitudes. It should also be noted that the thick
dashed SM curve in Fig. 7 includes the contributions from
all the neutrino flavors, which cannot be distinguished
from the signal. The limited phase space at low energies
gives rise to the complex pT dependence at 56 GeV and
75 GeV, which are the Higgs-boson momenta whenm� �� ¼
mZ þ 5�Z and m� �� ¼ mZ � 5�Z, respectively. We find
that there are large destructive interference effects for
c1WW and c2WW at low pTH. On the contrary the c2WW

and c3WW curves show strong constructive interferences at
high pTH.

By using the two-dimensional weight functions, we find
the eigenvectors and their 1	 errors at

ffiffiffi
s

p ¼ 250 GeVwith
L0 ¼ 100 fb�1 and P ¼ �P ¼ 0 to be

:51c1WW þ :085c2WW � :86c3WW ¼ �:017; (66a)

:71c1WW � :61c2WW þ :36c3WW ¼ �:030; (66b)

:49c1WW þ :79c2WW þ :37c3WW ¼ �:51: (66c)

Comparing the results of Eq. (66) with those of Eq. (64)
from the t-channel contribution only, we find that the errors
of the first two eigenvectors are almost the same despite the
growth of the SM cross section. It is because the general
growth of the magnitude of the SM distribution and the
weight functions at pTH > 55 GeV is compensated by the
decrease in the weight functions at low pTH. The third error
decreases because it becomes more difficult to obtain a
combination of the three weight functions that cancel out.

Similarly, we present the results for
ffiffiffi
s

p ¼ 350 GeVwith
L0 ¼ 100 fb�1, where we have included the s-channel ZH
contribution.

:39c1WW þ :032c2WW � :92c3WW ¼ �:0048; (67a)

:66c1WW � :71c2WW þ :25c3WW ¼ �:010; (67b)

:64c1WW þ :71c2WW þ :29c3WW ¼ �:14: (67c)

Comparing Eq. (67) with Eq. (65), the errors of the first two
eigenvectors are reduced slightly, while the largest error is
reduced by a factor 3. Again, it is a consequence of the
complicated interference patterns for the three weight
functions.

4. Sensitivity at
ffiffiffi
s

p ¼ 1 TeV

Figure 3 shows that the WW fusion cross section grows
with the c.m. energy, and reaches 210 fb at

ffiffiffi
s

p ¼ 1 TeV.
Precision studies of Higgs-boson properties, including the
HWW couplings, will be one of the major motivations of
the energy upgrade to ILC-II. We find the eigenvectors and
their errors for L0 ¼ 100 fb�1 and P ¼ �P ¼ 0,

:14c1WW þ :038c2WW � :990c3WW ¼ �:00 079; (68a)

:71c1WW � :70c2WW þ :072c3WW ¼ �:0034; (68b)

:69c1WW þ :71c2WW þ :12c3WW ¼ �:070: (68c)

The errors are now a factor of 2 to 3 smaller than those at
500 GeV in Eq. (60). The reduction factor is bigger than the
naive expectation from the cross section ratio

ð77 fb=210 fbÞ1=2 � 0:6. This is because of the s depen-
dence of the weight functions of c2WW and c3WW , in
Eqs. (52b) and (52c), which grows linearly with s. On
the other hand, the reduction is not so strong as we would
expect from the linear growth of the weight functions. We
find that the power of the weight functions that grow with s
for c2WW and c3WW in Eqs. (52b) and (52c), respectively, is
greatly reduced because of the nonobservability of the �e

and ��e momenta, which results in the integration of the
factor Gð�1; �2; �Þ in Eq. (55) for the observable weight
functions.
It is instructive to study, just as a reference, how well we

could have measured the HWW couplings if �e and ��e

momenta were measurable. We would then be able to use
the dependence of the weight functions on the full 3-body
phase-space, x1 or x2, cos�1, cos�2, �1 ��2 in the
eþe� c:m: frame; see Appendix A for our phase-space
parameterizations. By using the integral approximation of
Eq. (56), we find at

ffiffiffi
s

p ¼ 1 TeV,

:084c1WW þ :14c2WW � :986c3WW ¼ �:00 083; (69a)

:099c1WW � :986c2WW � :013c3WW ¼ �:0017; (69b)

:992c1WW þ :087c2WW þ :097c3WW ¼ �:0064: (69c)

It is remarkable that no hierarchy among the three eigen-
values survives and that all the three couplings are mea-
sured accurately and rather independently, as is clear from
the single coupling dominance of the three weight func-
tions in Eq. (52). It is perhaps most remarkable here that
the error of the most accurately measured combination of
the three couplings in a realistic environment, 0.00 075 in
Eq. (68a), is not much different from the corresponding
one, 0.00 079 in Eq. (69a).

5. Beam polarization effects

All the above results are obtained for unpolarized eþ and
e� beams, P ¼ �P ¼ 0. Since only left-handed e� and
right-handed eþð	1 ¼ �	2 ¼ �Þ contribute to the WW
fusion process, the polarization dependence of our results
for eþe� ! �e ��eH, can be obtained in a straightforward
manner. If, for instance, an integrated luminosity of LðP; �PÞ
is devoted to experiments with e� beam with polarization
P and eþ beam with polarization �P, then the total covari-
ance matrix is simply

½V�1
ðP; �PÞ�ij ¼

LðP; �PÞ
L0

ð1� PÞð1þ �PÞ½V�1
ð0;0Þ�ij; (70)

where L0 ¼ 100 fb�1 is the nominal integrated luminosity,
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adopted throughout this report. It is clear from this expres-
sion that if we distribute the luminosity equally to all four
combination of e� polarizations

LðjPj;j �PjÞ ¼ LðjPj;�j �PjÞ ¼ Lð�jPj;j �PjÞ ¼ Lð�jPj;�j �PjÞ ¼
Ltotal

4
;

(71)

then the total covariance matrix is identical to that of the
unpolarized case. The same applies for our choice of
Eq. (29). On the other hand, if we devote the entire lumi-
nosity with fixed polarization, such as

Lð�jPj;j �PjÞ ¼ Ltotal; (72)

then the inverse of the covariance matrix will be larger by a
factor of ð1þ jPjÞð1þ j �PjÞ, simply because of the large
WW fusion cross section.

V. ZH PRODUCTION PROCESS

In ZH production via s-channel � and Z exchange, we
can study HZ� and HZZ vertices. Unlike the WW fusion
process all the final states are observable when the Z boson
decays into a pair of charged leptons or quark jets. The
technique of optimal observables provides us with high
discriminating power among the couplings.

A. Helicity amplitudes, backgrounds and event
selection

The momentum and helicity assignment in ZH produc-
tion followed by Z ! f �f decay is

e�
�
k1;

	1

2

�
þ eþ

�
k2;

	2

2

�
! ZðpZ; 
Þ þHðpHÞ;

! f

�
p1;


1

2

�
þ �f

�
p2;


2

2

�
:

(73)

We neglect the mass of e� and the outgoing fermions, and
the fermionic chirality conservation tells 	1 ¼ �	2 ¼ �,
and 
1 ¼ �
2 ¼ �. Then the helicity amplitudes

Meþe�!ZH!f �fH
�;� ¼ j�1�½g�ee� D�ðsÞ�HZ�

�� þ gZee� DZðsÞ�HZZ
�� �

�
P


 �
��ðpZ; 
Þ��ðpZ; 
Þ

p2
Z �m2

Z þ imZ�Z

gZffþ� j
�
2�;

(74)

where

j�1� ¼ �vðk2;��=2Þ��P�uðk1; �=2Þ; (75a)

j�2� ¼ �uðp1; �=2Þ��P�vðp2;��=2Þ (75b)

are the eþe� annihilation current (75a) and the Z ! f �f
current (75b), respectively. Here, � and � denotes the sign
of the e� and f helicity, respectively, andP� is the chirality
projection operator P� ¼ ð1þ ��5Þ=2, sometimes re-
ferred to as P� ¼ PL and Pþ ¼ PR. The propagators and

the couplings are denoted as

D�ðsÞ ¼ 1=s; DZðsÞ ¼ 1=ðs�m2
Z þ imZ�ZÞ; (76a)

g�ff� ¼ eQf; gZff� ¼ gZðTf�
3 �Qfs

2
WÞ; (76b)

where Qf and Tf�
3 are the electric charge and the weak

isospin of the fermion f with chirality �.
In the vicinity of the Z boson resonance mf �f �mZ, we

can factorize the amplitudes of Eq. (74) into the eþe� !
ZH production part and the Z ! f �f decay part, summed
over the decaying Z boson helicities

Meþe�!ZH!f �fH
�� ¼ X




TZH
�
 DZðp2

ZÞTZ!f �f

� : (77)

The production amplitudes TZH
�
 are obtained in the eþe�

collision c.m. frame. Here, 
 
 ðþ; 0;�Þ is the helicity of
the produced Z boson. By using the genericHZZ andHZ�
vertices of Eqs. (14b) and (16a), respectively, and by using
the eþe� annihilation currents of Eq. (B4) in Appendix B,
we find for p2

Z ¼ m2
Z

TZH
�
 ¼ j

�
1�½g�ee� D�ðsÞ�HZ�

�� þ gZee� DZðsÞ�HZZ
�� ����ðpZ; 
Þ;

(78)

¼ M̂

�d

1
�;
ð�ZÞ; (79)

where

M̂
¼0
� ¼ X

V¼�;Z

gVee� gZ
ffiffiffiffiffi
2s

p
EZDVðsÞ

�
hZV1 þ hZV2

ffiffiffi
s

p
EZ�

2
Z

m2
Z

�
;

(80a)

M̂
¼�
� ¼ X

V¼�;Z

gVee� gZ
ffiffiffiffiffi
2s

p
mZDVðsÞhZV1 ; (80b)

with �Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�m2

Z=E
2
Z

q
and

hZZ1 ¼ 1þ c1ZZ þ c3ZZ
sþm2

Z

m2
Z

þ ðc2ZZ � c3ZZÞ sþm2
Z �m2

H

m2
Z

; (81a)

hZZ2 ¼ �2ðc2ZZ � c3ZZÞ; (81b)

hZ�1 ¼ 2c3Z�
s

m2
Z

þ ðc2Z� � c3Z�Þ sþm2
Z �m2

H

m2
Z

; (81c)

hZ�2 ¼ �2ðc2Z� � c3Z�Þ: (81d)

In Eq. (79), the d functions

d1�;
¼0ð�Þ ¼ �� sin�ffiffiffi
2

p ; d1�;
¼�ð�Þ ¼
1þ 
� cos�

2

(82)

dictate the overlap of the initial ðeþe�Þ and the final (ZH)
state angular momentum states in the J ¼ 1 channel, in
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terms of the opening angle � between the electron and the
Z-boson momenta in the eþe� c:m: frame.

The Z boson decay amplitude is expressed in the Z ! �f
rest frame simply as

TZ!f �f

� ¼ gZff� ��ðpZ; 
Þj2�� ¼ gZff� mZd

1

;�ð��Þei
��

(83)

for 
1 ¼ �
2 ¼ �massless quarks and leptons, and again
in the zero-width limit p2

Z ¼ m2
Z. Here, �

� and �� are the
polar and azimuthal angles of the fermion f in the decaying
Z boson rest frame, where the polar axis is chosen along
the Z boson momentum direction in the eþe� rest frame,
and�� is measured from the eþe� ! ZH scattering plane;
see Appendix A.

From the above helicity amplitudes, we can calculate the
weight functions �ci . The differential cross section, with

the e� polarization �, summed over the final state helic-
ities � is

d	f
� ¼ 1

2s

X
�

��������X



TZH
�
 DZðp2

ZÞTZ!f �f

�

��������2

d�3; (84a)

¼ 1

2s

X
�

��������X



TZH
�
 T

Z!f �f

�

��������2jDZðp2
ZÞj2d�3: (84b)

We can simplify the phase-space d�3 in the small width
limit as

jDZðp2
ZÞj2d�3 ¼ jp2

Z �m2
Z þ imZ�Zj�2 dp

2
Z

2�

� d�2ðZ ! f �fÞd�2ðZHÞ; (85a)

! �ðp2
Z �m2

ZÞ
mZ�Z

dp2
Z

2�

� d�2ðZ ! f �fÞd�2ðZHÞ; (85b)

¼ 1

2mZ�Z

d�̂3: (85c)

Here, d�̂3 is the reduced 3-body phase-space element

d�̂3 
 d�2ðZ ! f �fÞ

d�2ðZHÞ ¼ ð8�Þ�3 ��

�
m2

Z

s
;
m2

H

s

�
d cos�Zd cos�

�d��;
(86)

where ��ða; bÞ is given by Eq. (A9a) in Appendix A.
The differential cross section is now expressed as

d	f
� ¼ 1

2s

X

;
0

TZH
�
 ðTZH

�
0 Þ��f


0d�̂3: (87)

In this equation, we introduced the Z ! f �f decay density
matrix by summing over the helicities and colors of f and
�f,

�f


0 ¼ 1

2mZ�Z

X
color

X
�

TZ!f �f

� ðTZ!f �f


0� Þ�; (88)

which is normalized as

Z
�f


0d�2ðZ ! f �fÞ ¼ �ðZ ! f �fÞ

8��Z



0 ¼ Bf

8�


0 :

(89)

By using Eqs. (B5)–(B7) in Appendix B for the Z ! f �f
currents and the Z boson polarization vectors, we obtain a
compact expression for the Z boson decay density matrix

�f


0 ¼ 12�Bf

1þcos2��
2 � sin�� cos��ffiffi

2
p ei�

� sin2��
2 e2i�

�

� sin�� cos��ffiffi
2

p e�i��
sin2�� sin�� cos��ffiffi

2
p ei�

�

sin2��
2 e�2i�� sin�� cos��ffiffi

2
p e�i�� 1þcos2��

2

0
BBB@

1
CCCAþ Af

� cos�� sin��ffiffi
2

p ei�
�

0
sin��ffiffi

2
p e�i��

0 sin��ffiffi
2

p ei�
�

0 sin��ffiffi
2

p e�i��
cos��

0
BB@

1
CCA

2
6664

3
7775 (90)

for 
, 
0 ¼ �, 0,þ. Here, Bf is the Z ! f �f decay branch-
ing fraction

Bf ¼ �ðZ ! f �fÞ
�Z

¼ mZNf

16��Z

½ðgZffL Þ2 þ ðgZffR Þ2�; (91)

with Nf ¼ 1 for leptons and Nf ¼ 3 for quarks, and

Af ¼ ðgZffL Þ2 � ðgZffR Þ2
ðgZffL Þ2 þ ðgZffR Þ2 (92)

is the left-right asymmetry parameter of the Zff couplings.
In the following analysis, we use the tree-level expression

for the asymmetry parameter Eq. (92) for the charged
lepton decays, whereas we replace the branching fraction
Eq. (91) by the observed values [2] in simulating the
number of events.
Let us now obtain the weight functions for polarized e�

beams. The differential cross section for polarized eþe�
beams is expressed as

d	fðP; �PÞ ¼
�
�f

SMðP; �P; �̂3Þ þ
X
ci

ci�
f
ciðP; �P; �̂3Þ

�
d�̂3;

(93)
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where the weight functions are obtained by summing over the e� helicity �,

�f
SMðP; �P; �̂3Þ ¼ 1

2s

X
�

�
1þ �P

2

��
1� � �P

2

�X

;
0

ðM̂SMÞ
�ðM̂SMÞ
0�
� d1�;
ð�ZÞd1�;
0 ð�ZÞ�f



0 ; (94a)

�f
ciðP; �P; �̂3Þ ¼ 1

2s

X
�

�
1þ �P

2

��
1� � �P

2

�X

;
0

½fðM̂ciÞ
�ðM̂�
SMÞ
0

� þ ðM̂SMÞ
�ðM̂�
ciÞ


0
� gd1�;
ð�ZÞd1�;
0 ð�ZÞ�f



0 �: (94b)

Here, the ZH production matrix elements, ðM̂SMÞ
� and ðM̂ciÞ
� 
 ðM̂ciZV Þ
�, are obtained from Eqs. (80) and (81):

ðM̂SMÞ
� ¼ ðM̂c1ZZÞ
� ¼ mZ

ffiffiffiffiffi
2s

p
s�m2

Z

gZg
Zee
� �
; (95a)

ðM̂ckZV Þ
� ¼ ðM̂SMÞ
�R�
VðsÞf
kVðsÞ ðk ¼ 2; 3Þ; (95b)

with

�� ¼ 1; �0 ¼ EZ

mZ

; (96a)

R�
Z ¼ 1; Rþ

� ¼ � cot�W

�
s�m2

Z

s

�
; R�

� ¼ tan2�W

�
s�m2

Z

s

�
; (96b)

f
2ZðsÞ ¼
s�m2

H

m2
Z

þ 1� 
0

2
ffiffiffi
s

p
mZ

�2
0 � 1

�0

; f
2�ðsÞ ¼
s�m2

H

m2
Z

þ 1� 
0

2
ffiffiffi
s

p
mZ

�2
0 � 1

�0

; (96c)

f
3ZðsÞ ¼
m2

H

m2
Z

þ 
0

2
ffiffiffi
s

p
mZ

�2
0 � 1

�0

; f
3�ðsÞ ¼
sþm2

H

m2
Z

� 1þ 
0

2
ffiffiffi
s

p
mZ

�2
0 � 1

�0

; (96d)

where 00 ¼ �� ¼ ZZ ¼ 1 and �0 ¼ Z� ¼ �Z ¼ 0. The weight functions �f
ci are now expressed as

�f
SMðP; �P; �̂3Þ ¼

X
�

�
1þ �P

2

��
1� � �P

2

�
g2ZðgZee� Þ2m2

Z

ðs�m2
ZÞ2

X

;
0

�
�
0d1�
ð�ZÞd1�
0 ð�ZÞ�f


0 ; (97a)

�f
ckZV ðP; �P; �̂3Þ ¼

X
�

�
1þ �P

2

��
1� � �P

2

�
g2ZðgZee� Þ2m2

Z

ðs�m2
ZÞ2

�X

;
0

�
�
0R�
Vff
kVðsÞ þ f


0
kVðsÞgd1�
ð�ZÞd1�
0 ð�ZÞReð�f



0 Þ
�

(97b)

for k ¼ 2, 3 and V ¼ Z, �. The weight function for c1ZZ is
simply twice the SM one, Eq. (97a). Since all our matrix
elements are real, only the real parts of the density matrix
elements �f



0 in Eq. (90) contribute to the weight
functions.

The weight functions depend both on the beam polar-
ization and on the final fermion species. For brevity, we
give expressions for covariance matrices for electron po-
larization P, with unpolarized positron ( �P ¼ 0). For f ¼ e,

� or �, we can use the full phase-space information of �̂, ��
and ��, and accordingly the covariance matrix is obtained

as

½ðVl
PÞ�1�ij ¼ L0

Z �l
ciðP; 0; �̂3Þ�l

cjðP; 0; �̂3Þ
�l

SMðP; 0; �̂3Þ
d�̂3; (98)

where L0 ¼ 100 fb�1.
On the other hand, when the outgoing fermion is invis-

ible, i.e., for f ¼ �e, �� or ��, we can observe only the

cos�H ¼ � cos�Z distribution, and the covariance matrix
is

½ðV�
PÞ�1�ij ¼ BðH ! b �bÞL0

Z R
��

ciðP; 0; �̂3Þd cos��d�� R��
cjðP; 0; �̂3Þd cos��d��R

��
SMðP; 0; �̂3Þd cos��d�� d cos�Z: (99)

Here, again, we multiply the branching fraction BðH ! b �bÞ ¼ 0:9 because the H ! �� decay mode may not be useful in
the analysis.

When the outgoing fermions are quarks, f ¼ u, d c, s, b, we use only the half phase-space information for �� and ��
because the q jet and �q jet cannot be distinguished. We find
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½ðVq
PÞ�1�ij ¼ L0

Z ð�q
ciðP; 0; �̂3Þ þ�q

ciðP; 0; ~̂�3ÞÞð�q
cjðP; 0; �̂3Þ þ �q

cjðP; 0; ~̂�3ÞÞ
ð�q

SMðP; 0; �̂3Þ þ �q
SMðP; 0; ~̂�3ÞÞ

1

2
d�̂3; (100)

where
~̂
�3 is the phase space obtained by interchanging q

jet and �q jet; see Eq. (44). Finally, the electron beam
polarization is taken into account as

V�1 ¼ X
P¼�0:8

LP

L0

X
f¼l;�;q

ðVf
PÞ�1; (101)

where LP is the integrated luminosity for each electron
beam polarization.

We expect no significant background to this channel.
But theWW fusion process eþe� ! �e ��eH can mimic the
HZ production when the Z decays into neutrinos. This
background is avoided by demanding the missing mass
to lie within 5 times the Z boson width, see Eq. (40). After
the cut, we confirm numerically that our results are not
affected by the interference effects in the �e ��eH channel.

B. Sensitivity analysis of HZZ and HZ� coupling

We first note that the five CP conserving dimensionless
effective couplings c1ZZ, c2ZZ, c3ZZ, c2Z�, and c3Z� coming

from the dimension-six operators, contribute to the process
only through the four form factors of Eq. (81). In particular,
only two combinations of the three couplings c1ZZ, c2ZZ,
and c3ZZ appear in the form factors of the HZZ and HZ�
vertices. Consequently, we cannot determine the couplings
independently at a fixed collision energy.

In the following analysis, we show the eigenvectors for
the four combinations of the effective couplings

c02ZZ ¼ c2ZZ þ m2
Z

sþm2
Z

c1ZZ;

c03ZZ ¼ c3ZZ þ m2
Z

sþm2
Z

c1ZZ; c2Z�; and c3Z�;

(102)

which can be measured simultaneously at each energy.
Note that the unmeasurable combination

c1ZZ � ðc2ZZ þ c3ZZÞ m2
Z

sþm2
Z

(103)

changes with the collision energy
ffiffiffi
s

p
, and hence moderate

constraint on the coupling c1ZZ, which measures the
strength of the standard HZZ coupling, can be obtained
after combining experiments at different energies as dis-
cussed in Ref. [13].

The covariance matrices are expressed in terms of the
eigenvectors and the errors. With unpolarized electron
beam jPj ¼ 0, we find for

ffiffiffi
s

p ¼ 250 GeV and L ¼
100 fb�1,

:88c02ZZ þ :41c03ZZ þ :097c2Z� þ :15c3Z� ¼ �:00 048;

(104a)

:45c02ZZ � :86c03ZZ � :026c2Z� � :24c3Z� ¼ �:0042;

(104b)

:068c02ZZ þ :28c03ZZ � :54c2Z� � :79c3Z� ¼ �:0054;

(104c)

:046c02ZZ þ :10c03ZZ þ :83c2Z� � :54c3Z� ¼ �:072:

(104d)

The smallness of the magnitudes of the coefficients of the
HZ� couplings in the first two eigenvectors and that of the
coefficients of theHZZ couplings in the latter eigenvectors
reveals that the HZZ couplings and HZ� couplings are
measured rather independently. Inspection of the first two
eigenvectors in Eq. (104), which are most tightly con-
strained, tells that the couplings c02ZZ and c03ZZ can be

measured much more accurately than the other two cou-
plings c2Z� and c3Z�, and also their sum in Eq. (104a) can

be measured almost 1 order of magnitude better than their
difference in Eq. (104b). The errors of the HZ� couplings,
c2Z� and c3Z�, which can be deciphered from the third and

the fourth eigenvectors, are significantly larger; those of
their sum in Eq. (104c) and their difference in Eq. (104d)
are, respectively, more than 1 and 2 orders of magnitude
larger than the smallest error in Eq. (104a). This can be
attributed to the cancellation of the contributions from the
HZ� couplings between the left-handed and right-handed
electron contributions, where the interference term be-
tween the � and Z exchange amplitudes change sign,

g�eeL gZeeL þ g�eeR gZeeR ¼ �eðgZeeL þ gZeeR Þ
¼ egZð1=2� 2sin2�WÞ � egZ:

(105)

Expressing Eq. (104) in terms of the covariance matrix,
we reproduce identical results given in Eq. (5.4) of
Ref. [13], even though we do not take into account �
polarization and partial identification of both b and �b
jets. Small improvements of the covariance matrix due to
these additional measurements can be hidden in the nu-
merical uncertainty of the correlation matrix elements in
the standard expression in terms of the errors and their
correlations.
The constraint on the couplings become significantly

stronger when we introduce the e� beam polarization.
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With jPj ¼ 80%, LðP¼0:8Þ ¼ LðP¼�0:8Þ ¼ 50 fb�1 at
ffiffiffi
s

p ¼
250 GeV, we find

:056c02ZZ þ :027c03ZZ þ :53c2Z� þ :85c3Z� ¼ �:00 024;

(106a)

:90c02ZZ þ :43c03ZZ � :032c2Z� � :053c3Z� ¼ �:00 049;

(106b)

�:094c02ZZ þ :20c03ZZ � :83c2Z� þ :51c3Z� ¼ �:0034;

(106c)

:42c02ZZ � :88c03ZZ � :19c2Z� þ :12c3Z� ¼ �:0043:

(106d)

It is salient that the errors of the couplings c02ZZ and c03ZZ,
that of their sum in Eq. (106b) and that of their difference
(106d), do not improve at all by introducing the beam
polarization, from the corresponding ones in Eqs. (104a)
and (104b). On the other hand, the errors of the two
eigenvectors with dominant c2Z� and c3Z� components

are reduced by a factor of 20. This observation can be
explained as follows:

(1) The c2ZZ and c3ZZ coupling contribution depends on
the beam polarization exactly the same way as the
SM. In particular, the weight functions for c2ZZ and
c3ZZ in Eq. (97b) have the same polarization depen-
dence as the SM contribution in Eq. (97a), essen-
tially because R�

Z ¼ 1 in Eq. (97b).
(2) When a photon propagates in the s channel, the c2Z�

and c3Z� contributions to the amplitude do not

change by the beam polarization, since the electro-
magnetic interactions are chirality blind. But the
interference of the � exchange and the SM Z boson
exchange amplitude changes sign; see Eq. (105).

We present our results for
ffiffiffi
s

p ¼ 350 GeV for L ¼
100 fb�1 and jPj ¼ 80%: 1

:029c02ZZ þ :030c03ZZ þ :34c2Z� þ :94c3Z� ¼ �:00 015;

(107a)

:71c02ZZ þ :70c03ZZ � :013c2Z� � :040c3Z� ¼ �:00 040;

(107b)

:67c02ZZ � :68c03ZZ � :28c2Z� þ :100c3Z� ¼ �:0014;

(107c)

�:21c02ZZ þ :21c03ZZ � :90c2Z� þ :32c3Z� ¼ �:0012:

(107d)

We first note that the eigenvectors and their ordering
remain similar to those at

ffiffiffi
s

p ¼ 250 GeV. We observe
that c03ZZ is more accurately measured at high energies

where the amplitude for the longitudinal Z boson (
 ¼ 0)

grows, mainly because of the �0 ¼ EZ=mZ factor in
Eq. (95b). The weight functions for the couplings c03ZZ
and c3Z� grow as �2

0 from the dominant 
 ¼ 0 amplitudes;

see Eq. (96d). In contrast, the weight functions for c02ZZ and
c2Z� do not increase at high energies, since the 
 ¼ 0

amplitude tends to be canceled by the 
 ¼ � (transverse)
modes; see Eq. (96c). This growth of the weight functions
at high energies explains the general decrease of all the
errors at

ffiffiffi
s

p ¼ 350 GeV in Eq. (107) as compared with
those at

ffiffiffi
s

p ¼ 250 GeV in Eq. (106), despite the decrease
of the total cross section from 260 fb to 130 fb.
At

ffiffiffi
s

p ¼ 500 GeV for L0 ¼ 100 fb�1 with P ¼ �0:8,
we find

:015c02ZZ þ :035c03ZZ þ :18c2Z� þ :98c3Z� ¼ �:000 099;

(108a)

:38c02ZZ þ :92c03ZZ � :0085c2Z� � :037c3Z� ¼ �:00 028;

(108b)

:24c02ZZ � :097c03ZZ þ :95c2Z� � :17c3Z� ¼ �:00 086;

(108c)

:89c02ZZ � :37c03ZZ � :25c2Z� þ :046c3Z� ¼ �:0010:

(108d)

Despite smaller cross section at
ffiffiffi
s

p ¼ 500 GeV, all the
errors in Eq. (108) are smaller than those in Eq. (107) forffiffiffi
s

p ¼ 350 GeV.
The energy dependence of the measurement at higher

energies (
ffiffiffi
s

p  mZ) can be read from Table I, where we

show the high-energy limit of the matrix elements ðM̂ciÞ
�
of Eq. (95). Since the weight functions are the interference
between the SM amplitudes and the ci amplitudes, we
immediately find that c3ZZ and c3Z� are measured most

accurately at high energies from the ZL contribution, be-
cause their weight functions grow linearly with �0 ¼
EZ=mZ. The couplings c2ZZ and c2Z� are best measured

from the ZT contribution, whose weight functions do not
vanish at high energies.
Finally, we present the results for

ffiffiffi
s

p ¼ 1 TeV for L0 ¼
100 fb�1 with P ¼ �0:8;

TABLE I. The high energy limit of the matrix elements ðM̂ci Þ
�
in Eq. (95). Here, �0 ¼ EZ=mZ.

ci ZTð
 ¼ �Þ ZLð
 ¼ 0Þ
Energy

Dependence

Coefficient Energy

Dependence

Coefficient

SM 1=�0 gZg
Zee
� 1 gZg

Zee
�

c2ZZ �0 4gZg
Zee
� 1=�0 gZg

Zee
� ð5�m2

H=m
2
ZÞ

c3ZZ 1=�0 gZg
Zee
� m2

H=m
2
Z �0 4gZg

Zee
�

c2Z� �0 4e 1=�0 eð5�m2
H=m

2
ZÞ

c3Z� �0 4e �0 8e

1From now on, we do not report our results for jPj ¼ 0 in
order to save space. Individual results with jPj ¼ 0 will be
available on request from the authors.

SUKANTA DUTTA, KAORU HAGIWARA, AND YU MATSUMOTO PHYSICAL REVIEW D 78, 115016 (2008)

115016-20



:004c02ZZ þ :039c03ZZ þ :047c2Z� þ :998c3Z� ¼�:000046;

(109a)

:092c02ZZ þ :995c03ZZ � :003c2Z� � :039c3Z� ¼�:00013;

(109b)

�:16c02ZZ þ :014c03ZZ � :986c2Z� þ :047c3Z� ¼�:00086;

(109c)

:98c02ZZ� :092c03ZZ � :16c2Z� þ :007c3Z� ¼�:0012:

(109d)

All the four couplings are now measured rather indepen-
dently, as we can observe from the single coupling domi-
nance in all the four eigenvectors. The error of c3Z� and

c03ZZ becomes half of those at 500 GeV in Eq. (108),

because their weight functions are proportional to �0. On
the other hand, the errors of c02ZZ and c2Z� do not improve

because the weight functions remain constant at high
energies.

VI. eþe� ! eþe�H DOUBLE-TAG ZZ-FUSION
PROCESSES

In this section, we study the HZZ, HZ� and H��
couplings via the t-channel vector-boson fusion (VBF)
process eþe� ! eþe�H; see Fig. 2(b). The merit of the
t-channel VBF processes is that the cross section grows
with

ffiffiffi
s

p
, and also, we expect sensitivity to the coupling

c1ZZ, which cannot be measured independently from the
other couplings in the s-channel process eþe� ! ZH.

A. Helicity amplitudes and background

The momentum and helicity assignments are the same as
those in Eq. (45) for the W-boson fusion process

e�
�
k1;

	1

2

�
þ eþ

�
k2;

	2

2

�
! e�

�
p1;


1

2

�
þ eþ

�
p2;


2

2

�
þHðpHÞ: (110)

Here again we neglect the mass of e�, and only two
diagrams of Fig. 2(a) (ZH production) and Fig. 2(b)
(VBF) contribute. The electron chirality conservation tells
	i ¼ 
i for the VBF amplitudes, and 	1 ¼ �	2 and 
1 ¼
�
2 for ZH production amplitudes. When 	1 ¼ 
1 ¼
�	2 ¼ �
2, the two amplitudes interfere. The ZH pro-
duction contribution is suppressed by requiring the invari-
ant mass of the eþe� pair to be away from mZ, Eq. (42).
The helicity amplitudes for the VBF process are given as

M
1
2
	1	2

ðeþe� ! e�eþHÞ
¼ j

�
e�ð	1;
1Þ½gZee	1

DZðt1Þ�ZZH
�� DZðt2ÞgZee�	2

þ gZee	1
DZðt1Þ�Z�H

�� D�ðt2Þg�ee�	2

þ g�ee	1
D�ðt1Þ��ZH

�� DZðt2ÞgZee�	2

þ g�ee	1
D�ðt1Þ���H

�� D�ðt2Þg�ee�	2
�j�

eþð	2;
2Þ (111)

for 
1 ¼ 	1, and 
2 ¼ 	2. The propagator factors DVðtiÞ
and the Vee couplings gVee� are given in Eq. (76). The
t-channel currents

j�e�ð��Þ ¼ �uðp1; �=2Þ��P�uðk1; �=2Þ; (112a)

j�
eþð��Þ ¼ �vðk2; �=2Þ��P��vðp2; �=2Þ (112b)

are evaluated in the laboratory frame

j�e�ð��Þ ¼
ffiffiffiffiffiffiffi
sx1

p �
cos

�1
2
; sin

�1
2
ei��1 ;�i� sin

�1
2
ei��1 ; cos

�1
2

�
; (113a)

j�
eþð��Þ ¼

ffiffiffiffiffiffiffi
sx2

p �
sin

�2
2
; cos

�2
2
e��i�2 ; i� cos

�2
2
e�i��2 ;� sin

�2
2

�
(113b)

in theme ¼ 0 limit, where the four momenta of the final electron and positron are parametrized as in Eq. (A1). The helicity
amplitudes are then expressed as

M��
�� ¼ gZmZ

X
V1¼Z;�

X
V2¼Z;�

gV1ee
� DV1

ðt1ÞDV2
ðt2ÞgV2ee

�� F ð�1; �2Þ

�
�
��

�
hV1V2

1 H þ hV1V2

2

m2
Z

s

8
G0
�
þ �;��

�
hV1V2

1 þ hV1V2

2

m2
Z

s

8
G
��

; (114)

where the functionsF ,H ,G, andG0 are given in Eq. (B2) and (B3) of Appendix B. The above helicity amplitudes can be
expressed as

M��
�� ¼ ðMSMÞ���� þX

i

ciðMciÞ����; (115)

where
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ðMc1ZZÞ���� ¼ ðMSMÞ���� ¼ gZmZg
Zee
� gZee��DZðt1ÞDZðt2ÞF ð�1; �2Þð��H ð�1; �2; �Þ þ �;��Þ; (116a)

ðMc2V1V2
Þ���� ¼ ðMSMÞ����

DV1
ðt1Þ

DZðt1Þ
DV2

ðt2Þ
DZðt2Þ

�
f2V1V2

þ s

4m2
Z

��G0 þ �;��G

��H ð�1; �2; �Þ þ �;��

�
; (116b)

ðMc3V1V2
Þ���� ¼ ðMSMÞ����

DV1
ðt1Þ

DZðt1Þ
DV2

ðt2Þ
DZðt2Þ

�
f3V1V2

� s

4m2
Z

��G0 þ �;��G

��H ð�1; �2; �Þ þ �;��

�
; (116c)

with

f1ZZ ¼ 1; f2ZZ ¼ f2Z� ¼ f2�Z ¼ f2�� ¼ �m2
H � t1 � t2

m2
Z

; (117a)

f3ZZ ¼ m2
H

m2
Z

; f3Z� ¼ m2
H � t1 þ t2

m2
Z

; f3�Z ¼ m2
H þ t1 � t2

m2
Z

: (117b)

It should be noted that in the notation of Eq. (115), the
coefficients of the HZ� couplings should be interpreted as

ckZ�ðMckZ�Þ���� þ ck�ZðMck�ZÞ����
¼ ckZ�½ðMckZ�Þ���� þ ðMck�ZÞ����� (118)

for k ¼ 2, 3, by using the expressions in Eq. (116b) and
(116c).

The SM distribution �SM and the weight functions �ci

depend on the 3-body phase space in the laboratory frame,
which is parametrized as in Eq. (A8e),

d�3 ¼ s

1024�4

� x1ð1� x1 �m2
H=sÞ

½1� x1ð1� cos�12Þ=2�2
dx1d cos�1d cos�2d�;

(119)

where � ¼ �2 ��1. The differential cross section with
e� and eþ beam polarizations, P and �P, respectively, is
expressed as in Eq. (20), where the weight functions are

�SMðP; �P;�3Þ ¼ 1

2s

X
�;�

�
1þ �P

2

��
1þ � �P

2

�
jðMSMÞ����j2;

�ciðP; �P;�3Þ ¼ 1

2s

X
��

�
1þ �P

2

��
1þ � �P

2

�

� 2Re½ðMciÞ���;�ðM�
SMÞ�����: (120a)

The six nonstandard couplings, ci 
 c1ZZ, c2ZZ, c3ZZ, c2Z�,

c3Z�, and c2��, contribute to the t-channel Z and � ex-

change processes, and the inverse of the covariant matrix is
then evaluated as in Eq. (26b). As shown in Fig. 3 and
noted in Sec. III C, the interference contribution from the
s-channel ZH production amplitudes is not negligible atffiffiffi
s

p ¼ 250 GeV and at 350 GeV. We therefore replace the
SM amplitude in Eq. (120) by the sum of the t-channel and
s-channel amplitudes at these energies. That is, we neglect
contributions from the anomalies in the suppressed ZH
production amplitudes.

B. Constraint on the HZZ, HZ�, and H�� couplings

1. Sensitivity at
ffiffiffi
s

p ¼ 250 GeV and 350 GeV with the
integration approximation

We first present the ‘‘theoretical’’ result for the contri-
bution from the t-channel vector-boson fusion, using the
standard integration procedure for

ffiffiffi
s

p ¼ 250 and 350 GeV.
Later on we take into consideration the interference effects
from s-channel ZH production and adopt a more realistic
approach to evaluate the inverse of the respective covari-
ance matrices.
Our results for the purely t-channel process at

ffiffiffi
s

p ¼
250 GeV for L0 ¼ 100 fb�1 with jPj ¼ 80% are

:001c1ZZ � :000c2ZZ � :001c3ZZ � :001c2Z� þ :99 997c3Z� � :008c2�� ¼ �:0014; (121a)

:028c1ZZ � :067c2ZZ þ :005c3ZZ � :065c2Z� � :008c3Z� � :995c2�� ¼ �:0040; (121b)

:009c1ZZ � :097c2ZZ þ :010c3ZZ þ :993c2Z� þ :000c3Z� � :058c2�� ¼ �:0099; (121c)

:28c1ZZ þ :54c2ZZ � :79c3ZZ þ :056c2Z� � :002c3Z� � :036c2�� ¼ �:047; (121d)

:73c1ZZ � :65c2ZZ � :19c3ZZ � :064c2Z� � :000c3Z� þ :068c2�� ¼ �:067; (121e)

:62c1ZZ þ :52c2ZZ þ :58c3ZZ þ :039c2Z� þ :000c3Z� � :017c2�� ¼ �:17: (121f)

The cross section for the t-channel double-tag eeH process is only 0.83 fb as can be seen from the solid thin curve in Fig. 3.
Imposing the exclusion cut jmeþe� �mZj> 5�Z, it reduces to 0.55 fb, or 55 events for 100 fb�1. Nevertheless, we present

SUKANTA DUTTA, KAORU HAGIWARA, AND YU MATSUMOTO PHYSICAL REVIEW D 78, 115016 (2008)

115016-22



the above results in the integral approximation (the small bin size limit) over the 3-body phase space, as a reference to
study the energy dependence. Binning effects for small statistics is reported in the next subsubsection.

It is remarkable that the two HZ� couplings and the H�� coupling are rather uniquely constrained in the first three
eigenvectors of Eq. (121) with small errors. This is a consequence of the combined effect of the strong e� beam
polarization dependence of the Z� � interference term (even though it is effective only for the �-exchange between
e� and H) and also from the kinematic difference between the � and Z propagator factors when jt1j or jt2j or both are
significantly smaller than m2

Z. In fact, we confirm the latter effects from the unpolarized beam (P ¼ 0) case, where the
three couplings are still measured rather uniquely [24]; c2�� is now constrained most accurately with the error �:0041,

c3Z� has an error of�:011, while c2Z� is poorly constrained. The threeHZZ couplings are constrained rather weakly in the

last three lines of Eq. (121).
Similarly, at

ffiffiffi
s

p ¼ 350 GeV for L ¼ 100 fb�1 with jPj ¼ 80%, we find

:002c1ZZ � :000c2ZZ � :003c3ZZ þ :001c2Z� þ :99 998c3Z� � :006c2�� ¼ �:00 085; (122a)

:046c1ZZ � :17c2ZZ � :021c3ZZ � :21c2Z� � :006c3Z� � :96c2�� ¼ �:0035; (122b)

:025c1ZZ � :099c2ZZ þ :006c3ZZ þ :98c2Z� � :003c3Z� � :19c2�� ¼ �:0053; (122c)

:29c1ZZ þ :41c2ZZ � :86c3ZZ þ :030c2Z� � :004c3Z� � :047c2�� ¼ �:016; (122d)

:47c1ZZ � :82c2ZZ � :24c3ZZ � :057c2Z� � :000c3Z� þ :19c2�� ¼ �:025; (122e)

:83c1ZZ þ :34c2ZZ þ :44c3ZZ þ :004c2Z� � :000c3Z� � :032c2�� ¼ �:054: (122f)

Here, the cross section is 2.9 fb which is almost a factor 3.5
times larger than those at 250 GeV; see Fig. 3. The effect of
the exclusion cut is negligible and the cross section is
reduced to 2.8 fb, which would mean 280 events with
100 fb�1. Therefore, we naively expect a factor of 2 im-
provements in the statistical error when compared with the
results in Eq. (121). The results in Eq. (122) show that the
error of the HZZ couplings decreases to about 1=3, those
of the HZ� couplings to �1=2, while the H�� coupling
does not show a significant improvement. The H�� cou-
pling measurement does not improve because the ampli-
tudes with jtij<m2

Z do not increase much with
ffiffiffi
s

p
. We

notice that the two couplings c2�� and c2Z� now have some
correlation, as can be seen from the combinations
ð0:21c2Z� þ 0:96c2��Þ in Eq. (122b) and ð0:98c2Z� �
0:19c2��Þ in Eq. (122c). It is because of their similar
behavior when both jt1j and jt2j are larger than mZ. Such
a region of the phase space is tiny at

ffiffiffi
s

p ¼ 250 GeV, but
starts appearing at 350 GeV, and will be dominating at
higher energies.

2. Sensitivity at
ffiffiffi
s

p ¼ 250 GeV and 350 GeV with the
table method including s-channel contributions

As the t-channel cross sections are very small at
ffiffiffi
s

p ¼
250 GeV and 350 GeV, the interference effects due to the
contribution from ZH amplitudes along with the exclusion
jmeþe� �mZj> 5�Z can be significant as can be seen from
the thick dashed line, in Fig. 3. To simulate the realistic
experimental situation we adopt the table method to cal-
culate V�1, which is more realistic when the expected
number of events is not large. Here, we examine the two-
dimensional weight functions in terms of the momentum
transfers jt1j and jt2j.
At

ffiffiffi
s

p ¼ 250 GeV with L0 ¼ 100 fb�1 and jPj ¼ 80%,
the cross section of the double-tag eþe�H process be-
comes 0.93 fb, after including the contribution from the
s-channel amplitudes; see Fig. 3. Because of the smallness
of the signal events (93 events for 100 fb�1 with
100% efficiency), we integrate the weight functions
over the azimuthal angle and meþe� , and divide jtij’s into
3 regions, each as follows: jtij< ð45 GeVÞ2, ð45 GeVÞ2 <
jtij< ð90 GeVÞ2, and jtij> ð90 GeVÞ2. With this binning,
all the 18 bins (9 bins each for P ¼ 0:8 and P ¼ �0:8)
have approximately 5 events. We obtain the V�1 matrix by
summing over the contributions from 18 bins, and find

:006c1ZZ � :0c2ZZ � :010c3ZZ þ :31c2Z� þ :95c3Z� þ :051c2�� ¼ �:0043; (123a)

:050c1ZZ þ :13c2ZZ þ :10c3ZZ þ :93c2Z� � :31c3Z� þ :065c2�� ¼ �:013; (123b)

:24c1ZZ þ :63c2ZZ þ :60c3ZZ � :11c2Z� þ :064c3Z� � :41c2�� ¼ �:016; (123c)

:26c1ZZ þ :29c2ZZ þ :18c3ZZ � :14c2Z� � :004c3Z� þ :89c2�� ¼ �:043; (123d)

:80c1ZZ þ :13c2ZZ � :56c3ZZ þ :010c2Z� � :005c3Z� � :16c2�� ¼ �:088; (123e)

:48c1ZZ � :70c2ZZ þ :53c3ZZ þ :012c2Z� � :001c3Z� � :015c2�� ¼ �:37: (123f)
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In spite of the increase of the cross section, from 0.55 fb to
0.93 fb, we observe that the errors of all the eigenvectors in
Eq. (123) are larger than those in Eq. (121), which are
obtained by using the integral approximation. Especially,
the error of the eigenvector with dominant c2�� component
in Eq. (123d) becomes an order of magnitude larger than
the corresponding one in Eq. (121b). The main reason for
the enhancement of the errors is the loss of information due
to the large bin size. For instance, the error of c2�� is
reduced significantly if we divide the jtij< ð45 GeVÞ2
bin into 2 bins, while that of c3Z� is reduced if we divide
the jtij> ð90 GeVÞ2 bin into 2 bins. In the very high

luminosity limit, we can decrease the bin size, and the
integral limit of Eq. (121), corrected for the interference
effects, is obtained. In the following analysis, however, we
will use the result of Eq. (123) as the contribution from the
double-tag eeH events at

ffiffiffi
s

p ¼ 250 GeV for 100 fb�1

with jPj ¼ 0:8.
We repeat the same exercise at

ffiffiffi
s

p ¼ 350 GeV for L0 ¼
100 fb�1 with jPj ¼ 0:8. As can be seen from Fig. 3, the
cross section increases to 3.3 fb from 2.9 fb due to con-
structive interference. Here, we considered 6 bins each for
jt1j and jt2j, to make the number of event almost the same
in all the 72 bins. We find that

:004c1ZZ þ :005c2ZZ � :002c3ZZ þ :11c2Z� þ :99c3Z� þ :014c2�� ¼ �:0012; (124a)

:007c1ZZ þ :006c2ZZ � :072c3ZZ þ :97c2Z� � :11c3Z� þ :22c2�� ¼ �:0074; (124b)

:21c1ZZ þ :31c2ZZ þ :44c3ZZ þ :21c2Z� � :013c3Z� � :79c2�� ¼ �:011; (124c)

:67c1ZZ þ :20c2ZZ � :70c3ZZ � :026c2Z� � :000c3Z� � :14c2�� ¼ �:023; (124d)

:71c1ZZ � :31c2ZZ þ :52c3ZZ � :046c2Z� � :000c3Z� þ :35c2�� ¼ �:079; (124e)

:023c1ZZ þ :88c2ZZ þ :19c3ZZ � :092c2Z� � :000c3Z� þ :43c2�� ¼ �:095: (124f)

All the errors in Eq. (124) are approximately a factor of 2 larger than the corresponding ones in Eq. (122), mainly because
of the loss of information due to the binning and also to the reduction of the dimensionality of the weight functions from
4 (xi, cos�1, cos�2, �) to 2 (jt1j, jt2j).

3. Sensitivity at
ffiffiffi
s

p ¼ 500 GeV and 1 TeV

At
ffiffiffi
s

p ¼ 500 GeV with L ¼ 100 fb�1 with jPj ¼ 80%, we find

:002c1ZZ þ :000c2ZZ � :007c3ZZ � :004c2Z� þ :99 995c3Z� � :005c2�� ¼ �:00 057; (125a)

:034c1ZZ � :20c2ZZ � :064c3ZZ � :61c2Z� � :007c3Z� � :76c2�� ¼ �:0029; (125b)

:044c1ZZ � :28c2ZZ � :030c3ZZ þ :78c2Z� þ :000c3Z� � :55c2�� ¼ �:0035; (125c)

:19c1ZZ þ :31c2ZZ � :93c3ZZ þ :045c2Z� � :007c3Z� � :029c2�� ¼ �:0067; (125d)

:34c1ZZ � :84c2ZZ � :23c3ZZ � :098c2Z� � :000c3Z� þ :33c2�� ¼ �:013; (125e)

:92c1ZZ þ :27c2ZZ þ :28c3ZZ þ :012c2Z� � :000c3Z� � :063c2�� ¼ �:031: (125f)

The cross section now is 6.6 fb, or 660 events with 100 fb�1; see Fig. 3. We therefore expect that the statistical errors
should be about 2=3 of those at

ffiffiffi
s

p ¼ 350 GeV. In fact, all the errors of Eq. (125) are smaller than the corresponding errors
in Eq. (122) by a factor of 1.2 to 2.4. At this energy, as mentioned above, kinematic difference in the Z and � propagators
diminishes, and the H�� coupling c2�� tends to mix with c2Z� and the HZZ couplings.

And at
ffiffiffi
s

p ¼ 1 TeV for L ¼ 100 fb�1 with jPj ¼ 80%, we find that

:002c1ZZ þ :002c2ZZ � :020c3ZZ � :019c2Z� þ :9996c3Z� � :006c2�� ¼ �:0004; (126a)

:008c1ZZ þ :033c2ZZ � :15c3ZZ � :95c2Z� � :022c3Z� � :26c2�� ¼ �:0018; (126b)

:089c1ZZ þ :12c2ZZ � :97c3ZZ þ :19c2Z� � :017c3Z� � :091c2�� ¼ �:0022; (126c)

:035c1ZZ � :67c2ZZ þ :018c3ZZ þ :17c2Z� þ :000c3Z� � :72c2�� ¼ �:0025; (126d)

:15c1ZZ � :72c2ZZ � :17c3ZZ � :17c2Z� � :002c3Z� þ :64c2�� ¼ �:0058; (126e)

:98c1ZZ þ :12c2ZZ þ :11c3ZZ þ :011c2Z� þ :000c3Z� � :063c2�� ¼ �:019: (126f)
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The cross section is around 13 fb, or 1300 events with
100 fb�1. The error of c3Z� in Eq. (126a) decreases by a
factor 1.4 from the corresponding one in Eq. (125a) for
500 GeV. The other errors are reduced more significantly.
At high energies, the distinction among the weight func-
tions becomes clear and c3Z�, c2Z�, c3ZZ and c1ZZ are
measured rather independently, while only c2ZZ and c2��
are correlated. Since the � and Z propagator factors are
similar at high energies, the distinction come from the
extra ðt1; t2Þ dependence in Eq. (117) and from the azimu-
thal angle dependence in the factor G and G0; see Eq. (B3)
in Appendix B. The most significant improvement is found
for the error of the eigenvector with dominant c3ZZ com-
ponent, which decreases by a factor of 3 from 0.0067 atffiffiffi
s

p ¼ 500 GeV in Eq. (125d) to 0.0022 at
ffiffiffi
s

p ¼ 1 TeV in
Eq. (126c).

Overall, we find that the HZ� couplings are most accu-
rately measured at high energies in the double-tag eeH
process. However, the accuracies of the c2Z� and c3Z�
measurements cannot compete with those from the ZH
process, as can be seen, e.g., by comparing Eqs. (126a) and
(126b) with Eqs. (109a) and (109c), respectively, at

ffiffiffi
s

p ¼
1 TeV. The double-tag events are found to be most im-
portant in distinguishing c1ZZ, the SM-like HZZ coupling,
from c2ZZ and c3ZZ.

VII. NO-TAG ee ! ðeeÞH PROCESS

Although the double-tag t-channel eeH process shows
certain sensitivity to theH�� coupling c2��, the sensitivity

at
ffiffiffi
s

p ¼ 500 GeV and 1 TeV with L0 ¼ 100 fb�1 is not
sufficient for resolving the H�� coupling of the SM from
the W-boson and top-quark loops. We can expect better
sensitivity to the H�� coupling when the e� are not
tagged, because of the fusion of almost real photons. The
produced Higgs-boson has little pT, and can be distin-
guished from the �e ��eH events.

A. Cross section

The momentum and helicity assignment for the initial
and final particles in no-tag ðeeÞH process is the same as
the double-tag eeH process, Eq. (110). The momentum
and helicity of the intermediate almost real photon is
assigned as

e�
�
k1;

	1

2

�
! e�

�
p1;


1

2

�
þ �ðk01; 
0

1Þ; (127a)

eþ
�
k2;

	2

2

�
! eþ

�
p2;


2

2

�
þ �ðk02; 
0

2Þ; (127b)

where 
0
1 and 
0

2 is the helicity of the equivalent real
photon emitted from e� and eþ, respectively. The final
electron and positron escape detection by going into the
beam pipe, and an almost real photon of the virtuality
jq2j � m2

H is emitted in the same direction; see e.g.
Ref. [25] for a review. The Z boson contribution is sup-

pressed by a small factor of jq2j=m2
Z � 1. The minimum

and maximum magnitude of the square of the electron or
positron momentum transfer is calculated as

q2min ¼
m2

ez
2

1� z
; q2max ¼ ð1� zÞ s

2
ð1� cos�minÞ;

(128)

where z ¼ 2E�=
ffiffiffi
s

p
is the energy fraction of the photon,

and �min is the polar angle below which the final e�
escapes detection into the beam pipe. In our analysis, we
set cos�min ¼ 0:995; see Eq. (33). The equivalent real
photon distribution can be split into two parts,

D�=e�ðz; Q2Þ ¼ D
	i


0
j¼þ

�=e� ðz;Q2Þ þD
	i


0
j¼�

�=e� ðz; Q2Þ; (129)

where the helicity preserving component (	
0 ¼ þ) and
the helicity flip component (	
0 ¼ �) are [26]

Dþ
�=e�ðz;Q2Þ ¼ �

2�

�
1

z

�
ln

Q2

q2min

� 1

�
þ z

�
; (130a)

D�
�=e�ðz;Q2Þ ¼ �

2�

�ð1� zÞ2
z

�
ln

Q2

q2min

� 1

��
; (130b)

respectively, with

Q2 ¼ minfm2
H; q

2
maxg: (131)

It is worth noting that the last term z in the parenthesis of
the helicity preserving (	
0 ¼ þ) distribution (130a)
comes from the helicity flip (	
 ¼ �) amplitude where
the final e� helicity is opposite from the initial one. Since
contribution from the momentum transfer much smaller
than 1 GeV2 dominates the photon distribution, we use
� ¼ 1=137 in Eq. (130). The real photon approximation
for the matrix elements cease to be valid when Q2 ¼ jtij
becomes Oðm2

HÞ. In our study, the maximum momentum
transfer q2max stays below �0:25m2

H even at
ffiffiffi
s

p ¼ 1 TeV,
and hence our predictions do not change significantly when
we replace the scale from m2

H by 0:1m2
H, in Eq. (131).

The cross section for the no-tag ðeeÞH events is now
expressed as

	ðeeÞH ¼ X
�;�

�
1þ �P

2

��
1þ � �P

2

�X

0
1
;
0

2

Z 1

0
dx1

Z 1

0
dx2

�D
�
0

1

�=e�ðx1; Q2ÞD�
0
2

�=eþðx2; Q2Þ	̂��!H

0
1

0
2

; (132)

where

	̂ ��!H

0
1

0
2

ðŝÞ ¼ 
0
1

0
2
ð16�2Þ���

mH

ðŝ�m2
HÞ: (133)

Here, xi and 

0
i are the energy fractions and the helicities of

the equivalent real photon in e�ði ¼ 1Þ and eþði ¼ 2Þ,
respectively, �=2 and �=2 are the e� and eþ helicities,
and ŝ ¼ x1x2s is the square of the �� collision energy.
Higgs boson is produced only when 
0

1 ¼ 
0
2. Therefore,
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the total cross section and the rapidity yH ¼
1=2 logðx1=x2Þ distribution of the Higgs boson, which has
strong dependence on the helicity profile of the equivalent
real photon distribution, depends on the e� beam polar-
izations P and �P. We find, however, that the polarization
effects survive only when both e� and eþ have nonzero
polarization.

The unpolarized cross section of the no-tag ðeeÞH events
in Fig. 3 for mH ¼ 120 GeV and those of Fig. 4 for mH ¼
100 GeV to 200 GeV are calculated by using the above
formula with

��� ¼ �2m3
H

256�3v2
jIj2; (134)

where the loop function I sums over the contributions from
theW boson and the top quark [27]. The enhancement due
to the W-boson pair production threshold can be observed
in Fig. 4. FormH ¼ 120 GeV, the decay width of Eq. (134)
gives �SM

�� ¼ 0:0073 MeV, and the cross section is 0.15 fb,

0.32 fb, 0.56 fb, and 1.3 fb at
ffiffiffi
s

p ¼ 250, 350, 500, and
1000 GeV, respectively, as shown in Fig. 3. When the
integrated luminosity is 100 fb�1, the expected number
of events are 15, 32, 56, and 128, respectively. Therefore,

in this study, we consider the no-tag events only at
ffiffiffi
s

p ¼
500 GeV and 1 TeV.

B. Error estimation for c2��

The interaction Lagrangian for the effectiveH�� vertex

LH��
int ¼ 1

v
c2��HA��A

�� (135)

contains both the SM loop contribution and new physics
effects. We parametrize them as

c2�� ¼ cSM2�� þ�c2��: (136)

The SM contribution is approximated by the loop function
I, and its numerical value for mH ¼ 120 GeV is

cSM2�� ¼ �

8�
I ¼ �0:00 187; (137)

with a negligibly small imaginary part from the b and �
contributions. Our approximation of the pointlike coupling
in the effective Lagrangian Eq. (135) is valid as long as
jq2j � m2

W , m
2
t . The cross section of the no-tag ðeeÞH

process for mH ¼ 120 GeV is expressed in terms of the
generalizedH�� coupling given in Eqs. (135) and (136) as

	ee!ðeeÞHð ffiffiffi
s

p ¼ 500 GeVÞ ¼ 1:61� 105ðcSM2�� þ �c2��Þ2 fb; (138a)

	ee!ðeeÞHð ffiffiffi
s

p ¼ 1 TeVÞ ¼ 3:70� 105ðcSM2�� þ �c2��Þ2 fb: (138b)

As mentioned earlier, this cross section does not depend on
the e� polarization P, as long as the eþ polarization is
zero, �P ¼ 0.

While evaluating the error of the cross section, we take
into account of the contribution from WW-fusion �e ��eH
events, which cannot be distinguished from the no-tag
ðeeÞH events when the Higgs boson has small transverse
momentum. In the following analysis, we make a very
naive estimate for the background and the errors by assum-
ing that the Higgs-boson pT can be resolved at 3 GeV
accuracy and that the SM background contribution can be
estimated from the high pT distribution. In Fig. 8, we show
the expected pT distribution of the Higgs boson from the
no-tag ðeeÞH process as the red-solid rectangle, which is
overlaid above the WW-fusion contribution shown by the
gray-shaded histograms; Fig. 8(a) is for

ffiffiffi
s

p ¼ 500 GeV
and Fig. 8(b) is for

ffiffiffi
s

p ¼ 1 TeV. Also shown in the figures
are the statistical errors corresponding to the background

WW-fusion events, and that of the sum of the no-tag ðeeÞH
andWW-fusion events for the lowest pT (pT < 3 GeV) bin
with L0 ¼ 500 fb�1. We can then estimate the error of the
signal ðeeÞH cross section as follows:

	sig ¼ 	tot � 	BG ¼ �	tot � �	BG �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�	2
tot

Ntot

þ �	2
BG

NBG

s

¼ �	sig �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�	tot þ �	BG

L

s
; (139)

where �	 represents the mean value and L is the integrated
luminosity. The errors of the total and the background cross
sections in the lowest pT bin are estimated to be 0.023 fb
and 0.012 fb, respectively, at

ffiffiffi
s

p ¼ 500 GeV, and 0.033 fb
and 0.016 fb, respectively, at

ffiffiffi
s

p ¼ 1 TeV. By taking the
squared sum of the errors, we obtain the following esti-
mates:

	sig ¼ 0:56� 0:045 fb at
ffiffiffi
s

p ¼ 500 GeV;L ¼ 500 fb�1; (140a)

	sig ¼ 1:29� 0:064 fb at
ffiffiffi
s

p ¼ 1 TeV;L ¼ 500 fb�1: (140b)

We then find from Eq. (138)
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cSM2�� þ�c2�� ¼ �0:00187

�þ0:000 074

�0:000 077
at

ffiffiffi
s

p ¼ 500 GeV;L ¼ 500 fb�1; (141a)

cSM2�� þ�c2�� ¼ �0:00187

�þ0:000 046

�0:000 047
at

ffiffiffi
s

p ¼ 1 TeV;L ¼ 500 fb�1: (141b)

The above results show that the no-tag ðeeÞH process at
eþe� collider can measure the H�� coupling with the 4%
and 2% accuracy with the integrated luminosity of
500 fb�1 at

ffiffiffi
s

p ¼ 500 GeV and 1 TeV, respectively. In
contrast, the sensitivity of the double-tag eeH events on
the c2�� coupling in Eqs. (125) and (126), gives the error of
0.0016 and 0.0014 at

ffiffiffi
s

p ¼ 500 GeV and 1 TeV, respec-
tively, with 500 fb�1, which is barely enough to resolve the
SM coupling at 1	 level. From this exercise, we can
conclude that the no-tag ðeeÞH process is about 20 to 30
times more sensitive to the H�� coupling than double-tag
eeH process, at

ffiffiffi
s

p ¼ 500 GeV and 1 TeV, if our naive
estimation of the background is valid.

This naive estimation of the errors is based on the
assumption that the background contribution from the
WW-fusion process can be estimated from the high pT

distribution. This assumption can be tested experimentally
by using the different polarization dependence of the signal
and the background. The background WW-fusion process
scales as 1� P, i.e., it increases for P< 0 and decreases
for P> 0, while the signal remains independent on P as
long as positron is unpolarized. Once the positron polar-
ization is available, both the total cross section and the
rapidity distribution of the no-tag ðeeÞH events depend on
the sign of the product P � �P, which should be a distinctive
signature of the �� fusion.

Although the sensitivity to the H�� coupling is ex-
pected to be measured far more accurately with the
photon-linear collider [28,29], our results show the sensi-
tivity limit when it is not realized.

VIII. SINGLE-TAG eþe� ! ðe�Þe�H PROCESS

This process essentially measures e�� ! e�H, where
the initial photon comes from the other e� beam as an
equivalent real photon. Since we have studied both double-
tag eeH and no-tag ðeeÞH events, it is worthwhile to
examine the single-tag ðeÞeH process for completeness.

A. Cross section

The momentum and the helicity assignments of the
single-tag ðeÞeH process are also the same as those in the
double-tag eeH process in Eq. (110). We use the equivalent
real photon approximation for the current from the un-
tagged e�. Since the helicity of the equivalent real photon
depends on the parent e� helicity, and also the electroweak
interactions of the tagged e� current are sensitive to their
polarization, we give the general expression of the cross
section with both e� and eþ beam polarizations, P and �P,
respectively;

	ðeÞeH ¼ X
�;�

�
1þ �P

2

��
1þ � �P

2

�

�
�X


0
2

	̂e��!e�H
�
0

2
D

�
0
2

�=e ðz; Q2Þ

þX

0
1

	̂eþ�!eþH
�
0

1
D

�
0
1

�=e ðz;Q2Þ
�
: (142)

Here, the polarization-dependent real photon distributions
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FIG. 8 (color online). The histograms for the number of events at low Higgs pT.
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are as defined in Eq. (130), and the e�� ! e�H cross
sections are

	̂ e��!e�H
�
0

i
¼ 1

2ŝ

Z
jMe��

�
0
i
j2d�2

¼ 1

32�ŝ

�
1�m2

H

ŝ

�Z
d cos��

e�jMe��
�
0

i
j2;
(143)

where ŝ ¼ sz, �=2 is the e� helicity, 
0
i is the photon

helicity, and ��
e� is the polar angle of the final tagged e�

in the colliding e�� c:m: frame, measured from the in-
coming e� momentum direction. The integration region of
cos��

e� is constrained by the tagging criteria of Eq. (32)

j cos�e�j< 0:995 
 cos�min (144)

in the eþe� collision c.m. frame. We find

� 1þ zð1� cos�minÞ
½zþ ð1� zÞð1þ cos�minÞ=2�< cos��

e� < 1

� 1� cos�min

½zþ ð1� zÞð1� cos�minÞ=2� : (145)

The interaction Lagrangian relevant for the e�� ! e�H
process is

Leff ¼ 1

v
c2��A��A

�� þ 2

v
ðc2Z� � c3Z�ÞHZ��A

��:

(146)

The coupling c2�� dictates the �-exchange amplitude, and

the combination c2Z� � c3Z� dictates the Z-exchange am-

plitude in Fig. 9. The helicity amplitudes for the e�� !
e�H process are expressed as

Me��
�
0

2
¼ j�e�ð��Þ

��e

t1
�H��
�� þ gZee�

t1 �m2
Z

�HZ�
��

�
��ðk02; 
0

2Þ;

¼ �gZ
ffiffiffiffiffiffiffi
ŝx1

p t1 �m2
H

mZ

��e

t1
c2�� þ gZee�

t1 �m2
Z

� ðc2Z� � c3Z�Þ
� ffiffiffi

2
p

sin
��

2

�
�
�
0

2
� ŝ�m2

H

t1 �m2
H

1þ cos��

2

�
; (147)

where the �HVV
�� form factors are as in Eq. (13), j

�
e�ð��Þ is

the massless t-channel current of Eq. (113a), t1 ¼ ðk1 �

p1Þ2 ¼ �sx1ð1� cos��Þ=2, x1 is the energy fraction of the
tagged e�, �� is the scattering angle in the e�� rest frame,
k02 is the four momentum of the equivalent real photon
emitted from eþ. The amplitudes for eþ� ! eþH are
obtained from Eq. (147) simply by replacing �, gZee� , t1 ¼
ðk1 � p1Þ2, and 
0

2 by �, gZee�� , t2 ¼ ðk2 � p2Þ2, and 
0
1,

respectively, where �� is now the scattering angle between
the initial and final eþ in the eþ� rest frame.
It is instructive to show that the single-tag ðeÞeH cross

section of Eq. (142) reduces to the no-tag ðeeÞH cross
section of Eq. (132) in the limit of jt1j � m2

Z. In this limit,
the �-exchange contribution dominates the amplitude, and
by noting cos�� � 1 and x1 ¼ 1�m2

H=ŝ, Eq. (143) be-
comes

	̂e��!e�H
	
 ’ g2Ze

2c22��m
2
H

8�ŝm2
Z

Z d cos��

1� cos��
ð1� x1Þ

�
�
	
 þ x1

1� x1

�
2
;

¼ 1

ŝ

16�2

mH

���

Z dt

t

�

2�

�
	;
 þ 	;�
x

2
1

1� x1

�
;

¼ 1

ŝ

16�2

mH

���D
	

�=eð1� x1; Q

2Þ: (148)

Comparing the final expression of Eq. (148) with
Eq. (130a), we find that the term proportional to z, in the
	
 ¼ þdistribution from the electron helicity flip ampli-
tudes, is not reproduced, since we have neglected the
electron mass of the tagged e�. Inserting Eq. (148) in
Eq. (143), we reproduce the cross section (132) for the
no-tag ðeeÞH events.

B. Error estimation for c2�� and c2Z� � c3Z�

To calculate the SM 1-loop contribution, we again adopt
the approximation of replacing the 1-loop vertices by
localized effective couplings

c2�� ¼ cSM2�� þ�c2��; c2Z� ¼ cSM2Z� þ �c2Z�: (149)

It is important to note that since the virtuality of the tagged
e� currents (t) can be larger than the weak-boson mass
scale that dictates the spatial extension of the vertex, the
approximation of Eq. (149) is not as excellent as that in
Eq. (136) for the no-tag ðeeÞH events. In evaluating the SM
contribution, we therefore retain the t dependence of the
loop function [30]

cSM2�� ¼ cSM2��ðtÞ; cSM2Z� ¼ cSM2Z�ðtÞ; (150)

and use the t-dependent ‘‘couplings’’ in the evaluation of
the e� ! eH matrix elements. In other words, only the
new physics contributions via �c2�� and �c2Z� are as-

sumed to be local in Eq. (149). With regard to the H��
couplings, cSM2��ð0Þ ¼ �0:00 187 in Eq. (138) deter-

mines the H ! �� width, while it reduces toFIG. 9 (color online). Feynman diagram of e�� ! e�H.
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cSM2��ð�m2
ZÞ ¼ �0:00 160. Similarly, for the HZ� cou-

pling, cSM2Z�ðm2
ZÞ ¼ �0:00 322 determines the H ! Z�

width, while it reduces to cSM2Z�ð0Þ ¼ �0:00 276 and

cSM2Z�ð�m2
ZÞ ¼ �0:00 243, all for mH ¼ 120 GeV. As a

consequence of the W boson dominance in the loop, we
find that the ratio cSM2Z�ðm2

ZÞ=cSM2��ð0Þ ’ 1:7, is essentially

the ratio of the W boson gauge couplings gZWW=g�WW ’
1:8. Since the effective couplings are gauge dependent
when they are away from their on-shell limit, t ¼ 0 for
cSM2�� and t ¼ m2

Z for cSM2Z�, respectively, the SM cross

section based on the t-dependent effective couplings
should be regarded only as an order of magnitude estimate.
However, the box diagram contribution to the e� ! eH
process, which is necessary to recover the gauge invari-
ance, is found to be negligibly small numerically [30].

Because the single-tag ðeÞeH process has small cross
sections as shown in Fig. 3 and 4, we use only the total
cross section to constrain the H�� and HZ� couplings. In
order to quantify the effects of the e� beam polarization,
we obtain the following parametrization for the single-tag
e� events for the e� helicity � and unpolarized eþ2.

	� ¼ 1

2

Z
dz
X

0
1

	e��!e�H
�
0

1
D�=eþðz;Q2Þ

¼ A�ðc2��Þ2 þ B�ðc2Z� � c3Z�Þ2
þ C�c2��ðc2Z� � c3Z�Þ: (151)

Here, the average over eþ helicities is replaced by the sum
over the photon helicity 
0

1. We find for
ffiffiffi
s

p ¼ 500 GeV,

	R ¼ 15 000ðc2��Þ2 þ 0890ðc2Z� � c3Z�Þ2
� 5500c2��ðc2Z� � c3Z�Þ ¼ 0:025 fb; (152a)

	L ¼ 15 000ðc2��Þ2 þ 1200ðc2Z� � c3Z�Þ2
þ 6400c2��ðc2Z� � c3Z�Þ ¼ 0:066 fb; (152b)

and for
ffiffiffi
s

p ¼ 1 TeV,

	R ¼ 24 000ðc2��Þ2 þ 2900ðc2Z� � c3Z�Þ2
� 15 000c2��ðc2Z� � c3Z�Þ ¼ 0:022 fb; (153a)

	L ¼ 24 000ðc2��Þ2 þ 3900ðc2Z� � c3Z�Þ2
þ 17 000c2��ðc2Z� � c3Z�Þ ¼ 0:107 fb: (153b)

The large coefficients of ðc2��Þ2 indicate that the

�-exchange amplitude dominates the cross section even
for the tagged events. The effects of theHZ� couplings can

be measured from the interference between the
�-exchange and the Z-exchange amplitudes, which is de-
structive for eR and constructive for eL, reflecting the
relative sign of their couplings, g�eeL ¼ g�eeR ¼ �e and
gZeeL ¼ gZð�1=2þ sin2�WÞ, gZeeR ¼ gZsin

2�W. There-
fore, we expect that the beam polarization can be a power-
ful tool to distinguish the HZ� coupling from the H��
coupling.
It is also worth noting that the cross section after the e

tagging condition of Eq. (145) can become smaller at high
energies, as we find for 	R in Eqs. (152a) and (153a). In
Fig. 10, we show the rapidity distribution of tagged e� in
the laboratory frame. Although the total cross section
increases monotonically with

ffiffiffi
s

p
, the distribution shifts

to large � as
ffiffiffi
s

p
grows. It implies that more and more

fraction of events escape detection ( cos�e > 0:995 or
�e > 2:99) at high energies. The suppression of the cross
section 	R for (�e < 2:99) as shown in Fig. 10, can be
attributed to the cancellation between the � and Z ampli-
tudes for the tagged eR, with large scattering angle in the
e�� rest frame.
In terms of the above parameterizations Eqs. (152) and

(153), we can determine the total cross section for polar-
ized e� beam and unpolarized eþ beam as follows:

	e�HðP; �P ¼ 0Þ ¼
�
1þ P

2

�
	R þ

�
1� P

2

�
	L; (154a)

	eþHðP; �P ¼ 0Þ ¼ 1

2
ð	R þ 	LÞ: (154b)

At
ffiffiffi
s

p ¼ 500 GeV with L ¼ 500 fb�1, we find

	e�HðP ¼ þ0:8; �P ¼ 0Þ ¼ 0:030ð�0:011Þ fb; (155a)

	e�HðP ¼ �0:8; �P ¼ 0Þ ¼ 0:062ð�0:016Þ fb; (155b)

	eþHðP ¼ �0:8; �P ¼ 0Þ ¼ 0:046ð�0:0096Þ fb; (155c)

and at
ffiffiffi
s

p ¼ 1 TeV with L ¼ 500 fb�1, we find

	e�HðP ¼ þ0:8; �P ¼ 0Þ ¼ 0:030ð�0:011Þ fb; (156a)

	e�HðP ¼ �0:8; �P ¼ 0Þ ¼ 0:098ð�0:020Þ fb; (156b)

	eþHðP ¼ �0:8; �P ¼ 0Þ ¼ 0:064ð�0:011Þ fb: (156c)

The errors in the parentheses are for L ¼ 250 fb�1 each for
P ¼ 0:8 and P ¼ �0:8.
From Eqs. (152) and (155), we find

c2Z� � c3Z� ¼ �0:00 201� 0:0012
c2�� ¼ �0:00 166� 0:00 016

1:
�:71 1:

� �
(157)

at
ffiffiffi
s

p ¼ 500 GeV. The mean values may be interpreted as
the average of the t-dependent SM couplings in the tagged
events, which turn out to be approximately cSM2Z�ð�m2

ZÞ and
cSM2��ð�m2

ZÞ, but with slightly smaller magnitudes. The

smallness of the magnitude of hcSM2Z�ðtÞi reflects the larger

mean value of the momentum transfer hjtji in the �-Z
interference than in the purely �-exchange contribution.

2The coefficient A� is determined by evaluating the
�-exchange contribution only, such that the SM cross section
is reproduced with a constant c2��, which may be interpreted as
the average of ðc2��Þ2 ¼ hcSM2��ðtÞ2i��. Likewise, the coefficient
C� is determined by requiring that the SM contribution to the
�-Z exchange interference is reproduced for a constant value of
c2��ðc2Z� � c3Z�Þ ¼ hcSM2��ðtÞi��hcSM2Z�ðtÞiZ�. Finally, the coeffi-
cient B� is fixed by demanding that the total SM cross section is
reproduced for the above average values.
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When we compare the result Eq. (157) with that of the no-
tag ðeeÞH events in Eq. (141a), we find that the no-tag
events are about a factor 2 more sensitive to the H��
coupling. On the other hand, the sensitivity to the HZ�
coupling,�0:0012, is 1 order of magnitude worse than that
of the ZH process in Eq. (108) rescaled for L ¼ 500 fb�1.
Hence, the measurements of the single-tag ðeÞeH events do
not improve the constraint on the HZ� coupling
significantly.

For
ffiffiffi
s

p ¼ 1 TeV, we find

c2Z� � c3Z� ¼ �0:00 180� 0:00 063
c2�� ¼ �0:00 145� 0:00 014

1:
�:77 1:

� �
(158)

from Eqs. (153) and (156). The magnitudes of the mean
values decrease slightly from those of Eq. (157) at

ffiffiffi
s

p ¼
500 GeV, because of the higher value of the typical mo-
mentum transfer jtj at ffiffiffi

s
p ¼ 1 TeV. The error of c2�� is

almost a factor of 3 larger than that of the no-tag ðeeÞH
events, Eq. (141b), while that of c3Z� is more than 1 order

of magnitude larger than that from ZH events in Eq. (109),
rescaled for L ¼ 500 fb�1.

Although the process e� ! eH gives us clean measure-
ments of the HZ� couplings with e� beam polarization,

the sensitivity is rather low in eþe� collisions because of
the small and soft photon flux from the bremsstrahlung.
This process will become more important once the photon-
linear collider option is realized [30].

IX. LUMINOSITY UNCERTAINTY

So far, the errors and their correlations based on the
optimal observables method for Higgs-gauge-boson effec-
tive couplings are computed by assuming the true lumi-
nosity L. However, the error in the measurement of the L
can affect the measurements of some effective couplings.
We attempt here to study the impact of the luminosity
uncertainty on the precision measurements of the HVV
couplings.
In the presence of the luminosity uncertainty, the true

luminosity L can be estimated as

L ¼ f �L; f ¼ 1��f; (159)

where �L is the measured mean value, and �f is its 1-	
uncertainty. The �2 function given in Eq. (23) of Sec. III
should then be redefined as follows:

�2ðciÞ ! �2ðci; fÞ ¼
XN
k¼1

�
Nk

exp � Nk
thðciÞffiffiffiffiffiffiffiffiffi

Nk
exp

q �
2 þ

�
f� 1

�f

�
2
; (160a)

¼ XN
k¼1

�
L�SMð�kÞ�� �L½�SMð�kÞ þP

n
i¼1 ci�ið�kÞ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L�SMð�kÞ�
p �

2 þ
�
f� 1

�f

�
2
; (160b)

¼ �L
XN
k¼1

½ðf� 1Þ�SMð�kÞ þ
P

n
i¼1 ci�ið�kÞ�2

�SMð�kÞ �þ
�
f� 1

�f

�
2
; (160c)

!N!1Xn
i¼0

Xn
j¼0

ciðV�1
f Þijcj þ

�
f� 1

�f

�
2
; (160d)
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FIG. 10 (color online). The rapidity distributions of tagged e� in the lab. Frame for each initial helicity state and at each collision
energy. The thick solid line shows the detection limit, above which e� escape detection.
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where

ðV�1
f Þij ¼ �L

Z �ið�Þ�jð�Þ
�SMð�Þ d� (161)

is now ðnþ 1Þ � ðnþ 1Þ matrix with

c0 ¼ f� 1; �0ð�Þ ¼ �SMð�Þ: (162)

It is straightforward to integrate out the c0 ¼ f� 1
dependence and obtain the probability distribution of the
parameters c1 to cn in the presence of the luminosity
uncertainty. In our study, we note that the two couplings,
c1WW and c1ZZ have the weight functions that are identical
to the SM distribution.3 Because of this, we can study the
impacts of the luminosity uncertainty algebraically by
using the �2 functions written in terms of c1WW and c1ZZ.
We use

�c1WW
ð�Þ ¼ 2�SMð�Þ (163)

for the WW-fusion process given in Eq. (45), and

�c1ZZð�Þ ¼ 2�SMð�Þ; (164)

for the ZH production and double-tag eeH processes given
in Eqs. (73) and (110), respectively. We can express the
total �2 function with the luminosity uncertainty given in
Eq. (161) for a particular c.m. energy,

ffiffiffi
s

p
as

�2ðci; fÞ ffiffisp ¼ �2

�
c1WW ! c01WW ¼ c1WW þ f� 1

2

�
HWWffiffi
s

p

þ �2

�
c1ZZ ! c01ZZ ¼ c1ZZ þ f� 1

2

�
HZZffiffi
s

p

þ
�
f� 1

ð�fÞ ffiffisp
�
2
: (165)

In the following analysis, we assume that the luminosity
uncertainty is common to all the processes at each collision
energy

ffiffiffi
s

p
.

Let us examine the effects at
ffiffiffi
s

p ¼ 500 GeV in some
detail. The �2 function for the HWW process in Eq. (62)
can be expressed in the form

�2ðc1WW ! c01WWÞHWW
500 ¼ X

i;j

c0iWW½ðVHWW
500 Þ�1�ijc0jWW;

(166)

where c01WW ¼ c1WW þ ðf� 1Þ=2, c0iWW 
 ciWW (i � 1).
Likewise, the �2 function from the ZH and the double-tag
eeH processes in Secs. V and VI can be expressed as

�2ðc1ZZ ! c01ZZÞHZZ
500 ¼ X

k;l

c0k½ðVHZZ
500 Þ�1�klc0l; (167)

where c01ZZ ¼ c1ZZ þ ðf� 1Þ=2 and c02, c03, c04, c05, c
0
6 


c2ZZ, c3ZZ, c2Z�, c3Z�, c2��. Now, the luminosity uncer-

tainty in the �2 function of Eq. (165) at
ffiffiffi
s

p ¼ 500 GeV can
easily be factored out as

�2ðci; fÞ500 ¼
�
f� 1

ð�fÞeff500

þ ð�fÞeff500R

�
2 þ ~�2ðciÞ500;

(168)

where

1

½ð�fÞeff500�2
¼ 1

½ð�fÞ500�2
þ 1

4
½ðVHWW

500 Þ�1�11

þ 1

4
½ðVHZZ

500 Þ�1�11; (169a)

R ¼ 1

2

�X3
k¼1

ckWW½ðVHWW
500 Þ�1�1k

þ X6
k¼1

ck½ðVHZZ
500 Þ�1�1k

�
; (169b)

and the reduced �2 function is

~� 2ðciÞ500 ¼ �2ðciÞ500 � ½ð�fÞeff500�2R2: (170)

We can use the reduced �2 function to study the constraints
on the nonstandard couplings in the presence of the lumi-
nosity uncertainty. It should be noted that because of the
last term of Eq. (170) there appear correlations between the
HWW couplings and the HZZ=HZ�=H�� coupling mea-
surements. Therefore, the effects of the luminosity uncer-
tainty is important when we study the constraints on the
coefficients of the dimension-six operators, Eq. (12), since
some of them contribute to both couplings.
The reduced �2 function of Eq. (170) gives a 9� 9

covariance matrix. The results for
ffiffiffi
s

p ¼ 500 GeV, L ¼
500 fb�1, and �f ¼ 0:01 can be expressed as,

3For no-tag ðeeÞH and single-tag ðeÞeH processes, the H��
and HZ� couplings of the SM at one-loop order are used to
calculate the SM cross sections. There, however, the statistical
error is dominated, and the errors due to the luminosity uncer-
tainty can be safely neglected.
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c1WW ¼ �:045
c2WW ¼ �:046
c3WW ¼ �:013
c1ZZ ¼ �:013

c2ZZ ¼ �:00 059
c3ZZ ¼ �:00 044
c2Z� ¼ �:00 037
c3Z� ¼ �:000 080
c2�� ¼ �:0022

1
:990 1
:991 :995 1
:043 0: 0: 1
:0 0: 0: �:63 1
:0 0: 0: �:81 :033 1
:0 0: 0: �:006 �:063 :043 1
:0 0: 0: :0 :050 �:046 �:83 1
:0 0: 0: :22 �:27 �:28 �:040 :034 1

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA
: (171)

When the above results are compared with those without
the luminosity uncertainty in Eq. (63) for the HWW cou-
plings and the corresponding expression for the
HZZ=HZ�=H�� couplings, after rescaling of the errors
by 1=

ffiffiffi
5

p ’ 0:447, we find the following: The errors of
c1WW and c1ZZ are slightly larger than 1=

ffiffiffi
5

p
of the corre-

sponding statistical errors, while all the other errors are not
affected much. The correlations between c1WW and c2WW

or c3WW are reduced slightly in magnitude from Eq. (63),
and those correlations between c1ZZ and the other HZZ,
HZ�, H�� couplings are also reduced slightly in magni-
tude. Finally, the off-diagonal subcorrelation matrix in
Eq. (171) is almost vacant except for the ðc1WW; c1ZZÞ
component, which shows positive correlation because the
luminosity uncertainty affects both c1WW and c1ZZ cou-
plings in the same way. All the effects of the luminosity
uncertainty are rather small because the statistical errors of
c1WW and c1ZZ are �0:045 and �0:013, respectively,
which are significantly larger than the error from the
postulated luminosity uncertainty �f=2 ¼ 0:005. When
the errors due to the luminosity uncertainty become domi-
nant, the errors of c1WW and c1ZZ will stop decreasing with
the luminosity, and the correlation between c1WW and c1ZZ
will grow.

It is instructive to study the impact of the luminosity
uncertainty analytically in a very simplified example where
only the two couplings, c1WW and c1ZZ, are retained in the
amplitudes at

ffiffiffi
s

p ¼ 500 GeV. In this limit, the reduced �2

function of Eq. (170) is simply

~�2ðciÞ500 ¼ c21WW½ðVHWW
500 Þ�1�11 þ c21ZZ½ðVHZZ

500 Þ�1�11
� 1

4
½ð�fÞeff500�2ðc1WW½ðVHWW

500 Þ�1�11
þ c1ZZ½ðVHZZ

500 Þ�1�11Þ2;
¼
�
c1WW

�c1WW

�
2 þ

�
c1ZZ
�c1ZZ

�
2

� 1

4
½ð�fÞeff500�2

�
c1WW

ð�c1WWÞ2
þ c1ZZ

ð�c1ZZÞ2
�
2
;

(172)

where the combined error of ð�fÞeff500 is

½ð�fÞeff500��2 ¼ ½ð�fÞ500��2 þ 1

4
ð�c1WWÞ�2

þ 1

4
ð�c1ZZÞ�2: (173)

As noted above, the second term in Eq. (172) generates the
correlation between the errors of c1WW and c1ZZ. For
example, if we take the limit where the statistical errors
are much smaller than the luminosity uncertainty,
ð�c1WWÞ2, ð�c1ZZÞ2 � ð�fÞ2, the above reduced �2 func-
tion can be expressed as

~�2ðciÞ500 			!ð�c1VV Þ2��f2 ðc1WW � c1ZZÞ2
ð�c1WWÞ2 þ ð�c1ZZÞ2

þ 4

ð�fÞ2
½ð�c1ZZÞ2c1WW þ ð�c1WWÞ2c1ZZ�2

½ð�c1WWÞ2 þ ð�c1ZZÞ2�2

þO
�

1

ð�fÞ4
�
: (174)

In the leading term, only the combination (c1WW � c1ZZ) is
constrained, and the next-to-leading term proportional to
1=ð�fÞ2 constrain the combination ð�c1ZZÞ2c1WW þ
ð�c1WWÞ2c1ZZ. In the limit of large statistics, the first
term dominates the �2 function and the correlation ap-
proaches the unity.
In Fig. 11, we show the errors of c1WW and c1ZZ cou-

plings as a function of the integrated luminosity L for the
luminosity uncertainty �f ¼ 0:01 at

ffiffiffi
s

p ¼ 500 GeV. The
solid line shows the error of the combination c1WW � c1ZZ,

which decreases as 1=
ffiffiffiffi
L

p
asymptotically, since the lumi-

nosity uncertainty is canceled out by taking the difference.
On the other hand, the dashed line for c1WW , and the
dashed-dotted line for c1ZZ, approaches the same value
ð�fÞ=2, showing that the individual errors will be domi-
nated by the luminosity uncertainty. More explicitly, the
errors of the couplings, c1WW and c1ZZ, can be expressed as

c1WW ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
�f

2

�
2 þ ð�c1WWÞ2

s
;

c1ZZ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
�f

2

�
2 þ ð�c1ZZÞ2

s
;

(175a)

with the correlation
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� ¼
��

1þ 4
ð�c1WWÞ2
ð�fÞ2

��
1þ 4

ð�c1ZZÞ2
ð�fÞ2

���ð1=2Þ
:

(175b)

X. CONCLUSION AND DISCUSSION

The imprint of the dynamics of the symmetry breaking
physics is inherent in the interactions of the Higgs boson
and the gauge bosons. In this article, we attempt to evaluate
the potential of the future linear eþe� colliders, such as the
ILC, in probing the dynamics of all the CP-even and
gauge-invariant dimension-six operators of the SM fields
that affect the Higgs-gauge-boson couplings when there is
one SM-like light Higgs boson. For this purpose, we study
all the processes that are sensitive to the HVV couplings:
the �e ��eH production viaWW fusion is sensitive to HWW
couplings, the ZH production process is sensitive to HZZ
and HZ� couplings, the double-tag eeH production pro-
cess via t-channel Z and � exchange is also sensitive to
HZZ, HZ�, and H�� coupling, the no-tag ðeeÞH process
measures the H�� coupling, and the single-tag ðeÞeH
process measures HZ� and H�� couplings. In order to
quantify the resolving power of each process, we allow all
the effective HVV couplings to vary freely in the fit and
adopt the optimal observables method to constrain them in
each process, at a few selected collision energies (

ffiffiffi
s

p ¼
250, 350, 500, 1000 GeV), and with or without e� beam
polarization.

A. Summary of the constraints on the HVV couplings

Here, we summarize our results for the effective HVV
couplings at the ILC.

(i) All our results have been presented for nominal
integrated luminosity of L0 ¼ 100 fb�1, except for
the no-tag ðeeÞH and single-tag ðeÞeH events, where

we give our error estimates for L ¼ 500 fb�1 atffiffiffi
s

p ¼ 500 GeV and 1 TeV only.
(ii) Most of our results have been given for e� beam

polarization of jPj ¼ 80% with no eþ beam polar-
ization j �Pj=0, where exactly half of the total inte-
grated luminosity L is delivered with P ¼ jPj and
P ¼ �jPj.

(iii) Results for jPj ¼ j �Pj ¼ 0 have also been calcu-
lated for all the cases [24], but presented only for
the ZH production process at

ffiffiffi
s

p ¼ 250 GeV; see
Eq. (104).

(iv) Our results for the HWW effective couplings are
shown in Eq. (66) for

ffiffiffi
s

p ¼ 250 GeV, Eq. (67) forffiffiffi
s

p ¼ 350 GeV, Eq. (62) for
ffiffiffi
s

p ¼ 500 GeV, and
Eq. (68) for

ffiffiffi
s

p ¼ 1 TeV.
(v) The results for the HZZ and HZ� couplings in ZH

production process with jPj ¼ 80% are shown in
Eq. (106) for

ffiffiffi
s

p ¼ 250 GeV, Eq. (107) for
ffiffiffi
s

p ¼
350 GeV, Eq. (108) for

ffiffiffi
s

p ¼ 500 GeV, and
Eq. (109) for

ffiffiffi
s

p ¼ 1 TeV.
(vi) The results for the HZZ, HZ� and H�� couplings

in double-tag eeH process from t-channel vector-
boson fusion with jPj ¼ 80% are shown in
Eq. (123) for

ffiffiffi
s

p ¼ 250 GeV, Eq. (124) for
ffiffiffi
s

p ¼
350 GeV, Eq. (125) for

ffiffiffi
s

p ¼ 500 GeV, and
Eq. (126) for

ffiffiffi
s

p ¼ 1 TeV.
(vii) The H�� coupling results from the no-tag ðeeÞH

process are given for L ¼ 500 fb�1 in Eq. (141a)
at

ffiffiffi
s

p ¼ 500 GeV, and in Eq. (141b) at
ffiffiffi
s

p ¼
1 TeV.

(viii) The HZ� and H�� coupling results from the
single-tag ðeÞeH process for L ¼ 500 fb�1 with
jPj ¼ 80% are given in Eq. (157) at

ffiffiffi
s

p ¼
500 GeV, and in Eq. (158) at

ffiffiffi
s

p ¼ 1 TeV.
(ix) The impact of the luminosity uncertainty, L ¼ f �L

with f ¼ 1� �f, should be taken into account
according to Eq. (165), where the coefficients
c1WW and c1ZZ in the �2 function at each energy
is replaced by c01VV ¼ c1VV þ ðf� 1Þ=�f and by

adding the term ðf� 1Þ2=ð�fÞ2 at each energy.
After squaring out the (f� 1) dependence, we
obtain the reduced �2 function ~�2ðciÞ at each
energy.

The combined analyses in this section are performed by
gathering all the above results, by adding all the �2 func-
tions with appropriate weights.
In particular, we report the following two cases:

�2ðciÞI ¼ L250

L0

~�2ðciÞ250 þ L350

L0

~�2ðciÞ350

þ L500

L0

~�2ðciÞ500; (176a)

�2ðciÞIþII ¼ �2ðciÞI þ L1000

L0

~�2ðciÞ1000; (176b)
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p ¼ 500 GeV when the luminosity uncertainty
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where �2ðciÞI gives the combined results of the ILC phase I
with the maximum energy of

ffiffiffi
s

p ¼ 500 GeV and
�2ðciÞIþII gives that of combining the results from ILC-I
and ILC-II at

ffiffiffi
s

p ¼ 1 TeV. The reduced �2 function at
each energy, ~�2ðciÞ ffiffisp , are obtained for the luminosity

uncertainty of ð�fÞ ffiffisp at each energy.

Since we present the individual covariance matrix sepa-
rately in each process at

ffiffiffi
s

p ¼ 250 GeV, 350 GeV,
500 GeV, and 1 TeV, in terms of its eigenvectors and square
root of eigenvalues, we can estimate the constraints for an
arbitrary integrated luminosity with an arbitrary luminosity
uncertainty�f at each energy. As an example, we show the

results for

L250 ¼ L350 ¼ 100 fb�1; L500 ¼ L1000 ¼ 500 fb�1;

(177)

when the luminosity uncertainty is �f ¼ 1% at all
energies.
Using the �2 function defined in Eq. (176a), we evaluate

the errors and correlations of the effective couplings for
ILC-I, with the integrated luminosities given in Eq. (177)
and obtain

c1WW ¼ �:022
c2WW ¼ �:023
c3WW ¼ �:0065
c1ZZ ¼ �:0067
c2ZZ ¼ �:00 048
c3ZZ ¼ �:00 021
�c2Z� ¼ �:00 030
c3Z� ¼ �:000 073
�c2�� ¼ �:000 075

1
:96 1
:96 :98 1
:17 :0 :0 1
�:0 :0 :0 �:49 1
:0 :0 :0 �:26 �:16 1
�:0 :0 :0 :0 �:067 :072 1
:0 :0 :0 �:001 :049 �:090 �:81 1
:0 :0 :0 :004 �:006 �:002 �:001 :001 1

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA
: (178)

When we compare the above combined results from the
three ILC-I energies with those of Eq. (171) at

ffiffiffi
s

p ¼
500 GeV, we observe the following: As for the HWW
couplings, we observe reduction of the errors of all the 3
couplings and that of correlations. This is essentially be-
cause contributions have different dependence on

ffiffiffi
s

p
. As

for the HZZ=HZ�=H�� couplings, the errors of c2ZZ,
c3ZZ, c2Z� and c3Z� are essentially determined by the

ffiffiffi
s

p ¼
500 GeV experiment, while that of c1ZZ is reduced signifi-
cantly by including the lower energy data, because the ZH
production cross section is larger at lower energies, see
Fig. 3. The error of c2�� is essentially determined by the
no-tag ðeeÞH events. We find that the single-tag ðeÞeH
events, Eq. (157), do contribute significantly to improve
the HZ� couplings measurement.

Only the errors of c1WW and c1ZZ and the corresponding
rows of the correlation matrix are affected by the luminos-
ity uncertainty �f ¼ 0:01 at each energy, assumed in the

fit. By combining the results of Eqs. (62), (64), and (65) we
obtain the combined error of c1WW without the luminosity
uncertainty to be 0.025, which is still 5 times larger than the
error due to the luminosity uncertainty, �f=2 ¼ 0:005 at
each energy. Therefore, the error of c1WW does not increase
significantly with the inclusion of the luminosity error. On
the other hand, by combining the results at

ffiffiffi
s

p ¼ 250, 350,
and 500 GeV, we find that the combined error of c1ZZ
without the luminosity uncertainty is 0.0045, which is
comparable to the error due to the luminosity uncertainty.
We therefore find almost a 30% larger error for c1ZZ in
Eq. (178). The correlation between c1WW and c1ZZ is now
0.17, which is still small because the statistical error of
c1WW is much larger than the error due to the luminosity
uncertainty.
After combining the ILC-I and ILC-II results with the

integrated luminosities of Eq. (177), we find

c1WW ¼ �:0089
c2WW ¼ �:0077
c3WW ¼ �:0015
c1ZZ ¼ �:0058
c2ZZ ¼ �:00 032
c3ZZ ¼ �:000 063
�c2Z� ¼ �:00 018
c3Z� ¼ �:000 023
�c2�� ¼ �:000 039

1
:80 1
:80 :96 1
:49 :0 :0 1
�:0 :0 :0 �:36 1
�:0 :0 :0 �:10 �:23 1
�:0 :0 :0 �:003 �:061 :055 1
:0 :0 :0 :0 :034 �:096 �:60 1
:0 :0 :0 :003 �:007 �:0 �:002 :001 1

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA
: (179)

SUKANTA DUTTA, KAORU HAGIWARA, AND YU MATSUMOTO PHYSICAL REVIEW D 78, 115016 (2008)

115016-34



The HWW couplings are measured much more accurately
than the ILC-I alone case, mainly because of the large
WW-fusion cross section at

ffiffiffi
s

p ¼ 1 TeV; see Fig. 3. The
correlations between the error of c1WW and those of c2WW

and c3WW are reduced because of the strong energy depen-
dence of the contributions from the higher-dimensional
operators, as discussed in Sec. IV. In contrast, the reduction
of the error of c1ZZ is marginal and the correlation between
c1WW and c1ZZ grows to 0.49, reflecting the dominance of
the luminosity uncertainty �f=2 ¼ 0:005. The errors of
c3ZZ and c3Z� are a factor of 3 smaller than the ILC-I
results in Eq. (178), mainly because of the strong energy
dependence of their contributions; as discussed in Sec. VI.
The error of c2�� is roughly half of the ILC-I result in
Eq. (178), partly because of the 2.3 times larger cross
section of the no-tag ðeeÞH events, see Fig. 3 and
Eqs. (140) and (141), and partly because of the contribu-
tions from the double-tag eeH events.

B. Comparison with other papers

First, we would like to compare our results with those of
Ref. [13], as the present work is envisaged as an extension
of this piece of work. The authors of Ref. [13] analyzed the
ZH production process for mH ¼ 120 GeV both with un-
polarized and 90% polarized e� beam in eþe� collisions,
using all the Z-boson decay modes. The study was based
on the optimal observables method by allowing all the
couplings to vary simultaneously. Although the formalism
presented in Sec. V of this report is significantly more
compact than that of Ref. [13], we reproduce all the errors
and their correlations for both unpolarized and 90% polar-
ized e� beams at

ffiffiffi
s

p ¼ 250 GeV as given in Eqs. (5.4) and
(5.9), respectively, as well as Eq. (5.13) of Ref. [13], forffiffiffi
s

p ¼ 500 GeVwith 90% polarized e� beam. Note that the
authors in Ref. [13] considered the integrated luminosity
10 fb�1, and therefore the errors in Eqs. (5.4), (5.9), and

(5.13) should be multiplied by 1=
ffiffiffiffiffiffi
10

p
for comparison with

our results. It is worth noting here that the � lepton polar-
ization and the b jet charge identification with the effi-
ciency 40% and 20%, respectively, considered in Ref. [13]
have little impact on the final results once the e� beam
polarization is available. The reduction of the beam polar-
ization from 90% considered in Ref. [13] to 80% in this
report does lead to a slight increase in the error of theHZ�
couplings by about 13%.

Next, we compare our results with Tables II and III of
Ref. [15], where the authors estimated the 3	 bounds on
c1ZZ, c2ZZ, c1WW and c2WW (�aZ, �bZ=2, �aW and
�bW=2, respectively, in their notation). This analysis was
performed for unpolarized eþe� collisions at

ffiffiffi
s

p ¼
500 GeV, with L ¼ 500 fb�1 and mH ¼ 120 GeV. It is
worth noting that to derive these bounds they vary one
coupling at a time and hence the inclusion of the 1%
systematic error (accruing from luminosity uncertainty,

etc.) dominates their fluctuation estimation for all the
observed cross sections. Their results can be easily repro-
duced from ours simply by setting all the couplings to zero
except for the one whose error is estimated, in the respec-
tive �2 function for the specified process with an appro-
priate integrated luminosity, which should be corrected for
the Higgs-boson decay branching fraction. The systematic
error of 1% is then added to the statistical error in quad-
rature. For instance, the 3	 limit jc1ZZj � 0:034 [15] is
found from the double-tag eeH process excluding the Z !
eþe� events. To compare, we set all the other couplings to
zero in the �2 function and find c1ZZ ¼ �0:0092 for L ¼
500 fb�1 with BðH ! b �bÞ ¼ 0:9. Now, adding the system-
atic error of 1% in quadrature we find c1ZZ ¼ �0:0105 and
the 3	 limit is jc1ZZj � 0:032. The limit jc2ZZj � 0:0022
[15] is obtained from the observed ZH production cross
section, where Z decays to muon pair and light quarks
(excluding b quark) pair have been considered. Under
similar conditions we find the statistical error of c2ZZ ¼
�:00 059. Since the luminosity error does not affect the
measurement of c2ZZ, this gives the 3	 limit of jc2ZZj<
0:0018, which shows an improvement by a factor of 1.3.
We find that this difference is due to the use of the optimal
observable, i.e., the differential distribution which is linear
in c2ZZ; the quoted limit in [15] is reproduced if we use
only the c2ZZ effects on the total cross section. Likewise,
we reproduce the bound jc1WW j, while we find a factor of 2
better bound on jc2WW j, which can be attributed to our use
of optimal weight function.
We also compare our results on c1ZZ and c1WW couplings

with those of Ref. [17]. Since they studied possible con-
straint on the operator O�2 (O1 in their notation), we

present our comparison result in the next subsection; see
the second footnote.

C. Constraints on the dimension-six operators

The constraints on the effectiveHVV couplings given in
Eqs. (178) and (179) should be expressed as those of the 8
dimension-six operators of Eq. (2) in order to compare the
power of ILC precision measurements with that of the
other experiments. All the effective HVV couplings are
linear combinations of the coefficients fi=�

2’s of these
operators, as given in Eq. (12). It is clear from Eq. (12) that
the coefficients f�1, f�2, f�4 cannot be determined

uniquely from the HVV coupling measurements alone.4

We therefore present constraints on two combinations of
the three coefficients, f�1 and 3f�4 � 2f�2. Our results

are hence for the 7 coefficients f�1, fBW , fW , fB, fWW ,

fBB, and 3f�4 � 2f�2.

The combined ILC-I results of Eq. (178) lead to the
following constraints on the dimension-six operators,

4For instance, the measurement of the triple Higgs-boson
coupling is necessary to constrain all the three operators.
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ð1 TeV
� Þ2f�1 ¼ �:091

ð1 TeV
� Þ2fBW ¼ �:35

ð1 TeV
� Þ2fW ¼ �:051

ð1 TeV
� Þ2fB ¼ �:084

ð1 TeV
� Þ2fWW ¼ �:22

ð1 TeV
� Þ2fBB ¼ �:56

ð1 TeV
� Þ2ð3f�4 � 2f�2Þ ¼ �:36

1
�:40 1
:37 :23 1
:23 �:49 :35 1
:59 �:91 �:20 :26 1
�:49 :98 :22 �:41 �:96 1
�:052 �:017 :060 :010 :053 �:032 1

0
BBBBBBBBBB@

1
CCCCCCCCCCA
: (180)

We find that the three coefficients, f�1, fW , and fB can be
constrained rather accurately, with around 5% accuracy for
� ¼ 1 TeV, and rather independently of the other opera-
tors. The coefficient f�1 is measured accurately, because it
contributes with the opposite sign to c1WW and c1ZZ; see
Eqs. (12a) and (12b). In other words, f�1 is a measure of
the difference between the HZZ and the HWW coupling
strengths. On the other hand, the error of the 3f�2 � 2f�4

is rather large, since it measures the overall strengths of the
HVV couplings. In fact, we find that it is only the error of
3f�2 � 2f�4, which is affected significantly by the lumi-

nosity uncertainty of �f ¼ 0:01. When we set �f ¼ 0, its
error is reduced to 0.14,5 but none of the errors of the other
operators and their correlations are affected significantly.
In addition, the three coefficients fBW , fWW , and fBB are
poorly constrained, while their errors are strongly corre-
lated, with the correlation matrix elements of �0:91, 0.98,
�0:96, suggesting the presence of their linear combina-
tion, which can be measured accurately. We therefore
present constraints on the 6 operators, after integrating
out the contributions from 3f�2 � 2f�4 Eq. (180), in terms
of the eigenvectors and their errors

�:096f�1 � :29fBW � :26fW þ :31fB þ :73fWW þ :47fBB ¼ �:026; (181a)

�:35f�1 � :18fBW þ :84fW � :28fB þ :21fWW þ :13fBB ¼ �:029; (181b)

�:49f�1 þ :63fBW þ :077fW þ :47fB þ :22fWW � :32fBB ¼ �:039; (181c)

:59f�1 þ :020fBW þ :47fW þ :65fB � :078fWW þ :062fBB ¼ �:088; (181d)

:59f�1 þ :49fBW þ :057fW � :43fB þ :53fWW � :093fBB ¼ �:11; (181e)

�:064f�1 þ :50fBW þ :016fW � :052fB � :31fWW þ :81fBB ¼ �:69: (181f)

As anticipated, we find 3 combinations of the 6 coefficients, whose errors are smaller than 5% for � ¼ 1 TeV. The worst
constrained combination of Eq. (181f) has a much larger error of 68%, showing the poorly constrained combination of the
three coefficients fBW , fWW , and fBB, which leads to their large errors and the strong correlations among themselves in
Eq. (180). It is worth noting here that the eigenvector of the most accurately measured combination in Eq. (181a) has a
significant contribution from the constraint on c2��, which is proportional to fBW � fWW � fBB in Eq. (12e). In fact, if we
drop the no-tag ðeeÞH events from the analysis, the eigenvector with smallest error becomes essentially that of Eq. (181b)
with a dominant fW term, which contribute to the c3ZZ, c3Z� and c3WW couplings in Eqs. (12g)–(12i). Also as expected,
none of the results of Eq. (181), neither the eigenvectors nor errors, are affected significantly by the luminosity uncertainty
of �f ¼ 0:01.

It is worth reporting here the importance of the e� beam polarization to obtain the previous results. By setting jPj ¼ 0,
we find for the same ILC-I integrated luminosities and their errors of �f ¼ 0:01,

ð1 TeV
� Þ2f�1 ¼ �0:17

ð1 TeV
� Þ2fBW ¼ �1:6

ð1 TeV
� Þ2fW ¼ �0:22

ð1 TeV
� Þ2fB ¼ �1:2

ð1 TeV
� Þ2fWW ¼ �0:61

ð1 TeV
� Þ2fBB ¼ �2:1

ð1 TeV
� Þ2ð3f�4 � 2f�2Þ ¼ �0:38

1
:12 1
:45 �:051 1
�:62 �:089 �:91 1
:41 �:83 :21 �:24 1

�:031 :986 �:099 :005 �:91 1
:13 :30 �:078 �:009 �:14 :26 1

0
BBBBBBBBBB@

1
CCCCCCCCCCA
: (182)

5The authors of Ref. [17] studied possible constraints on the dimension-six operator O�2 (O1 in their notation), which affects the
HZZ and HWW couplings by considering ZH production, WW-fusion and double-tag eeH processes. They found the uncertainty of
0.005 for the coupling 2c1ZZ ¼ 2c1WW (a1 in their notation) at

ffiffiffi
s

p ¼ 500 GeV for L ¼ 1 ab�1 with BðH ! b �bÞ ¼ 0:9 and 80%
b-tagging efficiency. Our result of 3f�4 � 2f�2 ¼ �:14 corresponds to 2c1ZZ ¼ 2c1WW 	 �:0042, even though the total integrated
luminosity of our analysis is 700 fb�1. This improvement is mainly due to the optimal observable method, but the luminosity
uncertainty will limit our measurement.
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It is striking to find that all the errors except that of 3f�2 � 2f�4 are larger by more than a factor of 3 to 9 for the same
luminosity. This is essentially because of the incapability to resolve the nonstandard HZZ and HZ� couplings in the
absence of beam polarization. On the other hand, we notice extremely strong correlations among the errors of fBW , fWW ,
and fBB, and moderately strong correlation of�0:91 between the errors of fW and fB. We therefore give the eigenvectors
and their errors for the three most accurately measured combinations after 3f�4 � 2f�2 is integrated out;

�:24f�1 � :43fBW þ :27fW þ :052fB þ :66fWW þ :50fBB ¼ �:028; (183a)

�:53f�1 þ :44fBW þ :64fW þ :12fB þ :052fWW � :30fBB ¼ �:035; (183b)

:72f�1 � :092fBW þ :66fW þ :15fB � :12fWW þ :045fBB ¼ �:083: (183c)

It is remarkable that the error of the most accurately measured combination in Eq. (183a) is not much different from that of
Eq. (181a). The reason is partly because both of them receive dominant contribution from the no-tag ðeeÞH events that
measure the H�� coupling, which does not depend on the beam polarization. The second and the third combination of
Eqs. (183b) and (183c) have dominant contributions from the fW and f�1. Except for the these three combinations, all the
other eigenvectors have errors larger than 0.1 for � ¼ 1 TeV.

Finally, our results for the combined ILC-I and ILC-II analysis, Eq. (179) gives

ð1 TeV
� Þ2f�1 ¼ �0:56

ð1 TeV
� Þ2fBW ¼ �:22

ð1 TeV
� Þ2fW ¼ �:015

ð1 TeV
� Þ2fB ¼ �:026

ð1 TeV
� Þ2fWW ¼ �:14

ð1 TeV
� Þ2fBB ¼ �:34

ð1 TeV
� Þ2ð3f�4 � 2f�2Þ ¼ �:34

1
�:42 1
:22 :21 1
:12 �:32 :32 1
:61 �:91 �:21 :13 1
�:51 :98 :21 �:25 �:96 1
:005 �:005 :029 :002 :028 �:014 1

0
BBBBBBBBBB@

1
CCCCCCCCCCA
: (184)

When compared with the ILC-I only results of Eq. (180), we find that the errors of fW and fB are reduced to 1=3, those of
f�1, fBW , fWW and fBB are reduced to 2=3, while that of 3f�2 � 2f�4 remains the same. The reduction of the errors in fB
and fW is a result of the strong constraints on the c3WW , c3ZZ and c3Z� couplings at high energies. The strong correlations
among the errors of fBW , fWW , and fBB remain unchanged, suggesting the persistent importance of theH��measurement
via no-tag ðeeÞH events. The error of the combination 3f�2 � 2f�4 does not change, because it is dominated by the
luminosity uncertainty. If we set �f ¼ 0, it reduces to �0:070.

As in the ILC-I only case, we obtain the eigenvectors and their errors after integrating out the uncertainty in 3f�2 �
2f�4, and hence also over the luminosity error. We find,

�:24f�1 þ :001fBW þ :95fW � :29fB � :005fWW � :028fBB ¼ �:012; (185a)

�:085f�1 � :48fBW þ :057fW þ :16fB þ :66fWW þ :54fBB ¼ �:015; (185b)

�:27f�1 þ :36fBW þ :21fW þ :84fB þ :15fWW � :17fBB ¼ �:021; (185c)

:70f�1 � :35fBW þ :22fW þ :42fB � :39fWW þ :13fBB ¼ �:038; (185d)

:64f�1 þ :53fBW þ :043fW � :14fB þ :54fWW � :068fBB ¼ �:062; (185e)

�:066f�1 þ :50fBW þ :008fW � :016fB � :31fWW þ :81fBB ¼ �:43: (185f)

We now find that 5 combinations out of 6 coefficients are
constrained better than 5% for � ¼ 1 TeV. We noticed
that the most accurately measured combination in
Eq. (185a) is now dominated by fW , reflecting the strongffiffiffi
s

p
dependence of the c3WW , c3ZZ and c3Z� couplings; see

Eq. (12g) to Eq. (12i). The reduction of the error from that
of the corresponding combination in Eq. (181b) is 60%.
The second best constrained combination, Eq. (185b), can
be identified as the c2�� combination, whose error is
reduced by 40% from the ILC-I result of Eq. (181a). The
coefficient of fB dominates the third accurately measured
combination, Eq. (185c). The worst measured combination

in Eq. (185f) is exactly the same as that of ILC-I only result
in Eq. (181f), while its error is reduced to about 2=3,
reflecting a factor of 3 larger cross sections of the dominant
WW- and ZZ-fusion processes at

ffiffiffi
s

p ¼ 1 TeV as com-
pared with those at

ffiffiffi
s

p ¼ 500 GeV; see Fig. 3.

D. Comparison with the precision electroweak
measurements

A clear advantage of using the higher-dimensional op-
erators to parametrize possible new physics contribution is
that we can compare the sensitivity and complementarity

MEASURING THE HIGGS-VECTOR BOSON COUPLINGS AT . . . PHYSICAL REVIEW D 78, 115016 (2008)

115016-37



of any experiments, whether at high energies or low en-
ergies, in a model-independent manner.

Although the HVV couplings can also be measured at
the LHC in the Higgs-strahlung processes (WH and ZH
production) and in the weak-boson fusion processes, the
expected sensitivity to the higher-dimensional operators
[31,32] is not competitive with that expected at the ILC.
On the other hand, the sensitivity of the precision mea-
surements of the Z-boson and the W-boson properties on
the higher-dimensional operators will remain competitive
even in the ILC era. In this last subsection, we therefore
compare our results with those of the present and future
precision electroweak measurements. Although the results
from LEP and SLC experiments have been finalized [33],
both the mean values and the errors of the coefficients of
the two operators,O�1 andOBW in Eq. (2), will depend not

only on mH but also strongly on the continuously improv-
ing measurements of mt and mW , and to a lesser extent on
�sðmZÞMS and �ðm2

ZÞ. We therefore present details of the

dependences of the precision observables on these
parameters.

It is well known that the two operators O�1 and OBW in

Eq. (2) contribute to the Z- andW-boson properties [10,34]

via the oblique parameters S and T [21,35,36]

ð�SÞNP ¼ �4�
v2

�2
fBW; (186a)

ð�TÞNP ¼ � 1

2�

v2

�2
f�1: (186b)

Here, ð�SÞNP and ð�TÞNP are the new physics contribu-
tions to the S and T parameters, respectively. All the
Z-boson parameters are parametrized in terms of the two
parameters �SZ and �TZ [37], which are related to the S
and T parameters as

�SZ ¼ �Sþ �RZ; (187a)

�TZ ¼ �T þ 1:49�RZ; (187b)

where �RZ denotes the difference in the effective Z-boson
coupling, �g2Zðq2Þ [23], between q2 ¼ 0 (where S and T
parameters are defined) and q2 ¼ m2

Z (where the coupling
is measured precisely at LEP and SLC). By using the 13
data set of Z-pole parameters [33], we obtain the following
fit in terms of 4 parameters �SZ, �TZ, mt, and �sðmZÞMS;

�SZ ¼ 0:037þ 0:0045xt � 0:037xs � 0:105

�TZ ¼ 0:043þ 0:0084xt � 0:065xs � 0:136

1:

0:90 1:

 !
; (188a)

�2
min ¼ 15:5þ

�
xt þ xs þ 2:8

4:3

�
2 þ

�
xs þ 0:17

0:79

�
2
: (188b)

Here, xt ¼ ðmt � 172 GeVÞ=3 GeV and xs ¼ ð�s �
0:118Þ=0:003. The direct mt dependence of the fit comes
from the Zb �b vertex correction, and the �s dependence
comes from �ðZ ! hadronsÞ.

In the above fit, �S, �T, and �RZ are measured from
their reference values in the SM at mH ¼ 100 GeV, mt ¼
172 GeV, �sðmZÞMS ¼ 0:118, and ��5

had ¼ 0:0277.
Because the values of mH, mt, �s, and ��5

had will be

measured precisely in the future, we parametrized their
dependence as [37,38]

ð�SÞSM ¼ 0:0963xh � 0:0224x2h þ 0:0026x3h � 0:0014xt

� 0:033xa; (189a)

ð�TÞSM ¼ �0:0432xh � 0:0539x2h þ 0:0096x3h
þ 0:0367xt � 0:0007xhxt � 0:0033xs (189b)

ð�RZÞSM ¼ 0:00 838ð1� e�2xhÞ; (189c)

where xh ¼ lnðmH=100 GeVÞ and xa ¼ ð��5
had �

0:0277Þ=0:0003.
In addition to the Z-boson parameters, the W-boson

mass is also sensitive to the operators f�1 and fBW . Their

dependences can be parametrized as

mW½GeV� ¼ 80:318� 0:288ð�SÞ þ 0:418ð�TÞ
þ 0:337ð�UÞ � 0:0055xa; (190)

where the SM contribution to the U parameter is

ð�UÞSM ¼ �0:2974xh � 0:0260x2h þ 0:0772xt

þ 0:0004x2t ; (191)

We note that none of the dimension-six operators in Eq. (2)
contribute to �U and �RZ;

ð�UÞNP ¼ ð�RZÞNP ¼ 0: (192)

By using the fit Eq. (188) of the LEP and SLC results
[33] on the Z parameters, and the latest estimates of mW ,
mt, �s [2] and ��5

had [39]

mW½GeV� ¼ 80:403� 0:029; (193a)

mt½GeV� ¼ 172:5� 2:3; (193b)

�sðmZÞMS ¼ 0:118� 0:002; (193c)

��5
had ¼ 0:02 768� 0:00 022; (193d)

we find the constraints
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ð1 TeV
� Þ2f�1 ¼ �0:048� 0:028

ð1 TeV
� Þ2fBW ¼ �0:093� 0:14

1:
0:83 1:

� �
; (194)

with �2
min=d:o:f: ¼ 20:5=12, for mH ¼ 120 GeV (xh ¼

0:1823). By comparing Eq. (194) with Eq. (180) for ILC-
I and Eq. (184) for the combined ILC-I and ILC-II analysis,
we find that the low-energy data constrain f�1 and fBW
better than the ILC. On the other hand, the two combina-
tion of the operators that are constrained by the low-energy

data

:987f�1 � :16fBW ¼ �0:032� 0:015; (195a)

:16f�1 þ :987fBW ¼ �0:10� 0:14 (195b)

are quite orthogonal to the most precisely measured com-
binations at ILC-I, Eq. (180), and those in the combined
ILC-I and ILC-II analysis, Eq. (184). For instance, if we
combine Eqs. (184) and (194), we find

ð1 TeV
� Þ2f�1 ¼ �0:048� :020

ð1 TeV
� Þ2fBW ¼ �0:093� :10
ð1 TeV

� Þ2fW ¼ �:015
ð1 TeV

� Þ2fB ¼ �:025
ð1 TeV

� Þ2fWW ¼ �:065
ð1 TeV

� Þ2fBB ¼ �:15

1
:68 1
:27 :28 1
�:12 �:17 :38 1
�:34 �:65 �:40 �:25 1
:59 :93 :36 �:009 �:86 1

0
BBBBBBBB@

1
CCCCCCCCA
; (196)

and now all the 6 operator coefficients are constrained
rather independently, except for fBB, which is still corre-
lated with fBW and fWW . It is remarkable that even the
errors of f�1 and fBW are reduced significantly (� 30%)
by the ILC data. Because of the strong correlation among
the errors of fBW , fWW and fBB in Eq. (184), the addition of
the low-energy data (194) leads to reduction of fWW and
fBB errors.

We note here that the result given in Eq. (196) does not
take into account improvements in the measurements of
mW and mt, which should certainly take place at the ILC-I,
and also possible improvements in the measurements of
�sðmZÞMS and ��5

had are expected. If we replace the

present constraints of Eq. (193) by

mW½GeV� ¼ 80:403� 0:010; (197a)

mt½GeV� ¼ 172:50� 0:10; (197b)

�sðmZÞMS ¼ 0:1180� 0:0010; (197c)

��5
had ¼ 0:02768� 0:00 010; (197d)

without changing their mean values, the low-energy con-
straints will become

ð1 TeV
� Þ2�f�1 ¼ �0:082� 0:018

ð1 TeV
� Þ2�fBW ¼ �0:21� 0:12

1:
0:95 1:

� �
: (198)

Most importantly, the error of f�1 is reduced to about a

half, because f�1 has rather strong dependence on mt.

In addition, if there are new measurements at GigaZ, we
can measure the effective weak-mixing angle much more

accurately. For instance, an estimate in Ref. [40] gives

sin 2�effW ¼ 0:23153� 0:000 013: (199)

The effective mixing angle can also be parametrized as
[37,38]

sin2�effW ¼ 0:23 148þ 0:00 359ð�SZÞ � 0:00 241ð�TZÞ
þ 0:00 011x�; (200)

and the constraints on f�1 and fBW will become

ð1 TeV
� Þ2�f�1 ¼ �0:097� 0:011

ð1 TeV
� Þ2�fBW ¼ �0:32� 0:062

1:
0:95 1:

� �
; (201)

with �2=d:o:f ¼ 30:9=13.6 Both errors of f�1 and fBW are

reduce by a factor 2.5 and 2.3, respectively, from Eq. (194).
The eigenvectors and its errors are

:98f�1 � :17fBW ¼ �0:041� 0:0034; (202a)

:17f�1 þ :98fBW ¼ �0:33� 0:062: (202b)

Although the most accurately measured combination of the
dimension-six operator does not change from Eq. (195),
the error is reduced by a factor of 4.4. We note, however,
that the reduction of the errors are limited by the error of
��5

had assumed in Eq. (197d), whose contribution to the

uncertainty of the x� term in Eq. (200) is 3 times larger
than the error in Eq. (199).
If we combine Eq. (201) with ILC-Iþ ILC-II result of

Eq. (196), we find

6Neither the low probability of the fit nor the 13	 evidence for
ð�f�1;�fBWÞ in Eq. (201) is our concern, since they are artifacts
of our keeping the present mean values Eq. (197) and (199) when
reducing their errors.
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ð1 TeV
� Þ2f�1 ¼ �0:097� 0:010

ð1 TeV
� Þ2fBW ¼ �0:32� 0:056
ð1 TeV

� Þ2fW ¼ �0:014
ð1 TeV

� Þ2fB ¼ �0:025
ð1 TeV

� Þ2fWW ¼ �0:053
ð1 TeV

� Þ2fBB ¼ �0:096

1
:94 1
:17 :18 1

�:088 �:093 :43 1
�:38 �:42 �:36 �:40 1
:75 :80 :31 :16 �:81 1

0
BBBBBBBB@

1
CCCCCCCCA
: (203)

Thanks to the precise measurements of f�1 and fBW , the
errors of fBB and fWW are reduced. The error of fW and fB
are not affected much by the improved measurements of
the weak-boson parameters, and the constraints of the type
(185a) ~ (185c) will still give additional information on
new physics from the HVV coupling measurements.

We hope that our report will be useful in studying the
physics potential of the ILC project.
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APPENDIX A: THE 3-BODY PHASE SPACE

We parametrize the four momentum of the eþe� !
f �fH process; see Eq. (18), in the laboratory frame as
follows:

k�1 ¼
ffiffiffi
s

p
2
ð1; 0; 0; 1Þ; (A1a)

k
�
2 ¼

ffiffiffi
s

p
2
ð1; 0; 0;�1Þ; (A1b)

p
�
1 ¼

ffiffiffi
s

p
2
x1ð1; sin�1 cos�1; sin�1 sin�1; cos�1Þ; (A1c)

p�
2 ¼

ffiffiffi
s

p
2
x2ð1; sin�2 cos�2; sin�2 sin�2; cos�2Þ; (A1d)

p�
H ¼ k�1 þ k�2 � p�

1 � p�
2 ; (A1e)

¼ xH

ffiffiffi
s

p
2
ð1; �H sin�H; 0; �H cos�HÞ; (A1f)

where we ignore the masses of e�, f, and �f, and the Higgs
boson is produced in the xz-plane

x1 sin�1 sin�1 þ x2 cos�2 cos�2 ¼ 0: (A2)

The Higgs-boson energy fraction and its velocity are

xH ¼ 2EHffiffiffi
s

p ¼ 2� x1 � x2; �H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

H=sx
2
H

q
:

(A3)

We parametrize the f and �f four momenta also in the rest
frame of the f �f system,

p��
1 ¼ mf �f

2
ð1; sin�� cos��; sin�� sin��; cos��Þ;

p
��
2 ¼ mf �f

2
ð1;� sin�� cos��;� sin�� sin��;� cos��Þ;

(A4)

where m2
f �f

¼ ðp1 þ p2Þ2, �� and �� are the polar and

azimuthal angle, respectively, with respect to the momen-
tum direction of the f �f system in the laboratory frame.
After making an appropriate boost to the laboratory frame
with

� ¼ xH�H

2� xH
; � ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p ; (A5)

and an appropriate rotation about the y-axis by �H, we find
p
�
1 and p

�
2 in the laboratory frame

p�
1 ¼ mf �f

2
ð�ð1þ �c�� Þ; c�Hs��c��

þ s�H�ð�þ c�� Þ; s��s�� ; c�H�ð�þ c�� Þ
� s�Hs��c�� Þ;

p
�
2 ¼ mf �f

2
ð�ð1� �c�� Þ;�c�Hs��c��

þ s�H�ð�� c�� Þ;�s��s�� ; c�H�ð�� c�� Þ
þ s�Hs��c�� Þ: (A6)

Here, we introduce a shorthand s� 
 sin� and c� 
 cos�.
Comparing Eq. (A1) with Eq. (A6), we find

x1 ¼
mf �fffiffiffi
s

p �ð1þ �c�?Þ;

x2 ¼
mf �fffiffiffi
s

p �ð1� �c�?Þ; (A7a)

cos�1 ¼
c�H�ð�þ c�� Þ � s�Hs��c��

�ð1þ �c�� Þ ;

cos�2 ¼
c�H�ð�� c�� Þ þ s�Hs��c��

�ð1� �c�� Þ ; (A7b)

sin�1 sin�1 ¼
s��s��

�ð1þ �c�� Þ ;

sin�2 sin�2 ¼ � s��s��

�ð1� �c�� Þ ; (A7c)

which satisfy Eq. (A2). We can now parametrize the 3-
body phase space as
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d�3 
 ð2�Þ44ðk1 þ k2 � p1 � p2 � pHÞ

�
�Y2
i¼1

d3pi

ð2�Þ32Ei

�
d3pH

ð2�Þ32EH

; (A8a)

¼ 1

ð8�Þ2
��

�m2
f �f

s
;
m2

H

s

�
d cos�H

2

dm2
f �f

2�

d cos��d��

4�
;

(A8b)

¼
ffiffiffi
s

p
128�3

��

�m2
f �f

s
;
m2

H

s

�
dEHd cos�H

d cos��d��

4�
;

(A8c)

¼
ffiffiffi
s

p
128�3

��

�m2
f �f

s
;
m2

H

s

�
dpTHdyH

d cos��d��

4�
; (A8d)

¼ s

128�3

x1ð1� x1 �m2
H=sÞ

½1� x1ð1� cos�12Þ=2�2
dx1

� d cos�1d�1

4�

d cos�2d�2

4�
; (A8e)

where

��ða; bÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2ðaþ bÞ þ ða� bÞ2

q
; (A9a)

cos�12 ¼ cos�1 cos�2 þ sin�1 sin�2 cosð�2 ��1Þ: (A9b)
We use the phase-space parametrization (A8b) in the
analysis of the ZH production process, (A8c) or (A8d) in
the analysis of the �e ��eH process where the undetectable
�e and ��e angles ( cos�

�,��) are integrated out, and (A8e)
in the analysis of the double-tag ðeeHÞ events, following
the prescription given in the Appendix A of Ref. [26]. In
the analysis of single-tag ðeÞeH events and no-tag ðeeÞH
events, the electron mass should be kept in the integration
of the forward scattering angles [26].

APPENDIX B: MASSLESS FERMION CURRENTS

In this appendix, we show the explicit form of the
massless fermion currents, which appear in the t-channel
and s-channel gauge-boson exchange processes. The
t-channel currents of Eqs. (47) and (113) for 	1 ¼ 
1 ¼
	 and 	2 ¼ 
2 ¼ �	 are

j�e�ð	;	Þ ¼
ffiffiffiffiffiffiffi
sx1

p �
cos

�1
2
; sin

�1
2
ei	�1 ;�i	 sin

�1
2
ei	�1 ; cos

�1
2

�
; (B1a)

j
�

eþð �	; �	Þ ¼
ffiffiffiffiffiffiffi
sx2

p �
sin

�2
2
; cos

�2
2
e�i �	�2 ; i �	 cos

�2
2
e�i �	�2 ;� sin

�2
2

�
; (B1b)

where 	=2 denotes the e� helicities in Eq. (B1a), and �	=2 denotes the eþ helicities in Eq. (B1b). In the t-channel
W-exchange process, eþe� ! �e ��eH, only the 	 ¼ � �	 ¼ �combination contributes, while in eþe� ! eþe�H via
t-channel Z and � exchange processes, both helicities contribute. The following 8 combinations of the contractions appear
in the cross section with higherdimensional operators:

j
�
e�ð�;�Þg��j

�
eþðþ;þÞ ¼ ½j�e�ðþ;þÞg��j

�
eþð�;�Þ�� 
 F ð�1; �2Þ; (B2a)

j
�
e�ð�;�Þg��j

�
eþð�;�Þ ¼ ½j�e�ðþ;þÞg��j

�
eþðþ;þÞ�� 
 F ð�1; �2ÞH ð�1; �2; �Þ; (B2b)

j�e�ð�;�Þq1�q2�j
�
eþðþ;þÞ ¼ ½j�e�ðþ;þÞq1�q2�j

�
eþð�;�Þ�� 


s

8
F ð�1; �2ÞGð�1; �2; �Þ; (B2c)

j
�
e�ð�;�Þq1�q2�j

�
eþð�;�Þ ¼ ½j�e�ðþ;þÞq1�q2�j

�
eþðþ;þÞ�� 


s

8
F ð�1; �2ÞG0ð�1; �2; �Þ: (B2d)

Here, q1 ¼ k1 � p1 and q2 ¼ k2 � p2 are the transfer momenta in the t channel, and � ¼ �1 ��2. The functions
F ð�1; �2Þ, H ð�1; �2; �Þ, Gð�1; �2; �Þ, and G0ð�1; �2; �Þ are

F ð�1; �2Þ ¼ 2s
ffiffiffiffiffiffiffiffiffi
x1x2

p
cos

�1
2

sin
�2
2
; (B3a)

H ð�1; �2; �Þ ¼ 1� tan
�1
2

cot
�2
2
ei�; (B3b)

Gð�1; �2; �Þ ¼
�
2� x1ð1þ cos�1Þ þ x1 sin�1 cot

�2
2
e�i�

��
2� x2ð1� cos�2Þ þ x2 sin�2 tan

�1
2
ei�

�
; (B3c)

G0ð�1; �2; �Þ ¼
�
2� x1ð1þ cos�1Þ þ x1 sin�1 cot

�2
2
ei�

��
2� x2ð1� cos�2Þ þ x2 sin�2 tan

�1
2
ei�

�
: (B3d)

The currents that appear in the s-channel ZH production process are rather simple. The initial eþe� annihilate currents
are
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j
�
1	 ¼ �v

�
k2;�	

2

�
��P	u

�
k1;

	

2

�
¼ ffiffiffi

s
p ð0;�	;�i; 0Þ;

(B4)

where the e� helicity is 	=2. The final Z ! f �f decay
currents are

j
�
2	0 ¼ �u

�
p1;

	0

2

�
��P	0v

�
p2;�	0

2

�
¼ ffiffiffi

s
p ð0;�	0 cos�� cos��

� i sin��;�	0 cos�� sin�� þ i cos��; 	0 sin��Þ
(B5a)

in the f �f rest frame of Eq. (A6), where the f helicity is

	0=2. When contracted with the decaying Z-boson polar-
ization vector

��ð
 ¼ �Þ ¼ 1ffiffiffi
2

p ð0;�1;�i; 0Þ; (B6a)

��ð
 ¼ 0Þ ¼ ð0; 0; 0; 1Þ; (B6b)

we find

�ð�Þ � j2	0 ¼ �
ffiffiffi
s

2

r
ð1� 	0c�� Þe�i��

; (B7a)

�ð0Þ � j2	0 ¼ � ffiffiffi
s

p
	0s�� : (B7b)

The decay density matrix elements of Eq. (90) are obtained
from these equations.

[1] P. Teixeira-Dias, J. Phys. Conf. Ser. 110, 042030 (2008),

and references therein.
[2] W.M. Yao et al. (Particle Data Group), J. Phys. G33, 1

(2006) and 2007 partial update for 2008 edition. http://

pdglive.lbl.gov/listings.
[3] A. Duperrin, arXiv:0805.3624; U. Aglietti et al., arXiv:

hep-ph/0612172.
[4] D. Zeppenfeld, R. Kinnunen, A. Nikitenko, and E.

Richter-Was, Phys. Rev. D 62, 013009 (2000).
[5] D. Atwood and A. Soni, Phys. Rev. D 45, 2405 (1992).
[6] M. Davier, L. Duflot, F. Le Diberder, and A. Rougé, Phys.
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