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We give an extensive description of the renormalization of the Higgs sector of the minimal super-

symmetric model in SLOOPS. SLOOPS is an automatized code for the computation of one-loop processes in

the MSSM. In this paper, the first in a series, we study in detail the nongauge invariance of some

definitions of tan�. We rely on a general nonlinear gauge-fixing constraint to make the gauge parameter

dependence of different schemes for tan� explicit at one loop. In so doing, we update, within these general

gauges, an important Ward-Slavnov-Taylor identity on the mixing between the pseudoscalar Higgs, A0,

and Z0. We then compare the tan� scheme dependence of a few observables. We find that the best tan�

scheme is the one based on the decay A0 ! �þ�� because of its gauge invariance, because it is

unambiguously defined from a physical observable, and because it is numerically stable. The oft used

DR scheme performs almost as well on the last count, but is usually defined from nongauge-invariant

quantities in the Higgs sector. The use of the heavier scalar Higgs mass in lieu of tan�, though related to a

physical parameter, induces radiative corrections that are too large in many instances, and is therefore not

recommended.
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I. INTRODUCTION

Were it not for the radiative corrections to the lightest
Higgs mass [1], the minimal supersymmetric model or
MSSM would have been a forgotten elegant model a
long time ago. Indeed, at tree level the mass of the lightest
Higgs is predicted to be less than the mass of the Z0 boson,
MZ0 . That would have been a real pity from a model whose
most appealing and foremost motivation was to solve the
hierarchy problem and make the Higgs more natural, be-
sides providing a very good dark matter candidate. The
renormalization of the Higgs sector of the MSSM is there-
fore important. It is also important because it provides a
link to the other parameters of the standard model, namely,
all the masses of the particles. It also encodes another
parameter that can describe the relative scale of the two
vacuum expectation values needed for each Higgs doublet
of the SM, often referred to as tan�, and which permeates
all the other sectors of the MSSM: the gaugino/Higgsino
sector and the sfermion sector. Many renormalization
schemes or definitions of this parameter are unsatisfactory,
as we will see, mainly because they lack a direct physical
interpretation or do not correspond to a physical and gauge
independent parameter.

The aim of this paper is to give an extensive description
of the renormalization of the Higgs sector in SLOOPS at one
loop. SLOOPS is a fully automated code for the one-loop
calculation of any cross section or decay in the MSSM at
one loop. Although there have been a few studies of the
renormalization of the Higgs sector (see [2,3] for a recent
review of the Higgs in supersymmetry), some performed

even beyond the one-loop approximation, especially con-
cerning the mass of the lightest CP-even Higgs [4,5],
looking at the problem afresh while keeping the issue of
gauge invariance in mind will prove rewarding. Moreover,
our motivation in developing SLOOPS was also to have a full
one-loop renormalization of all the sectors of the MSSM in
a coherent way; therefore, the study of the Higgs sector is a
first step. We will point to the nongauge invariance of some
definitions of tan�. Although this has been known (see for
example [6]) and pointed out at two loops in the usual
linear gauge [7], most practitioners have kept the usage of
some nongauge-invariant definitions of tan� because of
their simplicity at the technical level, being based on
definitions involving two-point-function self-energies.
With the automatization of the loop calculations, consid-
erations and definitions of tan� based on three-point func-
tions (decays) are hardly more involved than those based
solely on two-point functions describing self-energies, in-
cluding transitions.
In the approach adopted within SLOOPS, we strive for an

on-shell, OS, renormalization scheme, in particular, for
tan�. We rely on a general nonlinear gauge-fixing con-
straint to make the gauge parameter dependence of differ-
ent schemes explicit for tan� at one loop. In so doing, we
rederive and update the Ward-Slavnov-Taylor identity on
the A0Z0=H�W� mixing in the nonlinear gauge. We then
compare qualitatively and quantitatively the tan� scheme
dependence of a few observables. A0 is the CP-odd Higgs
scalar and H� are the charged Higgses. We find that the
best tan� scheme is the one based on the decay A0 !
�þ�� because of its gauge invariance, being unambigu-
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ously defined from a physical observable, and because it is
numerically stable. The oft used DR scheme performs
almost as well on the last count, but is usually defined
from nongauge-invariant quantities in the Higgs sector.
The use of the heavier CP-even scalar Higgs mass in lieu
of tan�, though related to a physical parameter, induces
radiative corrections that are too large in many instances
and is therefore not acceptable. It has been argued that the
definitions within the Higgs sector may be considered
universal compared to a definition involving a particular
Higgs decay, for example. However, as stressed in [8],
staying within the confines of the Higgs sector and the
Higgs potential, one faces the issue that many definitions
may be basis dependent; as wewill see, this will translate at
one loop into issues about gauge invariance for these
definitions. Concerning the application to the corrections
to the lightest Higgs mass, our one-loop treatment is cer-
tainly not up to date; however, our motivation is to stress
the gauge dependence issues and compare the impact of the
scheme dependence for tan� for many observables, start-
ing with those directly related to the properties of the
Higgses of the MSSM, before reviewing in our forthcom-
ing studies [9] the impact of tan� on observables in the
chargino/neutralino as well as the sfermion sectors. We
feel that this issue is of importance, as is a consistent one-
loop OS implementation.

The present paper is organized as follows. In Sec. II we
review the Higgs sector of the MSSM at tree level. This
may, by now, be considered trivial but it is a necessary step
before we embark on the renormalization procedure. We
also detail this part in order to show what might qualify as a
physical basis independent observable. Section III presents
the nonlinear gauge-fixing condition that we use. This
includes eight gauge-fixing parameters which are crucial
in studying many issues related to gauge invariance that are
not easily uncovered when one works within the usual
linear gauge. Section IV constitutes the theoretical core
of our analyses and deals with renormalization, introduc-
ing counterterms for the Lagrangian parameters and the
field renormalization constants. We expose our renorma-
liszation conditions and update the Slavnov-Taylor identi-
ties involving the A0 � Z0 and H� �W� transitions.
Section V is devoted to defining tan�. We consider a few
schemes. Before turning to applications and numerical
results, we briefly describe how our automatic code is set
up in Sec. VI. In Sec. VII a numerical investigation of the
scheme dependence and gauge dependence of these
schemes is studied, taking as examples loop corrections
to Higgs masses, and decays of the Higgses to fermions
and to gauge and Higgs bosons. Section VIII gives our
conclusions. The paper contains two appendixes.
Appendix A details the derivation of Slavnov-Taylor iden-
tities for the A0 � Z0 transition. Field renormalization may
be introduced at the level of the unphysical fields before
rotation to the physical fields is performed; Appendix B

relates these field renormalization constants on the Higgs
fields to the one we introduce directly after the physical
fields are defined. This may help in comparing different
approaches in the literature.
To avoid clutter we use some abbreviations for the

trigonometric functions. For example, for an angle �,
cos� will be abbreviated as c�, etc., so that we will from
now on use t� for tan�.

II. THE HIGGS SECTOR OF THE MSSM
AT TREE LEVEL

A. The Higgs potential

As is known (see, for instance, [3]), the MSSM requires
two Higgs doublets H1 and H2 with opposite hypercharge.
The Higgs potential in the MSSM is given by

V ¼ m2
1jH1j2 þm2

2jH2j2 þm2
12ðH1 ^H2 þ H:c:Þ

þ 1

8
ðg2 þ g02ÞðjH1j2 � jH2j2Þ2 þ g2

2
jHy

1H2j2

with H1 ^H2 ¼ Ha
1H

b
2�ab

ð�12 ¼ ��21 ¼ 1; �ii ¼ 0Þ: (2.1)

The mass terms are all soft masses, even if both m2
1 and

m2
2 contain the supersymmetry (SUSY) preserving

j�j2-term which originates from the F-terms. g, g0 are,
respectively, the SUð2ÞW and Uð1ÞY gauge couplings.
Decomposing each Higgs doublet field H1;2 in terms of

its components,

H1 ¼ H0
1

H�
1

� �
¼ ðv1 þ�0

1 � i’0
1Þ=

ffiffiffi
2

p
���

1

 !
; (2.2)

H2 ¼ Hþ
2

H0
2

� �
¼ �þ

2

ðv2 þ�0
2 þ i’0

2Þ=
ffiffiffi
2

p
� �

; (2.3)

the tree-level Higgs potential can be written as

V ¼ Vconst þ Vlinear þ Vmass þ Vcubic þ Vquartic; (2.4)

where

Vlinear ¼
�
m2

1v1 þm2
12v2 þ g2 þ g02

8
ðv2

1 � v2
2Þv1

�
�0

1

þ
�
m2

2v2 þm2
12v1 � g2 þ g02

8
ðv2

1 � v2
2Þv2

�
�0

2

� T�0
1
�0

1 þ T�0
2
�0

2 (2.5)

and
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Vmass ¼ 1

2
ð’0

1 ’0
2 Þ

m2
1 þ g2þg02

8 ðv2
1 � v2

2Þ m2
12

m2
12 m2

2 � g2þg02
8 ðv2

1 � v2
2Þ

0
@

1
A

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
M2

’0

’0
1

’0
2

 !

þ 1

2
ð�0

1 �0
2 Þ
 
M2

’0 þ g2 þ g02

4

v2
1 �v1v2

�v1v2 v2
2

 !!
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

M2

�0

�0
1

�0
2

 !

þ ð��
1 ��

2 Þ
 
M2

’0 þ g2

4

v2
2 �v1v2

�v1v2 v2
1

 !!
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

M2

��

�þ
1

�þ
2

 !
: (2.6)

It is illuminating to express the mass matrices in terms of the tadpoles, especially for the pseudoscalar states

M2
’0 ¼

T
�0
1

v1
0

0
T
�0
2

v2

0
B@

1
CA� m2

12

v1v2

NGP with NGP ¼ v2
2 �v1v2

�v1v2 v2
1

� �
; M2

�c ¼
T
�0
1

v1
0

0
T
�0
2

v2

0
B@

1
CA�

�
m2

12

v1v2

� g2

4

�
NGP:

(2.7)

The requirement that v1 and v2 correspond to the true
vacua is a requirement on the vanishing of the tadpoles.
The tadpoles, by the way, are also a trade-off for m2

1 and
m2

2. Indeed, note that expressing everything in terms of
T�0

1;2
, all explicit dependence on m2

1 and m2
2 has disap-

peared, even in the scalar (CP-even) sector. Note that
once the tadpole condition has been imposed,

T�0
1;2
¼ 0; (2.8)

we immediately find that, in both the charged sector and
pseudoscalar sector, there is a Goldstone boson (i.e. a zero
mass eigenvalue). This is immediate from the fact that

detðNGPÞ ¼ 0: (2.9)

The masses of the physical charged Higgs, MH� , and the
pseudoscalar Higgs, MA0 , are then just set from the invari-
ant obtained from

Tr ðNGPÞ ¼ v2
1 þ v2

2 ¼ v2; (2.10)

which is another way of seeing that the combination v is a
proper ‘‘observable.’’ Indeed, after gauging we will find
that the masses of the weak gauge bosons are

M2
W� ¼ 1

4g
2v2; M2

Z0 ¼ 1
4ðg2 þ g02Þv2: (2.11)

Then

M2
A0 ¼ TrðM2

’0Þ ¼ �m2
12

v2

v1v2

¼ m2
1 þm2

2; (2.12)

M2
H� ¼ M2

A0 þM2
W� : (2.13)

In Eq. (2.12), the first equality does show an implicit
dependence on the ratio of vacuum expectation values, or

vev’s (t�), but not through m2
1 þm2

2. The latter must be
basis independent, as is the combinationm2

12=v1v2. This is
to be kept in mind.
It is also interesting to note that for the scalar Higgses,

there is a simple sum rule that does not involve any ratio of
vev’s. Indeed, taking the trace of M2

�0 and calling the two

physicalCP-even Higgses h0, with massMh0 , andH
0, with

mass MH0 , which would be obtained after rotation, we get
the sum rule

M2
h0
þM2

H0 ¼ M2
A0 þM2

Z0 : (2.14)

h0 will denote the lightest CP-even Higgs. Let us, as a
bookkeeping device, introduce the angle�. At the moment,
this is just to help keep easy notations:

c� ¼ v1

v
; s� ¼ v2

v
with v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
1 þ v2

2

q
: (2.15)

The determinant of the scalar Higgses, on the other hand,
gives

M2
h0
M2

H0 ¼ M2
A0M

2
Z0c

2
2�: (2.16)

This shows that if we take MH0 , MA0 , MZ0 as input pa-
rameters, we first deriveMh0 from Eq. (2.14), and then c22�
from Eq. (2.16). In general, with a set of input parameters
MH0 , MA0 , MZ0 , c22� � 1 is not, however, guaranteed. We

could, of course, fix c22� (t�) and derive MH0 and Mh0 ,

which is what is usually done.
The soft SUSY breaking mass parameters m2

1;2;12 can be

expressed in terms of the physical quantitiesMA0 ,MZ0 , and
c� [as, for example, derived from Eqs. (2.14), (2.15), and

(2.16)]:
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m2
1 ¼ s2�M

2
A0 � 1

2c2�M
2
Z0 ; (2.17)

m2
12 ¼ �1

2s2�M
2
A0 ; (2.18)

m2
2 ¼ c2�M

2
A0 þ 1

2c2�M
2
Z0 : (2.19)

B. Basis and rotations

So far the properties of the physical fields, like their
masses, have been derived without reverting to a specific
basis. The angle � defined in Eq. (2.15) was just a book-
keeping device. Still, to go from the fields at the
Lagrangian level to the physical fields, one needs to per-
form a rotation. This should have no effect on physical
observables. This naive observation is important, espe-
cially when we move to one loop. The rotations we will
perform will get rid of field mixing. With the tadpole
condition set to zero, it is clear that the pseudoscalar and
charged scalar eigenstates are diagonalized through the
same unitary matrix. At tree level this is defined precisely
through the same angle � as in Eq. (2.15),

NGP ¼ Uð��Þ 0 0

0 1

 !
Uð�Þ; Uð�Þ ¼ c� s�

�s� c�

 !
;

Uyð�Þ ¼ Uð��Þ: (2.20)

Call T v the tadpole matrix, defined as

T v ¼
T
�0
1

v1
0

0
T
�0
2

v2

0
B@

1
CA: (2.21)

The tadpole is, of course, set to zero. But we will leave this
zero there in the notation, as we will need this when we go
to the one-loop counterterms. Then the mass matrices for
the CP-even, CP-odd, and charged scalars can be written
as

M2
’0 ¼ T v þM2

A0NGP; (2.22)

M2
�� ¼ T v þ ðM2

A0 þM2
W�ÞNGP; (2.23)

M2
�0 ¼ T v þM2

A0NGP þM2
Z0Uð�Þ 1 0

0 0

� �
Uð��Þ:

(2.24)

The neutral Higgs is diagonalized through a rotation �
such that

Uð�ÞM2
�0Uð��Þ ¼ M2

H0 0

0 M2
h0

0
@

1
A

¼ Uð�ÞT vUð��Þ þM2
A0Uð�� �Þ

� 0 0

0 1

 !
Uð�� �Þ

þM2
Z0Uð�þ �Þ 1 0

0 0

 !

�Uð�ð�þ �ÞÞ: (2.25)

The diagonalization procedure also produces other, some-
times useful, constraints and relations:

M2
H0 ¼ M2

A0s
2
��� þM2

Z0c
2
�þ�; (2.26)

M2
h0

¼ M2
A0c

2
��� þM2

Z0s
2
�þ�; (2.27)

M2
A0s2ð���Þ ¼ M2

Z0c2ð�þ�Þ; (2.28)

t2� ¼ t2�
M2

A0 þM2
Z0

M2
A0 �M2

Z0

: (2.29)

Note that in the decoupling limit, MA0 � MZ0 , one has in
effect decoupled one of the Higgs doublets, and the other
has the properties of the SM Higgs doublet. The decou-
pling parameter is also measured with the parameter
c��� ! M2

Z0=M
2
A0 for MA0 � MZ0 .

Therefore, the mass eigenstates in the Higgs sector are
given by

G0

A0

 !
¼ Uð�Þ ’0

1

’0
2

 !
¼ c� s�

�s� c�

 !
’0

1

’0
2

 !
;

G�

H�

 !
¼ Uð�Þ ��

1

��
2

 !
¼ c� s�

�s� c�

 !
��

1

��
2

 !
;

H0

h0

 !
¼ Uð�Þ �0

1

�0
2

 !
¼ c� s�

�s� c�

 !
�0

1

�0
2

 !
:

(2.30)

C. Counting parameters

Before we embark on the technicalities of renormaliza-
tion and the choice of judicious input parameters, it is best
to review how to proceed, in general, and how to make
contact with the renormalization of the SM. This will help
clarify what the fundamental parameters are and which
physical parameters can be used for a legitimate renormal-
ization scheme. Moreover, since some observables belong
to the SM, like theW�, Z0 masses and the electromagnetic
coupling constant e which are used as physical input
parameters in the OS scheme; isolating these three parame-
ters means that their renormalization will proceed exactly
as within the OS renormalization of the SM; see [10] for
details.
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In the SM, the fundamental parameters at the
Lagrangian level for the gauge sector are g and g0. The
Higgs potential with the Higgs doublet H ,

VðH Þ ¼ ��2H yH þ �ðH yH Þ2 with

jh0jH j0ij2 ¼ v2

2
� 0; (2.31)

furnishes the following: �2 (the ‘‘Higgs mass’’), � (the
Higgs self-coupling), and v (the vacuum expectation
value). We thus have at Lagrangian level, five parameters
between the Higgs sector and the gauge sector.�2, �, v are
not all independent. v, the vev, is defined as the minimum
of the potential; this is equivalent to requiring no tadpoles.
The no-tadpole requirement amounts to no terms linear in
the scalar Higgs. With the tadpole defined as T, we have at
tree level

T ¼ vð�2 � �v2Þ ! 0: (2.32)

This requirement is to be carried to any loop level. Out of
this constraint, the five physical parameters in the OS
scheme are e,MW� ,MZ0 ,MH0 , T. At all orders one defines
cW ¼ MW�=MZ0 . The latter is not an independent physical
parameter. Therefore, in the SM a one-to-one mapping
between the physical set e, MW� , MZ0 , MH0 , T and the
Lagrangian parameters g, g0, v, �, � is made.

In the MSSM, the Higgs sector furnishes m2
1, m

2
2, m

2
12

(the Higgs doublets soft masses) and v1, v2 (the vev’s of
the Higgs doublets). The gauge sector is still governed by
the Uð1ÞY and SUð2ÞW gauge couplings g, g0. The require-
ment of no tadpoles from both Higgs doublets, and hence
any linear combination of them, is also a strong constraint.
From these seven parameters in all, the physical parame-
ters are usually split between the SM physical on-shell
parameters

e; MW� ; MZ0 ; (2.33)

which are a trade-off for g, g0, v2 ¼ v2
1 þ v2

2, and the
MSSM Higgs parameters

MA0 ; T�0
1
; T�0

2
; “t�”; (2.34)

which are a trade-off for m2
1, m

2
2, m

2
12, v2=v1. At tree level

we can set t� ¼ v2=v1 but this is, as yet, not directly

related to an observable. While v can directly be expressed
as a physical gauge boson mass, the ratio v2=v1 within the
Higgs sector does not have an immediate simple physical
interpretation, hence the difficulty with this Lagrangian
parameter. One possibility is to trade it with the mass of
one of the CP-even neutral Higgs through Eq. (2.16).

III. NONLINEAR GAUGE FIXING

In SLOOPS we have generalized the usual ’t Hooft linear
gauge condition to a more general nonlinear gauge that
involves, thanks to the extra scalars in the Higgs sector,

eight extra parameters ð~�; ~�; ~	; ~!; ~
; ~�; ~�; ~�Þ. Such gauges

within the standard model proved useful and powerful
[10,11] to check the correctness of the calculation. We
have also exploited these gauges in the one-loop calcula-
tion of ~0

1 ~
0
1 ! ��, Z0� [12] and in corrections to the relic

density in [13]. A seven-parameter nonlinear gauge-fixing
Lagrangian based on the one we introduce here is used in
[14]. We can extend this nonlinear gauge fixing so that the
gauge-fixing function involves the sfermions also. We
refrain, in this paper, from working through this general-
ization. We will take these gauge-fixing terms to be renor-
malized. In particular, the gauge functions involve the
physical fields. Although this will not make all Green’s
functions finite, it is enough to make all S-matrix elements
finite. The gauge fixing can be written

L GF ¼ � 1

�W

FþF� � 1

2�Z

jFZj2 � 1

2��

jF�j2; (3.1)

where

Fþ ¼
�
@� � ie~��� � ie

cW
sW

~�Z�

�
W�þ

þ i�W

e

2sW
ðvþ ~	h0 þ ~!H0 þ i~�A0 þ i~
G0ÞGþ;

FZ ¼ @�Z
� þ �Z

e

s2W
ðvþ ~�h0 þ ~�H0ÞG0;

F� ¼ @��
�:

(3.2)

The ghost Lagrangian LGh is derived by requiring that the
full effective Lagrangian, LQ, be invariant under the
Becchi-Rouet-Stora-Tyutin (BRST) transformation. As
discussed in [10], this is a much more appropriate proce-
dure than the usual Fadeev-Popov approach, especially
when dealing with the quantum symmetries of the gener-
alized nonlinear gauges we are using. 	BRSLQ ¼ 0 there-
fore implies 	BRSLGF ¼ �	BRSLGh.
It is very useful to also introduce the auxiliary B-field

formulation of the gauge-fixing Lagrangian LGF, espe-
cially from the perspective of deriving some Ward identi-
ties. The gauge fixing can then be expressed as

L GF ¼ �WB
þB� þ �Z

2
jBZj2 þ ��

2
jB�j2 þ B�Fþ

þ BþF� þ BZFZ þ B�F�: (3.3)

From the equations of motion for the B fields, we recover

the usualLGF together with the condition Bi ¼ � Fi

�i
(�i ¼

f�W; �Z; ��g). The antighost �ci is defined from the gauge-

fixing functions; we write

	BRS �c
i ¼ Bi: (3.4)

Then the ghost Lagrangian can be written as

L Gh ¼ �ð �cþ	BRSF
þ þ �c�	BRSF

� þ �cZ	BRSF
Z

þ �c�	BRSF
�Þ	BRS

~LGh: (3.5)
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The Fadeev-Popov prescription is therefore readily re-

covered,LFP, but only up to an overall function, 	BRS
~LGh,

which is BRST invariant. The latter is set to zero for one-
loop calculations. Our code SLOOPS implements this pre-
scription automatically, leading to the automatic genera-
tion of the whole set of Feynman rules for the ghost sector.

For all applications we set the Feynman parameters
�W;Z;� to 1. This allows one to use the minimum set of

libraries for the tensor reduction. Indeed, �W;Z;� � 1 can

generate high rank tensor loop functions that would take
much time to reduce to the set of scalar functions.

It is important to stress, once more, that since we do not
seek to have all Green’s functions finite but only the
S-matrix elements, we take the gauge-fixing Lagrangian
as being renormalized.

Judicious choices of the nonlinear gauge parameters can
lead to simplifications like the vanishing of certain vertices.
For example, with ~� ¼ 1, the Wþ�G��� vertex cancels.

More examples can be found in Appendix A for the van-
ishing of some ghost couplings to Higgses.

IV. RENORMALIZATION

Our renormalization procedure is within the spirit of the
on-shell scheme, borrowing as much as possible from the
programme carried strictly within the standard model in
[10]. For the gauge sector and the fermion sector, besides
the electromagnetic coupling which we fix from the
Thomson limit, we therefore take the same set of physical
input parameters, namely, the masses of the W� and Z0

together with the masses of all the standard model fermi-
ons. To define the Higgs sector parameters, the set in
Eq. (2.34) looks most appropriate were it not for the ill-
defined t�. Indeed, the mass of the pseudoscalar MA0

within the MSSM with CP conservation is a physical
parameter. As within the standard model, we also
take the tadpole. For t� the aim of this paper is to review,

propose, and compare different schemes. Renormalization
of these parameters would then lead to finite S-matrix
elements. For the mass eigenstates and thus a proper
identification of the physical particles that appear as exter-
nal legs in our processes, field renormalization is needed.
S-matrix elements obtained from these rescaled Green’s
functions will lead to external legs with unit residue and
will avoid mixing. Therefore one also needs wave-function
renormalization of the fields. Especially for the unphysical
sector of the theory, the precise choice of the fields rede-
finition is not essential if one is only interested in S-matrix
elements of physical processes. It has to be stressed that
one can do without this if one is willing to include loop
corrections on the external legs. In the MSSM and in the
Higgs sector, in particular, mixing effects, especially at one
loop, are a nuisance and have introduced some confusion
especially in defining t� with the help of wave-function

renormalization constants or equivalently from two-point

functions describing particle mixing. For the Higgs sector
one needs to be wary of mixing of the Goldstones with the
CP-odd Higgs or, almost equivalently, between the Z0 and
the CP-odd Higgs or theW� and the charged Higgs. These
two-point functions are related through gauge invariance
and impose strong constraints on the wave-function renor-
malization constants. We will derive Ward-Slavnov-Taylor
identities relating these two-point functions, and hence
their associated counterterms, before imposing any ad-
hoc conditions.

A. Shifts in mass parameters and gauge couplings

All fields and parameters introduced so far are consid-
ered as bare parameters with the exception of the gauge-
fixing Lagrangian which we choose to write in terms of
renormalized fields. Care should then be exercised when
we split the tree-level contributions and the counterterms.
Shifts are then introduced for the Lagrangian parameters
and the fields with the notation that a bare quantity is
labeled as X0. It will split in terms of renormalized quan-
tities X and counterterms 	X,

g0 ¼ gþ 	g; g00 ! g0 þ 	g0; (4.1)

m2
i0 ¼ m2

i þ 	m2
i for i ¼ 1; 2;

m2
120 ¼ m2

12 þ 	m2
12; (4.2)

vi0 ¼ vi � 	vi for i ¼ 1; 2

hence
	t�
t�

¼ 	v1

v1

� 	v2

v2

:
(4.3)

In our approach the angles defining the rotation matrices,�
and � in Eq. (2.30), are defined as renormalized quantities.
For example, the relation between the Goldstone boson/
pseudoscalar Higgs boson and the fields ’0

1;2 is maintained

at all orders. Indeed,

G0

A0

 !
0 ¼ Uð�Þ ’0

1

’0
2

� �
0

also implies

G0

A0

� �
¼ Uð�Þ ’0

1

’0
2

� �
:

(4.4)

Since in our approach we will always perform a field
renormalization, there is no need for inducing more shifts
fromUð�;�Þ. ThereforeUð�;�Þ is taken as renormalized.
For example, if we perform a field renormalization in the
’0

1;2 basis

’0
1

’0
2

 !
0 ¼ Z’0

’0
1

’0
2

� �
¼

Z1=2

’0
1

Z1=2

’0
1
’0
2

Z1=2

’0
2
’0
1

Z1=2

’0
2

0
@

1
A ’0

1

’0
2

� �
; (4.5)

this will imply

N. BARO, F. BOUDJEMA, AND A. SEMENOV PHYSICAL REVIEW D 78, 115003 (2008)

115003-6



G0

A0

 !
0 ¼ Uð�ÞZ’0Uð��Þ G0

A0

� �
¼ ZP

G0

A0

� �

¼ Z1=2

G0G0 Z1=2

G0A0

Z1=2

A0G0 Z1=2

A0A0

 !
G0

A0

� �
: (4.6)

For the field renormalization we can perform this either at
the level of the ’0

i , i.e. before any rotation on the field in
the Lagrangian is made, through Z’0 as is done in [14–16],

or in a much more efficient way directly in the basis G0A0

since the latter are directly related to our renormalization
conditions on the physical fields as we will see later. For
instance, there is no need for ZG0G0 in our approach since
we will not be dealing with Goldstone bosons in the
external legs.

B. Tadpole terms

We start with the terms linear in the Higgs fields which
will lead to renormalization of the tadpoles. With the tree-
level condition on the tadpoles T�0

1
¼ T�0

2
¼ 0, field nor-

malization, if it were performed, does not contribute; we
therefore have

Vlinearj0 ¼ ð	T�0
1
�0

1 þ 	T�0
2
�0

2Þ; (4.7)

with

	T�0
1

v1

¼ M2
Z0

2
c2�

	g2 þ 	g02

g2 þ g02
þ 	m2

1 þ t�	m
2
12

�
�
m2

1 þ
M2

Z0

2
c2� þM2

Z0c
2
�

�
	v1

v1

þ
�
�m2

12 þ
M2

Z0

2
s2�

�
t�

	v2

v2

; (4.8)

	T�0
2

v2

¼ 	T�0
1

v1

ðv1 $ v2; m1 $ m2Þ: (4.9)

The minimum condition requires that the one-loop tadpole

contribution generated by one-loop diagrams, Tloop

�0
i

, is

canceled by the tadpole counterterm. This imposes

	T�0
i
¼ �Tloop

�0
i

: (4.10)

Tloop

�0
i

is calculated from the one-loop tadpole amplitude for

H0, Tloop

H0 and h0, Tloop

H0 by simply moving to the physical

basis

Tloop

�0
1

T
loop

�0
2

0
@

1
A ¼ c� �s�

s� c�

� �
Tloop

H0

T
loop

h0

 !
: (4.11)

C. Mass counterterms in the Higgs sector

We now move to the mass counterterms induced by
shifts in the Lagrangian parameters. We need to consider
all terms bilinear in the fields. From the bare matricesM2

’0 ,

M2
�� , and M2

�0 [Eqs. (2.6), (2.22), (2.23), and (2.24)], we

find the corresponding counterterms in matrix form in the
basis ’0

1;2, �
0
1;2, and ��

1;2,

	M2
’0 ¼

	m2
1 þ 1

2 c2�	M
2
Z0 � M2

Z0

2 s22�
	t�
t�

	m2
12

	m2
12 	m2

2 � 1
2 c2�	M

2
Z0 þ M2

Z0

2 s22�
	t�
t�

0
BB@

1
CCA;

	M2
�� ¼

	m2
1 þ 1

2 c2�	M
2
Z0 þ s2�	M

2
W� � M2

Z0

2 s22�s
2
W

	t�
t�

	m2
12 � 1

2 s2�	M
2
W� � M2

W�
4 s4�

	t�
t�

	m2
12 � 1

2 s2�	M
2
W� � M2

W�
4 s4�

	t�
t�

	m2
2 � 1

2 c2�	M
2
Z0 þ c2�	M

2
W� þ M2

Z0

2 s22�s
2
W

	t�
t�

0
BB@

1
CCA;

	M2
�0 ¼

	m2
1 þ 1

2 ð4c2� � 1Þ	M2
Z0 �M2

Z0s
2
2�

	t�
t�

	m2
12 � 1

2 s2�	M
2
Z0 � M2

Z0

4 s4�
	t�
t�

	m2
12 � 1

2 s2�	M
2
Z0 � M2

Z0

4 s4�
	t�
t�

	m2
2 þ 1

2 ð4s2� � 1Þ	M2
Z0 þM2

Z0s
2
2�

	t�
t�

0
BB@

1
CCA:

It is then straightforward to move to the physical fields through the rotation matrices Uð�Þ and Uð�Þ, to find the mass
counterterms 	M2

A0 , 	M
2
H� , 	M2

h0
, 	M2

H0 for, respectively, the pseudoscalar Higgs A
0, the charged Higgs H�, and the two

CP-even Higgses h0, H0. A mass mixing between these two Higgses, 	M2
H0h0

, is also induced
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	M2
A0 ¼ s2�	m

2
1 þ c2�	m

2
2 � s2�	m

2
12 �

1

2
c22�	M

2
Z0 þ

M2
Z0

2
s22�c2�

	t�
t�

;

	M2
H� ¼ 	M2

A0 þ 	M2
W� ;

	M2
H0 ¼ c2�	m

2
1 þ s2�	m

2
2 þ s2�	m

2
12 þ

1

2
ð4ðc2�c2� þ s2�s

2
� � c�s�c�s�Þ � 1Þ	M2

Z0 �
M2

Z0

2
s2�ð2c2�s2� þ s2�c2�Þ

	t�
t�

;

	M2
h0

¼ s2�	m
2
1 þ c2�	m

2
2 � s2�	m

2
12 þ

1

2
ð4ðc2�s2� þ s2�c

2
� þ c�s�c�s�Þ � 1Þ	M2

Z0 þ
M2

Z0

2
s2�ð2c2�s2� þ s2�c2�Þ

	t�
t�

;

	M2
H0h0

¼ c2�	m
2
12 þ

1

2
s2�ð	m2

2 � 	m2
1Þ �

1

2
ð2s2�c2� þ s2�c2�Þ	M2

Z0 þ
M2

Z0

2
s2�ð2s2�s2� � c2�c2�Þ

	t�
t�

: (4.12)

A mass term seems to be induced for the Goldstone bosons as well as a mixing between the Goldstones and the
corresponding CP-odd Higgs,

	M2
G0 ¼ c2�	m

2
1 þ s2�	m

2
2 þ s2�	m

2
12 þ

1

2
c22�	M

2
Z0 � 1

2
M2

Z0s
2
2�c2�

	t�
t�

; (4.13)

	M2
G� ¼ 	M2

G0 ; (4.14)

	M2
G0A0 ¼ c2�	m

2
12 þ c�s�ð	m2

2 � 	m2
1Þ �

1

2
c2�s2�	M

2
Z0 þM2

Z0s
2
2�c�s�

	t�
t�

; (4.15)

	M2
G�H� ¼ 	M2

G0A0 �M2
W�c�s�

	t�
t�

: (4.16)

It is much more transparent to reexpress these mass counterterms by trading-off 	m1;2 and 	m12 with our input parameters
	T�0

1;2
, 	M2

A0 , 	t� through

	m2
1 ¼ c2�ðs2� þ 1Þ	T�0

1

v1

� c2�s
2
�

	T�0
2

v2

þ s2�	M
2
A0 � 1

2
c2�	M

2
Z0 þ 1

2
s22�ðM2

A0 þM2
Z0Þ	t�

t�
;

	m2
12 ¼

1

2
s2�

�
s2�

	T�0
1

v1

þ c2�
	T�0

2

v2

� 	M2
A0 � c2�M

2
A0

	t�
t�

�
;

	m2
2 ¼ �c2�s

2
�

	T�0
1

v1

þ s2�ðc2� þ 1Þ	T�0
2

v2

þ c2�	M
2
A0 þ 1

2
c2�	M

2
Z0 � 1

2
s22�ðM2

A0 þM2
Z0Þ	t�

t�
:

(4.17)

In terms of 	T�0
1;2
, 	M2

A0 , 	t�, the mass counterterms of Eqs. (4.12) and (4.16) can be written as

	M2
G0 ¼ 	M2

G� ¼ 1

v
ðc���	TH0 � s���	Th0Þ;

	M2
G0A0 ¼ 1

v
ðs���	TH0 þ c���	Th0Þ � s2�

M2
A0

2

	t�
t�

;

	M2
G�H� ¼ 1

v
ðs���	TH0 þ c���	Th0Þ � s2�

M2
H�

2

	t�
t�

;

	M2
H� ¼ 	M2

A0 þ 	M2
W� ;

	M2
h0

¼ � 1

v
ðc���s

2
���	TH0 þ s���ð1þ c2���Þ	Th0Þ þ c2���	M

2
A0 þ s2�þ�	M

2
Z0 þ s2�s2ð�þ�ÞM2

Z0

	t�
t�

;

	M2
H0 ¼ 1

v
ðc���ð1þ s2���Þ	TH0 þ s���c

2
���	Th0Þ þ s2���	M

2
A0 þ c2�þ�	M

2
Z0 � s2�s2ð�þ�ÞM2

Z0

	t�
t�

;

	MH0h0 ¼ � 1

v
s3���	TH0 þ 1

v
c3���	Th0 þ

1

2
s2ð���Þ	M2

A0 � 1

2
s2ð�þ�Þ	M2

Z0 � s2�
2

ðM2
A0c2ð���Þ þM2

Z0c2ð�þ�ÞÞ
	t�
t�

:

(4.18)
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It is very satisfying to see that 	M2
G0 ¼ 	M2

G� is accounted
for totally by the tadpole counterterms.

D. Field renormalization

We can now introduce field renormalization at the level
of the physical fields without the need to first go through
field renormalization in the basis �0

1;2, ’
0
1;2, �

�
1;2. In most

generality we can write, as in Eq. (4.6),

G0

A0

 !
0

¼ ZP

G0

A0

 !
� Z1=2

G0 Z1=2

G0A0

Z1=2

A0G0 Z1=2

A0

0
@

1
A G0

A0

 !
;

G�

H�

 !
0

¼ ZC

G�

H�

 !
� Z1=2

G� Z1=2
G�H�

Z1=2
H�G� Z1=2

H�

0
@

1
A G�

H�

 !
;

H0

h0

 !
0

¼ ZS

H0

h0

 !
� Z1=2

H0 Z1=2

H0h0

Z1=2

h0H0 Z1=2

h0

0
@

1
A H0

h0

 !
: (4.19)

It is always possible to move to another basis through
Eq. (4.6). Field renormalization will help get rid of mixing
between physical fields when these are on shell and set the
residue to 1.

E. Self-energies in the Higgs sector

Collecting the contribution of all the counterterms, in-
cluding wave-function renormalization, the renormalized
self-energies can be written as

�̂G0G0ðq2Þ ¼ �G0G0ðq2Þ þ 	M2
G0 � q2	ZG0 ;

�̂G0A0ðq2Þ ¼ �G0A0ðq2Þ þ 	M2
G0A0 � 1

2
q2	ZG0A0

� 1

2
ðq2 �M2

A0Þ	ZA0G0 ;

�̂A0A0ðq2Þ ¼ �A0A0ðq2Þ þ 	M2
A0 � ðq2 �M2

A0Þ	ZA0 ;

�̂G�G�ðq2Þ ¼ �G�G�ðq2Þ þ 	M2
G� � q2	ZG� ;

�̂G�H�ðq2Þ ¼ �G�H�ðq2Þ þ 	M2
G�H� � 1

2
q2	ZG�H�

� 1

2
ðq2 �M2

H�Þ	ZH�G� ;

�̂H�H�ðq2Þ ¼ �H�H�ðq2Þ þ 	M2
H� � ðq2 �M2

H�Þ	ZH� ;

�̂H0H0ðq2Þ ¼ �H0H0ðq2Þ þ 	M2
H0 � ðq2 �M2

H0Þ	ZH0 ;

�̂H0h0ðq2Þ ¼ �H0h0ðq2Þ þ 	M2
H0h0

� 1

2
ðq2 �M2

H0Þ	ZH0h0

� 1

2
ðq2 �M2

h0
Þ	Zh0H0 ;

�̂h0h0ðq2Þ ¼ �h0h0ðq2Þ þ 	M2
h0
� ðq2 �M2

h0
Þ	Zh0 :

Note that, as we stressed all along, since we are only
interested in having finite S-matrix transitions and not
finite Green’s functions, there is no need to try to make

all two-point functions finite. For instance, the diagonal

Goldstone self-energies �̂G0G0ðq2Þ and �̂G�G�ðq2Þ do not
need any field renormalization. Therefore we can set, for
example, 	ZG0 ¼ 	ZG� ¼ 0 for simplicity. 	ZA0G0 is also
not needed as it is only involved in the transition of the
Goldstone boson to the pseudoscalar Higgs.

F. A0Z0 and H�W� transitions

The (massive) gauge bosons and the pseudoscalar mix.
This originates from the same part of the gauge Lagrangian
where the gauge bosons, at tree level, mix with the
Goldstone bosons as in the standard model; see for ex-
ample [10]. The latter is eliminated through the usual
’t Hooft gauge fixing. To wit, from

LGV
0 ¼ g

2
iðv1@

���
1 þ v2@

���
2 ÞWþ

� þ H:c:

� g

2cW
ðv1@

�’0
1 þ v2@

�’0
2ÞZ0

�j0; (4.20)

we end up with

LGV
0 ¼ LGV þ 1

2

�
	ZG� þ 	ZW� þ 	M2

W�

M2
W�

�

� ðiMW�@�G�Wþ
� þ H:c:Þ

� 1

2

�
	ZG0 þ 	ZZ0Z0 þ 	M2

Z0

M2
Z0

�
MZ0@�G0Z0

�

� 1

2
	ZZ0�MZ0@�G0�� þ 1

2

�
	ZG�H� þ s2�

	t�
t�

�

� ðiMW�@�H�Wþ
� þ H:c:Þ

� 1

2

�
	ZG0A0 þ s2�

	t�
t�

�
MZ0@�A0Z0

�: (4.21)

For the sake of completeness, we have also kept in
Eq. (4.21) the wave-function renormalization constants of
the gauge bosons, namely, 	ZW� , 	ZZ0Z0 , and 	ZZ0� (for

the Z0 ! � transition); see [10]. The conditions on the
latter are the same as in the standard model; details are
found in [10].
The novelty, however, is that now we have A0 � Z0 and

H� �W� transitions whose self-energies can be written
as

�̂ A0Z0ðq2Þ ¼ �A0Z0ðq2Þ þMZ0

2

�
	ZG0A0 þ s2�

	t�
t�

�
;

(4.22)

�̂ H�W�ðq2Þ ¼ �H�W�ðq2Þ þMW�

2

�
	ZG�H� þ s2�

	t�
t�

�
:

(4.23)

Note that apart from 	t� the same counterterm 	ZG0A0

appears in the G0A0 transition. In fact, there is a Ward
identity relating these two transitions. Contrary to what one
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might see in some papers [17–19], the relation is much
more complicated for q2 � M2

A0 and gets more subtle in the

case of the nonlinear gauge. This identity is very important
especially since in many approaches the transition has been
used as a definition for 	t�. The identity can be most easily

derived by considering the BRST transformation on the
(‘‘ghost’’) operator h0j �cZðxÞA0ðyÞj0i ¼ 0. Full details are
given in Appendix A. We have the constraint

q2�̂A0Z0ðq2Þ þMZ0 �̂A0G0ðq2Þ

¼ ðq2 �M2
Z0Þ 1

ð4�Þ2
e2MZ0

s22W
s2�F

~�;~�
GAðq2Þ þ

MZ0

2
ðq2

�M2
A0Þ
�

1

ð4�Þ2
2e2

s22W
F ~�;~�

cc ðq2Þ þ s2�
	t�
t�

� 	ZA0G0

�
:

(4.24)

F ~�;~�
GAðq2Þ and F ~�;~�

cc ðq2Þ are functions defined in

Appendix A. They vanish in the linear gaugewith ~� ¼ ~� ¼
0. The constraint shows that even in the linear gauge

q2�̂A0Z0ðq2Þ þMZ0 �̂A0G0ðq2Þ is zero only for q2 ¼ M2
A0

and not for any q2. We will get back to the exploitation
of this constraint later. A similar constraint also relates

�̂H�W�ðq2Þ and �̂G�H�ðq2Þ,
q2�̂H�W�ðq2Þ þMW��̂H�G�ðq2Þ

¼ ðq2 �M2
W�Þ 1

ð4�Þ2
e2MW�

s22W
G ~�; ~!;~	

HW ðq2Þ

þMW�

2
ðq2 �M2

H�Þ
�

1

ð4�Þ2
2e2

s22W
G ~�; ~!;~	

cc ðq2Þ

þ s2�
	t�
t�

� 	ZH�G�

�
:

G ~�; ~!; ~	
HW ðq2Þ and G ~�; ~!;~	

cc ðq2Þ are defined in Eq. (A26); see
Appendix A.

G. Renormalization conditions

1. Pole masses, residues, and mixing

Masses are defined as pole masses from the propagator.
Moreover, this propagator must have residue 1 at the pole
mass. In the case of particle mixing, the mixing must
vanish at the pole mass of any physical particle. In general,
in the case of mixing this requires solving a system of an
inverse propagator matrix with solutions given by the pole
masses. For a two-particle mixing one has to deal with the
determinant of a 2� 2 matrix which is a quadratic form in
the self-energies whose solutions are the corrected masses.
The equation reads

½ðq2 �M2
h0;tree

� �̂h0h0ðq2ÞÞðq2 �M2
H0;tree

� �̂H0H0ðq2ÞÞ
� ð�̂h0H0ðq2ÞÞ2� ¼ 0: (4.25)

Mh0;tree refers to the tree-level mass. This equation simpli-

fies considerably at one loop since one only has to keep the
linear term, or first order in the loop expansion, in the
equation. In principle, the argument that appears in the
self-energy two-point functions is the pole mass which
might get a correction from its value at tree level. To get
the corrections one can proceed through iteration, starting
from the tree-level masses as an argument of the two-point
function. Higher order terms in the expansion will appear
as higher orders in the loop expansion, and we do not count
them as being part of the one-loop correction. A genuine
one-loop correction results for the pole mass, Mi;1 loop,

starting from a tree-level mass Mi;tree with �̂iiðq2Þ the

diagonal renormalized self-energy. Therefore the solution
of

q2 �M2
i;tree � Re�̂iiðq2Þ ¼ 0 at q2 ¼ M2

i;1 loop;

(4.26)

which in the one-loop approximation means

M2
i;1 loop ¼ M2

i;tree þ Re�̂iiðM2
i;treeÞ

¼ M2
i;tree þ 	M2

ii þ Re�iiðM2
i;treeÞ: (4.27)

The latter condition will constrain the Lagrangian parame-
ters, with 	M2

ii a gauge-invariant quantity. Likewise, at one
loop, the requirement of a residue equal to 1, for the
diagonal propagator and vanishing mixing when the physi-
cal particle is on shell, leads to

Re �̂
0
iiðM2

i;treeÞ ¼ 0 with
@�̂iiðq2Þ
@q2

¼ �̂
0
iiðq2Þ;

Re�̂
0
ijðM2

i;treeÞ ¼ Re�̂
0
ijðM2

j;treeÞ ¼ 0; i � j:

(4.28)

In our renormalization programme, Eqs. (4.28) set the field
renormalization constants and avoid having to include
corrections on the external legs. The field renormalization
constants are therefore not necessarily gauge invariant nor
gauge parameter independent.

2. Renormalization conditions and corrections on the
mass parameters

As we have explained earlier, one needs to fix the
counterterms for 	M2

A0 and 	t� once tadpole renormaliza-

tion has been carried through to arrive at finite and gauge-
invariant S-matrix elements. Taking MA0 as an input pa-
rameter means that its mass is fixed the same at all orders;
we therefore set

	M2
A0 ¼ �Re�A0A0ðM2

A0Þ: (4.29)

Finding a condition to fix 	t� is an arduous task that has

been debated for some time. We will study many schemes
for 	t� in Sec. V.

The charged Higgs mass is independent of t�; it gets a

finite correction at one loop once MA0 is used as an input
parameter,
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M2
H�;1 loop ¼ M2

H�;tree þ Re�H�H�ðM2
H�;treeÞ

� Re�A0A0ðM2
A0Þ � Re�T

W�ðM2
W�Þ: (4.30)

We have used 	M2
W� ¼ Re�T

W�ðM2
W�Þ, where�T

W�ðq2Þ is
the transverse two-point function of the W� following the
same implementation as performed in [10]. The finiteness
of the corrected charged Higgs mass is the first nontrivial
check on the code concerning the Higgs sector.

The sum rule involving the CP-even Higgs masses,
Eq. (2.14), is also independent of t�. This sum rule gets

corrected at one loop,

M2
h0;1 loop

þM2
H0;1 loop

¼M2
A0 þM2

Z0 þRe�h0h0ðM2
h0
Þ

þRe�H0H0ðM2
H0Þ

þ g

2MW�
ðc���	TH0 � s���	Th0Þ

�Re�A0A0ðM2
A0Þ�Re�T

Z0Z0ðM2
Z0Þ:

(4.31)

Here also we have used 	M2
Z0 ¼ Re�T

Z0Z0ðM2
Z0Þ, where

�T
Z0Z0ðq2Þ is the transverse two-point function of the Z0

boson; see [10]. Otherwise, to predict M2
h0;1 loop

or

M2
H0;1 loop

one needs a prescription on 	t�; see Eq. (4.18).

Obviously fixing one of these masses, for instance MH0 in
particular in analogy with MA0 , is a scheme for t�. In this

scheme, therefore, Re�̂H0H0ðM2
H0Þ ¼ 0, which sets a

gauge-invariant counterterm for t�; see Eq. (5.13).

H. Constraining the field renormalization constants

We have introduced through the field renormalization
matrices ZP, ZC, ZS a total of 12 such constants; see
Eq. (4.19). However, as argued repeatedly, some of these
constants are only involved in the transition involving an
external Goldstone bosons, i.e. in situations that do not
correspond to a physical process. Therefore we can give
the constants 	ZG0 , 	ZG� , 	ZA0G0 , 	ZH�G� any value;
S-matrix elements will not depend on these constants. It
is therefore easiest to set these four constants to 0 in actual
calculations and give them arbitrary values in preliminary
tests of a calculation of a physical process.

For the transitions involving physical Higgs particles,
we just go along the general lines described in Sec. IVG1,
in order to avoid loop corrections on the external legs. In
the following, in order to avoid too much clutter the masses
that will appear as arguments are the tree-level masses (or
the input mass for MA0). The conditions read

Re �̂
0
A0A0ðM2

A0Þ ¼ 0; (4.32)

Re �̂
0
H�H�ðM2

H�Þ ¼ 0; (4.33)

Re �̂
0
H0H0ðM2

H0Þ ¼ 0; (4.34)

Re �̂
0
h0h0ðM2

h0
Þ ¼ 0; (4.35)

Re �̂H0h0ðM2
H0Þ ¼ 0; Re�̂H0h0ðM2

h0
Þ ¼ 0: (4.36)

From these we immediately derive six out of the eight field
renormalization constants in the Higgs sector,

	ZA0 ¼ Re�0
A0A0ðM2

A0Þ; (4.37)

	ZH� ¼ Re�0
H�H�ðM2

H�Þ; (4.38)

	ZH0 ¼ Re�0
H0H0ðM2

H0Þ; (4.39)

	Zh0 ¼ Re�0
h0h0

ðM2
h0
Þ; (4.40)

	Zh0H0 ¼ 2
Re�H0h0ðM2

H0Þ þ 	M2
H0h0

M2
H0 �M2

h0
; (4.41)

	ZH0h0 ¼ 2
Re�H0h0ðM2

h0
Þ þ 	M2

H0h0

M2
h0
�M2

H0

: (4.42)

When considering a process with A0 as an external leg,1 in
principle it involves the A0 ! A0 transition but also the
A0 ! Z0 and the A0 ! G0 transitions. The field renormal-
ization constant 	ZA0 [see Eq. (4.37)] allows one to set the
A0 ! A0 transition to 0 and moves its effect to a vertex
counterterm correction. One therefore would be tempted

by setting �̂A0Z0ðM2
A0Þ ¼ 0 together with �̂A0G0ðM2

A0Þ ¼ 0,

as is done almost everywhere in the literature. In our case
this would mean that the remaining constant 	ZG0A0 could
be derived equivalently from one of these conditions.
However, the Ward identity we derived in Eq. (4.24) im-
poses a very important constraint. It shows that in a general

nonlinear gauge we cannot impose both �̂A0Z0ðM2
A0Þ ¼ 0

and �̂A0G0ðM2
A0Þ ¼ 0. It seems, at first sight, that this

requires that one introduces loop corrections on the exter-
nal legs when considering, for example, processes with the
pseudoscalar Higgs as an external leg. In the linear gauge,

on the other hand, this is possible since F ~�;~�
GAðq2Þ ¼ 0; we

could then adjust 	ZG0A0 and 	ZA0G0 to have

�̂A0Z0ðM2
A0Þ ¼ 0 and �̂A0G0ðM2

A0Þ ¼ 0. Note, however,

that contrary to what we encounter in some publications

(see for example [17,18]), q2�̂A0Z0ðq2Þ þMZ0 �̂A0G0ðq2Þ
does not vanish for any value of q2 but only for q2 ¼ M2

A0 .
2

1The argument with the charged Higgs is exactly the same;
therefore we will not make explicit the detailed derivation of the
field renormalization constant 	ZG�H� but only quote the result.

2The charged counterpart of this identity is also not valid for
any q2, as is assumed sometimes; see [19].
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Let us show how, despite the constraint in Eq. (4.24), we
can still avoid one-loop corrections and counterterms in the
external legs associated with an external pseudoscalar A0.
Of concern to us are the transitions A0 � Z0 and A0 �G0.
The idea is that, although we cannot make both

�̂A0Z0ðM2
A0Þ ¼ 0 and �̂A0G0ðM2

A0Þ ¼ 0, we will try to

make the combined contribution to the external leg vanish.
This combined contribution is pictured in Fig. 1.

To the tree-level coupling of the A0 to some vertex V, at
one loop the transition A0 �G0 involves the coupling of
the tree-level neutral Goldstone to this vertex, VG, while
the Z0 transition involves the corresponding vertex V�

Z .
The total contribution of Fig. 1 for A0 with momentum q on
shell with q2 ¼ M2

A0 can be written as

M A0;G;Z
ext:leg ¼ �̂A0G0ðM2

A0ÞVG þ q:VZ�̂A0Z0ðM2
A0Þ

M2
A0 �M2

Z0

¼ VG

M2
A0 �M2

Z0

ð�̂A0G0ðM2
A0Þ þMZ0 �̂A0Z0ðM2

A0ÞÞ:

(4.43)

In the second step of Eq. (4.43) we used another identity
that can be readily derived at tree level from the invariance
of the Lagrangian under gauge transformations.3

Therefore, in order not to deal with any correction on the
external pseudoscalar leg, we require

�̂ A0G0ðM2
A0Þ þMZ0 �̂A0Z0ðM2

A0Þ ¼ 0: (4.44)

For this requirement Eq. (4.44), which is a renormaliza-
tion condition, to be consistent with the Ward identity in
Eq. (4.24), leads to

�̂ A0Z0ðM2
A0Þ ¼ � 1

MZ0

�̂A0G0ðM2
A0Þ

¼ 1

ð4�Þ2
e2MZ0

s22W
s2�F

~�;~�
GAðM2

A0Þ: (4.45)

In particular, with F ~�;~�
GAðM2

A0Þ ¼ 0 in the linear gauge,

we can make �̂A0Z0ðM2
A0Þ ¼ �̂A0G0ðM2

A0Þ ¼ 0. This condi-

tion readily gives

	ZG0A0 ¼ �s2�
	t�
t�

� 2
�tad

A0Z0ðM2
A0Þ

MZ0

þ 2

ð4�Þ2

� e2

s22W
s2�F

~�;~�
GAðM2

A0Þ: (4.46)

Since 	ZA0G0 only enters in off-shell processes, A0 off
shell or an external Goldstone boson, there is no need to
constrain it through some other renormalization condition.
Our aim, as stressed repeatedly, is not to renormalize all
Green’s functions, but only S-matrix elements without the
need for external leg corrections. The Ward identities that
we derived in this section were, numerically, checked
extensively in our code for various values of q2, including
q2 ¼ M2

A0 and q2 ¼ M2
Z0 , and for different values of the

nonlinear gauge parameters. Moreover, it is due to the

F ~�;~�
GAðM2

A0Þ contribution in 	ZG0A0 that we are able to

obtain finite and gauge-invariant results for processes in-
volving A0 as an external particle. For 	ZG�H� a similar
derivation gives

	ZG�H� ¼ �s2�
	t�
t�

� 2
�tad

H�W�ðM2
H�Þ

MW�

þ 2

ð4�Þ2
e2

s22W
G ~�; ~!;~	

HW ðM2
H�Þ: (4.47)

With 	ZG0A0 (and 	ZG�H�) all our field renormalization
constants are set and defined.

V. DEFINITIONS OF t� AND THE t� SCHEMES

A. Dabelstein-Chankowski-Pokorski-Rosiek scheme
(DCPR)

This scheme, which we will refer to as the DCPR
scheme, has been quite popular and is based on an OS
renormalization scheme in the Higgs sector [15,16], work-
ing in the usual linear gauge. The definition of t�, however,

is difficult to reconcile with an on-shell quantity that
represents a direct interpretation in terms of a physical
observable. One first introduces a wave-function renormal-
ization constant, 	ZHi

, for each Higgs doublet Hi, i.e.

before rotation

FIG. 1. The combined contribution of the A0 � Z0 and A0 �G0 transitions.

3Consider the part of the Lagrangian with the Z0 and the
neutral Goldstone G0. Before gauge fixing this Lagrangian is
invariant under the transformation Z0

� ! Z0
� þ i@�!, G0 !

G0 þMZ0!. If the Z0 (vector) current is V�
Z and the

Goldstone current VG, that is, we have the interaction Z0:VZ þ
G0VG, invariance of the Lagrangian implies �i@�V

�
Z þ

MZ0VG ¼ 0. In Eq. (4.43), this implies q:VZ ¼ MZ0VG where
q is the Z0 momentum.
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Hi ! ð1þ 1
2	ZHi

ÞHi; i ¼ 1; 2: (5.1)

To make contact with our approach and parameters, con-
cerning wave-function renormalization, we refer to
Appendix B. The vacuum expectation values are also
shifted such that the counterterm for each vi can be written

vi ! vi

�
1�

~	vi

vi

þ 1

2
	ZHi

�
; (5.2)

giving

	t�
t�

¼
~	v1

v1

�
~	v2

v2

� 1

2
ð	ZH1

� 	ZH2
Þ: (5.3)

The DCPR scheme takes
~	v1

v1
¼ ~	v2

v2
such that, in effect,

	t�
t�

¼ 1

2
ð	ZH2

� 	ZH1
Þ: (5.4)

t� is defined by requiring that the (renormalized) A0Z0

transition vanish at q2 ¼ M2
A0 ; therefore from

Re �̂A0Z0ðM2
A0Þ ¼ 0; (5.5)

with

�̂A0Z0ðq2Þ ¼ �A0Z0ðq2Þ þMZ0

4
s2�

�
	ZH2

� 	ZH1
þ 2

	t�
t�

�
;

(5.6)

one obtains that

	t�
t�

DCPR ¼ � 1

MZ0s2�
Re�A0Z0ðM2

A0Þ: (5.7)

This definition is clearly not directly related to an observ-
able. Moreover, 	t� is expressed in terms of wave-function

renormalization constants; see Eq. (5.4).

B. DR scheme ðDRÞ
In this scheme the counterterm for t� is taken to be a

pure divergence proportional to the ultraviolet (UV) factor
in dimensional reduction, CUV,

CUV ¼ 2=ð4� nÞ � �E þ lnð4�Þ; (5.8)

where n is the dimensionality of space-time. In this scheme
the finite part of the counterterm is therefore set to zero:

	tfin
DR

�

t�
¼ 0: (5.9)

The divergent part can be related to a few quantities not
necessarily directly related to an observable. In the vein of
the DCPR approach within the linear gauge, where 	t� is

defined in Eq. (5.4), solving for 	ZH2
� 	ZH1

leads to the

HHW prescription of Hollik, Heinemeyer, and Weiglein
[20] [see also Eq. (B15)],

	t�
DR�HHW

t�
¼ 1

2c2�
ðRe�0

h0h0
ðM2

h0
Þ � Re�0

H0H0ðM2
H0ÞÞ1:

(5.10)

The superscript 1 means that only the infinite CUV part in
dimensional reduction is taken into account. A more sat-
isfactory DR scheme can be based on a physical observ-
able. Pierce and Papadopoulos (PP) [21] have defined 	t�
by relating it to the divergent part ofM2

H0 �M2
h0
. Note that

the sum M2
H0 þM2

h0
does not depend on t�, as can be seen

from the tree-level sum rule in Eq. (2.14). Hence [see also
Eq. (4.31)],

	t�
DR�PP

t�
¼ 1

2s2�s2ð�þ�ÞM2
Z0

�
1

v
ðc���ð1þ 2s2���Þ	TH0

þ s���ð1þ 2c2���Þ	Th0Þ þ Re�H0H0ðM2
H0Þ

� Re�h0h0ðM2
h0
Þ þ c2ð�þ�ÞRe�A0A0ðM2

A0Þ
� c2ð�þ�ÞRe�T

Z0Z0ðM2
Z0Þ
�1

: (5.11)

C. An on-shell scheme (OSMH
) with MH0 as an input

In this scheme one takes MH0 , the largest of the two
scalar Higgs masses, as an input parameter. This trade-off
is operative in the Higgs sector independently of any
process. Therefore MH0 is no longer a prediction but is
extracted from a measurement together withMA0 . As such,
it does not receive a correction at any loop order; 	t� is

defined from the constraint

Re �̂H0H0ðM2
H0Þ ¼ 0; (5.12)

which leads to

	t�
OSMH

t�
¼ 1

s2�s2ð���ÞM2
A0

�
ðc2� � s2�s

2
���Þ

	T�0
1

v1

þðs2� � c2�s
2
���Þ

	T�0
2

v2

þRe�H0H0ðM2
H0Þ

� s2���Re�A0A0ðM2
A0Þ� c2�þ�Re�

T
Z0Z0ðM2

Z0Þ
�
:

(5.13)

This scheme has been advocated in [14,18] and is one of
the schemes implemented in SLOOPS. At tree level, t� is

extracted from the relation defined in Eq. (2.16),

c22� ¼ ðM2
A0 þM2

Z0 �M2
H0ÞM2

H0

M2
A0M

2
Z0

: (5.14)

In our numerical examples the input parameters are such
that the requirement c22� � 1 is always met. In fact, given a

setMA0 ,MZ0 , we generateMH0 through a given value of t�.

The value MH0 is taken as the physical mass at all loop
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orders; in particular, at one loop it does not receive a
correction. As pointed out in Sec. II, in general, with a
set MH0 , MA0 , MZ0 , c22� � 1 is not guaranteed. With this

important proviso, we extract tan� (with tan�> 1) as

t� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MA0MZ0 þMH0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

A0 þM2
Z0 �M2

H0

q
MA0MZ0 �MH0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

A0 þM2
Z0 �M2

H0

q
vuuuut : (5.15)

That this choice might lead to large corrections and large
uncertainties can already be guessed by considering the
uncertainty on tan� given an uncertainty on MH0 , MA0 ,
MZ0 with, respectively, 	MH0 , 	MA0 , 	MZ0 . For clarity, let
us take 	MZ0 ¼ 0 as would be fit from an experimental
point of view since MZ0 is known with an excellent preci-
sion from the LEP measurements. We find

	t�
t�

¼ M2
A0

M2
H0 �M2

A0

M2
H0

M2
H0 �M2

Z0

�
�M2

H0 �M2
Z0

M2
A0

	M2
A0

M2
A0

þM2
H0

M2
A0

2M2
H0 �M2

A0 �M2
Z0

M2
H0

	M2
H0

M2
H0

�
: (5.16)

With typical input parameters in the decoupling limit
MA0 � MZ0 with MA0=MH0 � 1, a large uncertainty en-
sues, to wit

	t�
t�

’ 1

M2
H0=M

2
A0 � 1

�
�	M2

A0

M2
A0

þ 	M2
H0

M2
H0

�
: (5.17)

Therefore, although 	t� is manifestly gauge invariant, one

should expect large uncertainties from loop corrections.
This scheme is similar to the one considered in [6] based on
Eq. (5.14).

D. A�� as an input parameter (OSA��
)

�, which appears in the Higgs sector, relies on the
assumption of a basis; only quantities which are basis
independent are physical quantities [8,22]. The Higgs po-
tential of the MSSM appears as a general two-Higgs dou-
blet model if one restricts oneself solely to the Higgs
sector. The degeneracy is lifted when defining the
Yukawa Higgs coupling to fermions. This picks up a
specific direction. One should therefore define tan� from
the Higgs couplings to fermions. Since MA0 is used as an
input parameter, assuming one has had access to the pseu-
doscalar Higgs, it seems natural to take a coupling A0f �f.
Since couplings to quarks are subject to large QCD radia-
tive corrections, the best choice is to consider the A��

coupling, which is the largest coupling to leptons,

L0
A��

¼ i
m�

v1

s� ���5�A
0 ¼ i

gm�

2MW�
t� ���5�A

0

with v1 ¼ vc�: (5.18)

This coupling can be extracted from the measurement of
the width �A��

with m� the mass of the �. Note also that

	�A��
¼ 2	t�=t� so that, contrary to the on-shell scheme

based on MH0 , OSMH
, this scheme should therefore not

introduce additional large uncertainties, assuming of
course that this decay can be large and be measured
precisely. This scheme therefore appears very natural;
however, it has not been used in practice because one has
considered it as being a process-dependent definition set
outside the purely Higgs sector, which, moreover, implies
that fixing the counterterm involves a three-point function.
This last argument is unjustified; take, for example, theG�

scheme in the SM where muon decay is used as a trade-off
for MW� , taking advantage of the fact that G� has long

been so much better measured than MW� . The G� scheme

involves four-point functions. We find that, technically, this
scheme is not more difficult to implement than a scheme
based on two-point functions. The full counterterm to A��

involves the G0 ! A0 shift, the A0 and �� wave-function
renormalization constants, among other things; we get

	LA��
¼ L0

A��

�
	A��

CT þ 	t�
t�

�
with

	A��

CT ¼
�
	m�

m�

þ 	e

e
þ c2W

2s2W

	M2
W�

M2
W�

� 1

2s2W

	M2
Z0

M2
Z0

þ 1

2
	ZA0A0 � 1

2t�
	~ZG0A0

þ 1

2
ð	Z�

L þ 	Z�
RÞ
�
;

� 1

2t�
	~ZG0A0 ¼ 1

t�

�A0Z0ðM2
A0Þ

MZ0

� 1

1þ t2�

�

2�
MZ0F ~�;~�

GAðM2
Z0Þ: (5.19)

	m� (the � mass counterterm), 	e (the electromagnetic
coupling counterterm), 	MW�;Z0 (the gauge boson mass

counterterms), and the � wave-function renormalization
constant 	Z�

L;R counterterms are defined on shell exactly

as in the SM [10]. The full one-loop virtual corrections

consist of the vertex corrections 	A��

V , which contribute a
one-loop vertex correction to the decay rate as

	�vertex
1 ¼ 2�0	

A��

V : (5.20)

The latter are made UV finite by the addition of the
counterterm in Eq. (5.19). These virtual QED corrections,
both vertex and counterterm (from 	m� and 	Z�

L;R), in-

clude genuine QED corrections through photon exchange
which are infrared divergent. In our case the infrared
divergence can be trivially regularized through the intro-
duction of a small fictitious mass, �, for the photon. As
known, the fictitious mass dependence is canceled when
photon bremsstrahlung is added. Taking into account the
latter may depend on the experimental setup that often
requires cuts on the additional photon kinematical varia-
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bles. Therefore, it is much more appropriate to take as an
observable a quantity devoid of such cuts, knowing that
hard/soft radiation can be easily added. Fortunately, for a
neutral decay such as this one, which is of an Abelian
nature, the virtual QED correction constitutes a gauge-
invariant subset that can be trivially calculated separately.
The virtual QED corrections to the decay width A0 !
�þ�� are known [23]; they contribute a one-loop correc-
tion

	�QED
1 ¼ 2�0	

QED
v with

	QED
v ¼ �

2�

�
�
�
1þ �2

2�
ln
1þ �

1� �
� 1

�
ln
m2

�

�2
� 1

þ 1þ �2

�

�
Li2

�
1� �

1þ �

�
þ ln

1þ �

2�
ln
1þ �

1� �

� 1

4
ln2

1þ �

1� �
þ �2

3

��
; (5.21)

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

�

M2
A0

vuut ; (5.22)

Li 2ðxÞ ¼ �
Z x

0

dt

t
lnð1� tÞ: (5.23)

This QED correction only depends on MA0 , e, m�, as it
should, and does not involve any other (MSSM) parameter.
Subtracting this QED correction from the full one-loop
virtual correction in Eq. (5.19) will give the genuine
SUSY non-QED contribution that does not depend on
any fictitious photon mass nor any experimental cut. Our
scheme is to require that 	t� is such that this contribution

vanishes and that, therefore, A0 ! �þ�� is only subject to
QED corrections. This gives

	t�
OSA��

t�
¼ �ð	A��

V þ 	A��

CT � 	QED
v Þ: (5.24)

This definition is independent of the fictitious mass of the
photon � used as a regulator. We have checked this ex-
plicitly within SLOOPS.

VI. SETUP OF THE AUTOMATIC CALCULATION
OF THE CROSS SECTIONS

All the steps necessary for the renormalization of the
Higgs sector as presented here together with a complete
definition of the MSSM have been implemented in SLOOPS.
As we will discuss in a forthcoming publication [9], the
other sectors have also been implemented and results
relying on the complete renormalization of the MSSM
have been given in [13]. Since even the calculation of a
single two-point function in the MSSM requires the calcu-
lation of hundreds of diagrams, some automatization is
unavoidable. Even in the SM, one-loop calculations of 2 !
2 processes involve hundreds of diagrams and calculation

by hand is almost impracticable. Efficient automatic codes
for any generic 2 ! 2 process, that have now been ex-
ploited for many 2 ! 3 [24,25] and even some 2 ! 4
[26,27] processes, are almost unavoidable for such calcu-
lations. For the electroweak theory these are the GRACE-

LOOP [10] code and the bundle of packages based on

FEYNARTS [28], FORMCALC [29], and LOOPTOOLS [30],

which we will refer to as FFL for short.
With its much larger particle content, a far greater

number of parameters, and more complex structure, the
need for an automatic code at one loop for the minimal
supersymmetric standard model is even more important. A
few parts that are needed for such a code have been
developed based on an extension of [31] but, as far as we
know, no complete code exists or is, at least publicly,
available. GRACE-SUSY [32] is now also being developed
at one loop, and many results exist [14]. One of the main
difficulties that has to be tackled is the implementation of
the model file, since this requires that one enters the
thousands of vertices that define the Feynman rules. On
the theory side a proper renormalization scheme needs to
be set up, which then means extending many of these rules
to include counterterms. When this is done, one can just
use, or hope to use, the machinery developed for the SM, in
particular, the symbolic manipulation part and, most im-
portantly, the loop integral routines including tensor reduc-
tion algorithms or any other efficient set of basis integrals.

SLOOPS combines LANHEP [33] (originally part of the

package COMPHEP [34]) with the FFL bundle but with an
extended and adapted LOOPTOOLS [12]. LANHEP is a very
powerful routine that automatically generates all the sets of
Feynman rules of a given model, the latter being defined in
a simple and compact format very similar to the canonical
coordinate representation. Use of multiplets and the super-
potential is built in to minimize human error. The ghost
Lagrangian is derived directly from the BRST transforma-
tions. The LANHEP module also allows one to shift fields
and parameters and thus generates counterterms most effi-
ciently. Understandably, the LANHEP output file must be in
the format of the model file of the code it is interfaced with.
In the case of FEYNARTS both the generic (Lorentz struc-
ture) and classes (particle content) files had to be given.
Moreover, because we use a nonlinear gauge-fixing condi-
tion [10] (see below), the FEYNARTS default generic file had
to be extended.

VII. t� SCHEME DEPENDENCE OF PHYSICAL
OBSERVABLES, GAUGE INVARIANCE:

A NUMERICAL INVESTIGATION

In this first investigation we will restrict ourselves to
Higgs observables. Other observables involving other
supersymmetric particles require that we first expose and
detail our renormalization procedure of the chargino/neu-
tralino and the sfermion sector. This will be presented in
[9]. We have, however, presented some results on the tan�
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scheme dependence of a few cross sections that are needed
for the calculation of the relic density in the MSSM [13].

A. Parameters

To make contact with the analysis of [6] and also allow
comparisons, wewill consider the three sets of benchmarks
points for the Higgs based on [35]. The three sets of
parameters, called mhmax, large �, and nomix, are as in
[35] except that we set a common trilinear Af to all

sfermions for convenience. For each set there are two
values of t�, t� ¼ 3, 50; see Table I.

B. Gauge independence and the finite part of t�

If t� is defined as a physical parameter, then 	t� must be

gauge invariant and gauge parameter independent. Our
nonlinear gauge fixing allows us to check the gauge pa-
rameter independence of 	t� and hence t�. Even when two

schemes are gauge parameter independent, the values of
	t� are not expected to be the same. It is therefore also

interesting to inquire how much two schemes differ from
each other. Naturally, since 	t� is not ultraviolet finite we

split this contribution into a finite part and an infinite part,
the latter being regularized in dimensional reduction, such
that

	t� ¼ 	tfin� þ 	t1�CUV: (7.1)

The DR schemes have, by definition, 	tfin� ¼ 0. When

calculating observables in this scheme, we will also need
to specify a scale �� which we associate with the scale
introduced by dimensional reduction. For the latter our
default value is �� ¼ MA0 . Our set of nonlinear gauge

parameters is defined as nlgs ¼ ð~�; ~�; ~	; ~!; ~�; ~
; ~�; ~�Þ.
The usual linear gauge, nlgs ¼ 0, corresponds to all

these parameters set to 0. For the gauge parameter inde-
pendence we will compare the results of the linear gauge to
a nonlinear gaugewhere all the nonlinear gauge parameters
have been set to 10, referring to this as nlgs ¼ 10.

To make the point about the gauge parameter depen-
dence, it is enough to consider only one of the benchmark
points.

As expected, we see from Table II that only the schemes
based on a physical definition of t� are gauge parameter

independent. Therefore neither DCPR nor a DR manifes-
tation of it based on [20] is gauge independent. Within the
physical definitions, note that although the divergent part
is, as expected, the same for all the schemes in all gauges,
the finite parts are quite different from each other; in
particular, the OSMH

scheme introduces a ‘‘correction’’

of about 30% to t�. This is just an indication that this

scheme might induce large corrections on observables.
However, one needs to be cautious; in the same way that
the CUV part cancels in observables, a large finite correc-
tion could, in principle, also be absorbed when we consider

a physical process. Our rather extensive analysis will show
that this is, after all, not the case. Schemes where the finite
part of 	t� is large do, generally, induce large corrections.

It is important to note that for the linear gauge all schemes
give the same CUV part. Having made the point about the
gauge parameter dependence, we will now work purely in
the linear gauge since some of the schemes introduced in
the literature are acceptable only within the linear gauge.

TABLE I. The set of SM and MSSM parameters for the
benchmark points. All mass parameters are in GeV. We take
M1 according to the so-called gaugino mass unification with

M1 ¼ 5s2WM2

3c2W
.

Parameter Value

sW 0.480 76

e 0.313 45

gs 1.238

MZ0 91.1884

me 0.000 511

m� 0.1057

m� 1.777

mu 0.046

md 0.046

mc 1.42

ms 0.2

mt 174.3

mb 3

MA0 500

t� 3;50

mhmax Value

� �200
M2 200

M3 800

M ~FL
1000

M~fR
1000

Af 2000þ�=t�

nomix Value

� �200
M2 200

M3 800

M ~FL
1000

M~fR
1000

Af �=t�

large � Value

� 1000

M2 400

M3 200

M ~FL
400

M~fR
400

Af �300þ�=t�
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Therefore in this case the results for DR-HHW and DR-PP
are the same and will be denoted as DR in what follows.

C. �tfin�

First of all, let us mention that our numerical results
concerning the DCPR and DR schemes agree quite well
with those of [6] concerning the shifts in t� and the lightest

CP-even Higgs mass. Our results forOSMH
follow sensibly

the same trend as the scheme defined as the Higgs mass
scheme in [6]. We see that for small t� DCPR and OSA��

give sensibly the same result with a finite relative shift of a
few percent; see Table III. For larger t� the difference is

much larger, and we notice that OSA��
gives much smaller

shifts. On the other hand, the OSMH
gives huge corrections

for t� ¼ 50, well above 100%. As we will see, this will

have an impact on the radiative corrections on some ob-
servables based on this scheme.

D. Higgs masses and their scheme dependence

We start with the one-loop correction to the lightest
CP-even Higgs; see Table IV. Of course, this has now
been calculated beyond one loop, as the one-loop correc-
tion is large; however, a study of the scheme dependence is
important. Moreover, this study represents a direct appli-
cation of the code that can be compared to results in the
literature. We note that all schemes, apart from OSMH

, are

in very good agreement with each other for both values of
t�. Leaving aside the case of t� ¼ 50 in the large �

scenario, despite the very large shifts we observed in
	tfin� for the OSMH

scheme, the t� dependence is very

suppressed such that theOSMH
scheme compares favorably

with the other schemes. In the case of the correction to the
heaviest CP-even Higgs at one loop, by definition there is
no correction in the OSMH

scheme, and the other schemes

agree with each other at a very high level of precision; see
Table V. Moreover, especially at high t�, the correction is

very small.

The mass of the charged Higgs does not depend on 	t�;

therefore the correction is scheme independent, with the
counterterm 	M2

H� ¼ 	M2
W� þ 	M2

A0 .

E. Higgs decays to SM particles and their scheme
dependence

1. A0 ! �þ��, the non-QED one-loop corrections

We now study the non-QED corrections to the decay
width A0 ! �þ��; see Sec. VD for our benchmark points.
By definition there is no correction in the OSA��

scheme.

Many interesting and important conclusions can be drawn
from Table VI. First of all, we note that the scheme
dependence is quite large here. After all, this is an observ-
able which is directly proportional to 	t�. In fact, the

difference between schemes can be accounted for by
2	t� read off from Table III. For this decay, the OSMH

scheme is totally unsuitable; for t� ¼ 3 the corrections are

of order 100%, whereas for t� ¼ 50 the one-loop correc-

TABLE III. 	tfin� for the Higgs benchmark points.

t� ¼ 3 mhmax large � nomix

DCPR �0:10 �0:06 �0:08
OSMH

þ0:92 �1:31 þ0:64
OSA��

�0:10 �0:06 �0:08
DR 0 0 0

t� ¼ 50 mhmax large � nomix

DCPR þ3:42 þ14:57 þ0:48
OSMH

�385:53 �2010:84 �290:18
OSA��

þ0:12 �4:72 þ0:16
DR 0 0 0

TABLE II. Gauge dependence of 	t� at the scale �� ¼ MA0 for
the set mhmax at t� ¼ 3.

	t1� nlgs ¼ 0 nlgs ¼ 10

DCPR �3:19� 10�2 �1:04� 10�1

OSMH
�3:19� 10�2 �3:19� 10�2

OSA��
�3:19� 10�2 �3:19� 10�2

DR-HHW �3:19� 10�2 þ5:32� 10�2

DR-PP �3:19� 10�2 �3:19� 10�2

	tfin� nlgs ¼ 0 nlgs ¼ 10

DCPR �0:10 �0:27
OSMH

þ0:92 þ0:92
OSA��

�0:10 �0:10
DR-HHW 0 0

DR-PP 0 0

TABLE IV. Mass of the lightest CP-even Higgs at one loop in
different schemes. All masses are in GeV.

t� ¼ 3 mhmax large � nomix

MTL
h0

¼ 72:51

DCPR 134.28 97.57 112.26

OSMH
140.25 86.68 117.37

OSA��
134.25 97.59 112.27

DR �� ¼ MA0 134.87 98.10 112.86

DR �� ¼ mt 134.47 97.55 112.38

t� ¼ 50 mhmax large � nomix

MTL
h0

¼ 91:11

DCPR 144.50 35.88 124.80

OSMH
143.76 13.21 124.16

OSA��
144.50 35.73 124.80

DR �� ¼ MA0 144.50 35.77 124.80

DR �� ¼ mt 144.50 35.77 124.80
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tion is an order of magnitude, at least, larger than tree level.
Especially for t� ¼ 3, in DR the scale dependence is not

negligible. For example, with �� ¼ mt in DR the correction
is of order�1% and 5% for �� ¼ MA0 . The corrections are
much smaller in DCPR being at the permil level. The scale
dependence is much smaller for t� ¼ 30 and the correc-

tions in DR are now smaller than in DCPR. Note also that
in the large � scenario the corrections are large.

2. H0 ! �þ��, the non-QED one-loop corrections

Similar conclusions can be drawn from the study of the
non-QED corrections to H0 ! �þ��; see Table VII. The
QED corrections for this decay can be implemented as in

[23]. The only difference is that now there is also a cor-
rection in the case of the OSA��

scheme. But, as expected,

this correction is very small for both values of t�. Note that

for t� ¼ 50 the DCPR scheme gives very large corrections

in the large � scenario. For this process we have not taken
into account the one-loop correction to MH0 since, as we
have seen, this correction is very small for all schemes and
also because one is much too far from the �� threshold,
MH0 � 500 GeV� 2m�, where this effect can play a role.

3. H0 ! Z0Z0 and A0 ! Z0h0

H0 ! Z0Z0 was studied in [21] where a large correction
was found. We confirm here (see Table VIII) that a large

TABLE V. Mass of the heaviest CP-even Higgs at one loop in different schemes. All masses
are in GeV.

t� ¼ 3 mhmax large � nomix

MTL
H0 ¼ 503:05

DCPR 504.68 501.05 504.21

OSMH
503.05 503.05 503.05

OSA��
504.68 501.05 504.21

DR �� ¼ MA0 504.52 500.95 504.08

DR �� ¼ mt 504.63 501.05 504.19

t� ¼ 50 mhmax large � nomix

MTL
H0 ¼ 500:01

DCPR 499.80 498.90 499.85

OSMH
500.01 500.01 500.01

OSA��
499.80 498.91 499.85

DR �� ¼ MA0 499.80 498.91 500.01

DR �� ¼ mt 499.80 498.91 499.85

TABLE VI. Corrections to the decay A0 ! �þ�� at one loop without the universal QED
correction. All widths are in GeV.

t� ¼ 3 mhmax large � nomix

�TL ¼ 9:40� 10�3

DCPR þ3:56� 10�5 �8:71� 10�6 �7:37� 10�6

OSMH
þ6:41� 10�3 �7:82� 10�3 þ4:56� 10�3

OSA��
0 0 0

DR �� ¼ MA0 þ6:51� 10�4 þ3:94� 10�4 þ5:18� 10�4

DR �� ¼ mt þ2:30� 10�4 �2:66� 10�5 þ9:67� 10�5

t� ¼ 50 mhmax large � nomix

�TL ¼ 2:61� 100

DCPR þ3:45� 10�1 þ2:01� 100 þ3:35� 10�2

OSMH
�4:03� 101 �2:09� 102 �3:03� 101

OSA��
0 0 0

DR �� ¼ MA0 �1:21� 10�2 þ4:92� 10�1 �1:66� 10�2

DR �� ¼ mt �3:00� 10�2 þ4:75� 10�1 �3:44� 10�2
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correction is indeed induced with the one-loop result of the
same order if not exceeding both at t� ¼ 3 and t� ¼ 50 the

tree-level result. This larger correction is not due to the
scheme dependence, since in this process the latter is very
small whereas one sees a large correction with all the
schemes. The correction is large because the benchmark
points with MA0 ¼ 500 GeV are in the decoupling regime
where H0 ! Z0Z0 practically vanishes at tree level.
H0Z0Z0 is proportional to c��� �MZ0=MA0 ; the coupling

is therefore almost induced at one loop without the 1=MA0

suppression. Here, again, because MH0 � 2MZ0 the one-
loop correction on MH0 is negligible. Very similar results
and conclusions can be drawn for the process A0 ! Z0h0;
see Table IX.

VIII. CONCLUSIONS

The use of the nonlinear gauge has allowed us, for the
first time, to quantitatively and qualitatively study different
proposals for the ubiquitous parameter tan� and its effect
on the Higgs observables, both the physical Higgs masses
and their decays. Our first preliminary conclusion is that
the scheme based on the extraction and definition of tan�
from a decay such as A0 ! �þ�� is by far the most
satisfactory. Not only is this definition directly related to
a physical observable and therefore gauge independent, the
functional dependence of the physical width in tan� is
linear and is the same independently of the value of the
pseudoscalar Higgs mass. Moreover, the definition is clean
once we subtract the universal gauge-invariant QED cor-

TABLE VIII. Corrections to the decay H0 ! Z0Z0 at one loop. All widths are in GeV.

t� ¼ 3 mhmax large � nomix

�TL ¼ 8:97� 10�3

DCPR þ1:59� 10�2 �6:32� 10�3 þ8:47� 10�3

OSMH
þ1:40� 10�2 �4:00� 10�3 þ7:12� 10�3

OSA��
þ1:59� 10�2 �6:32� 10�3 þ8:47� 10�3

DR �� ¼ MA0 þ1:57� 10�2 �6:44� 10�3 þ8:32� 10�3

DR �� ¼ mt þ1:58� 10�2 �6:32� 10�3 þ8:44� 10�3

t� ¼ 50 mhmax large � nomix

�TL ¼ 6:40� 10�5

DCPR þ2:18� 10�5 �5:14� 10�4 þ3:89� 10�5

OSMH
þ1:01� 10�2 þ4:66� 10�3 þ7:81� 10�4

OSA��
þ3:02� 10�5 �4:65� 10�4 þ3:97� 10�5

DR �� ¼ MA0 þ3:05� 10�5 �4:77� 10�4 þ4:01� 10�5

DR �� ¼ mt þ3:09� 10�5 �4:76� 10�4 þ4:05� 10�5

TABLE VII. Corrections to the decay H0 ! �þ�� at one loop without the universal QED
correction. All widths are in GeV.

t� ¼ 3 mhmax large � nomix

�TL ¼ 9:35� 10�3

DCPR �1:09� 10�4 �7:96� 10�5 �1:09� 10�4

OSMH
þ6:28� 10�3 �7:91� 10�3 þ4:47� 10�3

OSA��
�1:45� 10�4 �7:09� 10�5 �1:01� 10�4

DR �� ¼ MA0 þ5:08� 10�4 þ3:24� 10�4 þ4:17� 10�4

DR �� ¼ mt þ8:57� 10�5 �9:75� 10�5 �4:52� 10�6

t� ¼ 50 mhmax large � nomix

�TL ¼ 2:61� 100

DCPR þ3:54� 10�1 þ2:02� 100 þ4:31� 10�2

OSMH
�4:03� 101 �2:09� 102 �3:03� 101

OSA��
þ9:52� 10�3 þ1:94� 10�3 þ9:55� 10�3

DR �� ¼ MA0 �2:59� 10�3 þ4:94� 10�1 �7:00� 10�3

DR �� ¼ mt �2:04� 10�2 þ4:76� 10�1 �2:49� 10�2
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rection. The scheme is also the most pleasing and satisfac-
tory since it is the one where the observables we have
studied show the least corrections, therefore leading to a
stable prediction. On this last count, the DR scheme per-
forms almost just as well. However, the widely used DR
scheme extracted from the A0Z0 transition is not gauge
invariant and is therefore terribly unsatisfactory from a
theoretical point of view. In the nonlinear gauge with a
general gauge-fixing set of parameters, the parameter
gauge dependence shows up already at one loop, whereas
it has been known that the scheme fails even in the linear
gauge but at two loops [7]. A gauge independent DR
scheme such as the one proposed in [21] is the most
satisfactory. A scheme based on the usage of MH0 as an
independent parameter from the Higgs sector leads to
corrections that are too large in most of the observables
we considered so far. We therefore propose that the decay
A0 ! �þ�� be used as a definition of tan�. This choice
assumes that this decay will one day be measured with high
enough precision, but this depends much on the spectrum
of the MSSM. Were it not for the unambiguous extraction
of the full QED corrections, the decay of the charged Higgs
to �� may also qualify as a suitable input parameter; see
[36] for prospects on the measurement of this decay. Apart
from the discussion on gauge invariance and the issue of
the scheme dependence for tan�, we have shown how a
complete one-loop renormalization of the MSSM can be
automatized and we have given results and details con-
cerning the Higgs sector, which is the first step in a
successful implementation of this programme.
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APPENDIX A: THE WARD-SLAVNOV-TAYLOR
IDENTITY FOR THE TRANSITIONS A0Z0 AND

A0G0

There is an identity relating the A0Z0 and A0G0 transi-
tions. This is most useful for q2 ¼ M2

A0 . Contrary to what

one might see in some papers, the relation is much more
complicated for q2 � M2

A0 and gets more subtle in the case

of the nonlinear gauge.
The identity can be most easily derived by considering

the BRST transformation on the (ghost) operator
h0j �cZðxÞA0ðyÞj0i ¼ 0. We find

	BRSh0j �cZðxÞA0ðyÞj0i ¼ h0jð	BRS �c
ZðxÞÞA0ðyÞj0i

� h0j �cZðxÞð	BRSA
0ðyÞÞj0i ¼ 0;

(A1)

with

	BRSA
0 ¼ � g

2
ðcþH� þ c�HþÞ

þ e

s2W
cZðc���h

0 þ s���H
0Þ (A2)

and

	BRS �c
Z ¼ BZ: (A3)

Therefore,

TABLE IX. Corrections to the decay A0 ! Z0h0 at one loop. All widths are in GeV.

t� ¼ 3 mhmax large � nomix

�TL ¼ 9:03� 10�3

DCPR þ2:42� 10�2 þ3:86� 10�3 þ1:68� 10�2

OSMH
þ2:23� 10�2 þ6:20� 10�3 þ1:55� 10�2

OSA��
þ2:50� 10�2 þ3:86� 10�3 þ1:64� 10�2

DR �� ¼ MA0 þ2:48� 10�2 þ3:74� 10�3 þ1:67� 10�2

DR �� ¼ mt þ2:41� 10�2 3:87� 10�3 þ1:68� 10�2

t� ¼ 50 Mhmax large � Nomix

�TL ¼ 6:30� 10�5

DCPR þ2:39� 10�5 þ8:75� 10�4 þ4:31� 10�5

OSMH
þ1:00� 10�3 þ5:97� 10�3 þ7:74� 10�4

OSA��
þ3:48� 10�5 þ9:26� 10�4 þ4:39� 10�5

DR �� ¼ MA0 þ3:51� 10�5 þ9:12� 10�4 þ4:43� 10�5

DR �� ¼ mt þ3:30� 10�5 þ9:12� 10�4 þ4:47� 10�5
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h0jBZðxÞA0ðyÞj0i þ g

2
ðh0j �cZðxÞcþðyÞH�ðyÞj0i þ h0j �cZðxÞc�ðyÞHþðyÞj0iÞ � e

s2W
ðc���h0j �cZðxÞcZðyÞh0ðyÞj0i

þ s���h0j �cZðxÞcZðyÞH0ðyÞj0iÞ ¼ 0: (A4)

At tree level, there is no vertex involving �cZc�H�. Using the equation of motion of the B field, we obtain a relation for the
following Green’s functions (external legs are not amputated):

@xh0jZ0ðxÞA0ðyÞj0i þMZ0h0jG0ðxÞA0ðyÞj0i þ e

s2W
ð~�h0jh0ðxÞG0ðxÞA0ðyÞj0i þ ~�h0jH0ðxÞG0ðxÞA0ðyÞj0iÞ

þ e

s2W
ðc���h0j �cZðxÞcZðyÞh0ðyÞj0i þ s���h0j �cZðxÞcZðyÞH0ðyÞj0iÞ ¼ 0: (A5)

In a diagrammatic form, we have

and obtain the relation

With the following vertices,

L 	 � eMZ0

s2W
s2�ðs�þ�h

0 � c�þ�H
0ÞA0G0; (A8)

L Gh 	 eMZ0

s2W
ððs��� � ~�Þh0 � ðc��� þ ~�ÞH0Þ �cZcZ;

(A9)

we calculate all the ‘‘lollipops,’’ with

B0ðq2;M2
1;M

2
2Þ ¼ CUV �

Z 1

0
dx lnð�ðq2;M2

1;M
2
2ÞÞ;
(A14)

�ðq2;M2
1;M

2
2Þ ¼ q2x2 � ðq2 þM2

2 �M2
1ÞxþM2

2:

(A15)

We finally obtain the identity

q2�A0Z0ðq2Þ þMZ0�A0G0ðq2Þ ¼ 1

ð4�Þ2
e2MZ0

s22W
ððq2 �M2

Z0Þs2�F ~�;~�
GAðq2Þ þ ðq2 �M2

A0ÞF ~�;~�
cc ðq2ÞÞ;

with F ~�;~�
GAðq2Þ ¼ ~�c�þ�B0ðq2;M2

H0 ;M
2
Z0Þ � ~�s�þ�B0ðq2;M2

h0
;M2

Z0Þ;
F ~�;~�

cc ðq2Þ ¼ ~�c���B0ðq2;M2
h0
;M2

Z0Þ þ ~�s���B0ðq2;M2
H0 ;M2

Z0Þ
þ 1

2
s2ð���ÞðB0ðq2;M2

H0 ;M
2
Z0Þ � B0ðq2;M2

h0
;M2

Z0ÞÞ: (A16)
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To implement this formula into SLOOPS and check it numerically, we need to introduce the tadpole part in FORMCALC, and
we define �tad as the self-energy without a tadpole:

q2�tad
A0Z0ðq2Þ þMZ0�tad

A0G0ðq2Þ þMZ0	T ¼ 1

ð4�Þ2
e2MZ0

s22W
ððq2 �M2

Z0Þs2�F ~�;~�
GA þ ðq2 �M2

A0ÞF ~�;~�
cc Þ;

where 	T ¼ e

s2WMZ0

ðs���	TH0 þ c���	Th0Þ: (A17)

We remark on some simplifications in the functions F for
specific choices of the nonlinear gauge parameters,

F ~�;~�
GAð~� ¼ 0; ~� ¼ 0Þ ¼ 0; (A18)

F ~�;~�
GAð~� ¼ c�þ�; ~� ¼ s�þ�Þ

¼ 1

2
s2ð�þ�Þ

Z 1

0
dx ln

��ðq2;M2
h0
;M2

Z0Þ
�ðq2;M2

H0 ;M
2
Z0Þ
�
; (A19)

F ~�;~�
cc ð~� ¼ s���; ~� ¼ �c���Þ ¼ 0; (A20)

F ~�;~�
cc ð~� ¼ 0; ~� ¼ 0Þ

¼ 1

2
s2ð���Þ

Z 1

0
dx ln

��ðq2;M2
h0
;M2

Z0Þ
�ðq2;M2

H0 ;M
2
Z0Þ
�
: (A21)

In terms of renormalized self-energies,

�̂ A0Z0ðq2Þ ¼ �tad
A0Z

ðq2Þ þMZ0

2

�
	ZG0A0 þ s2�

	t�
t�

�
;

(A22)

�̂A0G0ðq2Þ ¼ �tad
A0G0ðq2Þ þ 	M2

A0G0 � 1
2q

2	ZG0A0

� 1
2ðq2 �M2

A0Þ	ZA0G0 ; (A23)

with [Eq. (4.18)]

	M2
A0G0 ¼ 	T � 1

2
s2�M

2
A0

	t�
t�

; (A24)

we obtain the following constraint on the renormalized
two-point functions:

q2�̂A0Z0ðq2Þ þMZ0 �̂A0G0ðq2Þ

¼ ðq2 �M2
Z0Þ 1

ð4�Þ2
e2MZ0

s22W
s2�F

~�;~�
GAðq2Þ

þMZ0

2
ðq2 �M2

A0Þ
�

1

ð4�Þ2
2e2

s22W
F ~�;~�

cc ðq2Þ

þ s2�
	t�
t�

� 	ZAG

�
: (A25)

Note that in this identity 	T and, more importantly, 	ZG0A0

drop out.
The derivation of the identity for the charged Higgses

follows along the same steps. We only quote the result,

q2�̂HþWþðq2Þ þMW��̂HþWþðq2Þ

¼ ðq2 �M2
W�Þ 1

ð4�Þ2
e2MW�

s22W
G ~�; ~!;~	

HW ðq2Þ

þMW�

2
ðq2 �M2

H�Þ
�

1

ð4�Þ2
2e2

s22W
G ~�; ~!;~	

cc ðq2Þ

þ s2�
	t�
t�

� 	ZH�G�
�
;

with the functions G ~�; ~!;~	
HW ðq2Þ and G ~�; ~!;~	

cc ðq2Þ defined as

G ~�; ~!;~	
HW ðq2Þ ¼ ~	ðs2�s�þ� � c2Wc���ÞB0ðq2;M2

W� ;M2
h0
Þ

� ~!ðc2�s�þ� � s2Ws���ÞB0ðq2;M2
W� ;M2

H0Þ
þ ~�c2WB0ðq2;M2

W� ;M2
A0Þ;

G ~�; ~!;~	
cc ðq2Þ ¼ c���ðs��� � ~	Þc2WB0ðq2;M2

W� ;M2
h0
Þ

� s���ðc��� þ ~!Þc2WB0ðq2;M2
W� ;M2

H0Þ
� ~�c2WB0ðq2;M2

W� ;M2
A0Þ: (A26)

APPENDIX B: WAVE-FUNCTION
RENORMALIZATION CONSTANTS BEFORE

ROTATION

In our approach, field renormalization was performed on
the physical fields, or better said, after rotation, to the h0,
H0, A0, G0, H�, G� basis. We could have applied field
renormalization on the components of the doubletsH1,H2,
Eq. (2.3). To make contact with some of the early papers
[15,16,20] on the renormalization of the Higgs sector, we
therefore introduce the most general field renormalization
on the components of H1, H2. We define

’0
1

’0
2

 !
0 ¼

Z1=2

’0
1

Z1=2

’0
1
’0
2

Z1=2

’0
2
’0
1

Z1=2

’0
2

0
@

1
A ’0

1

’0
2

� �
; (B1)

��
1

��
2

 !
0 ¼

Z1=2
��

1

Z1=2
��

1 �
�
2

Z1=2
��

2
��

1

Z1=2
��

2

0
@

1
A ��

1

��
2

� �
; (B2)

�0
1

�0
2

 !
0 ¼

Z1=2

�0
1

Z1=2

�0
1
�0

2

Z1=2

�0
2
�0

1

Z1=2

�0
2

0
@

1
A �0

1

�0
2

� �
: (B3)

As explained in the text, these constants are immediately
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transformed into the set of matrices ZP, ZC, ZS. Or we can
go from the set ZP, ZC, ZS to the set defined by Eqs. (B1)–
(B3). For example,

	ZG0 ¼ c2�	Z’0
1
þ s2�	Z’0

2
þ c�s�ð	Z’0

1
’0
2
þ 	Z’0

2
’0
1
Þ;

	ZG0A0 ¼ c�s�ð	Z’0
2
� 	Z’0

1
Þ þ c2�	Z’0

1
’0
2
� s2�	Z’0

2
’0
1
;

	ZA0G0 ¼ c�s�ð	Z’0
2
� 	Z’0

1
Þ þ c2�	Z’0

2
’0
1
� s2�	Z’0

1
’0
2
;

	ZA0 ¼ s2�	Z’0
1
þ c2�	Z’0

2
� c�s�ð	Z’0

1
’0
2
þ 	Z’0

2
’0
1
Þ;

(B4)

	ZG� ¼ c2�	Z��
1
þs2�	Z��

2
þc�s�ð	Z��

1 �
�
2
þ	Z��

2 �
�
1
Þ;

	ZG�H� ¼ c�s�ð	Z��
2
�	Z��

1
Þþc2�	Z��

1
��

2
�s2�	Z��

2
��

1
;

	ZH�G� ¼ c�s�ð	Z��
2
�	Z��

1
Þþc2�	Z��

2
��

1
�s2�	Z��

1
��

2
;

	ZH� ¼ s2�	Z��
1
þc2�	Z��

2
�c�s�ð	Z��

1 �
�
2
þ	Z��

2 �
�
1
Þ;

(B5)

	ZH0 ¼ c2�	Z�0
1
þ s2�	Z�0

2
þ c�s�ð	Z�0

1
�0

2
þ 	Z�0

2
�0

1
Þ;

	ZH0h0 ¼ c�s�ð	Z�0
2
� 	Z�0

1
Þ þ c2�	Z�0

1
�0

2
� s2�	Z�0

2
�0

1
;

	Zh0H0 ¼ c�s�ð	Z�0
2
� 	Z�0

1
Þ þ c2�	Z�0

2
�0

1
� s2�	Z�0

1
�0

2
;

	Zh0 ¼ s2�	Z�0
1
þ c2�	Z�0

2
� c�s�ð	Z�0

1
�0

2
þ 	Z�0

2
�0

1
Þ;

(B6)

	ZH0h0 þ 	Zh0H0 ¼ ðc2� � s2�Þð	Z�0
1
�0

2
þ 	Z�0

2
�0

1
Þ

þ 2c�s�ð	Z�0
2
� 	Z�0

1
Þ;

	ZH0h0 � 	Zh0H0 ¼ 	Z�0
1
�0

2
� 	Z�0

2
�0

1
:

(B7)

Our renormalization conditions in Eq. (4.36) on �̂ii will
turn into

Re�0
A0A0ðM2

A0Þ ¼ s2�	Z’0
1
þ c2�	Z’0

2

� c�s�ð	Z’0
1
’0
2
þ 	Z’0

2
’0
1
Þ; (B8)

Re�0
H�H�ðM2

H�Þ ¼ s2�	Z��
1
þ c2�	Z��

2

� c�s�ð	Z��
1
��

2
þ Z��

2
��

1
Þ; (B9)

Re�0
H0H0ðM2

H0Þ ¼ c2�	Z�0
1
þ s2�	Z�0

2

þ c�s�ð	Z�0
1
�0

2
þ 	Z�0

2
�0

1
Þ; (B10)

Re�0
h0h0

ðM2
h0
Þ ¼ s2�	Z�0

1
þ c2�	Z�0

2

� c�s�ð	Z�0
1
�0

2
þ 	Z�0

2
�0

1
Þ: (B11)

In fact, in [15,16,20] only two renormalization constants
are introduced, one for each doublet through

Hi ! ð1þ 1
2	ZHi

ÞHi; i ¼ 1; 2: (B12)

This means that

	Z�0
i
¼ 	Z’0

i
¼ 	Z��

i
¼ 	ZHi

;

	Z�0
i �

0
j
¼ 	Z’0

i ’
0
j
¼ 	Z��

i �
�
j
¼ 0; i � j: (B13)

Since wave-function renormalization is applied on the
doublets, it also contributes a shift to vi. Another shift on

this parameter is also applied, vi ! vi � ~	vi, as to all
other Lagrangian parameters. Compared to our shift 	vi,
we have

	vi ¼ ~	vi � 1
2	ZHi

vi: (B14)

Note that with only 	ZH1
and 	ZH2

, in view of Eqs. (B10),

(B11), and (B13) we have

	ZH1
� 	ZH2

¼ � 1

2c2�
ðRe�0

h0h0
ðM2

h0
Þ

� Re�0
H0H0ðM2

H0ÞÞ: (B15)
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