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The next-to-minimal supersymmetric standard model (NMSSM) with a large � (the mixing parameter

between the singlet and doublet Higgs fields) is well motivated since it can significantly push up the upper

bound on the standard model-like Higgs boson mass to solve the little hierarchy problem. In this work we

examine the current experimental constraints on the NMSSM with a large �, which include the direct

search for Higgs bosons and sparticles at colliders, the indirect constraints from precision electroweak

measurements, the cosmic dark matter relic density, the muon anomalous magnetic moment, as well as the

stability of the Higgs potential. We find that, with the increase of �, parameters like tan�, MA, �, and M2

are becoming more stringently constrained. It turns out that the maximal reach of � is limited by the muon

anomalous magnetic moment, and for smuon masses of 200 GeV (500 GeV) the parameter space with

� * 1:5ð0:6Þ is excluded.
DOI: 10.1103/PhysRevD.78.115001 PACS numbers: 14.80.Cp, 11.30.Qc, 12.60.Fr

I. INTRODUCTION

Since the minimal supersymmetric standard model
(MSSM) [1] suffers from the � problem [2] and the little
hierarchy problem, some nonminimal supersymmetric
models have recently attracted much attention, among
which the most intensively studied is the next-to-minimal
supersymmetric standard model (NMSSM) [3]. In the
NMSSM there is no dimensionful parameters in the super-
symmetry (SUSY)-conserving sector and the � term is
dynamically generated through the coupling between the
two Higgs doublets and a newly introduced singlet Higgs
field which develops a vacuum expectation value of the
order of the SUSY breaking scale. The NMSSM provides
two ways to alleviate the little hierarchy problem. One is to
relax the LEP II lower bound on the mass of the standard
model (SM)-like Higgs boson, h, by diluting ZZh coupling
through the singlet component of h and/or by suppressing
the visible decay h ! b �b by introducing the new decay of
h [4]. The other is to push up the Higgs boson mass with a
large �, which can be seen from the tree-level upper bound
of the Higgs boson mass [5],

m2
h;max ’ m2

Zcos
22�þ �2v2sin22� (1)

where tan� ¼ hHui=hHui, v2 ¼ hHui2 þ hHui2, and � is
the mixing parameter between the singlet and doublet
Higgs fields defined in Eq. (2).

Note that the choice of a large � to solve the little
hierarchy problem may be limited by the perturbativity
of the theory at the scale � since the value of � is increas-
ing with the energy scale [6]. If this scale � is the grand
unified theory (GUT) scale, � should be less than about 0.7
at the weak scale, leading to an upper bound on the Higgs
boson mass of about 150 GeV [5]. However, the bound on
� from the perturbativity consideration can be relaxed by

embedding the NMSSM in some more complex frame-
works. For example, in the fat Higgs model [7], by com-
pleting the NMSSM (or NMSSM-like models) with an
appropriate strong dynamics at an intermediate scale
(much lower than the GUT scale), � can be as large as 2
at the weak scale and the Higgs boson mass can be pushed
up to about 400 GeV. In this work, regardless of the de-
tailed forms of the ultraviolet physics, we treat the
NMSSM as an effective theory and examine the current
experimental constraints on its parameter space.
Such phenomenological studies on the Higgs boson and

supersymmetry are pressing since the mystery of the Higgs
sector will be unveiled at the LHC in the near future. If the
SM-like Higgs boson is discovered with a mass above the
MSSM upper bound, the NMSSM (or other NMSSM-like
models) with a large �, generally called �SUSY [8], will
be immediately favored since it not only inherits all the
advantages of the MSSM, such as unifying gauge cou-
plings and providing a dark matter candidate, but also is
free from the � problem and the little hierarchy problem.
For the phenomenological studies of these models, a pri-
mary work is to examine the current experimental con-
straints on their parameter space.
We note that various constraints on the NMSSM have

been studied in the literature, but different constraints were
considered in different papers. For example, in [9] the
authors mainly considered the LEP II constraints and put
emphasize on the small � case. The package NMSSMTOOLS

[10] encoded various constraints (like the LEP II searches
for the Higgs boson, cosmic dark matter, and the stability
of the Higgs potential), but it is still not complete since it
does not include the indirect constraints from precision
electroweak measurements and the muon anomalous mag-
netic moment. In this work we consider all these con-
straints and especially focus on the case with a large �.
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As will be shown from our study, with the increase of �, the
parameter space gets more stringently constrained.
Figuring out the allowed parameter space is helpful for
exploring such low energy supersymmetry at the LHC and
also may shed some light on constructing the ultraviolet
physics from the bottom-up view.

This paper is organized as follows. In Sec. II we briefly
describe the structure of the NMSSM with emphasis on its
difference from the MSSM. In Sec. III we summarize the
constraints considered in this work and briefly discuss their
characters. In Sec. IV we scan over the NMSSM parameter
space and display the region allowed by all these con-
straints. In Sec. V we give our conclusions.

II. ABOUT THE NMSSM

The NMSSM extends the matter fields of the MSSM by

adding one gauge singlet superfield Ŝ, and its superpoten-
tial takes the form [3]

W ¼ �"ijĤ
i
uĤ

j
dŜþ 1

3�Ŝ
3 þ Yu"ijQ̂

iÛĤj
u � Yd"ijQ̂

iD̂Ĥj
d

� Ye"ijL̂
iÊĤj

d (2)

where Q̂, Û, and D̂ are squark superfields, L̂ and Ê are

slepton superfields, and Ĥu and Ĥd are Higgs doublet
superfields. The soft SUSY breaking terms are given by

Vsoft ¼ 1
2M2�

a�a þ 1
2M1�

0�0 þm2
djHdj2 þm2

ujHuj2
þm2

SjSj2 þm2
Qj ~Qj2 þm2

Uj ~Uj2 þm2
Dj ~Dj2

þm2
Lj ~Lj2 þm2

Ej ~Ej2 þ ð�A�"ijH
i
uH

j
dSþ H:c:Þ

� ð13A�S
3 þ H:c:Þ þ ðYuAU"ij ~Q

i ~UHj
u

� YdAD"ij ~Q
i ~DHj

d � YeAE"ij ~L
i ~EHj

d þ H:c:Þ: (3)

Note that just like the MSSM, the NMSSM has the feature
that SUSY breaking induces the electroweak symmetry
breaking. Before SUSY breaking (i.e. without the soft
breaking terms), the Higgs scalars have zero vacuum ex-
pectation values (vevs) in the supersymmetric vacuum of
the scalar potential, and thus the electroweak symmetry is
not broken. After SUSY breaking (i.e. with the soft break-
ing terms), the Higgs scalars develop nonzero vevs in the
physical (nonsupersymmetric) vacuum of the scalar poten-
tial, and hence the electroweak symmetry is spontaneously
broken and the � parameter is generated, � ¼ �hSi. Since
both the electroweak symmetry breaking and the � pa-
rameter generation are induced by SUSY breaking, their
scales should naturally be at the SUSY breaking scale (the
scale of soft breaking mass parameters).

The differences of the NMSSM and MSSM come from
the Higgs sector and the neutralino sector [3]. In the Higgs
sector of the NMSSM there are three CP-even and two
CP-odd Higgs bosons. In the basis
½ReðH0

uÞ;ReðH0
dÞ;ReðSÞ�, the mass-squared matrix ele-

ments for CP-even Higgs bosons are

M 2
S;11 ¼ m2

Acos
2�þm2

Zsin
2�; (4)

M 2
S;22 ¼ m2

Asin
2�þm2

Zcos
2�; (5)

M2
S;33 ¼

�2v2

4�2
m2

Asin
22�� ��

2
v2 sin2�

þ 1

�2
�ð4�2�� �A�Þ; (6)

M 2
S;12 ¼ ð2�2v2 �m2

Z �m2
AÞ sin� cos�; (7)

M 2
S;13 ¼ 2��v sin�� �v

2�
m2

A sin2� cos�� ��v cos�;

(8)

M 2
S;23 ¼ 2��v cos�� �v

2�
m2

A sin� sin2�� ��v sin�:

(9)

In the basis ½ ~A; ImðSÞ� with ~A ¼ cos� ImðH0
uÞ þ

sin� ImðH0
dÞ, the mass-squared matrix elements for the

CP-odd Higgs bosons are

M 2
P;11 ¼

2�

sin2�

�A� þ ��

�
� m2

A; (10)

M 2
P;22 ¼

3

2
��v2 sin2�þ �2v2

4�2
m2

Asin
22�þ 3

�
�A�;

(11)

M 2
P;12 ¼

�v

2�
m2

A sin2�� 3��v: (12)

As shown in Eq. (10), we can choose mA instead of A� as a
free parameter. So compared with the MSSM, the NMSSM
has three additional parameters: �, �, and A�.
Conventionally, � is chosen to be positive while � and
A� can be either positive or negative. Note that Eqs. (9) and
(12) indicate that the parameters � and �� affect the
mixings between doublet and singlet Higgs fields, while
A� only affects the squared mass of the singlet Higgs field.
In the neutralino sector, the NMSSM predicts one extra

neutralino. In the basis ð�i�1;�i�2; c
0
u; c

0
d; c sÞ the neu-

tralino mass matrix is given by [3]

M1 0 mZ sin�W sin� �mZ sin�W cos� 0
M2 �mZcos�W sin� mZcos�W cos� 0

0 �� ��vcos�
0 ��vsin�

2�
��

0
BBBBB@

1
CCCCCA
:

(13)

This mass matrix is independent of A�, and the role of � is
to introduce the mixings of c s with c 0

u and c 0
d, and k� is

to affect the mass of c s. From Eqs. (9), (12), and (13), one
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can learn that in the limit �, � ! 0, the singlet field has no
mixing with the doublet field and thus is decoupled. In this
case, the NMSSM can recover the MSSM.

III. CONSTRAINTS ON THE NMSSM
PARAMETERS

Before we proceed to discuss experimental constraints
on the parameters of the NMSSM, we take a look at the
bounds on � and � from the requirement that the theory
should stay perturbative under a certain scale �. The
renormalization group equations (RGEs) for � and � under
the scale � take the following form [11]:

d�

d ln�
¼ �

16�2
ð4�2 þ 2�2 þ 3Y2

t þ 3Y2
b

þ Y2
� � 3g2 � g02Þ; (14)

d�

d ln�
¼ 6�

16�2
ð�2 þ �2Þ; (15)

where g and g0 are the SUð2ÞL and Uð1ÞY gauge couplings.
These RGEs indicate that the values of � and � increase
with the energy scale. The requirement of perturbativity till
the cutoff scale �, i.e., �ð�Þ & 2� and �ð�Þ & 2�, will
set upper bounds on � and � at the weak scale (throughout
this paper, all input parameters are defined at the weak
scale unless otherwise specified). For example, if we as-
sume that new dynamics appears at � ¼ 10 TeV, we get
�2 þ �2 & 4:2, and for � > 1:5, � must be less than 1.2;
however, if � is chosen to be the GUT scale, a stringent
bound �2 þ �2 & 0:5 is obtained [6]. In our following
numerical study we let � and � vary below 2 and 1,
respectively, and this corresponds to setting � ’ 10 TeV.

In our study we consider the following constraints on the
parameters of the NMSSM:

(1) Constraints on the neutralino and chargino sectors,
which include the following: the bound from invis-
ible Z decay �ðZ ! �0

1�
0
1Þ< 1:76 MeV; the upper

bounds on neutralino pair productions at LEP II,
	ðeþe� ! �0

1�
0
i Þ< 10�2 pb (i > 1) and

	ðeþe� ! �0
i �

0
j Þ< 10�1 pb; and the LEP II bound

on the lightest chargino mass m�þ
1
> 103:5 GeV.

These bounds will mainly constrain the parameters
M1, M2, and �.

(2) Lower bounds on sparticle masses from LEP and
Tevatron experiments [12]:

m~e > 73 GeV; m ~� > 94 GeV;

m~� > 81:9 GeV; m~q > 250 GeV;

m~t > 89 GeV; m~b > 95:7 GeV;

m~g > 195 GeV;

where m~q denotes the masses for the first two-

generation squarks. These constraints will put lower

bounds on the soft breaking masses for sleptons and
squarks.

(3) The LEP II lower bound on the charged Higgs boson
mass, mHþ > 78:6 GeV, which gives a lower bound
on mA through the relation m2

Hþ ¼ m2
A þM2

W �
1
2�

2v2.

(4) Constraints from the direct search for the Higgs
boson at LEP II [13], which include various chan-
nels of Higgs boson production [10]. They will
constrain the parameters mA, tan�, �, as well as
the masses and the chiral mixing of top squarks in a
complex way.

(5) Constraints from the relic density of cosmic dark
matter, i.e. 0:0945<�h2 < 0:1287 [14], assuming
the lightest neutralino is the dark matter particle.
The relic density will constrain the parameters M1,
M2, �, mA, tan�, and � in a complex way [15].

(6) Constraints from the stability of the Higgs potential,
which requires that the physical vacuum of the
Higgs potential with nonvanishing vevs of Higgs
scalars should be lower than any local minima.
Also, the scale of the Higgs soft breaking parame-
ters should not be much higher than the electroweak
scale to avoid the fine-tuning problem. Here we set
1 TeV as the upper bound of the soft breaking
parameters in the Higgs sector. This will constrain
the parameters mA, �, A�, �, and tan�.

(7) Constraints from precision electroweak observables

such as 
lept, sin
2�lepteff , and MW , or their combina-

tions �iði ¼ 1; 2; 3Þ [16]. We require the predicted �i
in the NMSSM to be compatible with the LEP/SLD
data at the 95.6% confidence level or, equivalently,
�2=dof � 8:1=3. We take the correlation coefficient
of �i from [17] in calculating �2. This requirement
will constrain the parameters tan�, mA, as well as
the soft breaking parameters in the third generation
squark sector.

(8) Constraints from Rb ¼ �ðZ ! �bbÞ=�ðZ !
hadronsÞ, whose measured value is R

exp
b ¼

0:216 29� 0:000 66. The SM prediction is RSM
b ¼

0:215 78 formt ¼ 173 GeV [12]. In our analysis we
require that RSUSY

b is within the 2	 range of its

experimental value. It has been shown that the
SUSY contribution to Rb might be sizable for large
tan� [18].

(9) Constraints from the muon anomalous magnetic
moment a�. Now both the theoretical prediction

and the experimental measurement of a� have

reached a remarkable precision, but they show a
significant deviation, aexp� � aSM� ¼ ð29:5� 8:8Þ �
10�10 [19]. In our analysis we require the SUSY
effects to account for such a deviation at the 2	
level. The character of the SUSY contribution to a�
is that it is suppressed by smuon masses but en-
hanced by tan�.
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Among the above constraints, (1)–(6) and (9) have been
encoded in the package NMSSMTOOLS [10]. In our calcu-
lations we extend it by including the constraints (7) and (8).

The analytic expressions of �i and Rb in the NMSSM
were given in our recent work [18]. In [18] we also calcu-
lated the NMSSM contribution to a� (when we started that

work, the results in [20,21] had not yet been published),
where we extended the neutralino- and chargino-mediated
MSSM contributions [22] to the NMSSM and also consid-
ered the contributions from the Higgs-mediated diagrams
[23] and from the Barr-Zee diagrams [24]. We checked that
our a� results in [18] agree with those in [20].

Note that in our analysis we did not include the con-
straints from various B decays [25] because they are de-
pendent on squark flavor mixings and thus involve
additional parameters.

IV. ALLOWED REGIONS OF THE NMSSM
PARAMETERS

In this section, we scan over the NMSSM parameter
space to look for the region allowed by the constraints in
the preceding section. Since we are interested in the pa-
rameters sensitive to the constraints, we make some as-
sumptions (as conservative as possible) for the other
parameters such as soft breaking parameters in squark,
slepton, and gaugino sectors.

For the parameters in the squark sector, we assume the
so-called mmax

h scenario, which can maximize the lightest

Higgs boson mass [26]. This scenario assumes all the soft
breaking masses in the squark sector to be degenerate,

M~q ¼ MQi
¼ MUi

¼ MDi
(16)

with i being the generation index. It also assumes the
trilinear couplings to be degenerate, Aui ¼ Adi with ðAui �
� cot�Þ=M~q ¼ 2. We fix M~q ¼ 1 TeV in our analysis

since large M~q can not only enhance the lightest Higgs

boson mass, but also decrease the contribution of the third
generation squarks to the electroweak parameters, which
has the same sign as the Higgs contributions [8]. For the
parameters in the slepton sector, we note that the slepton
masses have little effect on the constraints, except for the
muon anomalous magnetic moment. In our calculation we
assume all the soft breaking parameters in the slepton
sector are degenerate and take a value of 200 GeV (we
will discuss the effects of its variation). For the gaugino
mass parameters, we assume the grand unification relation
M1 ¼ 5

3 ðg02=g2ÞM2.

With the above assumptions, the free parameters are
reduced to seven ð�; �; A�; tan�;mA;�;M2Þ and are within
the capability of our computer to perform a scan. During
our scan, we first divide the varying range of � into bins,
with each bin width being 0.1, and then we vary the values
of other parameters in the following ranges:

�1 � � � 1;

1 � tan� � 60;

�1 TeV � A� < 1 TeV;

50 GeV � MA;�;M2 � 1 TeV:

(17)

With 2� 108 samples in each bin and keeping the points
satisfying the constraints, we finally get the allowed re-
gions of these parameters. Our scan results indicate that the
number of samples that survived for � < 0:5 is much larger
than that for � > 0:5, which means that the parameters for
small � are much less constrained than the case with large
�. Since we are interested in large �, here we only show our
scan results for � > 0:5.
In Fig. 1 we display the parameters (scatter plots) sat-

isfying all the constraints (1)–(9) in the plane of � versus
tan�. Also, we present a curve which is the upper bound on
tan� without considering the muon g-2 constraints. To get
this curve, we fix � and scan over the parameters in Eq.
(17). We adopt the important sampling method [27] to
optimize the varying range of tan�.
Figure 1 shows that the upper bound on tan� gets

stronger as � gets large, and when all the constraints are
considered, � is upper bounded by about 1.5. The under-
lying reason for this is that the constraints (1)–(8), espe-
cially the constraint (7), have limited the maximal value of
tan�, which decreases with the increase of �. Since a large

0
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0.6 0.8 1 1.2 1.4 1.6 1.8 2

λ

ta
n

β

FIG. 1 (color online). The scatter plots are the NMSSM pa-
rameters satisfying all the constraints (1)–(9). The curve is the
upper bound on tan� without considering the muon g-2 con-
straints.
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tan� is needed to explain the deviation of the muon g-2, �
must terminate at a certain value where the corresponding
tan� value is too small to explain the muon g-2. We have
checked that the maximal value of � is dependent on the
slepton mass. For example, for slepton masses of 100 GeV,
280 GeV, and 500 GeV, the bounds on � are � & 2, � & 1,
and � & 0:6, respectively.

In Fig. 2 we display the NMSSM parameters satisfying
all the constraints in different planes. We see that for a
large � the parametersmA,�,M2, and A� are also bounded
in a certain region. For � ¼ 1, these bounded regions are
400 GeV & MA & 800 GeV 150 GeV & � & 250 GeV,
150 GeV & M2 & 300 GeV, and A� & 600 GeV.

From the plot of MA versus � in Fig. 2, one can see that
the lower bound of MA increases as � becomes large. The
reason is that the LEP II direct search for the Higgs boson
mainly limits the mass and the couplings of the light
CP-even Higgs boson whose component is dominated by
the doublet Higgs field Hu or Hd. For tan�> 1, this Higgs
boson should be dominantly composed from the Hu field
since M2

S;11 is smaller than M2
S;22, and its mass is to be

reduced by the off-diagonal elementsM2
S;12 andM

2
S;13. As

� gets larger, these off-diagonal elements get larger and
hence reduce the mass of the light CP-even Higgs boson,
which then requires a larger MA to compensate in order to
satisfy the LEP II lower bound.

The plot of � versus � in Fig. 2 indicates that, with the
increase of �, the upper bound of � decreases. This is
because in the off-diagonal elements M2

S;13 and M2
S;23

(which reduce the light CP-even Higgs boson mass), � is
always associated with �, and to meet the LEP II bound, a
large � must be accompanied by a small �.
The plot of M2 versus � in Fig. 2 shows that M2 is also

bounded in a narrow region. This is because the relic
density of dark matter correlates the parameters mA, �,
M2, �, and tan� in a complex way, and a large value for
any of these parameters will limit severely the region of
other parameters.
The plot of A� versus � in Fig. 2 shows that the trilinear

soft breaking parameter A� for the singlet field is also
limited. This can be understood from the expressions of
M2

S;33 and M2
P;22. The stability of the Higgs potential

requires both of them to be positive, which sets a double-
sided bound on A�.
We also studied the relationship between the Yukawa

couplings � and �, and we found no correlation between
them. Even for � ¼ 1:5, the value of � can still vary from
0.3 to 1.
Next, we take a look at the Higgs boson masses allowed

by the constraints. Since a large � can enhance the lightest
CP-even Higgs boson mass and thus avoid the little hier-
archy problem, it is interesting to look at the dependence of
the Higgs boson masses on the parameter �.
In Figs. 3 and 4 we show our scan results in the � versus

mh plane and the � versus ma plane with mh being the
lightest CP-even Higgs boson mass and ma the lighter
CP-odd Higgs boson mass. From Fig. 3 one can learn
that the upper bound of mh increases with �, which is
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FIG. 2 (color online). Scatter plots of the NMSSM parameters
satisfying all the constraints (1)–(9), displayed in different
planes.
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FIG. 3 (color online). Same as Fig. 2, but for � versus the
lightest CP-even Higgs boson mass mh.
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expected from Eq. (1), and for � ¼ 1:5 the value ofmh can
reach 210 GeV. From Fig. 4 one can learn that with the
increase of �, a super light CP-odd Higgs boson is gradu-
ally ruled out, and for � > 1 it is bounded in the range
100 GeV & ma & 600 GeV. The properties of these
Higgs bosons can be quite different from those in the
MSSM, and their phenomenology at the LHC was dis-
cussed in [28].

Finally, in order to understand the mechanism used to
reproduce the correct dark matter abundance, we consider
the properties in the neutralino sector. In the NMSSM with
large tan�, the component of the lightest neutralino is
either Higgsino dominant or b-ino dominant for a light
mass below 80 GeV, but for a heavier mass it is b-ino
dominant. In Fig. 5 we show our scan results in the plane of
m~�0

1
versus �. We see that with the increase of �, the upper

bound on m~�0
1
becomes stringent and eventually it is con-

strained in the range of 50–100 GeV. Regarding the next
lightest neutralino ~�0

2, we found that its mass is constrained

in the range of 100–160 GeV for � > 1:2. In order to figure
out the annihilation mechanism of ~�0

1 in providing for the
dark matter relic density, we compare the masses of ~�0

2 and

a with ~�0
1 in Fig. 6. This figure indicates that ~�0

2 is sig-

nificantly heavier than ~�0
1. Since in our scan the slepton

masses are fixed to 200 GeV, also significantly heavier than
~�0
1, we conclude that the coannihilation of ~�0

1 with ~�0
2 or

with a slepton is generally Boltzmann suppressed and plays
an unimportant role in accounting for the dark matter relic
density. Note that, as shown in Fig. 6, there are some
samples around the funnel region 2m~�0

1
–ma, and in this

case the annihilation of ~�0
1 through the s-channel exchange

of a light a becomes dominant [29].
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FIG. 4 (color online). Same as Fig. 2, but for � versus the
lightest CP-odd Higgs boson mass ma.
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FIG. 5 (color online). Same as Fig. 2, but for the lightest
neutralino mass m~�0
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2
and ma

versus m~�0
1
.

JUNJIE CAO AND JIN MIN YANG PHYSICAL REVIEW D 78, 115001 (2008)

115001-6



V. CONCLUSION

The NMSSM with a large � is an attractive scenario
since it can push up the upper bound on the SM-like Higgs
boson mass to solve the little hierarchy problem. We
examined the current experimental constraints on this sce-
nario, which include the direct experimental bounds, the
indirect constraints from precision electroweak measure-
ments, the cosmic dark matter relic density, the muon
anomalous magnetic moment, as well as the stability of
the Higgs potential. Our results showed that for a large �
the parameter space is severely constrained. For example,
for a smuon mass of 200 (500) GeV the parameter space
with � * 1:5ð0:6Þ is excluded, and for � ¼ 1 the allowed
ranges are 2.5–4 for tan�, 400–800 GeV for MA, 150–
250 GeV for �, 150–300 GeV for M2, and 0–600 GeV for
A�.

Finally, we would like to point out that our conclusion
may be qualitatively applicable to other NMSSM-like
models such as the minimal nonminimal supersymmetric
standard model (MNMSSM) [30], which has a similar

structure to the NMSSM and can be viewed as the low
energy realization of the fat Higgs model [7]. For example,
it has been pointed out that for any singlet extensions of the
MSSM, regardless of the form of its superpotential, a large
� is always accompanied by a small tan� [8]. This prop-
erty, as shown in our paper, can either limit the smuon mass
or limit � if we require the theory to explain the deviation
of the muon anomalous magnetic moment. Another ex-
ample is the constraint from dark matter. In the MNMSSM
we expect that the constraint can limit the relevant parame-
ters in a more stringent way than in the NMSSM since the
neutralino sector in the MNMSSM is exactly the same as in
the NMSSM but with fixed � ¼ 0 [31].
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