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Experiments at Jefferson Laboratory, MIT-Bates, LEGS, Mainz, Bonn, GRAAL, and Spring-8 offer

new opportunities to understand in detail how nucleon resonance (N�) properties emerge from the

nonperturbative aspects of QCD. Preliminary data from CLAS Collaboration, which cover a large range of

photon virtuality Q2, show interesting behavior with respect to Q2 dependence: in the region Q2 �
1:5 GeV2, both the transverse amplitude A1=2ðQ2Þ and the longitudinal amplitude S1=2ðQ2Þ decrease

rapidly. In this work, we attempt to use first-principles lattice QCD (for the first time) to provide a model-

independent study of the transition form factor between the nucleon and its first radially excited state.

DOI: 10.1103/PhysRevD.78.114508 PACS numbers: 11.15.Ha, 12.38.Gc, 13.40.Gp, 14.20.Gk

I. INTRODUCTION

Lattice QCD has successfully provided many experi-
mental quantities from first-principles calculations; how-
ever, its success has mostly been restricted to
measurements of ground-state quantities. Lattice measure-
ments of excited states could contribute, for example, to
hadron spectroscopy, where there are many poorly known
states which require theoretical input to be identified. At
the EBAC at Jefferson Lab, dynamical reaction models
have been developed to interpret extracted N� parameters
in terms of QCD [1,2].

Among these excited nucleon states, the nature of the
Roper resonance, Nð1440Þ or N0, has been the subject of
interest since its discovery in the 1960s. It is quite surpris-
ing that the nucleon’s excited-state mass is lower than its
opposite-parity partner, a phenomenon never observed in
meson systems. There are several interpretations of the
Roper state, for example, as the hybrid state that couples
predominantly to QCD currents with some gluonic contri-
bution [3], or as a five-quark (meson-baryon) state [4].
Some earlier quenched lattice QCD calculations, e.g.
Refs. [5–10], found a spectrum inverted with respect to
experiment, with N0 heavier than the opposite-parity state
S11. However, Ref. [11], in which larger lattice box and
lighter pion masses are used, found a rapid crossover of the
first positive- and negative-parity excited nucleon states
close to the chiral limit. The lattice study has not ruled out
that the Roper is the first radially excited state of the
nucleon, and this is our assumption in this work.

The new data provided from experiments at Jefferson
Laboratory, MIT-Bates, LEGS, Mainz, Bonn, GRAAL,
and Spring-8 offer a new opportunity to understand in
detail how nucleon resonance (N�) properties emerge
from the nonperturbative aspects of QCD. For example,
the extraction of the �N ! N� transition form factors
could help us to understand the dynamical origins of the
confinement of constituent quarks and the associated me-

son cloud. There are various QCD-based hadron models,
such as the well-developed constituent quark model
[12,13] and the covariant model based on Dyson-
Schwinger equations [14].
Understanding of the true nature of the Roper resonance

may be most easily gained by studying its structure and
form factors, such as the nucleon-Roper transition. The
CLAS Collaboration [15–19] has studied such transitions
induced by electron scattering over a large range of inter-
mediate photon virtuality Q2. In the region Q2 �
1:5 GeV2, both the transverse amplitude A1=2ðQ2Þ and

the longitudinal amplitude S1=2ðQ2Þ drop rapidly in mag-

nitude. This is well described in relativistic quark models
with light-cone dynamics, and the sign is consistent with
the nonrelativistic version. However, in the low-Q2 region,
A1=2ðQ2Þ becomes negative; this is not understood within

constituent quark models and requires inclusion of meson
degrees of freedom [13,19]. A model-independent study of
these quantities from lattice QCD will serve as valuable
help to phenomenologists in analyzing experimental data
and will provide better theoretical ground for understand-
ing low-Q2 physics.

II. THE ��N ! P11 FORM FACTORS

From Lorentz symmetry, we expect the matrix element
between any spin-1=2 positive-parity nucleon states, N1

and N2, to have the following general form:

hN2ðp0ÞjV�jN1ðpÞi�ðqÞ ¼ uN2
ðp0Þ

�
F�
1ðq2Þ

�
��� q�

q2
q6
�

þ ���q
� F�

2ðq2Þ
MN1

þMN2

�

� uN1
ðpÞe�iq�x; (1)

where ��� ¼ 1
2 ½��; ���, q ¼ p0 � p, and the equation of

motion is used to simplify �q��
� ¼ MN2

�MN1
.

So that we can compare our extracted form factors with
experimental results, we express the experimentally mea-
sured helicity amplitudes A1=2 and S1=2 in terms of the*hwlin@jlab.org
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transition form factors F�
1;2 through

A1=2ðQ2Þ ¼ kAðQ2ÞGMðQ2Þ;
S1=2ðQ2Þ ¼ kSðQ2ÞGEðQ2Þ (2)

with Q2 ¼ �q2,

kAðQ2Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2��

Q2 þ ðMN1
�MN2

Þ2
MN2

ðM2
N1

�M2
N2
Þ

vuut ; (3)

kSðQ2Þ � kAðQ2ÞMN1
þMN2

2
ffiffiffi
2

p
Q2MN1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ ðMN1

�MN2
Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ ðMN1

þMN2
Þ2

q
;

(4)

the magnetic and electric transition form factors

GMðQ2Þ � F�
1ðQ2Þ þ F�

2ðQ2Þ;

GEðQ2Þ � F�
1ðQ2Þ � Q2

ðMN2
þMN1

Þ2 F
�
2ðQ2Þ; (5)

and � is the fine-structure constant. Using these defini-
tions, we can reconstruct F�

1;2 from experimental values of

helicity amplitudes.

III. LATTICE SETUP

In this exploratory study, we will use an anisotropic
lattice, that is, a lattice where the temporal lattice spacing
is finer than the spatial ones. It has been demonstrated that
for certain calculations, such as glueballs [20] and multiple
excited-state masses [21], there are great advantages to
using anisotropic over isotropic lattices even when the
fundamental constituents are not heavy.

We perform our calculations on quenched1 163 � 64
lattices with anisotropy � ¼ 3 (i.e. as ¼ 3at), using
Wilson gauge action with � ¼ 6:1 and stout-link smeared
[22] Sheikholeslami-Wohlert (SW) fermions [23] (with
smearing parameters f	; n	g ¼ f0:22; 2g). The parameter

� is nonperturbatively tuned using the meson dispersion
relation, and the clover coefficients are set to their tadpole-
improved values. The inverse spatial lattice spacing is
about 2 GeV, as determined by the static-quark potential,
and the simulated pion mass is about 720 MeV. In total, we
use 200 configurations of anisotropic lattices.

In this work, we will use the variational method and
simultaneous fitting on two- and three-point Green func-
tions to extract the N-P11 transition form factors. The
nucleon two-point correlators measured on the lattice are

�ð2Þ
ABðt; ~pÞ ¼

X
n

Enð ~pÞ þMn

2Enð ~pÞ Zn;Að ~pÞZn;Bð ~pÞe�Enð ~pÞt; (6)

where the indices A and B denote different smearing
parameters and n runs over the basis of nucleon energy
eigenstates; the states are defined to be normalized as
h0j
Njp; si ¼ Zð ~pÞusð ~pÞ with the nucleon interpolating

field 
N ¼ �abcðdTaC 1þ�4

2 �5ubÞuc; the spinors satisfy
X
s

usð ~pÞ �usð ~pÞ ¼ Eð ~pÞ�t � i ~� � ~pþM

2Eð ~pÞ : (7)

Traditionally, one is only interested in the ground state;
thus the smearing parameters are chosen to overlap as little
as possible with excited states. We will use various smear-
ings to create correlators having appreciable overlap with
the lowest nucleon radially excited state.
Similarly, the three-point function is

�ð3Þ;T
�;ABðti; t; tf; ~pi; ~pfÞ ¼

X
n

X
n0

ZVZn0;Bð ~pfÞZn;Að ~piÞ

� e�ðtf�tÞE0
nð ~pfÞe�ðt�tiÞEnð ~piÞ

�MEs; (8)

where n and n0 label energy states and

MEs ¼ X
s;s0

4En0 ð ~pfÞEnð ~piÞT��un0 ð ~pf; s
0Þ�

�hNn0 ð ~pf; s
0ÞjV�jNnð ~pi; sÞi �unð ~pi; sÞ�

¼ Tr½T � ðEn0 ð ~pfÞ�t � i ~� � ~pf þMn0 Þ � FFs
� ðEnð ~piÞ�t � i ~� � ~pi þMnÞ�; (9)

where the projector is T ¼ 1
4 ð1þ �4Þð1þ i�5�3Þ, ZV is

the vector-current renormalization constant, and FF de-
notes the form factors. The vector current in Eq. (8) is
OðaÞ on-shell improved with the improved coefficient set
to its tree-level value.2 ZV is calculated nonperturbatively
from the isovector vector charge ZV ¼ 1=gu�d

V;lat. Note that

when one calculates the three-point Green function in full
QCD, there are two possible contraction topologies: ‘‘con-
nected’’ and ‘‘disconnected’’ diagrams, when the vector-

1A ‘‘quenched approximation’’ means the effective sea-quark
mass is infinite. The quenched QCD (QQCD) is confining and
asymptotically free, shows spontaneous chiral symmetry break-
ing, and differs from full QCD only in the relative weighting of
the gauge configurations; it is reasonable to use quenched
simulations to test new lattice techniques. QQCD is very useful
for understanding and controlling sources of errors (except for
those due to the quenched approximation) for a new methodol-
ogy before it is extended to a much more expensive full-QCD
calculation.

2With smeared fermion actions, it has been seen on three-
flavor anisotropic lattices with tree-level tadpole-improved co-
efficients in the fermion action that the nonperturbative coeffi-
cient conditions are satisfied without fine-tuning [24]. Similar
behavior has also been observed in a quenched study [25], where
the nonperturbative coefficients or renormalization constants in a
smeared fermion action differed from tree-level values by a few
percent.
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current vertex appears on a vacuum bubble. In this work,
only connected quantities are included.

IV. NUMERICAL RESULTS

We apply a smearing function with gauge-invariant
Gaussian form [26] to improve the overlap of fermion
operators with states of interest. To obtain matrix elements
involving states other than ground states, we need to be
careful not to oversmear the fermions; a widely smeared
fermion will greatly suppress excited-state signals. This
goes against the standard practice used in the nucleon
matrix elements where one increases the smearing parame-
ters to suppress excited states. We use three Gaussian
smearing parameters: � 2 f0:5; 2:5; 4:5g; the largest of
these has excellent overlap with just the ground state, while
the other two include substantial higher-state contribu-
tions. For both two-point and three-point correlators, we
calculate all nine possible source-sink smearing
combinations.

From the two-point functions, we wish to extract the
energies (E’s) of at least the nucleon and P11 and the matrix
elements (Z’s) of our lattice operators between the vacuum
and the baryon states at each momentum. We apply the
variational method [27] to extract the best principal corre-
lators corresponding to pure energy eigenstates from our
matrix of correlators. A simple exponential fit to these
yields MN ¼ 1:48ð2Þ GeV and MP11

¼ 2:53ð8Þ GeV. We

can check the quality of the fit using this simple form by

examining the effective mass [MeffðtÞ ¼ lnð�ð2Þðtþ
1Þ=�ð2ÞðtÞÞ], shown in Fig. 1. In our plateau region, there
is no contamination from higher excited states. Figure 2
shows the dispersions of the nucleon and its first radially
excited state; the slopes are consistent with the continuum
value c ¼ 1. The excited-state energies show better signal
than those obtained using conventional isotropic lattices.
The Z’s are then determined from the eigenvectors of the
principal correlators; we select the eigenvectors from the

time tZ that minimizes the discrepancy between the corre-
lators reconstructed from our Z’s and E’s and the original
two-point data. We find the mass of the negative-parity
partner S11 using the same method:MS11 ¼ 2:40ð10Þ GeV.
This mass is lower than the P11 mass due to the high quark
masses used, a result consistent with previous lattice cal-
culations; it is expected that the masses will cross when
lower quark masses are used.
We calculate three-point functions with source and sink

locations at 15 and 48, respectively. (This gives a source-
sink separation of about 1.1 fm.) The final state always has
zero momentum for convenience, while the momentum of
the initial state varies but is always nonzero. We can get the
nucleon form factors, FNN

1 and FNN
2 , from the large

Gaussian smearing (� ¼ 4:5) runs using a ratio approach
[28]. We also apply the fitting method using the ground-
state term of the fitting form in Eq. (8) on smearing
parameter � ¼ 4:5 three-point correlators. The fit range
is adjusted so that the fitted results are consistent under
small perturbations to the range. We obtain nucleon-
nucleon form factors F1 and F2 consistent with those
derived from the ratio method, as shown in Fig. 3. Note
that we not only get consistent numbers, but at large
momenta, our fitting approach dramatically improves the
signals. This is because when one tries to improve the
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FIG. 1 (color online). Nucleon and P11 effective masses. The
vertical axis is in units of a�1

t , while the horizontal axis is in
units of at. The horizontal bars show the fit range and fitted
values for each state.
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FIG. 3 (color online). Down-quark contribution to the nucleon
Dirac form factor Fd

1 obtained from the ratio approach (stars) and

the fitting method (circles).
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FIG. 2 (color online). Nucleon and P11 dispersion relation.
The vertical axis is in units of a�2

t , while the horizontal axis is
in units of 4�2

L2
x
a�2
s (where Lx ¼ 16 is the length of the spatial

dimension in lattice units). Linear fits to both sets of energies
yield slopes consistent with the continuum value c ¼ 1.
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ground-state signal, one introduces large smearing, which
wipes out not only the excited states but also the higher-
momentum states. Therefore, when one tries to project
onto higher momenta, there is not much signal left, and
noise dominates. Since we are considering excited states,
we do not need such a strong smearing; therefore, the
higher-momentum projections of the nucleon have im-
proved signal. Since our pion mass is far heavier than the
physical one, we do not expect to see very good agreement
with experiment. As the pion mass approaches lighter
values, the lattice data will trend toward the experimental
values; for more details, see the recent review in Ref. [29].

The ratio method will not extract matrix elements be-
yond the ground state, but using the Z’s and E’s derived
from our analysis of the two-point functions, we can
extract excited matrix elements from the three-point func-
tions by fitting to the form given in Eq. (8). We want to
keep terms in Eq. (8) having n and n0 running from the
ground to the first excited state; thus, there would be four
matrix elements in the minimum expansion, which will be
free parameters in our fit. We increase the number of three-
point correlators, first using just the diagonal correlators
where the smearing is the same at the source and sink, and
then using all nine smearing combinations. The nucleon-
nucleon matrix elements are verified against the ratio
method, and we check that the transition matrix elements
are consistent between different sets. In the rest of this
work, we show the results from the full 9-correlator simul-
taneous fits.

On the lattice, we can obtain both the form factors
related to the Roper decay P11 ! �N, and the one that is
related to photoproduction, ��N ! P11. A P11 at rest has a
P-wave decay into a pion and a nucleon and an S-wave
decay into two pions and a nucleon via S11�. Since we do
not wish to consider the complicated case that occurs when
two-particle states may be present, we must avoid kine-
matical situations in which decays can occur. In our simu-
lation, these are suppressed by the high quark mass and
discretization of momentum. However, our lowest-
momentum P11 (EP11

� 2:7 GeV) can decay into a

lowest-momentum pion (E� � 1:0 GeV) and a nucleon
at rest (MN � 1:5 GeV). Since we cannot untangle the
single-particle excited state from the two-particle state
here, we drop this data point. All other decays are
forbidden.

In Fig. 4, we show the transition form factors F�
1;2

derived from experimental helicity amplitudes [15–19]
and those from our numbers. In Fig. 5, we show the
neutron-P11 transition form factors with an experimental
point. Note that since our nucleon and Roper masses are
much higher than the physical ones, we are in the timelike
region when we use the matrix element hP11jV�jNi to

construct the transition form factors. As we decrease the
pion mass, we will enter the spacelike region, and this
matrix element will be helpful in giving us different Q2

points. Our calculation seems to be quite different from the
experimental values. This is somewhat expected, since our
pion mass is much heavier than the physical value. Even in
unquenched calculations, the nucleon form factors do not
agree with experimental values with a pion mass as low as
300 MeV [29]. We will see whether the lattice data ap-
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FIG. 4 (color online). Proton-Roper form factors F�
1;2 obtained

from CLAS experiments [15–19] and the PDG [30] number
(circles) and our fitting method (squares, diamonds).
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FIG. 5 (color online). Neutron-Roper form factors F�
1;2 ob-

tained from the PDG [30] number (circle) and our fitting method
(squares, diamonds).
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proach experiment as the pion mass used is decreased in
future calculations.

V. CONCLUSION AND OUTLOOK

This exploratory study demonstrates that the ground-
radially excited transition form factors can be measured
in the nucleon system from a first-principles lattice calcu-
lation. Using the fitting approach with appropriately
chosen operator smearing, we not only improve the signal
in the nucleon-nucleon form factors (especially at large
momenta), but also successfully extract the nucleon-P11.
We may vary the projector used in the three-point function

to further improve the signal. In the future, since the pion
mass in our simulation is very heavy at 720 MeV, we will
consider lighter pion masses as well as start work on
unquenched anisotropic lattices.
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