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We use lattice QCD simulations, with MILC configurations (including vacuum polarization from u, d,

and s quarks), to update our previous determinations of the QCD coupling constant. Our new analysis uses

results from 6 different lattice spacings and 12 different combinations of sea-quark masses to significantly

reduce our previous errors. We also correct for finite-lattice-spacing errors in the scale setting, and for

nonperturbative chiral corrections to the 22 short-distance quantities from which we extract the coupling.

Our final result is �Vð7:5 GeV; nf ¼ 3Þ ¼ 0:2120ð28Þ, which is equivalent to �MSðMZ; nf ¼ 5Þ ¼
0:1183ð8Þ. We compare this with our previous result from Wilson loops, which differs by one standard

deviation.
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I. INTRODUCTION

An accurate value for the coupling constant �s in quan-
tum chromodynamics (QCD) is important both for QCD
phenomenology and as an input for possible theories be-
yond the standard model. Some of the most accurate values
for the coupling constant come from numerical simulations
of QCD using lattice techniques, when combined with very
accurate experimental data for hadron masses. In this paper
we update our previous determinations of the coupling
from Wilson loops in lattice QCD [1]. Our new analysis
takes advantage of new simulation results, from the MILC
collaboration, that employ smaller lattice spacings a. We
also now account systematically for chiral corrections
associated with the masses of sea quarks in the simulation,
and for OðanÞ uncertainties in the values we use for the
lattice spacing.

Few-percent accurate QCD simulations have only be-
come possible in the last few years, with the development
of much more efficient techniques for simulating the sea
quarks; see, for example, [2] for an overview and refer-
ences. The simulations we use include only light quarks (u,
d, and s) in the vacuum polarization; the effects of c and b
quarks are incorporated using perturbation theory, which is
possible because of their large masses. Our lattice QCD
analysis proceeds in two steps. First the QCD parame-
ters—the bare coupling constant and bare quark masses
in the Lagrangian—must be tuned. For each value of the
bare coupling, we set the lattice spacing to reproduce the
correct �0 �� meson mass difference in the simulations,

while we tune the u=d, s, c, and b masses to give correct
values for m2

�, 2m
2
K �m2

�, m�c
, and m�, respectively;

more information can be found in [2]. For efficiency we
set mu ¼ md; this leads to negligible errors in the analysis
presented here. Once these parameters are set, there are no
further physics parameters, and the simulation will accu-
rately reproduce QCD.
Having an accurately tuned simulation of QCD, we use

it to compute nonperturbative values for a variety of short-
distance quantities, each of which has a perturbative ex-
pansion of the form

Y ¼ X1
n¼1

cn�
n
Vðd=aÞ; (1)

where cn and d are dimensionless a-independent constants,
and �Vðd=aÞ is the (running) QCD coupling constant, with
nf ¼ 3 light-quark flavors, in the V scheme [3,4]. Given

the coefficients cn, which are computed using Feynman
diagrams, we choose �Vðd=aÞ so that the perturbative
formula for Y reproduces the nonperturbative value given
by the simulation. Given d and a, and the c and b masses,
we can then use perturbation theory to convert �Vðd=aÞ to
the more conventional coupling constant �MSðMZ; nf ¼
5Þ, evaluated at the mass of the Z meson [5,6].
This analysis is complicated by nonperturbative contri-

butions to Y and by simulation uncertainties in the value of
the lattice spacing a, which enters Eq. (1). It is also
complicated by perturbative uncertainties. We know the
values of the coefficients cn through order n ¼ 3 (next-to-
next-to-leading order) for the quantities we examine, yet
unknown higher-order coefficients still have an impact at*g.p.lepage@cornell.edu

PHYSICAL REVIEW D 78, 114507 (2008)

1550-7998=2008=78(11)=114507(12) 114507-1 � 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.78.114507


the level of accuracy we seek. A main focus of this paper is
to address these complications and quantify the uncertain-
ties in our determination of the coupling constant. In Sec. II
we review the perturbative expansions for our short-
distance quantities, all but one of which are derived from
small Wilson loops [7]. TheMonte Carlo simulation results
for these loops are presented in Sec. III. We discuss finite-
lattice-spacing errors and chiral corrections in Sec. IV. In
Sec. V, we describe how we combine perturbation theory
with simulation results using constrained (Bayesian) fitting
methods. There we present our results and discuss in detail
the various uncertainties that arise. Finally, in Sec. VI, we
summarize our results.

II. PERTURBATION THEORY

The simplest short-distance quantities to simulate are
vacuum expectation values of Wilson loop operators:

Wmn � 1
3h0jReTr Pe�ig

H
nm

A�dxj0i; (2)

where P denotes path ordering, A� is the QCD vector

potential, and the integral is over a closed ma� na rect-
angular path. Wilson loops should be calculable in (lattice
QCD) perturbation theory when ma and na are small. We
computed perturbative coefficients through order n ¼ 3 for

six small, rectangular loops, and also for two nonplanar
paths:

The coefficients for our various loops are derived in [8].
The results are for the gluon and quark actions used to
create the MILC gluon-configuration sets used in this
study. They also assume nf ¼ 3 massless sea quarks. The

quarks in our simulations are not exactly massless, but the
masses are sufficiently small that the difference is negli-
gible, Oð�2

VðamÞ2Þ, in perturbation theory (but less so
nonperturbatively, as we will discuss).
Perturbation theory is more convergent for the logarithm

of a Wilson loop than it is for the loop itself. This is
because the perturbative expansion of a loop is dominated
by a self-energy contribution that is proportional to the
length of the loop, and this contribution exponentiates for
large loops. The length of the loop factors out of the
expansion when we take the logarithm. This structure is
evident in Table I where we tabulate the perturbative co-
efficients for the logarithms of our loops. The renormal-
ization scales d=a for each quantity are determined using
the procedures described in [3,4,9].

TABLE I. Perturbative scale and coefficients for several small Wilson loops Wij, Creutz ratios, tadpole-improved Wilson loops, and
the tadpole-improved bare coupling �lat=W11. Parameters d and ci are defined in Eq. (1). Coefficients c1, c2, c3 are from lattice
perturbation theory; coefficients c4, c5 are from the fits to results from multiple lattice spacings described in this paper. These results
are for the a2-improved gluon action used by the MILC collaboration, with the ASQTAD action for vacuum polarization from nf ¼ 3

massless quarks. Similar types of short-distance quantity are grouped.

d c1 c2=c1 c3=c1 c4=c1 c5=c1

� logW11 3.325 3.068 40 �1:0683 ð2Þ 1.70 (4) �4 ð2Þ �0 ð4Þ
� logW12 2.998 5.551 20 �0:8585 ð4Þ 1.72 (4) �4 ð2Þ �1 ð4Þ
� logWBR 3.221 4.834 25 �0:8547 ð3Þ 1.80 (4) �4 ð2Þ �1 ð4Þ
� logWCC 3.047 5.297 58 �0:7941 ð3Þ 1.86 (4) �4 ð2Þ �1 ð5Þ
� logW13 2.934 7.876 56 �0:7437 ð8Þ 1.75 (5) �4 ð2Þ �1 ð4Þ
� logW14 2.895 10.171 58 �0:6870 ð8Þ 1.70 (6) �4 ð2Þ �1 ð4Þ
� logW22 2.582 9.199 70 �0:6923 ð10Þ 1.86 (5) �4 ð2Þ �1 ð4Þ
� logW23 2.481 12.342 82 �0:5995 ð13Þ 2.00 (6) �4 ð2Þ �1 ð5Þ
� logW13=W22 2.397 �1:323 13 0.5969 (84) 1.11 (21) �2 ð2Þ �1 ð3Þ
� logW11W22=W

2
12 2.169 1.165 69 0.7361 (86) 1.21 (22) �4 ð2Þ �1 ð3Þ

� logWCCWBR=W
3
11 2.728 0.926 65 2.2825 (19) 0.78 (9) �4 ð2Þ �2 ð6Þ

� logWCC=WBR 2.730 0.463 33 0.5103 (35) 1.16 (12) �2 ð2Þ �1 ð3Þ
� logW14=W23 2.066 �2:171 24 0.5838 (84) 1.83 (29) �3 ð3Þ �1 ð4Þ
� logW11W23=W12W13 1.970 1.983 45 0.7062 (88) 1.64 (27) �3 ð3Þ �1 ð4Þ
� logW12=u

6
0 2.470 0.948 61 0.6011 (19) 0.05 (8) �3 ð2Þ �1 ð2Þ

� logWBR=u
6
0 2.720 0.231 66 4.0516 (41) 0.36 (16) �8 ð6Þ �3 ð10Þ

� logWCC=u
6
0 2.730 0.694 99 1.6925 (20) 0.91 (8) �3 ð3Þ �1 ð4Þ

� logW13=u
8
0 1.888 1.739 77 0.4019 (34) �0:44 ð10Þ �2 ð1Þ �1 ð2Þ

� logW14=u
10
0 1.892 2.500 59 0.4817 (33) �0:68 ð15Þ �2 ð1Þ �1 ð2Þ

� logW22=u
8
0 2.290 3.062 91 0.6149 (30) 0.44 (9) �2 ð2Þ �1 ð2Þ

� logW23=u
10
0 2.030 4.671 83 0.5714 (35) 0.55 (11) �2 ð2Þ �1 ð2Þ

�lat=W11 3.325 1.000 00 �0:4212 ð2Þ 0.72 (4) �4 ð1Þ �1 ð2Þ
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The perturbative coefficients in logðWÞ, while greatly
reduced by the logarithm, are still rather large. They can be
further reduced in two ways. One is to ‘‘tadpole improve’’

Wmn by dividing by u2ðnþmÞ
0 where [3]

u0 � ðW11Þ1=4: (4)

The other is to examine Creutz ratios of the loops rather
than the loops themselves [3]. Each procedure significantly
reduces the known high-order coefficients, as is clear in
Table I. We use seven tadpole-improved loops and six
Creutz ratios in our analysis. Each has smaller �3

V coef-
ficients, which improves convergence, but each also has a
significantly smaller scale d=a, which slows convergence
(since �Vðd=aÞ is larger).

We also include in Table I the perturbative expansion for
the tadpole-improved bare coupling constant, �lat=W11,
where �lat is the coupling constant that appears in the
gluon action for a given lattice spacing [3]. This is another,
independent, short-distance quantity from which�V can be
determined.

We used Feynman diagrams to compute perturbative
coefficients cn for n � 3. Higher-order coefficients can
be estimated by simultaneously fitting results from differ-
ent lattice spacings to the same perturbative formula [1].
This is possible because the coupling �Vðd=aÞ changes
value with different lattice spacings a:

q2
d�VðqÞ
dq2

¼ ��0�
2
V � �1�

3
V � �2�

4
V � �3�

5
V; (5)

where the �i are constants [6]. In this paper, we follow our
earlier analysis by parametrizing the running coupling by
its value at 7.5 GeV,

�0 � �Vð7:5GeV; nf ¼ 3Þ: (6)

Given �0, the coupling at any other scale can be obtained
by integrating Eq. (5) (which we do numerically).
For the purposes of this paper, we define �V in fourth

order and beyond so that the evolution equation, Eq. (5), is
exact, with no higher-order terms beyond �3. This defini-
tion gives precise meaning to the perturbative coefficients
cn for n � 4 that we determine by fitting the a-dependence
of our short-distance quantities [10].
Our main result is a value for �0. To facilitate compari-

sons with other analyses, we convert this result to the MS
scheme [6], add in c and b vacuum polarization perturba-
tively [5], and then evolve to the mass of the Z meson,
again using perturbation theory [6].

III. QCD SIMULATIONS

The gluon-configuration sets we use were created by the
MILC collaboration [11]. The relevant simulation parame-
ters are listed in Table II.
The input parameters for a QCD simulation are the bare

coupling constant and bare quark masses. The coupling
constant is specified through the � parameter, listed in
Table II, where

�lat � 5

2��
: (7)

The bare quark masses, m0‘ðaÞ for u=d quarks and m0sðaÞ
for s quarks, used in the simulations are also listed, in units
of the lattice spacing and, following MILC conventions,
multiplied by u0 [Eq. (4)]. The bare masses corresponding
to fixed physical masses (of, for example, pions) vary with
the lattice spacing. To facilitate comparisons between lat-
tice spacings, we use first-order perturbation theory to
evolve all of our masses to a common value for the lattice
spacing, which we take to be the smallest lattice spacing in

TABLE II. QCD parameters for the 12 different sets of gluon configurations used in this paper [11]. Parameter � specifies the bare
coupling constant. The inverse lattice spacing is specified in terms of the r1, and the bare quark masses are in units of the lattice spacing
and multiplied by u0. The spatial and temporal sizes, L and T, are also given. Configuration sets that were tuned to have the same
lattice spacing are grouped.

Set � r1=a au0m0‘ au0m0s L=a T=a

1 6.458 1.802(10) 0.0082 0.082 16 48

2 6.572 2.133(14) 0.0097 0.0484 16 48

3 6.586 2.129(12) 0.0194 0.0484 16 48

4 6.76 2.632(13) 0.005 0.05 24 64

5 6.76 2.610(12) 0.01 0.05 20 64

6 6.79 2.650(08) 0.02 0.05 20 64

7 7.09 3.684(12) 0.0062 0.031 28 96

8 7.11 3.711(13) 0.0124 0.031 28 96

9 7.46 5.264(13) 0.0018 0.018 64 144

10 7.47 5.277(16) 0.0036 0.018 48 144

11 7.48 5.262(22) 0.0072 0.018 48 144

12 7.81 7.127(34) 0.0028 0.014 64 192

UPDATE: ACCURATE DETERMINATIONS OF �s . . . PHYSICAL REVIEW D 78, 114507 (2008)

114507-3



our analysis:

mq � m0qðaminÞ: (8)

The s-quark masses here are approximately correct. The
u=d masses are generally too large, but small enough to
allow accurate extrapolations to the correct values.

The lattice spacing is not an input to QCD simulations.
Rather it is extracted from calculations of physical quan-
tities in the simulation. Here we use MILC’s determina-
tions of r1=a for this purpose, where r1 is defined in terms
of the static-quark potential [11]. The values for each
configuration set are listed in Table II. To obtain the lattice
spacing, we need to know r1. We use the value, r1 ¼
0:321ð5Þ fm, determined from simulation results for the
�0 �� mass splitting [12]. The uncertainties quoted for
r1=a in Table II are predominantly statistical; they do not
include potential errors due to the finite lattice spacing or
mistuned light-quark masses, which we will discuss later.

The lattices we use here have lattice spacings that range
from 0.18 fm to 0.045 fm. The spatial volumes are 2.4 fm
across or larger in each case.

Our simulation results for the vacuum expectations of
our 8 different Wilson loops, each for each of our 12
different configuration sets, are presented in Table III.
The uncertainties quoted are statistical. Step-size errors,
due to the algorithm used to generate gluon configurations,
are no larger than the statistical errors [13] and therefore,
like statistical errors, are negligible; we will ignore them
here.

IV. SYSTEMATIC ERRORS

The goal of our analysis is to determine �0 �
�Vð7:5 GeVÞ. The only relevant systematic errors, other
than from the truncation of perturbation theory, are from
nonperturbative effects and from a2 errors in our determi-
nation of the lattice spacings. Finite-volume errors are no

larger than our statistical errors, as we have verified by
examining configuration set 5 with L=a ¼ 28 in addition
to L=a ¼ 20. Statistical errors are also negligible (and
therefore we ignored statistical correlations between differ-
ent Wilson loops when computing Creutz ratios, whose
real statistical errors are 2–3 times smaller than what we
use here). We consider each systematic effect in term.

A. Chiral corrections

Wilson loops, being very short distance, are almost
independent of the light-quark masses. The dependence
in perturbation theory isOð�2

VðamqÞ2Þ, which is negligible
here given other errors. There is a larger contribution,
however, from nonperturbative contributions that is impor-
tant to our analysis. This contribution can be parametrized
using chiral perturbation theory and the operator product
expansion, which says that an arbitrary QCD operator
OQCD that is local at scale � can be expanded in terms of

local operators On from the chiral theory:

OQCD � X
n

bn
On

�dn
; (9)

where dn is the dimension of On minus the dimension of
OQCD. Here equivalence between the left-hand and right-

hand sides means that matrix elements of the operators are
equal for comparable physical states in QCD and the chiral
theory.
For Wilson loops, we are interested in vacuum expecta-

tion values and singlet operators. The scale � for a loop of
size L is �� 1=L. Consequently, we expect

W � b0 þ b1LTrðmðUþUyÞÞ þ b2L
2 Trð@�U@�UyÞ

þ � � � ; (10)

where m ¼ diagðmu;md;msÞ breaks chiral symmetry, and
U � expði�=FÞ with

TABLE III. Simulation results for the vacuum expectation values of various small Wilson loops. Results are given for each of the 12
different configuration sets in Table II.

Set W11 W12 W13 W14 W22 W23 WBR WCC

1 0.534 101(17) 0.280 720(22) 0.149 263(21) 0.079 710(19) 0.087 438(23) 0.030 150(16) 0.338 982(22) 0.287 376(25)

2 0.548 012(51) 0.298 624(68) 0.165 063(67) 0.091 701(63) 0.101 572(73) 0.038 333(54) 0.356 763(68) 0.306 315(78)

3 0.549 470(53) 0.300 310(70) 0.166 530(70) 0.092 797(63) 0.102 640(76) 0.039 007(54) 0.358 570(70) 0.308 140(79)

4 0.567 069(16) 0.323 163(21) 0.187 281(24) 0.109 122(27) 0.121 542(19) 0.050 751(15) 0.381 148(25) 0.332 184(27)

5 0.566 961(21) 0.322 987(27) 0.187 084(26) 0.108 927(21) 0.121 341(29) 0.050 579(21) 0.380 988(26) 0.331 996(29)

6 0.569 716(21) 0.326 496(27) 0.190 278(26) 0.111 479(21) 0.124 204(29) 0.052 397(21) 0.384 479(26) 0.335 685(29)

7 0.594 843(7) 0.359 761(9) 0.221 624(10) 0.137 271(10) 0.153 433(12) 0.072 261(10) 0.417 002(9) 0.370 239(10)

8 0.596 408(12) 0.361 838(19) 0.223 616(17) 0.138 946(16) 0.155 315(18) 0.073 593(16) 0.419 020(16) 0.372 372(17)

9 0.620 813(5) 0.394 837(8) 0.255 897(9) 0.166 723(9) 0.186 116(7) 0.096 208(6) 0.450 947(7) 0.406 300(8)

10 0.621 462(3) 0.395 717(4) 0.256 770(5) 0.167 486(5) 0.186 959(5) 0.096 852(5) 0.451 798(4) 0.407 210(5)

11 0.622 115(2) 0.396 607(4) 0.257 650(4) 0.168 257(4) 0.187 809(5) 0.097 491(4) 0.452 654(3) 0.408 123(4)

12 0.641 947(2) 0.423 992(3) 0.285 304(5) 0.192 943(5) 0.214 759(4) 0.118 532(3) 0.478 903(3) 0.436 064(4)
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� ¼ �y �
�0=

ffiffiffi
2

p þ �8=
ffiffiffi
6

p
�þ Kþ

�� ��0=
ffiffiffi
2

p þ �8=
ffiffiffi
6

p
K0

K� �K0 �2�8=
ffiffiffi
6

p

2
64

3
75 (11)

and F � 92 MeV.
Taking the vacuum expectation value and a logarithm,

and keeping only the leading OðaÞ terms, we get

loghWi � wð0Þð1þ wð1Þ
m ahTrðmðUþUyÞÞiÞ

� wð0Þð1þ wð1Þ
m að2ml þmsÞ þ � � �Þ: (12)

Standard methods can be used to compute higher-order
corrections, including chiral logarithms, from the expan-
sion of TrðmðUþUyÞÞ, but these are too small to be
relevant to our analysis.

The leading contribution, wð0Þ, is obtained from the
perturbative analysis discussed in Sec. II, provided the
loops are sufficiently small to be perturbative. We expect

wð1Þ
m to be roughly independent of loop size since wð0Þ is

approximately proportional to L=a (see Sec. II).

We can estimate the size ofwð1Þ
m from a simple argument.

For light-quark hadrons, hadronic quantities like meson
decay constants or baryon masses depend approximately
linearly on the masses of their valence quarks. The mass
mv of a valence quark makes a contribution of order
Qmv=� to some hadronic quantity Q, where � is a mo-
mentum scale characteristic of the size of the hadron
( � the chiral scale, for light-quark hadrons). From ratios
of decay constants like fK=f� or of baryon masses like
mð�0Þ=mðpþÞ, it is clear that ms=� is of order 20%, and
therefore that � � 400 MeV. Empirically contributions
from individual sea-quark masses are 3–5 times smaller
than those from individual valence-quark masses [14].
Consequently, the relative contribution from a sea-quark
mass mq should be roughly mq=1:2 GeV.

Now consider Wilson loops. The mq dependence of

logðW11Þ, for example, should be much smaller than that
for a light-quark hadron because the loop is much smaller
than the hadron. The typical radius of such hadrons is
around 1 fm, so we expect the relative contribution to
W11 from a sea-quark mass of mq to be approximately

a

1 fm

mq

1:2 GeV
� amq

6
: (13)

Therefore we expect wð1Þ
m ¼ Oð1=6Þ. This implies correc-

tions to our logðWÞs, for example, of order 1%–2% on the
coarsest lattices and 0.3%–0.5% on the finest lattices—
which is large compared with the statistical errors in these
quantities, and therefore important.

In most lattice calculations we want the light-quark
masses as close to their physical values as possible, so
that lattice results reproduce what is seen in experiments.
The situation for our Wilson loops is different, however. In
our simulations here we are trying to isolate the perturba-

tive part of the loop, in order to compare it with perturba-
tion theory (not experiment), and the linear quark-mass
dependence is a nonperturbative contamination that we
want to remove. Consequently, the precise values of the
quark masses are not relevant so long as they are small
enough that we can correct for them (or ignore them),
which is the case here.

B. Gluon condensate

The leading gluonic nonperturbative contribution comes
from the gluonic condensate, h�sG

2=�i. The contribution
of the condensate to a Wilson loop is easily calculated to
leading order in perturbation theory:

�Wcond ¼ ��2

36

�
A

a2

�
2
a4h�sG

2=�i; (14)

where A is the loop area for planar loops. We remove this
contribution from ourWilson loops before comparing them
with perturbation theory. The value of the condensate is not
well known, so we take h�sG

2=�i ¼ 0:0	 0:012 GeV4,
which covers the range of expectations [15]. We also allow
for higher-dimension condensate contributions by replac-
ing

�Wcond ! �Wcondð1þ wð2Þ
condða�gÞ2 þ wð4Þ

condða�gÞ4 þ � � �Þ;
(15)

where we take �g ¼ 1 GeV and coefficients wðiÞ
cond ¼ 0	

1. To be certain that we do not underestimate errors we
include 10 condensate terms in all [16].
We chose the number of condensate terms here some-

what arbitrarily. Only results from the largest loops are
affected appreciably even by the leading-order condensate
correction, and then only by amounts of order a standard
deviation in our final results for the coupling. While a
leading-order condensate value of 0.006, for example,
shifts logW23 by about 25% for our largest lattice spacings,
the shift is less than 0.1% for the smallest lattice spacing,
which is more important in our analysis. Smaller loops are
much less sensitive: for example, this gluon condensate
shifts logW11 by only 0.3% for the largest lattice spacings,
and by only 0.003% for the smallest lattice spacings. The
two Creutz ratios that involveW23 are the most sensitive to
condensate contributions, but even they are shifted by only
0.2%–0.25% for the smallest lattice spacings [17].

C. Finite-a errors

In our analysis, the scale for the couplings comes from
the lattice spacing, and the lattice spacing comes from
measurements of r1=a in the simulations. As for any
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physical quantity, lattice QCD measurements of r1 have
finite-a errors; and, using an analysis similar to the one we
outlined for Wilson loops, they should also be approxi-
mately linear in the sea-quark masses. Consequently, we
expect

rlat1 ¼ r1ð1þ rð2Þ1a ða=r1Þ2 þ rð1Þ1mr1ð2�ml þ �msÞ þ � � �Þ;
(16)

where rð2Þ1a ¼ Oð�s � 1=3Þ [18], since the gluon action has
no tree-level errors inOða2Þ; and rð1Þ1m ¼ Oð1=6Þ, following
the discussion for Wilson loops. Here �mq is the simula-

tion’s tuning error in the mass for sea-quark q� �ml � ml

for our simulations, while �ms � 0. These corrections
could affect our lattice spacings by as much as several
percent, although the impact on �0 is suppressed by a
power of �0 and so is much less. We allow for both
corrections in our analysis.

V. ANALYSIS AND RESULTS

We have 22 different short-distance quantities in our
analysis, each of which produces a separate value for �0 �
�Vð7:5 GeVÞ. These consist of logðWÞs for each of 8
Wilson loops, 6 independent Creutz ratios built from these
loops, 7 tadpole-improved logðWÞs, and the tadpole-
improved bare coupling �lat=W11. We have 12 values for
each of these quantities, with one for each configuration set
in Table II. In this section we discuss first the fitting method
used for extracting �0, and then we review our results.

A. Constrained fits

We analyze each short-distance quantity Y separately.
We use a constrained fitting procedure, based upon
Bayesian ideas [19], to fit the values Yi 	 �Yi

coming

from each of our configuration sets (Table III) to a single
formula. In this procedure we minimize an augmented 	2

function of the form

	2 � X12
i¼1

ðYi � Yðai; ðamqÞi; �0; y
ð1Þ
m ; cn; dÞÞ2

�2
Yi

þX



�	2

;

(17)

where i labels the configuration set, and

Yðai; ðamqÞi; �0; y
ð1Þ
m ; cn; dÞ

¼ ð1þ yð1Þm ð2aml þ amsÞiÞ
X10
n¼1

cn�
n
Vðd=aiÞ: (18)

The sea-quark mass dependence here is from Eq. (12). The
lattice spacing in each case is determined from the simu-
lation values for ðr1=aÞi from each configuration set
(Table II) using

ai ¼ r1
ðr1=aÞi ð1þ rð2Þ1a ða=r1Þ2i þ rð1Þ1mð2r1mlÞiÞ; (19)

which follows from Eq. (16), taking �ml � ml and �ms �
0, and r1 ¼ 0:321ð5Þ fm [12]. Here ðr1mqÞi � ðamqÞi �
ðr1=aÞi. Given the lattice spacing, the coupling �Vðd=aÞ
is computed from �0 by integrating Eq. (5) numerically.
The 	2 function is minimized by varying fit parameters

like the cn (but not d which is effectively exact). Every fit
parameter in our procedure is constrained by an extra term
or ‘‘prior’’ �	2


 in the 	
2 function. The expansion parame-

ters cn from perturbation theory, for example, are con-
strained by

�	2
cn ¼

X10
n¼1

ðcn � �cnÞ2
�2

cn

; (20)

which implies that the fit will explore values for cn that are
centered around �cn with a range specified by �cn : �cn 	
�cn . For n � 3, we set �cn to the value obtained from our

numerical evaluation of the relevant Feynman diagrams,
with �cn equal to the uncertainty in that evaluation. For

n � 4, we set �cn ¼ 0 and

�cn ¼ 2:5maxðjc1j; jc2j; jc3jÞ: (21)

Thus the cns in the fit are constrained by the values
obtained from our Feynman integrals where these are
available (taking correct account of the uncertainties in
those values), while the others are allowed to vary over a
range that is 2.5 times larger than the largest known coef-
ficient. The factor 2.5 was chosen using the empirical
Bayes criterion, described in [19], applied to the
logðWÞs; applying the same criterion to the other quantities
would have given smaller factors, but we take the more
conservative factor of 2.5 for these as well.
We include seven cns beyond the ones currently known

from perturbation theory to illustrate an important issue. In
reality there are infinitely many cns, but in practice the
various uncertainties in our analysis mean that it is sensi-
tive only to the first few. As we add cns the fit improves but
only up to a point—n ¼ 4 for logðWÞs. As long as priors
are included in 	2, terms can be added beyond this point
but they have no effect on the result of the fit (including the
error estimate) or on the quality of the fit. We add terms
through n ¼ 10 to be certain we have reached this point.
Our analysis is not sufficiently accurate to yield new
information about cns with n > 4 (beyond what is incor-
porated in the prior); but, by adding enough cns so that the
fit results and errors cease changing, we guarantee that our
final error estimates include the full uncertainty due to the
fact that we have a priori values for only a few of the
coefficients.

Other fit parameters, like �0, y
ð1Þ
m , rð2Þ1a , and r

ð1Þ
1m must also

have priors:
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�	2
0 ¼

ðlogð�0Þ � logð�0ÞÞ2
�2

logð�0Þ
þ ðyð1Þm � �yð1Þm Þ2

�2

yð1Þm

þ ðrð2Þ1a � �rð2Þ1a Þ2
�2

rð2Þ
1a

þ ðrð1Þ1m � �rð1Þ1mÞ2
�2

rð1Þ
1m

: (22)

We constrain logð�0Þ to be �1:6	 0:5; this prior has
negligible effect on the fits because it is so broad (and
the fits are so sensitive to �0). Following the discussion in
Sec. IV, we set

�y ð1Þ
m ¼ �rð1Þ1m ¼ 0; �

yð1Þm
¼ �

rð1Þ
1m

¼ 1=6: (23)

We checked the width of these two priors using the em-
pirical Bayes criterion and found that, in fact, this is the

optimal width indicated by our simulation results. For rð2Þ1a ,
the empirical Bayes criterion suggests a width for the prior
that is twice what we anticipated in Sec. IVC:

�r ð2Þ
1a ¼ 0; �

rð2Þ
1a

¼ 2�s � 0:6: (24)

We use this more conservative prior in our fits. Higher-
order corrections are easily added but have no impact
because the corrections are too small to matter, given the
size of our other errors.

Our simulation result for ðr1=aÞi, which is used to de-
termine the lattice spacing ai for the ith configuration set
[Eq. (19)], is not exact. To include its uncertainty in our
analysis we treat ðr1=aÞi as a fit parameter, to be varied
while minimizing 	2, but with a prior whose mean is the
value measured in the simulation and whose width is the
measured uncertainty (as in Table II). We can incorporate
the uncertainty in the value of r1 using the same trick, with
r1 as a fit parameter:

�	2
r1 ¼

ðr1 � �r1Þ2
�2

r1

þX12
i¼1

ððr1=aÞi � ðr1=aÞiÞ2
�2

ðr1=aÞi
; (25)

where �r1 	 �r1 ¼ 0:321	 0:005 fm [12].

The c and b masses are required to convert �0 to
�MSðMZ; nf ¼ 5Þ. We account for the uncertainties in

these masses by including them as fit parameters, with
appropriate priors, together with fit parameters for un-

known high-order terms in the MS �-function, and in the
perturbative formulas for incorporating c and b vacuum
polarization [5,6]. For the �-function, we allow for a sixth-
order term �4�

6
MS

in the evolution equation [analogous to

Eq. (5) for �V] where �4 is a fit parameter with a prior
centered on ��4 ¼ 0 with width

��4
¼ maxðj�0j; j�1j; j�2j; j�3jÞ (26)

for the MS �is. We include analogous corrections, fit
parameters, and priors for the formulas for c and b vacuum
polarization.

B. Results

The results from our 22 determinations of the coupling
are listed and shown in Fig. 1. The gray band corresponds
to our final result of

�MSðMZ; nf ¼ 5Þ ¼ 0:1183ð8Þ; (27)

which was obtained from a weighted average of all of 22
determinations [20]. Our error estimate here is that of a
typical entry in the plot; combining our results does not
reduce errors because most of the uncertainty in each result
is systematic. The individual results in the plot are consis-
tent with each other: 	2=22 ¼ 0:2 for the 22 entries in
Fig. 1. And the fits for each quantity separately are ex-
cellent as well: 	2=12 ¼ 0:3 to 0.6 for our fits to the 12
pieces of simulation data (one from each configuration set)
for each quantity. The results in Fig. 1 are derived, using
perturbation theory (Sec. II), from the fit values for �0,
which average to

�0 ¼ �Vð7:5 GeV; nf ¼ 3Þ ¼ 0:2120ð28Þ; (28)

where again the error is that of a typical result for a single
short-distance quantity (it is not reduced by one over the
square root of the number of inputs).
Figure 2 reveals more details about our fit. The top panel

in this figure shows the values of �Vðd=aÞ coming from

FIG. 1 (color online). Values for the 5-flavor �MS at the
Z-meson mass from each of 22 short-distance quantities. The
gray band indicates our final result, 0.1183 (8). 	2 per data point
is 0.2.
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every short-distance quantity for every lattice spacing in
our configuration sets. The �Vs plotted here were obtained
by refitting each piece of simulation data separately, rather
than fitting results from all lattice spacings simultaneously
as above. In these fits we used the values for cn with n > 3,

wð1Þ
m , etc. obtained from our simultaneous fit to all lattice

spacings [21], which is why the individual data points align
well with the perturbative result for �Vðd=aÞ (the gray
band). The fact that different points align so well is an
indication of the self-consistency of our perturbative analy-
sis across all scales and for all quantities. The size of the
error bars for different points is determined by the pertur-
bative and nonperturbative uncertainties associated with
each piece of simulation data. Points with error bars much
larger than the uncertainties in the perturbative �V (that is,
much larger than the vertical width of the gray band) have
little impact on our overall fits. The bulk of the uncertainty
at low momentum comes from uncertainties in the gluon
condensates. This is obvious when the results are reana-
lyzed without corrections for the condensates (bottom
panel in Fig. 2). The most important simulation data is at
large d=a, where errors are smaller than the plot points
whether or not condensates are included.

It is useful to separate our error estimates into compo-
nent pieces. The error estimate produced by our fitting
code for a quantity like �MS is approximately linear in

all the variances �2 that appear in the 	2 function:

�2
�
MS

� X12
i¼1

cYi
�2

Yi
þ X10

n¼1

ccn�
2
cn þ c

yð1Þm
�2

yð1Þm

þ c
rð1Þ
1m

�2

rð1Þ
1m

þ c
rð2Þ
1a
�2

rð2Þ
1a

þ � � � (29)

This works when errors are small, as they are here. To
isolate the part of the total error that is associated with the
statistical uncertainties in the Yi, for example, the fit is
rerun but with the corresponding variances rescaled by a
factor f close to one (f ¼ 1:01, for example):

�2
Yi
! f�2

Yi
(30)

for i ¼ 1 . . . 12. Then

�2
�
MS
ðfÞ � �2

�
MS
ðf ¼ 1Þ

f� 1
� X12

i¼1

cYi
�2

Yi
: (31)

The square root of this quantity is the part of the total error
due to the statistical uncertainties in the Yi. This procedure
can be repeated for each prior or group of priors that
contributes to the 	2 function. The sum of the variances
obtained in this way for each part of the total error should
equal �2

�
MS
; if it does not, errors may not be sufficiently

small to justify the linear approximation in Eq. (29) [22].
In Table IV we present error budgets computed in this

fashion for a sample of our determinations of �MSðMZÞ.
This table shows that our largest errors come from uncer-
tainties in the perturbative coefficients with n � 4, statis-
tical errors in the simulation values for ðr1=aÞi, systematic
uncertainties in the physical value for r1, and finite-a
lattice errors in r1. Uncertainties in the parameters used
to convert �0 ¼ �Vð7:5 GeV; nf ¼ 3Þ into �MSðMZ; nf ¼
5Þ have negligible impact. Also negligible are uncertainties
due to the gluon condensate and statistical errors in the
Wilson loops.
Our errors are greatly reduced because we can bound the

size of perturbative coefficients cn for n ¼ 4 and beyond.
This is possible because we are fitting simulation data from
six different lattice spacings simultaneously. As noted in
[1], the n ¼ 4 coefficients are large, particularly for
logðWÞs where typically our fits imply c4=c1 � �4ð2Þ.
As expected, perturbative higher-order coefficients are
smaller for other quantities: for example, we find typically
c4=c1 � �2ð2Þ for tadpole-improved loops. The fit results
for c4=c1 and c5=c1 for each of our short-distance quanti-
ties are given in Table I.
We tested the stability of our analysis procedure in

several ways:
(i) Discarding simulation data: Dropping data for any

one of the lattice spacings gives results that are

FIG. 2 (color online). Values for �V versus d=a from each
short-distance quantity at each lattice spacing, with and without
corrections for gluon condensates. The gray band shows the
prediction from QCD evolution [Eq. (5)] assuming our compos-
ite fit value [Eq. (28)].
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almost identical to our final result: the value of
�MSðMZÞ varies by no more than 0.12% from our

final result, and its uncertainty ranges between
0.000 83 and 0.000 93. Dropping the two smallest
lattice spacings, which are the most important, shifts
�MSðMZÞ to 0.1176(14). Keeping just the four, three,
and two smallest lattice spacings gives 0.1183(9),
0.1180(10), and 0.1179(10), respectively (for sets 4–
12, 7–12, and 9–12).

(ii) Perturbation theory scale changes: Our results do
not depend strongly on the choice of scale d=a used
in the perturbation theory for each quantity.
Reexpanding our perturbation theory for d !
d=1:5 or d ! 1:5d, for example, shifts the overall
�MSðMZÞ to 0.1181(8) or 0.1184(8), respectively

[23].

(iii) MS throughout: Reexpressing the perturbation the-
ory for each quantity in terms of�MS in place of �V

gives almost the same overall results, 0.1185(10),
but leads to significantly larger high-order coeffi-
cients in perturbation theory (2.5 times larger for
small loops), somewhat greater dispersion between
results from different quantities (	2=22 of 0.5 in-
stead of 0.2), and larger uncertainties in the results
from most quantities. The scale-setting procedure
used to select the ds is tailored specifically for �V

expansions; this is reflected by these results.
(iv) Adding more/fewer perturbative terms: We allow

terms up through tenth order in the perturbative
expansions for the various short-distance quantities.
Adding further terms has no impact on our results.
Restricting perturbation theory to only fourth or
fifth order also leaves our final result unchanged.
Fitting is impossible with fewer than four terms:
with three terms fits for individual Wilson loops, for
example, to data from all 12 configuration sets are
poor, with 	2=12 becoming as large as 1.9 (rather
than 0.4); and the couplings coming from the 22
different short-distance quantities disagree with
each other, giving 	2=22 ¼ 1:45 (rather than 0.16).

(v) Adding more/fewer nonperturbative terms: Adding
higher-order terms in the chiral expansion in sea-
quark masses [Eq. (12)] or further terms in the
gluon-condensate expansion [Eq. (15)] does not
change our final result at all. Omitting all correc-
tions for the gluon condensates increases �MSðMZÞ
by two thirds of a standard deviation, to 0.1189(7). If
we keep only the three smallest lattice spacings,
which are the least sensitive to nonperturbative ef-
fects, we get 0.1180(10) whether or not the gluon
condensates are included. We cannot fit all of our
simulation data if we omit the chiral correction.
Fitting without chiral corrections becomes possible
if we keep only the subset of our data with
mu=d=ms � 0:2 (sets 2, 5, 7, 10, and 12); this gives

�MSðMZÞ ¼ 0:1181ð9Þ. (Our fit to logðW11Þ gives
wð1Þ

m ¼ �0:18ð6Þ; rð1Þ1m ¼ �0:08ð8Þ; (32)

which is typical of the other fits.)

Each of the variations examined here gives results that
agree with our final result to within a standard deviation,
suggesting that we have not underestimated the uncertainty
in our result.
Our new result is one standard deviation above our

previous result from Wilson loops [1], �MSðMZÞ ¼
0:1170ð12Þ, and has an error that is 33% smaller. Our
new analysis differs in two important ways from our earlier
work. First we include more lattice spacings, including one
that is 50% smaller than the smallest we used before. (We
used only configuration sets 1, 5, and 7 before.) This
significantly reduces the errors. Second we now use more
accurate values for r1=a. These reduce uncertainties in the
ratios of lattice spacings from different configuration sets,
to a third of what they were in our earlier analysis. This
matters since comparing results at different lattice spacings
bounds the uncalculated high-order perturbation theory
coefficients in our analysis (cn for n � 4). We are also
allowing for larger finite-a errors in r1=a on the coarsest
lattices than we did previously. The changes in r1=a,

TABLE IV. Sources of uncertainties in determinations of �MSðMZ; nf ¼ 5Þ from various short-distance quantities. Uncertainties are
given as percentages of the final result in each case.

logW11 logW12 logW22 logW11W22=W
2
12 logW12=u

6
0 logW22=u

8
0 �lat=W11

c1 . . . c3 0.1% 0.1% 0.1% 0.3% 0.1% 0.1% 0.1%

cn for n � 4 0.2 0.3 0.3 0.4 0.3 0.4 0.3

amq, r1mq extrapolation 0.1 0.1 0.0 0.1 0.1 0.1 0.0

ða=r1Þ2 extrapolation 0.2 0.3 0.4 0.3 0.2 0.2 0.0

ðr1=aÞi errors 0.4 0.4 0.4 0.3 0.3 0.3 0.3

r1 errors 0.3 0.3 0.3 0.3 0.3 0.3 0.3

Gluon condensate 0.1 0.1 0.1 0.2 0.1 0.1 0.1

Statistical errors 0.0 0.0 0.0 0.1 0.0 0.0 0.0

V ! MS ! MZ 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Total 0.6% 0.6% 0.7% 0.7% 0.6% 0.6% 0.5%

UPDATE: ACCURATE DETERMINATIONS OF �s . . . PHYSICAL REVIEW D 78, 114507 (2008)

114507-9



together with the smaller lattice spacing, account for most
of the increase in our final result.

Another change, which has less impact, is the inclusion
of possible higher-dimension condensates. We also now do
a more systematic analysis of effects due to the sea-quark
mass, fitting results with many different masses, but the
effect on our final result is small. Finally, we now use better
scales d=a for the Creutz ratios and tadpole-improved
loops than in our previous analysis [9]. Using the new
scales shifts our final result up by only a third of a standard
deviation, but the dispersion between results from different
short-distance quantities is decreased from 	2=22 ¼ 0:6 to
0.2.

VI. CONCLUSIONS

Any high-precision determination of �s based upon
lattice QCD simulations has to address several key issues:

(i) Finite-lattice-spacing errors: Errors due to the finite
lattice-spacing can enter in two ways. First they
affect lattice determinations of the physical quantity
or quantities used to set the scale of the coupling. In
our analysis we use simulation values for r1=a, from
the static-quark potential, to determine ratios of
scales from different configuration sets, and simula-
tion values for the �0 �� mass difference to set the
overall scale [12]. In each case we use data from
multiple lattice spacings to bound finite-a errors,
which are small because we use highly improved
discretizations in our simulations. The second source
of finite-a errors, for some analyses (but not ours), is
the lattice determination of the short-distance quan-
tity that is compared with perturbation theory (to
extract �s). A short-distance quantity that is defined
in continuum QCD—for example, changes VðraÞ �
VðrbÞ in the static-quark potential for small rs [1,8],
or current-current correlators for c-quark currents
[24]—will have finite-a errors that must be included
in the final error analysis. The use of multiple lattice
spacings is again important. This is not an issue for
us here because we analyze our short-distance quan-
tities using lattice QCD perturbation theory, which
treats finite-a effects exactly (that is, to all orders in
a, order by order in �V). Both the simulation results
and the perturbation theory for our 22 short-distance
quantities are free of finite-a errors. This greatly
facilitates our use of results from multiple lattice
spacings to bound uncalculated higher-order terms
from perturbation theory.

(ii) Truncation errors from perturbation theory: The
coupling is determined by comparing perturbation
theory with (nonperturbative) simulation results for
a short-distance quantity. Generally the perturbation
theory is known through only a few low orders in
�s. The error analysis for any determination of the
coupling must account for the uncalculated (but

certainly present) terms from higher-order perturba-
tion theory. We not only account for the possibility
of higher-order terms (through tenth order), using
our Bayesian priors, but also attempt to estimate the
size of these corrections by comparing values of our
short-distance quantities at five different momen-
tum scales d=a, corresponding to our five lattice
spacings. We find sizable contributions from high-
order terms, particularly for logðWÞs: leaving them
out would shift our final result for the coupling
down by one to two standard deviations (and lead
to poor fits for most of our short-distance quanti-
ties). The agreement between our 22 different short-
distance quantities, some with very different pertur-
bative expansions (see Sec. II), is important evi-
dence that we have analyzed truncation errors
correctly.

(iii) Sea-quark vacuum polarization: In our previous
analysis [1], we showed that the coupling is quite
sensitive to contributions from the vacuum polar-
ization of sea quarks: �MSðMZÞ is 30% smaller

when all quark vacuum polarization is omitted. It
is therefore important to include vacuum polariza-
tion from all three light quarks. Vacuum polariza-
tion corrections from heavy quarks (c, b, and t) can
be computed using perturbation theory, but light
quarks (u, d, and s) can only be incorporated non-
perturbatively. In the past we have used simulations
with fewer than three light quarks and extrapolated
to nf ¼ 3 (1=�MSðMZÞ appears to be reasonably

linear in nf) [25]. Here (and in our earlier paper [1])

contributions from all three light quarks are in-
cluded in the configurations provided to us by the
MILC collaboration. We also account for the small
but (barely) measurable dependence upon the sea-
quark masses.

(iv) Other lattice and nonperturbative artifacts:
Usually one must worry about the finite volume
of the lattice in a QCD simulation. Our Wilson
loops, however, are about as ultraviolet singular
as is possible on a lattice, and so are completely
insensitive to the volumes of our lattices (2.5 fm
across). Another issue, for continuum as well as
lattice determinations of the coupling, is the possi-
bility of nonperturbative contributions to the short-
distance quantity. Our quantities are sufficiently
short-distance that we do not expect appreciable
nonperturbative contamination. We nevertheless al-
lowed for nonperturbative contributions from both
gluons and quarks. The expected size of nonpertur-
bative contributions varies widely over our set of 22
different short-distance quantities and 6 different
lattice spacings. The excellent agreement among all
of our results is strong evidence that we understand
these systematic errors.
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In this (and our previous) paper, we have addressed all of
these issues. We have extended our earlier analysis of the
strong coupling constant fromWilson loops in lattice QCD
(and hadronic spectroscopy) to include results from 22
different short-distance quantities computed on 12 differ-
ent lattices, with 6 distinct lattice spacings and a variety of
sea-quark masses. We extracted a new value for the QCD
coupling by comparing these 22� 12 ¼ 264 different
pieces of simulation data, varying by a factor of seven
in momentum scales (d=a from 2.1 to 14.7 GeV), with
perturbation theory. Our result, �MSðMZ; nf ¼ 5Þ ¼
0:1183ð8Þ, is in excellent agreement with our previous
result from Wilson loops [1], 0.1170 (12), and also with
nonlattice determinations: for example, the world averages
0.1176 (20) from [26] and 0.1189 (10) from [27]. Our new
result also agrees well with our very recent result,
0.1174 (12), from current-current correlators computed us-
ing lattice QCD [24].

While they are derived from the Wilson loops, our
Creutz ratios and tadpole-improved loops provide
coupling-constant information that is independent from
that coming from the loops directly. This is because the
highly ultraviolet contributions that dominate the loops
largely cancel in the other quantities, making the latter
more infrared. Consequently both perturbative and non-
perturbative behavior differs significantly from quantity to
quantity. This is particularly true of the sensitivity to non-
perturbative contributions: for example, our most infrared
Creutz ratios are more than 100 times more sensitive to
gluon condensates than our most ultraviolet loops. That all
of our quantities agree on the coupling (Fig. 1) is strong

evidence that we understand the systematic errors
involved.
The close agreement of our results with nonlattice de-

terminations of the coupling is a compelling quantitative
demonstration that the perturbative QCD of jets, and the
QCD of lattice simulations, which encompass both pertur-
bative and nonperturbative phenomena, are the same the-
ory. It is also further evidence that the simulation methods
we use are valid. While early concerns about the light-
quark discretization used here have been largely addressed
[28,29], it remains important to test the simulation tech-
nology of lattice QCD at increasing levels of precision
given the critical importance of lattice results for phenome-
nology [30].
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