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Using flavor twisted boundary conditions, we study nucleon matrix elements of the vector current. We

twist only the active quarks that couple to the current. Finite volume corrections due to twisted boundary

conditions are determined using partially twisted, partially quenched, heavy baryon chiral perturbation

theory, which we develop for the graded group SUð7j5Þ. Asymptotically these corrections are exponen-

tially small in the volume, but can become pronounced for small twist angles. Utilizing the Breit frame

does not mitigate volume corrections to nucleon vector current matrix elements. The derived expressions

will allow for better controlled extractions of the isovector magnetic moment and the electromagnetic

radii from simulations at zero lattice momentum. Our formalism, moreover, can be applied to any nucleon

matrix elements.
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I. INTRODUCTION

Understanding QCD in the strongly interacting regime
remains a challenging problem in physics. Simulations of
QCD on Euclidean spacetime lattices are making progress
towards a quantitative understanding of the nonperturba-
tive dynamics in QCD [1]. Lattice QCD simulations usu-
ally employ periodic boundary conditions for the quark
and gluon fields. Consequently the available hadron mo-
menta are limited to periodic momentum modes of the
lattice, k ¼ 2�n=L, where n is a triplet of integers and
L is the lattice size in each of the three spatial directions.
On typical lattices, the smallest available lattice momen-
tum is about 400–500 MeV. This presents a severe limita-
tion for the study of observables appearing in matrix
elements at low momentum, and low momentum-transfer.
At present, such observables cannot be investigated di-
rectly using periodic boundary conditions, and models
are used to perform momentum extrapolations.

For large enough volume, the physics should be inde-
pendent of the choice of boundary conditions. There is
freedom in choosing boundary conditions for fields; how-
ever, the action must be single valued so that observables
are well defined. For a generic matter field �, we can
impose a twisted boundary condition in the i-th direction
of the form, see e.g. [2],

�ðxi þ LÞ ¼ U�ðxiÞ;

whereU is a symmetry of the action andUyU ¼ 1. For the
quark flavors in QCD, the diagonal flavor rotations can be
used to implement what are called flavor twisted boundary

conditions. With U of the form U ¼ expði�iÞ, the matter
field � has kinematic momentum k ¼ ð2�nþ �Þ=L
which can be varied continuously by choosing different
values for �. The ability to produce continuous hadron
momentum has made flavor twisted boundary conditions
attractive to lattice QCD [3–18].
In this work, we detail the finite volume modifications to

nucleon form factors of the vector current. We use twisted
boundary conditions on the active quarks in the current
insertion, and, of course, are limited to only connected
contributions from the current. Heavy baryon chiral per-
turbation theory is utilized to estimate the volume depen-
dence of nucleon current matrix elements. Let us
summarize our main findings.
(i) Finite volume modifications can be sizable espe-

cially for the magnetic contribution, and for small
twist angles.

(ii) The use of Breit frame kinematics does not dramati-
cally reduce or simplify the finite volume correc-
tions. The volume effect for magnetic observables in
the Breit frame roughly doubles compared to the rest
frame. This situation is unlike the meson vector
current [17].

(iii) With twisted boundary conditions on only the active
quarks, the finite volume corrections depend on an
unphysical and unknown parameter, g1. This depen-
dence arises as an artifact of the enlarged valence
flavor group, and a lattice determination of g1 would
help in accounting for volume corrections.

(iv) Results obtained here are qualitatively similar to
those obtained from isospin-twisted boundary con-
ditions for the nucleon isovector form factors [12]. In
that method, valence u-quarks are twisted differently
than the valence d-quarks without introducing extra
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fictitious flavors. We show, moreover, the flavor
symmetry employed by that method can be used to
eliminate the dependence on g1. Consequently finite
volume corrections can be reliably estimated for that
case in terms of known low-energy constants.

Our presentation has the following organization. First in
Sec. II, we detail the flavor twisted boundary conditions,
and incorporate them into heavy baryon chiral perturbation
theory. We show how the graded group SUð7j5Þ accom-
modates twisting of the active valence quarks in the baryon
sector. In Sec. III, we compute finite volume corrections to
the nucleon mass, and derive the induced mass splittings
due to flavor twisted boundary conditions. Numerically
these splittings are estimated to be at the percent level or
less on current lattices. Finite volume corrections to the
vector form factors of the proton and neutron are deter-
mined in Sec. IV (complete expressions are given in
Appendix A). These results apply to the connected contri-
butions allowing access to isovector, but not isoscalar,
quantities. We show that terms arising from broken cubic
invariance can lead to non-negligible volume effects in the
region of small twist angles. Results for rest frame and
Breit frame kinematics are compared. The Breit frame
does not offer any substantial advantages with respect to
volume effects. Complete results for isovector current
matrix elements at finite volume using the method of
isospin-twisted boundary conditions are displayed in
Appendix B. For rest frame kinematics, these results are
shown to be independent of the unphysical parameter g1.
Appendix C collects functions and identities useful for the
evaluation of finite volume effects. Finally a brief summary
concludes our work.

II. FLAVOR TWISTED BOUNDARY CONDITIONS
AND BARYONCHIRAL PERTURBATION THEORY

To address the consequences of twisted boundary con-
ditions in lattice calculations of baryon properties, we
describe the underlying effective theory in the baryon
sector. First we detail the partially twisted boundary con-
ditions employed. Next we include these effects in chiral
perturbation theory, and then heavy baryon chiral pertur-
bation theory.

The quark part of the partially quenched QCD
Lagrangian is given by

L ¼ X12
j;k¼1

�̂Qjð 6DþmQÞjkQ̂k: (1)

The 12 quark fields transform in the fundamental repre-
sentation of the graded group SUð7j5Þ, and appear in the

vector Q̂T ¼ ðû0; û1; û2; d̂1; d̂2; ĵ; l̂; ~̂u0; ~̂u1; ~̂u2; ~̂d1; ~̂d2Þ. In

addition to the valence û0, û1, û2, d̂1, and d̂2 quarks, we

have added their ghost quark counterparts ~̂u0, ~̂u1, ~̂u2, ~̂d1

and ~̂d2, which cancel the closed valence loops, and two sea

quarks ĵ and l̂. In the isospin limit, the quark mass matrix
of SUð7j5Þ reads mQ ¼ diagðmu15�5; mj12�2; mu15�5Þ in
block diagonal form, where the blocks correspond to va-
lence, sea and ghost sectors. QCD quantities can be recov-
ered in the limit mj ! mu. The additional up and down

quarks are fictitious flavors differing only by their bound-
ary conditions. There is one more up-type quark than
down-type quark because we focus on a theory that will
yield proton matrix elements. Neutron matrix elements can
always be derived trivially by interchanging up and down
charges in the final result.1

The hats denote fields satisfying twisted boundary con-
ditions. We require that the quark fields satisfy boundary
conditions of the form

Q̂ðxþ LerÞ ¼ expði�ar �TaÞQ̂ðxÞ; (2)

where er is a unit vector in the rth spatial direction, L is the
spatial size of the lattice, and the block diagonal form of
the supermatrices �Ta is

�T a ¼ diagðTa; 0; TaÞ: (3)

Here we choose Ta to be generators of the Uð5Þ Cartan
subalgebra. Notice that by Eq. (3), the sea quarks remain
periodic at the boundary. This reflects a partially twisted
scenario. Twist angles can be changed without necessitat-
ing the generation of new gauge configurations, because
the fermionic determinant, which arises solely from the sea
sector, is not affected by the twisting.

Redefining the quark fields as QT ¼
ðu0; u1; u2; d1; d2; j; l; ~u0; ~u1; ~u2; ~d1; ~d2Þ, with QðxÞ ¼
VyðxÞQ̂ðxÞ, where VðxÞ ¼ expði�a � x �Ta=LÞ, we can write
the partially quenched QCD Lagrangian as

L ¼ X12
j;k¼1

�Qjð ^6DþmQÞjkQk; (4)

where all Q fields satisfy periodic boundary conditions,
and the effect of twisting has the form of a uniform gauge

field: D̂� ¼ D� þ iB�, where B� ¼ ð�a �Ta=L; 0Þ. It will
be easier to treat the twisting in the flavor basis of the
valence and ghost sectors rather than in the generator basis,
thus we write �aTa ¼ diagð0;�u;�0u;�d;�0dÞ, and simi-
larly for B�, which appears as B� ¼ diagðBval

� ; 0; Bval
� Þ in

block diagonal form, with Bval
� ¼ diagð0; Bu

�; B
0u
�; B

d
�; B

0d
� Þ.

Momentum transfer will be generated using flavor chang-
ing currents from u1 to u2, or from d1 to d2. Notice we keep
the u0 quark periodic; it will play the role of spectator.
The low-energy effective theory of QCD is chiral per-

turbation theory, which describes the dynamics of pseudo-
scalar mesons emerging from spontaneous chiral
symmetry breaking. The mesons of partially quenched

1To consider both proton and neutron properties in the same
theory, we would need to enlarge the flavor group further to
SUð8j6Þ.
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chiral perturbation theory [19–23] are described by the

coset field �̂, which satisfies twisted boundary conditions.

This field can be traded in for �, defined by �ðxÞ ¼
VyðxÞ�̂ðxÞVðxÞ, which is periodic at the boundary [5]. In
terms of this field, the Lagrangian of partially quenched
chiral perturbation theory appears as

L ¼ f2

8
strðD̂��D̂��

yÞ � � strðmy
Q�þ �ymQÞ

þ�2
0�

2
0: (5)

The action of the covariant derivative D̂� is specified by

D̂�� ¼ D��þ i½B�;��. The parameter f is the chiral

limit value of the pion decay constant, and in our normal-
ization, f ¼ 0:13 GeV. The above Lagrangian contains
only the lowest-order terms in an expansion in quark
mass mQ, and meson momentum squared k2. The periodic
meson fields contained in the 12-by-12 matrix � are real-
ized nonlinearly, � ¼ expð2i�=fÞ. The matrix � has the
form

� ¼
Mvv Mvs �y

gv

Msv Mss �y
gs

�gv �gs Mgg

0
B@

1
CA: (6)

The mesons ofMvv (Mgg) are bosonic and are formed from

a valence (ghost) quark-antiquark pair. These matrices
have the form

Mvv ¼

�u
00 �u

01 �u
02 �þ

01 �þ
02

�u
10 �u

11 �u
12 �þ

11 �þ
12

�u
20 �u

21 �u
22 �þ

21 �þ
22

��
10 ��

11 ��
12 �d

11 �d
12

��
20 ��

21 ��
22 �d

21 �d
22

0
BBBBB@

1
CCCCCA; and

Mgg ¼

~�u
00 ~�u

01 ~�u
02 ~�þ

01 ~�þ
02

~�u
10 ~�u

11 ~�u
12 ~�þ

11 ~�þ
12

~�u
20 ~�u

21 ~�u
22 ~�þ

21 ~�þ
22

~��
10 ~��

11 ~��
12 ~�d

11 ~�d
12

~��
20 ~��

21 ~��
22 ~�d

21 ~�d
22

0
BBBBB@

1
CCCCCA:

The �q
ij (~�

q
ij) mesons have quark content �q

ij � qi �qj (~�
q
ij �

~qi �~qj), while the�
þ
ij ( ~�

þ
ij ) mesons have quark content�þ

ij �
ui �dj ( ~�þ

ij � ~ui
�~dj). The valence-sea (sea-sea) mesons are

bosonic and contained in Mvs (Mss) as

Msv ¼ �ju0 �ju1 �ju2 �jd1 �jd2

�lu0 �lu1 �lu2 �ld1 �ld2

� �
; and

Mss ¼ �j �jl

�lj �l

� �
:

Mesons contained in �gv (�gs) are built from ghost quark,

valence antiquark (sea antiquark) pairs and are thus fermi-
onic. These states appear as

�gv ¼

�~u0u0 �~u0u1 �~u0u2 �~u0d1 �~u0d2

�~u1u0 �~u1u1 �~u1u2 �~u1d1 �~u1d2

�~u2u0 �~u2u1 �~u2u2 �~u2d1 �~u2d2

�~d1u0
�~d1u1

�~d1u2
�~d1d1

�~d1d2
�~d2u0

�~d2u1
�~d2u2

�~d2d1
�~d1d2

0
BBBBB@

1
CCCCCA; and

�gs ¼

�~u0j �~u0l

�~u1j �~u1l

�~u2j �~u2l

�~d1j
�~d1l

�~d2j
�~d2l

0
BBBBB@

1
CCCCCA:

Expanding the Lagrangian in Eq. (5) to lowest order, one
finds that mesons with quark content Q �Q0 have mass-
sqaured

m2
QQ0 ¼ 4�

f2
ðmQ þmQ0 Þ: (7)

Thus in infinite volume all mesons fall into one of three
groups of mass degenerate states: valence-valence pions
m2

� ¼ 8�mu=f
2, valence-sea mesons m2

ju ¼ 4�ðmu þ
mjÞ=f2, and sea-sea pions m2

jj ¼ 8�mj=f
2. In partially

quenched simulations, one measures the valence-valence
and sea-sea pion masses. The valence-sea mass is given by
the average of the other two, up to possible discretization
errors that arise in hybrid actions.
The flavor singlet field, �0 ¼ 1ffiffi

2
p str�, additionally ac-

quires a mass �0 which arises as a consequence of the
Uð1ÞA anomaly. Taking this mass to be large, the flavor
singlet field is then integrated out of partially quenched
chiral perturbation theory; however, the propagators of the
flavor-neutral fields deviate from simple pole forms
[22,23]. There are two useful simplifications to note:
twisted boundary conditions have no effect on the flavor-
neutral sector, and all valence-valence flavor-neutral states
are degenerate with mass m�. For a,b ¼ u0, u1, u2, d1, or
d2, the leading-order �a�b propagator is thus given by

G �a�b
¼ �ab

1

k2 þm2
�

� 1

2

k2 þm2
jj

ðk2 þm2
�Þ2

: (8)

The flavor-neutral propagator can be conveniently rewrit-
ten as

G �a�b
¼ �ab

k2 þm2
�

þH ab

�
1

k2 þm2
�

�
; (9)

where

H abðAÞ ¼ � 1

2

�
1þ ðm2

� �m2
jjÞ

@

@m2
�

�
A: (10)

To include baryons into partially quenched chiral per-
turbation theory, one uses rank three flavor tensors [24–
27]. In SUð7j5Þ, the spin- 12 baryons are described by the

572-dimensional supermultiplet B̂ijk
, while the spin- 32

baryons are described by the 300-dimensional supermulti-

plet T̂
ijk
� [28]. The baryon flavor tensors are twisted at the
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boundary of the lattice. In the rth spatial direction, both
tensors satisfy boundary conditions of the form [7]

B̂ ijkðxþ êrLÞ ¼ ðei�ar �TaÞiiðei�ar �TaÞjjðei�ar �TaÞkkB̂ijkðxÞ:
(11)

Thus we define new tensors Bijk and T ijk
� both having the

form

B ijkðxÞ ¼ Vy
ii ðxÞVy

jjðxÞVy
kkðxÞB̂ijkðxÞ: (12)

These baryon fields satisfy periodic boundary conditions,
and their free Lagrangian has the form

L ¼ �ið �Bv�D̂�BÞ � 2	ðPQÞ
M ð �BBMþÞ

� 2
ðPQÞ
M ð �BMþBÞ � 2�ðPQÞ

M ð �BBÞ strðMþÞ
� ið �T �v�D̂�T �Þ þ �ð �T �T �Þ
þ 2ðPQÞ

M ð �T �MþT �Þ þ 2 ��ðPQÞ
M ð �T �T �Þ strðMþÞ;

(13)

where v� ¼ ð0; 0; 0; iÞ is the Euclidean four-velocity in the
rest frame. Here we use the heavy baryon approximation,
where the residual baryon velocity, k=MB, is treated as a
small parameter. In particular, our power counting treats
m�=�� � k=MB � �=MB. The mass operator Mþ is de-

fined by Mþ ¼ 1
2 ð�ymQ�

y þ �mQ�Þ, with � ¼ ffiffiffiffi
�

p
, and

the covariant derivative acts on B and T � fields in the

same manner, namely

½D̂�BðxÞ�ijk ¼ ½D�B�ijkðxÞ þ iðBi
� þ Bj

� þ Bk
�ÞBijkðxÞ;

(14)

with

½D�B�ijk ¼ @�Bijk þ ðV̂�ÞilBljk þ ð�Þ�ið�jþ�lÞ

� ðV̂�ÞjlBilk þ ð�Þð�iþ�jÞð�kþ�lÞðV̂�ÞklBijl;

(15)

where the vector field of mesons V̂� is given by V̂� ¼ 1
2 �

ð�D̂��
y þ �yD̂��Þ. This free Lagrangian contains a num-

ber of low-energy constants but has precisely the same
form as in the SUð4j2Þ partially quenched theory.
Restricting the baryon multiplets to the sea sector, so that
all flavor indices are either 6 or 7, we have nucleons and
deltas made only of sea quarks. Hence the matching con-
ditions are precisely the same as those used to match
SUð4j2Þ onto SUð2Þ by restricting the former to the sea
sector. The relations between the low-energy constants
appearing in Eq. (13) and those of SUð2Þ chiral perturba-
tion theory will not be needed here, but are given in [27].

The leading-order partially quenched interaction
Lagrangian between the baryons and mesons appears as

L ¼ 2	ð �BS�BÂ�Þ þ 2
ð �BS�Â�BÞ

� 2H ð �T �S�Â�T �Þ þ
ffiffiffi
3

2

s
C½ð �T �Â�BÞ

þ ð �BÂ�T �Þ�; (16)

where the effects of partial twisting show up in the axial-

vector field of mesons Â� ¼ i
2 ð�D̂��

y � �yD̂��Þ. The
interaction Lagrangian has the same form as the SUð4j2Þ
theory of baryons, hence the matching conditions to SUð2Þ
are identical. The familiar low-energy constants of SUð2Þ
are identified as follows [27]: gA ¼ 2

3	� 1
3
, g�N ¼ �C,

and g�� ¼ H . Notice there is an extra free parameter in
the partially quenched interaction Lagrangian compared to
that of SUð2Þ chiral peturbation theory. We shall write our
expressions in terms of gA and the combination g1 ¼ 1

3	þ
4
3
. Dependence on g1 must drop out in the QCD limit,

which, for the case at hand, requires both mj ! mu and

L ! 1.

III. NUCLEON MASS

To begin, we determine the nucleon mass in the presence
of partially twisted boundary conditions. In the isospin
limit of SUð4j2Þ, the proton and neutron are degenerate
[27,29]. Flavor twisted boundary conditions, however,
break the valence flavor symmetry, hence the nucleons
are no longer degenerate. The nucleon mass splittings arise
from finite volume effects induced by the boundary con-
ditions. Effects of this type can be treated using chiral
perturbation theory at finite volume. We work in the
p-regime throughout, where m�L � 1 so that zero modes
of the pion field do not become strongly coupled [30–32].
We estimate the size of the mass splittings on current-sized
lattices, and show that their effect can be neglected for the
determination of nucleon observables using twisted bound-
ary conditions.
In the infinite volume limit with B� held fixed, the

nucleon mass is unaffected by the boundary conditions.
This follows from a generalization of the argument pre-
sented for mesons in [5]. One merely realizes that the
nucleon propagators are not boosted in heavy baryon chiral
perturbation theory, because v�B� ¼ 0. The remaining

momenta in a given diagram are mesonic, and are boosted
according to flavor. Now since there are no flavor changing
interactions, the sum of boosts at each vertex is zero. This,
along with v�B� ¼ 0, assures us we can always shift loop

momenta to cast any diagram into a form where the only
B-dependence is that from external momenta. These con-
tributions should be thought of as kinematical rather than
effects which arise in the loops from chiral dynamics. The
mass does not receive dynamical corrections from the
boundary conditions, but the energy depends on the exter-
nal momentum and has a kinematic dependence on the
boundary conditions, e.g. for a nucleon with lattice mo-
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mentum k

EN ¼ MN þ ðkþ BÞ2
2MN

þ . . . ; (17)

where B ¼ �=L, and . . . denotes terms that are higher
order in 1=MN. Here only one valence quark in the nucleon
has been twisted, and by an angle �. When we try to apply
the same reasoning at finite volume, no shifts of the inter-
nal momenta are possible because the loop momenta are
discrete, while the twisting parameters are continuous.
Thus there is a dynamical dependence on the twisting
parameters arising from loops, and in finite volume, MN

will depend upon B.
The mass of the nucleon in the chiral expansion can be

written in the form

MN ¼ M0ð�Þ �Mð1Þ
N ð�Þ �Mð3=2Þ

N ð�Þ þ . . . ; (18)

where � is the renormalization scale, andMðnÞ
N denotes the

contribution to the nucleon mass of order mn
q. The linear

quark mass dependence arises from the local operators in
Eq. (13) at tree level, while the leading nonanalytic con-

tributionOðm3=2
q Þ arises from the one-loop diagrams shown

in Fig. 1. The local interactions do not contribute to finite
volume effects, only the meson loops that are shown in the
figure. For periodic boundary conditions, the finite volume
effects on the nucleon mass have been determined in [33].
To express the finite volume corrections to the nucleon
mass with flavor twisted boundary conditions, we require
the mode sum

K ðm;B;�Þ ¼
Z 1

0
d�

�
1

L3

X
n

ðkþ BÞ2
½ðkþBÞ2 þ 
2

��3=2

�
Z dk

ð2�Þ3
k2

½k2 þ 
2
��3=2

�
; (19)

with 
2
� ¼ �2 þ 2��þm2, and k ¼ 2�n=L where n is a

triplet of integers. Evaluation of this function, as well as
other finite volume sums, is discussed in Appendix C.

Consider purely valence nucleon states with exactly one
twisted quark. These will be the only nucleons relevant in
the computation of matrix elements with twisted boundary

conditions. It is easiest to classify these states according to
their representations under the valence subgroup of the two
degenerate untwisted quarks. In our formulation, we must
set the twist angles for these quarks to zero by hand. There
is both a singlet, 1, and triplet, 3, representation for singly
twisted nucleons under the untwisted valence SUð2Þ. For
the mass of a nucleon with one twisted valence quark in the
3 representation, we find the finite volume shift �MN3

ðBÞ is
given by2

�MN3
ðBÞ ¼ � 1

2f2

�
g2�N3N3

Kðm�; 0; 0Þ

þ g02�N3N3
Kðm�;B; 0Þ þ g2juN3N3

Kðmju; 0; 0Þ
þ g02juN3N3

Kðmju;B; 0Þ
þ ðgA þ g1Þ2H uuðKðm�; 0; 0ÞÞ
þ 1

9
g2�N½Kðm�; 0;�Þ þ 5Kðm�;B;�Þ

þ 2Kðmju; 0;�Þ þ 4Kðmju;B;�Þ�
�
: (20)

The effective axial couplings are defined by

g2�N3N3
¼ 1

3
ðg2A þ 2gAg1 þ g21=4Þ;

g02�N3N3
¼ 1

3
ðg2A � gAg1 � 5g21=4Þ;

g2juN3N3
¼ 1

3
ð4g2A þ 2gAg1 þ g21Þ;

g02juN3N3
¼ 1

2
g21:

(21)

On the other hand, for a nucleon in the 1 representation, we
find the finite volume shift �MN1

ðBÞ given by

�MN1
ðBÞ ¼ � 1

2f2

�
g2�N1N1

Kðm�; 0; 0Þ

þ g02�N1N1
Kðm�;B; 0Þ þ g2juN1N1

Kðmju; 0; 0Þ
þ g02juN1N1

Kðmju;B; 0Þ þ ðgA þ g1Þ2

�H uuðKðm�; 0; 0ÞÞ þ 1

3
g2�N½Kðm�; 0;�Þ

þKðm�;B;�Þ þ 2Kðmju; 0;�Þ�
�
: (22)

The effective axial couplings for the singlet nucleon mass
are defined by

FIG. 1. Diagrams contributing to the nucleon mass and wave-
function renormalization in partially quenched chiral perturba-
tion theory. A thin (thick) line denotes a spin-1=2 (spin-3=2)
baryon, while a dashed line denotes a meson. Partially quenched
hairpins are depicted by a crossed dashed line.

2Throughout we give expressions for finite volume shifts, �A,
of observables, A. These are given by differences of finite
volume and infinite volume results, namely �A ¼ AðLÞ �
AðL ¼ 1Þ.
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g2�N1N1
¼ 1

9
ðg2A � 4gAg1 � 11g21=4Þ;

g02�N1N1
¼ 1

9
ð5g2A þ 7gAg1 � g21=4Þ;

g2juN1N1
¼ 1

9
ð4g2A þ 2gAg1 þ 7g21Þ;

g02juN1N1
¼ 1

9
ð8g2A þ 4gAg1 þ g21=2Þ:

(23)

In the limit B ¼ 0, there is no difference between the
representations, and we recover accordingly the finite vol-
ume shift of the partially quenched nucleon mass [33]. In
the rest of this section, wework for simplicity at the unitary
mass point mj ¼ mu, so that m2

ju ¼ m2
�.

We consider nucleon splittings for two cases that are of
interest in current matrix elements: rest frame kinematics,
and Breit frame kinematics. In the rest frame kinematics,
the initial nucleon is at rest, and hence completely un-
twisted. The final nucleon has been given a boost by twist-
ing one of the quarks by �. In this case, there are three mass
splittings among the various nucleons: that between the 3
and untwisted nucleon, that between the 1 and untwisted
nucleon, and that between the 3 and 1 nucleons. The
relative change in these splittings is given by

�M3 �
MN3

ðBÞ �MN

MN

(24)

¼ � 1

2f2MN

�
1

3
ðg2A � gAg1 þ g21=4Þ½Kðm�;B; 0Þ

�Kðm�; 0; 0Þ� þ g2�N½Kðm�;B;�Þ
�Kðm�; 0;�Þ�

�
; (25)

�M1 �
MN1

ðBÞ �MN

MN

(26)

¼ � 1

2f2MN

�
1

9
ð13g2A þ 11gAg1 þ g21=4Þ

� ½Kðm�;B; 0Þ �Kðm�; 0; 0Þ�
þ 1

3
g2�N½Kðm�;B;�Þ �Kðm�; 0;�Þ�

�
; (27)

and

�M3�1 �
MN3

ðBÞ �MN1
ðBÞ

MN

(28)
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FIG. 2 (color online). Numerical estimates for the maximal nucleon splittings at finite volume, �M3, �M1, and �M3�1 given in
Eqs. (24), (26), and (28), respectively. We plot each relative splitting as a function of L with the lattice pion mass fixed at m� ¼
0:25 GeV. The twist angles are fixed at � ¼ �ð1; 1; 1Þ to give the maximal splittings. The bands arise from variation of the parameter
g1 assuming naturalness, specifically we assume �2 � g1 � 2.
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¼ � 1

2f2MN

�
� 1

9
ð10g2A þ 14gAg1 � g21=2Þ

� ½Kðm�;B; 0Þ �Kðm�; 0; 0Þ� þ 2

3
g2�N

� ½Kðm�;B;�Þ �Kðm�; 0;�Þ�
�
; (29)

respectively.
On the other hand, for the Breit frame kinematics the

initial-state nucleon has one quark twisted by �, while the
final-state nucleon has one quark twisted by��. The finite
volume modification given by the function Kðm;B;�Þ in
Eq. (19) is even with respect to B. Thus initial and final-
state nucleons in the same representation of the untwisted
SUð2Þ are degenerate. The only nonvanishing splitting is
between the different representations, but on account of
evenness in B, this splitting is identical to �M3�1 given
above in Eq. (28).

Numerically we can estimate the nucleon splittings by
using phenomenological input for the low-energy con-
stants: gA ¼ 1:25, g�N ¼ 1:5, � ¼ 0:29 GeV, MN ¼
0:94 GeV, and f ¼ 0:13 GeV. For the unknown partially
quenched axial coupling g1, we assume it is of natural size
and vary it within the range �2 � g1 � 2. Each of the
mass splittings �M3, �M1, and �M3�1 is a maximum
when � ¼ �ð1; 1; 1Þ. We choose this value for � to inves-
tigate the worst case scenario. In Fig. 2, we investigate the
relative mass splittings’ dependence on L for a fixed value
of m�, which is chosen to be 0.25 GeV. Values shown for
the maximal splittings are all less than 5%. We will thus
neglect the nucleon splittings in our analysis below.3

IV. NUCLEON ISOVECTOR FORM FACTORS

Electromagnetic form factors appear in vector current
matrix elements of the nucleon. In terms of Dirac and Pauli
form factors denoted by FN

1 ðQ2Þ and FN
2 ðQ2Þ, respectively,

the nucleon current matrix element has the decomposition

hNðP0ÞjJem� jNðPÞi ¼ �uðP0Þ
�
�F

N
1 ðQ2Þ

� ���Q�

2MN

FN
2 ðQ2Þ

�
uðPÞ; (30)

where Q� ¼ ðP0 � PÞ� is the momentum transfer. In

QCD, the electromagnetic current is given as Jem� ¼
qu �u�uþ qd �d�d. In heavy baryon chiral perturbation

theory, the decomposition of the current appears in terms
of the Sachs electric and magnetic form factors, GN

E ðQ2Þ
and GN

MðQ2Þ, i.e. one has

hNvðP1ÞjJem� jNvðPÞi ¼ �uv

�
v�G

N
E ðQ2Þ

� ½S�; S��Q�

MN

GN
MðQ2Þ

�
uv; (31)

with the relations

GN
E ðQ2Þ ¼ FN

1 ðQ2Þ þ Q2

4M2
N

FN
2 ðQ2Þ (32)

GN
MðQ2Þ ¼ FN

1 ðQ2Þ þ FN
2 ðQ2Þ: (33)

We have appended velocity subscripts in Eq. (31) for
clarity. The uv are two-component Pauli spinors.
To calculate these form factors with twisted boundary

conditions on the lattice, one writes the current matrix
element in terms of the various quark contractions with
the electromagnetic current. The propagators coupling to
the current in each contraction we call the active quark
propagators. These are the propagators determined with
twisted boundary conditions. Omitted from this calculation
are the current insertions on quark lines that are self-
contracted. These disconnected contributions are notori-
ously difficult to calculate using lattice QCD. This diffi-
culty notwithstanding, their contributions cannot be
modified to produce continuous momentum transfer be-
tween the initial and final-state hadron. As with present-
day lattice calculations, we too will omit these contribu-
tions but with the caveat that their eventual inclusion will
be limited to hadrons with Fourier momentum modes of
the lattice.
Now we discuss precisely how to calculate the con-

nected part of the nucleon form factors in the effective
theory. To specialize to the application of twisted boundary
conditions on the active quarks, we must separate the
current into two pieces,

J1� ¼ qu �u2�u1 (34)

J2� ¼ qd �d2�d1: (35)

By evaluating matrix elements of J1� with �u ¼ �, �0u ¼
�0, and J2� with �d ¼ �, �0d ¼ �0, both currents induce

momentum transfer from P ¼ �=L to P0 ¼ �0=L. First let
us consider proton matrix elements. Considering the quark-
level contractions, we find
3

2
hN1ðuu2d1ÞjJ1�jN1ðuu1d1Þij�d¼0

þ 1

2
hN3ðuu2d1ÞjJ1�jN3ðuu1d1Þij�d¼0

þ hN3ðuud2ÞjJ2�jN3ðuud1Þi !L!1hpðP0ÞjJem� jpðPÞiconnected:
(36)

The subscripts on N refer to the representation under
untwisted isospin, and parenthetically we list the quark
content. We treat the active quark twists as implicit: each

3Additionally partially twisted isospin splittings in the meson
sector have been shown to be negligible on current sized lattices
[13]. The same is true of the infrared renormalization of the twist
angles. These effects will hence also be neglected.
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is from an initial quark, u1 or d1, with twist � to a final
quark, u2 or d2, with twist �0. We stress that Eq. (36)
provides the effective field theory recipe for calculating
what is implemented on the lattice by twisting the active
quarks. For the neutron there is a similar construction;
however, it is easiest to appeal to charge symmetry (isospin
rotation by �=2) from which follows the relation

hnðP0ÞjJem� jnðPÞi ¼ hpðP0ÞjJem� jpðPÞijqu$qd : (37)

In partially quenched QCD, the current is defined by

Ja� ¼ �Q�
�QaQ. The choice of supermatrices �Qa used to

extend the charges is not unique [34]. One should choose a
form of the supermatrices that maintains the cancellation
of valence and ghost quark loops with an operator insertion
[35]. For the flavor changing currents we consider, the

simplest choice ð �Q1Þij ¼ qu�i3�j2 and ð �Q2Þij ¼
qd�i5�j4 results in the correct physics. This is because

operator self-contractions automatically vanish; thus, any
nonzero charges in the ghost sector must ultimately yield
zero, and consequently would be superfluous. Charges in
the sea, while not superfluous, are absent due to restricting
to the connected part of three-point functions.

Operators that contribute at tree-level to the electromag-
netic currents in SUð2Þ chiral perturbation theory are con-
tained in the Lagrangian

L ¼ � i�0

2MN

ð �N½S�; S��NÞ trðQÞF��

� i�I

2MN

ð �N½S�; S��QNÞF��

� c0
�2

�

ð �NNÞ trðQÞv�@�F��

� cI
�2

�

ð �NQNÞv�@�F��; (38)

where Q ¼ diagðqu; qdÞ is the electric charge matrix. The
operators with coefficients �0 and �I give the leading
local contributions to the magnetic moments, while the
operators with coefficients c0 and cI give the leading local
contributions to the electric charge radii. Operators for the
magnetic radii occur at one higher order than the leading
loop contributions. The combination 2

3�0 þ 1
3�I is isosca-

lar, while �I is isovector. Analogous linear combinations
of c0 and cI form isoscalar and isovector contributions to
the charge radius. In writing down the analogous terms in
the partially quenched chiral Lagrangian, one simply re-

places Q with Qa. Because of the condition strð �QaÞ ¼ 0,
we see that there will be missing information in the par-
tially quenched theory: there will only be operators where
�Qa transforms under the adjoint, because of the lack of
singlet component. This is the effective theory manifesta-
tion of neglecting the disconnected contributions.
Consequently we will not be sensitive to the isoscalar
combination low-energy constants.

To consider the baryon current in partially twisted,
partially quenched chiral perturbation theory, we promote
�Qa from the specific form used in our calculations to the
most general form transforming under both the adjoint and
singlet of SUð7j5Þ. The baryon current has the form

�Ja� ¼ � i

2MN

f�	D̂�ð �B½S�; S��B �QaÞ

þ�
D̂�ð �B½S�; S�� �QaBÞ
þ�D̂�ð �B½S�; S��BÞ strð �QaÞg
� 1

�2
�

fc	½D̂�D̂�ð �Bv�B �QaÞ � D̂2ð �Bv�B �QaÞ�

þ c
½D̂�D̂�ð �Bv�
�QaBÞ � D̂2ð �Bv�

�QaBÞ�
þ c½D̂�D̂�ð �Bv�BÞ � D̂2ð �Bv�BÞ� strð �QaÞg: (39)

Restricting all quark indices in Eq. (39) to the sea sector,
we can match onto the nucleon current of two-flavor chiral
perturbation theory in Eq. (38). Matching with the physical
light quark charges yields the relations

�0 ¼ 1

6
�	 þ 2

3
�
 þ�; �I ¼ 2

3
�	 � 1

3
�
; (40)

c0 ¼ 1

6
c	 þ 2

3
c
 þ c; cI ¼ 2

3
c	 � 1

3
c
; (41)

between the partially quenched low-energy constants and
the physical parameters of chiral perturbation theory.
Because our current lacks a flavor singlet component,

strð �QaÞ ¼ 0, the constants � and c will always be

absent from our expressions for nucleon current matrix
elements. Consequently only the isovector combinations
will be expressible in terms of physical parameters, spe-
cifically�I and cI. The isoscalar combinations will always
contain unphysical low-energy constants even at the uni-
tary mass point mj ¼ mu.

A. Infinite volume

A useful check on our formulation of current matrix
elements for partially twisted boundary conditions is the
infinite volume limit. In this limit, we must recover the
connected parts of the proton and neutron form factors.
These results, moreover, show the consequences of vanish-
ing sea quark charges, and are of use to lattice practitioners
beyond the use of twisted boundary conditions.
The calculation of the current matrix elements in Eq.

(36) can be split into two parts. There are local contribu-
tions and loop contributions. The local terms are easiest:
there are Born-level charge couplings contained in the free
Lagrangian (13), and there are additional local contribu-
tions from higher-order operators appearing in the baryon
current (39). The loop contributions are generated from the
pion-nucleon-nucleon and pion-nucleon-delta interactions
contained in the Lagrangian Eq. (16). The relevant dia-
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grams are depicted in Fig. 3. Additionally at this order, we
need to multiply the Born-level couplings by the wave-
function renormalization which arises from the diagrams in
Fig. 1.

To express the form factors, we define the three momen-
tum transfer Q ¼ qþ B0 �B, and the quantity

P� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ xð1� xÞQ2

m2
�

vuut : (42)

Here we are additionally considering the nucleon with
Fourier momentum transfer q ¼ 2�n=L, where n is a
triplet of integers. Expressing the form factors in terms
of Q, we can have generalized to a generic case between
the untwisted caseB ¼ B0 ¼ 0, and the case of zero lattice
momentum q ¼ 0. In infinite volume, all results can be
expressed as a function of Q.
For the proton, the local and loop contributions produce

the connected part of the electric form factor

Gp
EðQ2Þ ¼ 2qu þ qd þ Q2

6�2
�

½quð5c	 þ 2c
Þ þ qdðc	 þ 4c
Þ� þ 2

ð4�fÞ2
Z 1

0
dxð2qu þ qdÞ

�
1

6
Q2 log

m2
ju

�2
þm2

juP
2
ju logP

2
ju

�

þ 1

ð4�fÞ2
Z 1

0
dx

�

�

�
� 5

6
Q2 log

m2
�

�2
þm2

�ð2� 5P2
�Þ logP2

�

�
þ 
ju

�
� 5

6
Q2 log

m2
ju

�2
þm2

juð2� 5P2
juÞ logP2

ju

��

þ 6g2�N
ð4�fÞ2

Z 1

0
dx

�

0

�

�
Jðm�P�;�; �Þ � Jðm�;�; �Þ þ 2

3
xð1� xÞQ2Gðm�P�;�Þ

�

þ 
0
ju

�
JðmjuPju;�; �Þ � Jðmju;�; �Þ þ 2

3
xð1� xÞQ2GðmjuPju;�Þ

��
: (43)

The coefficients from contributing loop mesons are given
by 
� ¼ � 1

3
ðg2A � gAg1 þ g21=4Þðqu � qdÞ;


ju ¼ � 1

3
ð4g2A þ 2gAg1 þ g21Þqu �

1

2
g21qd;

(44)

for loops containing spin-1=2 intermediate state baryons,
and


0
� ¼ � 1

6
ðqu � qdÞ; 
0

ju ¼
1

9
ðqu þ 2qdÞ; (45)

for loop containing spin-3=2 intermediate state baryons.
From the pion coefficients, one can clearly see the photon’s
coupling to the total charge of the pion, qu � qd. The
valence-sea meson coefficients, however, reflect that the
photon couples to only the valence quarks. The connected
part of the proton magnetic form factor is given by

Gp
MðQ2Þ ¼ 1

6
½quð5�	 þ 2�
Þ þ qdð�	 þ 4�
Þ�

þ MB

4�f2

Z 1

0
dx½
�m�P� þ 
jumjuPju�

þMBg
2
�N

4�2f2

Z 1

0
dx½
0

�Fðm�P�;�Þ

þ 
0
juFðmjuPju;�Þ�: (46)

In writing the above expressions we have made use of
abbreviations for the nonanalytic functions encountered
from loop graphs. These functions are

Fðm;�Þ ¼ �� log
m2

4�2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2

p
log

��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2 þ i"

p

�þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2 þ i"

p ; (47)

FIG. 3. Diagrams contributing to the nucleon vector current in
partially quenched chiral perturbation theory. A thin (thick) line
denotes a spin-1=2 (spin-3=2) baryon, while a dashed line
denotes a meson. Partially quenched hairpins are depicted by a
crossed dashed line and the wiggly line represents the vector
current.
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Gðm;�Þ ¼ log
m2

4�2

� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2

p log
��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2 þ i"

p

�þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2 þ i"

p ; (48)

Jðm;�;�Þ ¼ m2 log
m2

�2
� 2�2 log

m2

4�2
þ 2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2

p

� log
��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2 þ i"

p

�þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2 þ i"

p ; (49)

and have been renormalized to vanish in the chiral limit.
The neutron electric and magnetic form factors can be
deduced from the above expressions by swapping the
electric charges

Gn
EðQ2Þ¼Gp

EðQ2Þjqu$qd ; and Gn
MðQ2Þ¼Gp

MðQ2Þjqu$qd :

(50)
Let us focus first on the connected proton form factors at

the unitary mass point mj ¼ mu. Using the physical va-

lence quark charges, we have the connected proton electric
form factor

Gp
EðQ2Þ ¼ 1þ c	Q

2

2�2
�

þ 2

ð4�fÞ2
Z 1

0
dx

�
1

6
Q2 log

m2
�

�2
þm2

�P
2
� logP2

�

�
� 1

9ð4�fÞ2 ð11g
2
A þ gAg1 þ 5g21=4Þ

�
Z 1

0
dx

�
� 5

6
Q2 log

m2
�

�2
þm2

�ð2� 5P2
�Þ logP2

�

�
� g2�N

ð4�fÞ2
Z 1

0
dx

�
Jðm�P�;�; �Þ � Jðm�;�; �Þ

þ 2

3
xð1� xÞQ2Gðm�P�;�Þ

�
: (51)

Compared to full electric form factor, the connected con-
tribution has the wrong coefficients for the tadpole and
delta loop contributions. It depends, moreover, on the
unphysical low-energy constants c	 and g1, which survive
as artifacts of quenching the sea quark charges. The situ-
ation is similar with respect to the connected contribution
to the proton magnetic form factor

Gp
MðQ2Þ ¼ 1

2
�	 � MB

36�f2
ð11g2A þ gAg1 þ 5g21=4Þ

�
Z 1

0
dxm�P� �MBg

2
�N

24�2f2

Z 1

0
dxFðm�P�;�Þ:

(52)

Compared to the full magnetic form factor the delta con-

tribution does not have the correct numerical factor, and
the result depends on unphysical parameters �	 and g1.
Connected neutron form factors suffer analogous mal-

adies as the reader can easily verify. By contrast, the
isovector form factors have the correct form. These form
factors are defined as the difference between proton and
neutron form factors

Gv
EðQ2Þ ¼ Gp

EðQ2Þ �Gn
EðQ2Þ; (53)

Gv
MðQ2Þ ¼ Gp

MðQ2Þ �Gn
MðQ2Þ: (54)

In the isospin limit, the disconnected operator insertion
must cancel out of the isovector combinations. Using the
connected form factors for the proton and neutron, we find

Gv
EðQ2Þ¼1þcI

Q2

�2
�

þ 2

ð4�fÞ2
Z 1

0
dx

�
1

6
Q2 log

m2
ju

�2
þm2

juP
2
ju logP

2
ju

�

� 1

6ð4�fÞ2
Z 1

0
dx

�
g2�NN

�
�5

6
Q2 log

m2
�

�2
þm2

�ð2�5P2
�ÞlogP2

�

�
þg2juNN

�
�5

6
Q2 log

m2
ju

�2
þm2

juð2�5P2
juÞlogP2

ju

��

� 2g2�N
ð4�fÞ2

Z 1

0
dx

�
Jðm�P�;�;�Þ�Jðm�;�;�Þþ2

3
xð1�xÞQ2Gðm�P�;�Þ

þ1

3

�
JðmjuPju;�;�Þ�Jðmju;�;�Þþ2

3
xð1�xÞQ2GðmjuPju;�Þ

��
; (55)

where we have abbreviated the combination of couplings

g2�NN ¼ 4g2A � 4gAg1 þ g21;

g2juNN ¼ 8g2A þ 4gAg1 � g21:
(56)

These appear as effective axial couplings squared for pion
and valence-sea meson loops in partially quenched chiral
perturbation theory after summing over degenerate me-
sons. The partially quenched isovector magnetic form

factor is

Gv
MðQ2Þ¼�I� MB

24�f2

Z 1

0
dx½g2�NNm�P�þg2juNNmjuPju�

�MBg
2
�N

12�2f2

Z 1

0
dx

�
Fðm�P�;�Þ

þ1

3
FðmjuPju;�Þ

�
: (57)
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These partially quenched form factors agree with those
determined in SUð4j2Þ partially quenched chiral perturba-
tion theory [27,36]. The local contributions are now pro-
portional to�I and cI, which are physical parameters. Both
of these partially quenched form factors, however, depend
on the unphysical coupling g1. Taking the valence-sea
meson to be degenerate with the pion, m2

ju ¼ m2
�, this

dependence disappears because g2�NN þ g2juNN ¼ 12g2A. It
is only in this limit that the isovector form factors repro-
duce the correct QCD physics.4 For completeness, the
nucleon isovector form factors resulting from taking
m2

ju ¼ m2
� are

Gv
EðQ2Þ ¼ 1þ cI

Q2

�2
�

þ 2

ð4�fÞ2
Z 1

0
dx

�
1

6
Q2 log

m2
�

�2

þm2
�P

2
� logP2

�

�
� 2g2A

ð4�fÞ2

�
Z 1

0
dx

�
� 5

6
Q2 log

m2
�

�2
þm2

�ð2� 5P2
�Þ

� logP2
�

�
� 8g2�N

3ð4�fÞ2
Z 1

0
dx

�
Jðm�P�;�; �Þ

� Jðm�;�; �Þ þ 2

3
xð1� xÞQ2Gðm�P�;�Þ

�
;

(58)

for the isovector electric, and

Gv
MðQ2Þ ¼ �I � g2AMB

2�f2

Z 1

0
dxm�P� �MBg

2
�N

9�2f2

�
Z 1

0
dxFðm�P�;�Þ; (59)

for the isovector magnetic form factor. These results agree
with the standard two-flavor chiral perturbation theory
calculations in the literature [37,38].

B. Finite volume

We now evaluate the matrix elements contributing to the
connected part of the proton current in Eq. (36) in finite

volume. This requires us to revisit the computation of the
wavefunction renormalization diagrams shown in Fig. 1,
and the form factor diagrams shown in Fig. 3. Additionally
there are new contributing diagrams which are displayed in
Fig. 4. These diagrams ordinarily vanish in infinite volume
by Lorentz invariance. Furthermore at finite volume with
periodic boundary conditions, these diagrams also vanish
but by the remnant discrete rotational symmetry (cubic
invariance). With continuous twist angles, however, these
diagrams do not vanish and are required in our computa-
tion of current matrix elements.
Resulting expressions for the temporal and spatial com-

ponents of the current are quite lengthy and are displayed
in their entirety in Appendix A. For ease, the expressions
given in this section will employ various simplifications.
First wework at the unitary mass point,m2

ju ¼ m2
�. Wewill

focus on the connected proton result, as well as the iso-
vector combination of finite volume matrix elements.
Additionally as Lorentz symmetry is not respected at finite
volume, the form factor decomposition in infinite volume
is no longer valid, see [39], for example. With twisted
boundary conditions, we find the temporal component of
the current acquires spin dependence at finite volume.
Similarly the spatial components of the current acquire
spin diagonal terms. These terms are displayed in
Appendix A, while the expressions presented here will
either be unpolarized for the temporal component, or the
difference of polarized matrix elements in the case of the
spatial components. Last the results in Appendix A are for
a general frame of reference in which the initial state
moves with momentum �=L, and the final state moves
with �0=L. The expressions given in this section will be
specific to either the rest frame, in which � ¼ 0, or the
Breit frame, in which � ¼ ��0.

1. Rest frame

In the rest frame, the momentum transfer is given by
Q ¼ qþB0. The finite volume modifications to proton
current matrix elements are given by

1

2

X
m¼	

hp;mj�J4jp;mi ¼ 1

f2

Z 1

0
dx

�
I1=2ðm�P�; xQÞ � 1

2
I1=2ðm�; 0Þ � 1

2
I1=2ðm�;B

0Þ
�
� 1

12f2
fð11g2A þ gAg1

þ 5g21=4Þ½ �J ðm�; 0; 0Þ þ �J ðm�;B
0; 0ÞÞ� � 3g2�N½ �J ðm�; 0;�Þ þ �J ðm�;B

0;�Þ�g þ 1

6f2

�
Z 1

0
dx½ð11g2A þ gAg1 þ 5g21=4ÞJ ðm�P�; 0;Q; xQ; 0Þ � 3g2�NJ ðm�P�; 0;Q; xQ;�Þ�; (60)

for the unpolarized time-component of the current; and,

3This point is often overlooked, particularly in mixed action simulations which are automatically partially quenched. In a mixed
action simulation, the valence and sea pion masses are tuned in order to mitigate unitarity violations. The valence-sea meson mass,
however, is not protected from additive renormalization and is degenerate with the pion only in the strict continuum limit.
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hp;	j�Jijp;
i ¼ 1

f2
h	j½Sk; Sj�j
i

�
�ki

1

9
ð13g2A þ 11gAg1 þ g21=4ÞKjðm�;B

0; 0Þ � �ki

g2�N
6

Kjðm�;B
0;�Þ

þ 1

6
Qk

Z 1

0
dx

�
ð11g2A þ gAg1 þ 5g21=4ÞLjiðm�P�; 0;Q; xQ; 0Þ þ 3

2
g2�NL

jiðm�P�; 0;Q; xQ;�Þ
��
;

(61)

for the spatial components. We have chosen spin-flip matrix elements; these are simply related to differences of spin
polarized matrix elements.

The finite volume corrections to isovector matrix elements, we write out similarly.

1

2

X
m¼	

hp;mj�Jþ4 jn;mi ¼ 1

f2

Z 1

0
dx

�
I1=2ðm�P�; xQÞ � 1

2
I1=2ðm�; 0Þ � 1

2
I1=2ðm�;B

0Þ
�
� 3

2f2

�
g2A½ �J ðm�; 0; 0Þ

þ �J ðm�;B
0; 0ÞÞ� � 4

9
g2�N½ �J ðm�; 0;�Þ þ �J ðm�;B

0;�Þ�
�
þ 3

f2

�
Z 1

0
dx

�
g2AJ ðm�P�; 0;Q; xQ; 0Þ � 4

9
g2�NJ ðm�P�; 0;Q; xQ;�Þ

�
; (62)

for the unpolarized time-component of the current; and,

hp;	j�Jþi jn;
i ¼ 1

f2
h	j½Sk; Sj�j
i

�
2�kiðg2A þ gAg1ÞKjðm�;B

0; 0Þ þ 3Qk

Z 1

0
dx

�
g2AL

jiðm�P�; 0;Q; xQ; 0Þ

þ 2

9
g2�NL

jiðm�P�; 0;Q; xQ;�Þ
��
; (63)

for the spin-flip spatial current.

2. Breit frame

In the Breit frame, we choose B0 ¼ �B and the momentum transfer is thus given by Q ¼ q� 2B. The finite volume
modifications to proton current matrix elements are given by

1

2

X
m¼	

hp;mj�J4jp;mi ¼ 1

f2

Z 1

0
dx½I1=2ðm�P�; xQþBÞ � I1=2ðm�;BÞ� � 1

6f2
½ð11g2A þ gAg1 þ 5g21=4Þ �J ðm�;B; 0Þ

� 3g2�N
�J ðm�;B;�Þ� þ 1

6f2

Z 1

0
dx½ð11g2A þ gAg1 þ 5g21=4ÞJ ðm�P�;B;QþB; xQþB; 0Þ

� 3g2�NJ ðm�P�;B;Qþ B; xQþ B;�Þ�; (64)

for the unpolarized time component of the current; and,

FIG. 4. Additional diagrams contributing to the nucleon vector current in finite volume PQ�PT. Diagram elements are the same as
those in Fig. 3. In the infinite volume limit, these diagrams vanish by Lorentz invariance.
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hp;	j�Jijp;
i ¼ 1

f2
h	j½Sk; Sj�j
i

�
��ki

2

9
ð13g2A þ 11gAg1 þ g21=4ÞKjðm�;B; 0Þ þ �ki

g2�N
3

Kjðm�;B;�Þ

þ 1

6
Qk

Z 1

0
dx

�
ð11g2A þ gAg1 þ 5g21=4ÞLjiðm�P�;B;Qþ B; xQþ B; 0Þ

þ 3

2
g2�NL

jiðm�P�;B;QþB; xQþB;�Þ
��
; (65)

for the spatial components.
The isovector current matrix elements can similarly be derived in the Breit frame. For the time component of the current,

we have

1

2

X
m¼	

hp;mj�Jþ4 jn;mi ¼ 1

f2

Z 1

0
dx½I1=2ðm�P�; xQþ BÞ � I1=2ðm�;BÞ� � 3

f2

�
g2A

�J ðm�;B; 0Þ � 4

9
g2�N

�J ðm�;B;�Þ
�

þ 3

f2

Z 1

0
dx

�
g2AJ ðm�P�;B;QþB; xQþB; 0Þ � 4

9
g2�NJ ðm�P�;B;QþB; xQþB;�Þ

�
:

(66)

Finally, the spatial isovector current has the spin-flip finite volume corrections given by

hp;	j�Jþi jn;
i ¼ 1

f2
h	j½Sk;Sj�j
i

�
�4�kiðg2A þ gAg1ÞKjðm�;B;0Þ

þ 3Qk

Z 1

0
dx

�
g2AL

jiðm�P�;B;QþB; xQþB;0Þ þ 2

9
g2�NL

jiðm�P�;B;QþB; xQþB;�Þ
��
: (67)

C. Numerical estimates

To estimate the effect of finite volume corrections, we
use phenomenological input for the various coupling con-
stants. The values we use have been listed above in Sec. III.
We restrict our attention to isovector quantities and nu-
merically evaluate the corrections in the rest frame. We
will comment on the qualitative behavior of volume cor-
rections in the Breit frame.

Consider first the finite volume corrections to the iso-
vector electric form factor Gv

EðQ2Þ.5 To access this form
factor, we use unpolarized matrix elements of the time
component of the current. We find

Gv
EðQ2; LÞ ¼ Gv

EðQ2Þ þ �L½Gv
EðQ2Þ�; (68)

where Gv
EðQ2Þ is the infinite volume form factor given by

Eq. (58), and �L½Gv
EðQ2Þ� is the finite volume correction

which is identical to the unpolarized matrix element in Eq.
(62). Here we work with the momentum transfer entirely
due to twisting Q ¼ B0 ¼ �0=L, and take �0 to lie along
one spatial direction. Notice the finite volume correction to
the isovector electric form factor is independent of any
unphysical parameters, in particular, the coupling g1. The
infinite volume isovector electric form factor depends on
the parameter cIð�Þ, the value of which can be inferred
from the charge radii of the proton and neutron. Using the

Particle Data Group averages [40], we find cIð� ¼
1 GeVÞ ¼ �0:393. In Fig. 5, we plot the relative change
in the isovector electric form factor due to volume effects
�Gv

E defined by

�Gv
EðQ2; LÞ ¼ Gv

EðQ2; LÞ �Gv
EðQ2Þ

Gv
EðQ2Þ : (69)

Here we keep the box size fixed at 2.75 fm, and plot versus
the twisting angle �0. Qualitatively the finite volume effect
oscillates about the infinite volume form factor as �0 is
increased. The oscillations are damped, but this behavior is
apparent at momentum transfers too large to trust the
effective theory. There are no finite size effects at �0 ¼ 0

0 1 2 3 4 5
0.02

0.01

0.00

0.01

0.02

θ '

G
Ev

mπ 0.25 GeV

FIG. 5 (color online). Relative change in the isovector electric
form factor due to twisted boundary conditions in the rest frame.
Plotted versus the twisting angle �0 is �Gv

EðQ2; LÞ given in Eq.
(69). The lattice size L is fixed at 2.75 fm, and the momentum
transfer is jQj ¼ �0=L ¼ �0 � 0:072 GeV.

5Strictly speaking there are no longer electric and magnetic
form factors on a torus as the decomposition in Eq. (30) relies on
Lorentz invariance. We will use electric (magnetic) to denote
quantities calculated from the temporal (spatial) component of
the current with the appropriate spin structure.
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because of charge nonrenormalization (which holds due to
treating the time direction as infinite). The results are
shown for m� ¼ 0:25 GeV and the finite volume effects
are generally at the percent level or less. The effect of finite
volume is of course smaller for larger pion masses.

Considering the spatial components of the current, we
can determine the magnetic form factor. Additionally there
are volume corrections to the spatial current, and the net
effect has the form

Gv
MðQ2; LÞ ¼ Gv

MðQ2Þ þ �L½Gv
MðQ2Þ�; (70)

where Gv
MðQ2Þ is the infinite volume form factor given by

Eq. (59) and �L½Gv
MðQ2Þ� is the finite volume correction,

which follows from Eq. (63). Choosing for simplicityB0 ¼
B0ŷ, and utilizing the ẑ component of the current between
an initial-state spin-up and final-state spin-down, we have

�L½Gv
MðQ2Þ� ¼ �2MN

B0f2
ðg2A þ gAg1ÞK2ðm�;B

0ŷ;0Þ þ 3MN

f2

�
Z 1

0
dx

�
g2AL

33ðm�P�;0;B
0ŷ; xB0ŷ;0Þ

þ 2

9
g2�NL

33ðm�P�;0;B
0ŷ; xB0ŷ;�Þ

�
: (71)

Notice this volume correction depends on the unphysical
coupling g1 which arises as a consequence of having

enlarged the valence flavor group. The infinite volume
isovector magnetic form factor depends upon the parame-
ter�I which we can estimate using the known values of the
proton and neutron magnetic moments. We find �I ¼
6:77. In Fig. 6, we plot the relative change in the isovector
magnetic form factor due to volume effects �Gv

M defined
by

�Gv
MðQ2; LÞ ¼ Gv

MðQ2; LÞ �Gv
MðQ2Þ

Gv
MðQ2Þ : (72)

Again we keep the box size fixed at 2.75 fm, and plot
versus the twisting angle �0. Because the effect is non-
negligible, we choose a few values of the pion mass. The
result, moreover, is sensitive to the value of g1 which has
been varied assuming natural size,�2 � g1 � 2. In Fig. 7,
we compare the extracted form factor at finite volume
Gv

MðQ2; LÞ with the infinite volume form factor Gv
MðQ2Þ

as a function of Q2 ¼ �02=L2. In this figure, we keep the
lattice size at 2.75 fm, and fix the pion mass to be 0.25 GeV.
Furthermore, we choose the value of g1 favored by com-
paring with SUð3Þ chiral perturbation theory, namely
g1 ¼ 2ðF�DÞ � �0:5.6

0 1 2 3 4 5
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0.3

0.2

0.1

0.0

θ '

G
Mv

mπ 0.25 GeV
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0.0

θ '

G
Mv

mπ 0.30 GeV
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θ '

G
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mπ 0.35 GeV

FIG. 6 (color online). Relative change in the isovector magnetic form factor due to twisted boundary conditions in the rest frame.
Plotted versus the twisting angle �0 is �Gv

MðQ2; LÞ given in Eq. (72). The lattice size L is fixed at 2.75 fm, and the momentum transfer

is jQj ¼ �0=L ¼ �0 � 0:072 GeV. The bands arise from uncertainty in the low-energy constant g1, which we take to be of natural size,
�2 � g1 � 2.

6One could calculate g1 directly by determining the axial
couplings of hyperons in the SUð3Þ limit (and in the chiral
regime). The first lattice calculation of hyperon axial charges
has been recently performed [41], but naturally with a focus on
SUð3Þ breaking.
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Last we comment on the size of volume corrections in
the Breit frame. Comparing the expressions for the iso-
vector electric form factor in the rest frame Eq. (62), and
the Breit frame Eq. (66), we see that all factors depending
on B but not Q are doubled in the Breit frame. This is due
to the symmetry under the exchange of the initial and final-
state twists: the finite volume functions are even. Because
there is some cancellation among the contributions to the
finite volume electric form factor in the rest frame, we can
anticipate that the finite volume corrections in the Breit
frame will generally be of the same size. For the magnetic
form factor, comparing Eqs. (63) and (67) shows similarly
that the effect from the Kj terms doubles. While this
function is odd with respect to argument, terms from the
initial and final states add coherently because there is a
relative sign from the spin algebra. Because empirically we
observe the dominant volume correction arises from the
Kj term, the volume effect for the magnetic form factor
will roughly double in magnitude in the Breit frame. Given
that the coefficient of this term depends upon the unphys-
ical and unknown parameter g1, the Breit frame does not
offer an advantage over the rest frame. A lattice calculation
of g1 is necessary to control the systematic uncertainty
from volume effects in this approach. This is not the case
for isospin-twisted boundary conditions [12], see
Appendix B.

V. SUMMARY

In this work, we compute finite volume modifications
induced by partially twisted boundary conditions. We uti-
lize heavy baryon chiral perturbation theory in finite vol-
ume. Baryons are embedded into representations of
SUð7j5Þ, where the extra flavors are fictitious, and differ
only in their boundary conditions. The nucleon mass split-
tings are determined, and demonstrated to be negligible on

current-sized lattices. The main focus of our work is the
derivation of finite volume corrections to the vector current
matrix elements of the nucleon. Continuous momentum is
inserted on the active valence quark lines using flavor
changing currents in the enlarged flavor group.
Disconnected operator insertions cannot be accessed at
continuous momentum using this technique, and our cal-
culation is therefore restricted to connected current inser-
tions. Isospin breaking and cubic symmetry breaking lead
to various structures not encountered in infinite volume.
We give complete expressions for finite volume current
matrix elements using general kinematics. To estimate the
size of these corrections, we choose rest frame kinematics,
and consider both the spatial and temporal components of
the current. Generally the volume corrections lead to os-
cillatory behavior about the infinite volume answer. In the
region of small twist angles, the volume effects can be-
come rather pronounced due to terms that break cubic
symmetry. To extract the isovector magnetic moment and
electromagnetic radii from lattice data at zero Fourier
momentum, careful determination of volume effects will
be required. This is complicated by the dependence on an
unphysical and unknown axial coupling g1. As shown in
Appendix B, a different implementation of twisted bound-
ary conditions can eliminate this dependence. In this im-
plementation, there are no fictitious flavors, rather the
isospin transition is simulated directly. Compared to the
meson sector, the baryon sector appears more susceptible
to volume corrections due to partial twisting. The Breit
frame kinematics do not simplify or reduce the volume
corrections. Partial twisting provides a novel way to probe
any isovector nucleon matrix element at continuous values
of momentum transfer. The formalism developed here
allows one to compute finite volume modifications to these
observables, and thereby control the extraction of mo-
ments, radii, etc., from lattice QCD data.
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APPENDIX A: FINITE VOLUME CURRENT
MATRIX ELEMENTS

In this appendix, we list the finite volume corrections to
nucleon current matrix elements. For ease of presentation,
we remove the Pauli spinors. Here we work in a general
frame where the initial-state nucleon has momentum B ¼
�=L, and the final-state nucleon has momentum B0 þ q,
where q is a Fourier momentum mode of the lattice and
B0 ¼ �0=L. Here we list only the proton matrix elements as

GM
v Q2GM
v Q2

GM
v Q2, LGM
v Q2, L
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G
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FIG. 7 (color online). Comparison of finite volume and infinite
volume isovector magnetic form factors. Plotted as functions of
Q2 are the infinite volume form factor Gv

MðQ2Þ, and finite
volume form factor Gv

MðQ2; LÞ. The lattice size is 2.75 fm, and
the value of the unknown axial coupling has been fixed to g1 ¼
�0:5.
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a function of qu and qd. One can use charge symmetry, qu $ qd, to deduce the neutron matrix elements. As explained in
the main text, each result includes only the connected part of the matrix elements.

The finite volume modification to the time-component of the current matrix element in Eq. (36) reads

�J4 ¼ 1

f2

Z 1

0
dxð2qu þ qdÞ

�
I1=2ðmjuPju; xQþBÞ � 1

2
I1=2ðmju;BÞ � 1

2
I1=2ðmju;B

0Þ
�

� 3

2f2

��
qd þ 1

2
qu

��
g2�N3N3

�J ðm�; 0; 0Þ þ g2juN3N3

�J ðmju; 0; 0Þ þ 1

2
g02�N3N3

ð �J ðm�;B; 0Þ þ �J ðm�;B
0; 0ÞÞ

þ 1

2
g02juN3N3

ð �J ðmju;B; 0Þ þ �J ðmju;B
0; 0ÞÞ

�
þ 3

2
qu

�
g2�N1N1

�J ðm�; 0; 0Þ þ g2juN1N1

�J ðmju; 0; 0Þ

þ 1

2
g02�N1N1

ð �J ðm�;B; 0Þ þ �J ðm�;B
0; 0ÞÞ þ 1

2
g02juN1N1

ð �J ðmju;B; 0Þ þ �J ðmju;B
0; 0ÞÞ

�

þ
�
qd þ 1

2
qu

�
g2�N
9

�
�J ðm�; 0;�Þ þ 2 �J ðmju; 0;�Þ þ 5

2
ð �J ðm�;B;�Þ þ �J ðm�;B

0;�ÞÞ

þ 2ð �J ðmju;B;�Þ þ �J ðmju;B
0;�ÞÞ

�

þ
�
3

2
qu

�
g2�N
3

�
�J ðm�; 0;�Þ þ 2 �J ðmju; 0;�Þ þ 1

2
ð �J ðm�;B;�Þ þ �J ðm�;B

0;�ÞÞ
��

þ 3

2f2

��
qd þ 1

2
qu

��
g2�N3N3

�J ðm�; 0; 0Þ þ 1

3
ðg2A � gAg1 � g21=2Þð �J ðm�;B; 0Þ

þ �J ðm�;B
0; 0ÞÞ þ g2juN3N3

�J ðmju; 0; 0Þ
�

þ 3

2
qu

�
g2�N1N1

�J ðm�; 0; 0Þ þ 1

9
ðg2A þ 5gAg1 � g21=2Þð �J ðm�;B; 0Þ þ �J ðm�;B

0; 0ÞÞ þ g2juN1N1

�J ðmju; 0; 0Þ
�

þ g2�N

��
qd þ 1

2
qu

��
1

9
�J ðm�; 0;�Þ þ 1

9

�
�J ðm�;B;�Þ þ �J ðm�;B

0;�Þ
�
þ 2

9
�J ðmju; 0;�Þ

�

þ 3

2
qu

�
1

3
�J ðm�; 0;�Þ þ 1

3
ð �J ðm�;B;�Þ þ �J ðm�;B

0;�ÞÞ þ 2

3
�J ðmju; 0;�Þ

���

� 3

f2
½S �Q; Sj�

Z 1

0
dx½
�J jðm�P�;B; xQþB; 0Þ þ 
juJ jðmjuPju;B; xQþ B; 0Þ�

� 3g2�N
f2

½S �Q; Sj�
Z 1

0
dx½
0

�J jðm�P�;B; xQþ B;�Þ þ 
0
juJ

jðmjuPju;B; xQþB;�Þ�

� 3

2f2

Z 1

0
dx½
�J ðm�P�;B;Qþ B; xQþ B; 0Þ þ 
juJ ðmjuPju;B;Qþ B; xQþ B; 0Þ�

þ 3g2�N
f2

Z 1

0
dx½
0

�J ðm�P�;B;Qþ B; xQþ B;�Þ þ 
0
juJ ðmjuPju;B;Qþ B; xQþ B;�Þ�: (A1)

The effective axial couplings have been given above in Eqs. (21) and (23), while the loop coefficients appear in Eqs. (44)
and (45). The spatial components of the current matrix element in Eq. (36) receive the finite volume modification
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�Ji ¼ � 1

2f2

��
qd þ 1

2
qu

�
½g02�N3N3

ðKiðm�;B; 0Þ þKiðm�;B
0; 0ÞÞ þ g02juN3N3
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2
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2
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��
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�

þ
�
3

2
qu

�
1

2
ðKiðm�;B;�Þ þKiðm�;B

0;�ÞÞ
�
þ g2�N

½Si; Sj�
3f2

��
qd þ 1

2
qu

��
5

6
ðKjðm�;B;�Þ �Kjðm�;B

0;�ÞÞ

þ 2

3
ðKjðmju;B;�Þ �Kjðmju;B

0;�ÞÞ
�
þ

�
3

2
qu

�
1

2
ðKjðm�;B;�Þ �Kjðm�;B

0;�ÞÞ
�

� 3

4f2

Z 1

0
dx½
�Liðm�P�;B;Qþ B; xQþ B; 0Þ þ 
juLiðmjuPju;B;QþB; xQþB; 0Þ�

þ 3g2�N
2f2

Z 1

0
dx½
0

�Liðm�P�;B;Qþ B; xQþ B;�Þ þ 
0
juL

iðmjuPju;B;Qþ B; xQþ B;�Þ�

� 3

2f2
½Q � S; Sj�

Z 1

0
dx½
�Ljiðm�P�;B;Qþ B; xQþ B; 0Þ þ 
juLjiðmjuPju;B;Qþ B; xQþ B; 0Þ�

� 3g2�N
2f2

½Q � S; Sj�
Z 1

0
dx½
0

�Ljiðm�P�;B;Qþ B; xQþ B;�Þ þ 
0
juL

jiðmjuPju;B;Qþ B; xQþ B;�Þ�: (A2)

Appearing in the above expressions for finite volume modifications are functions depending on the difference of finite
volume mode sums and infinite volume momentum integrals. The various definitions are as follows:

I 1=2ðm;AÞ ¼ 1

L3

X
n

1

½ðkþAÞ2 þm2�1=2 �
Z dk

ð2�Þ3
1

½k2 þM2�1=2 ; (A3)

J ðm;A;B;C;�Þ ¼
Z 1

0
d��

�
1

L3

X
n

ðkþAÞ � ðkþBÞ
½ðkþ CÞ2 þ 
2

��5=2
�

Z dk

ð2�Þ3
ðkþAÞ � ðkþ BÞ
½ðkþ CÞ2 þ 
2

��5=2
�
; (A4)

J jðm;A;B;�Þ ¼
Z 1

0
d��

�
1

L3

X
n

ðkþAÞj
½ðkþBÞ2 þ 
2

��5=2
�

Z dk

ð2�Þ3
ðkþAÞj

½ðkþBÞ2 þ 
2
��5=2

�
; (A5)

K jðm;B;�Þ ¼
Z 1

0
d�

1

L3

X
n

ðkþ BÞj
½ðkþ BÞ2 þ 
2

��3=2
; (A6)

L jðm;A;B;C;�Þ ¼
Z 1

0
d�

�
1

L3

X
n

ðkþAÞ � ðkþBÞð2kþAþBÞj
½ðkþ CÞ2 þ 
2

��5=2
�

Z dk

ð2�Þ3
ðkþAÞ � ðkþ BÞð2kþAþ BÞj

½ðkþ CÞ2 þ 
2
��5=2

�
;

(A7)
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and

L ijðm;A;B;C;�Þ ¼
Z 1

0
d�

�
1

L3

X
n

ðkþAÞið2kþAþBÞj
½ðkþ CÞ2 þ 
2

��5=2
�

Z dk

ð2�Þ3
ðkþAÞið2kþAþ BÞj
½ðkþ CÞ2 þ 
2

��5=2
�
: (A8)

We also use the shorthand �J ðm;A;�Þ �
J ðm;A;A;A;�Þ. We show how to evaluate these func-
tions numerically in Appendix C.

APPENDIX B: FINITE VOLUME ISOVECTOR
CURRENT MATRIX ELEMENTS FROM SUð4j2Þ
In this appendix, we detail the finite volume corrections

to nucleon current matrix elements using the alternate
implementation of partially twisted boundary conditions
proposed in [7,12]. This method does not rely on fictitious
flavors of valence quarks. Instead, one directly confronts
the isospin changing operators whose matrix elements give
rise to isovector form factors. From the outset, one is aware
that disconnected contributions cannot be accessed. The
flavor structure, moreover, only requires a simple modifi-
cation of existing partially quenched theories to include
twisted boundary conditions. Results for the finite volume
isovector magnetic form factor under simplifying kinemat-
ics were given in [12]; however, as complete expressions
for finite volume nucleon current matrix elements were not
presented, we give the complete expressions here.

Let us briefly summarize the setup used in [12]. We
restrict our attention to an SUð4j2Þ theory with quarks

contained in a field Q, which is given by Q ¼
ðu; d; j; l; ~u; ~dÞT . Each quark is periodic but coupled to a
uniform Abelian gauge potential B� of the form B� ¼
diagðBu

�; B
d
�; 0; 0; B

u
�; B

d
�Þ, with Bu

� ¼ ð�u=L; 0Þ and

Bd
� ¼ ð�d=L; 0Þ. In this formulation, momentum is in-

jected by isospin changing operators provided Bu
� � Bd

�.

Keeping these twists different introduces isospin breaking
via finite volume effects. The partially quenched isospin
splittings for the pion were numerically demonstrated to be
quite small on current lattices [13]. To calculate the nu-
cleon isospin splitting, we evaluate the sunset diagrams
shown in Fig. 1 in the partially twisted SUð4j2Þ theory. The
nucleon isospin splitting is given by

Mn �Mp ¼ � 1

2f2

�
1

6
g2juNN½Kðmju;Bd; 0Þ

�Kðmju;Bu; 0Þ� � 2

9
g2�N½Kðmju;Bd;�Þ

�Kðmju;Bu;�Þ�
�
: (B1)

The effective axial coupling g2juNN has been given in

Eq. (56). When the twists are isospin symmetric,
the nucleon mass splitting accordingly vanishes. The
maximal isospin splitting occurs when B ¼ �ð1; 1; 1Þ
for one flavor, and B ¼ 0 for the other. On current
lattices this maximal splitting is at the percent level
and can practically be ignored.
For the operator Jþ� ¼ �u�d, continuous three-

momentum of the form B� ¼ Bu �Bd is induced in
flavor changing matrix elements. Thus we consider
the isovector-vector current matrix elements between
nucleons

hpðqÞjJþ� jnð0Þi !L!1hpðP0ÞjJþ� jnðPÞi
¼ hpðP0ÞjJem� jpðPÞi � hnðP0ÞjJem� jnðPÞi:

(B2)

On the left, we have denoted only the Fourier
momentum. On the right, the momentum of the initial-
state nucleon due to twisting is P ¼ Bu þ 2Bd, while
the final-state nucleon has momentum P0 ¼ qþ 2Bu þ
Bd. The momentum transfer we denote by Q and is
given here by Q ¼ qþ B�. The equality between the
isovector-vector current and differences of the electro-
magnetic current matrix elements follows from the
SUð2Þvalence symmetry subgroup of the full SUð4j2Þ group.
At finite volume, this symmetry is broken and one
must address the volume corrections to the matrix
element on the right-hand side. To determine these correc-
tions, we evaluate the one-loop diagrams for the
isospin transition matrix element using the partially twisted
SUð4j2Þ theory. The relevant diagrams are shown in
Figs. 3 and 4.
The finite volume modification to the time-component

of the isovector current matrix element in Eq. (B2)
reads
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�Jþ4 ¼ 1

f2

Z 1

0
dx

�
I1=2ðmjuPju; xQþ BdÞ � 1

2
I1=2ðmju;BuÞ � 1

2
I1=2ðmju;BdÞ

�
� 1

8f2

�
g2�NN½ �J ðm�; 0; 0Þ

þ �J ðm�;B�; 0Þ� þ g2juNN½ �J ðmju;Bu; 0Þ þ �J ðmju;Bd; 0Þ�
�
þ g2�N

6f2
½3 �J ðm�; 0;�Þ þ 3 �J ðm�;B�;�Þ

þ �J ðmju;Bu;�Þ þ �J ðmju;Bd;�Þ� þ 1

2f2
½Q � S; Sj�

Z 1

0
dx½g2�NNJ

jðm�P�; 0; xQ; 0Þ

þ g2juNNJ
jðmjuPju;Bd; xQþBd; 0Þ� þ

g2�N
f2

½Q � S; Sj�
Z 1

0
dx

�
J jðm�P�; 0; xQ;�Þ

þ 1

3
J jðmjuPju;Bd; xQþ Bd;�Þ

�
þ 1

4f2

Z 1

0
dx½g2�NNJ ðm�P�; 0;Q; xQ; 0Þ

þ g2juNNJ ðmjuPju;Bd;Qþ Bd; xQþ Bd; 0Þ� �
g2�N
f2

Z 1

0
dx

�
J ðm�P�; 0;Q; xQ;�Þ

þ 1

3
J ðmjuPju;Bd;Qþ Bd; xQþ Bd;�Þ

�
: (B3)

We have omitted writing the Pauli spinors here and below. The effective axial couplings, g2�NN and g2juNN , have been given
above in Eq. (56). The spatial components of the nucleon current matrix element in Eq. (36) receive the finite volume
modification

�Jþi ¼ � 1

2f2

�
1

6
g2juNN½Kiðmju;Bu; 0Þ þKiðmju;Bd; 0Þ� � 2

9
g2�N½Kiðmju;Bu;�Þ þKiðmju;Bd;�Þ�

�

þ ½Si; Sj�
6f2

fg2�NNK
jðm�;B�; 0Þ þ g2juNN½Kjðmju;Bu; 0Þ �Kjðmju;Bd; 0Þ�g

þ g2�N½Si; Sj�
3f2

�
Kjðm�;B�;�Þ þ 1

3
½Kjðmju;Bu;�Þ �Kjðmju;Bd;�Þ�

�

þ 1

8f2

Z 1

0
dx½g2�NNL

iðm�P�; 0;Q; xQ; 0Þ þ g2juNNL
iðmjuPju;Bd;QþBd; xQþBd; 0Þ�

� g2�N
2f2

Z 1

0
dx

�
Liðm�P�; 0;Q; xQ;�Þ þ 1

3
LiðmjuPju;Bd;QþBd; xQþBd;�Þ

�

þ 1

4f2
½Q � S; Sj�

Z 1

0
dx½g2�NNL

jiðm�P�; 0;Q; xQ; 0Þ þ g2juNNL
jiðmjuPju;Bd;Qþ Bd; xQþ Bd; 0Þ�

þ g2�N
2f2

½Q � S; Sj�
Z 1

0
dx

�
Ljiðm�P�; 0;Q; xQ;�Þ þ 1

3
LjiðmjuPju;Bd;Qþ Bd; xQþ Bd;�Þ

�
: (B4)

From these expressions, we can simplify things by forming unpolarized (polarized) matrix elements for the temporal
(spatial) part of the current. Furthermore, we restrict our attention to the unitary mass point, where m2

ju ¼ m2
�, and choose

the twist parameters such that �d ¼ 0 and �u ¼ �, which corresponds to rest frame kinematics.7 The time component of
the current becomes

1

2

X
m¼	

hmj�Jþ4 jmi ¼ 1

f2

Z 1

0
dx

�
I1=2ðm�P�; xQÞ � 1

2
I1=2ðm�; 0Þ � 1

2
I1=2ðm�;BÞ

�

� 3

2f2

�
g2A½ �J ðm�; 0; 0Þ þ �J ðm�;B; 0Þ� � 4

9
g2�N½ �J ðm�; 0;�Þ þ �J ðm�;B;�Þ�

�

þ 3

f2

Z 1

0
dx

�
g2AJ ðm�P�; 0;Q; xQ; 0Þ � 4

9
g2�NJ ðm�P�; 0;Q; xQ;�Þ

�
; (B5)

with Q ¼ qþ B. The spatial current reads

6The choice �d ¼ ��u does not result in any dramatic simplifications. In particular there will be residual g1 dependence in this case.
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h	j�Jþi j
i ¼ 1

f2
h	j½Sk; Sj�j
i

�
2�ki

�
g2AK

jðm�;B; 0Þ

þ 2

9
g2�NK

jðm�;B;�Þ
�

þ 3Qk

Z 1

0
dx

�
g2AL

jiðm�P�; 0;Q; xQ; 0Þ

þ 2

9
g2�NL

jiðm�P�; 0;Q; xQ;�Þ
��
: (B6)

We have chosen spin-flip matrix elements; these are simply
related to differences of spin polarized matrix elements.
Because the finite volume modifications proportional to
Kj are nonvanishing only in the directions with nonvan-
ishing twist, the spin and momentum-transfer structure of
these terms are identical to the magnetic part of the current
matrix element. Consequently one cannot be sensitive to
the magnetic form factor without additionally acquiring
finite volume modifications from Kj terms. These terms
are seen to be numerically larger than Lji, especially for
small twists [12]. Finally, notice these results are indepen-
dent of the unphysical parameter g1.

APPENDIX C: FINITE VOLUME SUMS

In this appendix we describe the evaluation of the mode
sums required for the finite volume corrections to the
nucleon mass and isovector form factors above. In the
main text, we have used various functions entering in the
computation of loop graphs in finite volume. Here we
evaluate each function systematically in terms of Jacobi
elliptic functions and error functions.

The basic sums required are of the form

I
ðq;MÞ ¼ 1

L3

X
n

1

½ðkþ qÞ2 þM2�


�
Z dk

ð2�Þ3
1

½k2 þM2�
 ;

I i

ðq;MÞ ¼ 1

L3

X
n

ki

½ðkþ qÞ2 þM2�


�
Z dk

ð2�Þ3
ki

½ðkþ qÞ2 þM2�
 ;

I ij

ðq;MÞ ¼ 1

L3

X
n

kikj

½ðkþ qÞ2 þM2�


�
Z dk

ð2�Þ3
kikj

½ðkþ qÞ2 þM2�
 : (C1)

The latter two functions can be derived from the first via
differentiation, explicitly the relations are

I i

ðq;MÞ ¼ � 1

2ð
� 1Þ
d

dqi
I
�1ðq;MÞ

� qiI
ðq;MÞ; (C2)

and

I ij

ðq;MÞ¼ 1

4ð
�1Þð
�2Þ
d2

dqidqj
I
�2ðq;MÞ

þ 1

2ð
�1Þ
�
�ijþqi

d

dqj
þqj

d

dqi

�
I
�1ðq;MÞ

þqiqjI
ðq;MÞ: (C3)

Evaluating the first function in Eq. (C1) for arbitrary 
, we
find

I
ðq;MÞ ¼ 1

8�3=2�ð
Þ
Z 1

0
d��
�ð5=2Þe��M2

�
�Y3
j¼1

#3ðqjL=2; e�L2=4�Þ � 1

�
; (C4)

where #3ðq; zÞ is a Jacobi elliptic function.
In the main text, we utilized several different mode sums

in the evaluation of finite volume effects. We now write
them out in terms of the basic finite volume functions

I
ðq;MÞ, I i

ðq;MÞ, and I ij


ðq;MÞ. With the abbrevia-

tion 
2
� ¼ m2 þ 2��þ �2, specifically we have

J ðm;A;B;C;�Þ ¼
Z 1

0
d��½�ijI ij

5=2ðC; 
�Þ
þ ðAþ BÞiI i

5=2ðC; 
�Þ
þA �BI5=2ðC; 
�Þ�; (C5)

J jðm;A;B;�Þ ¼
Z 1

0
d��½I j

5=2ðB; 
�Þ
þAjI5=2ðB; 
�Þ�; (C6)

K ðm;A;�Þ ¼
Z 1

0
d�½�ijI ij

3=2ðA; 
�Þ
þ 2AiI i

3=2ðA; 
�Þ þA2I3=2ðA; 
�Þ�;
(C7)

K jðm;A;�Þ ¼
Z 1

0
d�½I j

3=2ðA; 
�Þ þAjI3=2ðA; 
�Þ�;
(C8)

Lijðm;A;B;C;�Þ ¼
Z 1

0
d�½2I ij

5=2ðC; 
�Þ
þ 2AiI j

5=2ðC; 
�Þ
þ ðAþ BÞjI i

5=2ðC; 
�Þ
þAiðAþ BÞjI5=2ðC; 
�Þ�: (C9)

Last the evaluation of the �-integrals can be done in
closed form. For completeness the required �-parameter
integrals are

Z 1

0
d�e��ð�2þ2b�þc2Þ ¼ 1

2

ffiffiffiffi
�

�

r
e�ðb2�c2Þ Erfcðb ffiffiffi

�
p Þ; (C10)
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Z 1

0
d��e��ð�2þ2b�þc2Þ ¼ 1

2

ffiffiffiffi
�

�

r
e��c2

�
1ffiffiffiffiffiffiffi
��

p

� be�b
2
Erfcðb ffiffiffi

�
p Þ

�
; (C11)

where ErfcðxÞ ¼ 1� ErfðxÞ, and ErfðxÞ is the standard
error function.
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