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We revisit the earlier determination of �sðMZÞ via perturbative analyses of short-distance-sensitive

lattice observables, incorporating new lattice data and performing a modified version of the original

analysis. We focus on two high-intrinsic-scale observables, logðW11Þ and logðW12Þ, and one lower-

intrinsic-scale observable, logðW12=u
6
0Þ, finding improved consistency among the values extracted using

the different observables and a final result, �sðMZÞ ¼ 0:1192� 0:0011, �2� higher than the earlier

result, in excellent agreement with recent nonlattice determinations and, in addition, in good agreement

with the results of a similar, but not identical, reanalysis by the HPQCD Collaboration. A discussion of the

relation between the two reanalyses is given, focusing on the complementary aspects of the two

approaches.
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I. INTRODUCTION

The strong coupling �s is usually characterized by giv-

ing the value �sðMZÞ in the MS scheme at the convention-
ally chosen nf ¼ 5 reference scale � ¼ MZ. A high

precision determination of �sðMZÞ based on the perturba-
tive analysis of short-distance-sensitive lattice observables
computed using the a� 0:09, 0.12, and 0.18 fm nf ¼ 2þ
1 MILC data was presented in Ref. [1]. The result,
�sðMZÞ ¼ 0:1170ð12Þ, plays a dominant role in fixing the
central value of the current PDG assessment [2],�sðMZÞ ¼
0:1176ð20Þ.

Over the last year, a number of improved nonlattice
determinations of �sðMZÞ have appeared, in a variety of
independent processes, over a wide range of scales [3–12].
The results, given in Table I (with all errors combined in
quadrature), yield a weighted average, �sðMZÞ ¼
0:1190ð10Þ, �2� higher than the lattice determination.
This difference, though not large, motivates revisiting the
lattice analysis, especially in light of the existence of new
high-scale (a� 0:06 fm) lattice data not available at the
time of the earlier study. We perform such an extended
reanalysis in this paper.

The rest of the paper is organized as follows. In Sec. II,
we outline the original analysis, specify our own strategy
for implementing the underlying approach, and clarify the
difference between our implementation and that of the
earlier study and recent HPQCD reanalysis. In Sec. III,
we discuss the details of, and input to, our version of the

analysis. Finally, in Sec. IV, we present and discuss our
results.

II. THE LATTICE DETERMINATION OF �sðMZÞ
A. The original HPQCD/UKQCD analysis

In Ref. [1], �sðMZÞ was extracted by studying perturba-
tive expansions for a number of UV-sensitive lattice ob-
servables, Ok. The generic form of this expansion is

Ok ¼
X

N¼1

�cðkÞN �VðQkÞN � Dk�VðQkÞ
X

M¼0

cðkÞM �VðQkÞM (1)

where Qk ¼ dk=a are the Brodsky-Lepage-Mackenzie

(BLM) scales [14] for the Ok, and cðkÞ0 � 1. The coeffi-

cients �cðkÞ1;2;3 (equivalently, Dk, c
ðkÞ
1 , and cðkÞ2 ) have been

computed in 3-loop lattice perturbation theory [15], and,
with the corresponding dk, tabulated for a number of Ok in
Refs. [1,15,16]. In Eq. (1), �Vð�Þ is a coupling with the

same expansion toOð�3
sÞ (with �s theMS coupling) as the

TABLE I. Recent nonlattice determinations of �sðMZÞ.
Source �sðMZÞ
Global EW fit [3,4] 0:1191� 0:0027
H1þ ZEUSNLO inclusive jets [5] 0:1198� 0:0032
H1 high-Q2 NLO jets [6] 0:1182� 0:0045
NNLO LEP event shapes [7] 0:1240� 0:0033
NNNLLALEPHþ OPAL thrust

distributions [8]

0:1172� 0:0022

�½eþe� ! hadrons� (2–10.6 GeV) [9] 0:1190þ0:0090
�0:0110

�½�ð1sÞ!�X�
�½�ð1sÞ!X� [10] 0:1190þ0:0060

�0:0050

Hadronic � decay [11–13] 0:1187� 0:0016
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heavy quark potential coupling �p
V , but differing from it,

beginning at Oð�4
sÞ, in a way that will be specified below.

The expansion coefficients are known to Oð�4
sÞ, and hence

the � function of �V , defined in our conventions by
�2daVð�Þ=d�2 ¼ �P

n¼0�
V
na

nþ2
V ð�Þ, with aV � �V=�,

is determined to 4 loops by the known coefficients,

�0; � � � ; �3, of the 4-loop MS � function [17]. The coef-

ficients �cðkÞ1 , �cðkÞ2 , and �cðkÞ3 tabulated in Refs. [1,15,16] are

valid for expansions of theOk in terms of any variable, �T ,
sharing the same expansion as �V out to Oð�3

sÞ.
With only the known, third order terms in the expansions

of the Ok, no value for the reference scale coupling,
�Vð7:5 GeVÞ � �0

V , was found to produce a simultaneous

fit to the data at all three lattice spacings employed [1]. In
consequence, terms out to tenth order in the expansion of

Eq. (1) were incorporated, the unknown coefficients �cðkÞ4;���;10
being fitted using input Bayesian prior constraints. The 4-
loop version of �V was used to run �0

V to the scales Qk

relevant to each of the given observables at each of the
three lattice spacings. Linear extrapolation in the quark
masses was employed, and possible residual mass-
independent nonperturbative (NP) contributions estimated,
and subtracted, using the known leading order (LO) gluon
condensate contributions to the relevant Wilson loops [18].

The scales r1=a and r1, which determine the lattice
spacing a in physical units, as well as the gluon condensate
h�sG

2=�i required for the mass-independent NP subtrac-
tion, were determined as part of the independent fit per-
formed for each of theOk. This was accomplished using an
augmented �2 function in which the squared deviations of
the relevant parameters from their input central values
were scaled by the squares of the input prior widths. For
r1=a and r1 the central values and widths were provided by
the measured values and their uncertainties. For h�sG

2=�i,
a central value 0 and uncertainty �0:010 GeV4 (� the
conventional SVZ value 0:012 GeV4 [19]) were employed
[20]. While this procedure allows r1=a and r1 (which
should be characteristic of the lattice under consideration)
to take on values which vary slightly with the Ok being
analyzed, one should bear in mind that the measured un-
certainties, which set the range of these variations, are
small compared to the variation of scales across the a�
0:09, 0.12, and 0.18 fm lattices employed in the analysis.
The impact of any potential unphysical observable depen-

dence of the physical scales on the fitted �0
V and �cðkÞn should

thus be safely negligible. The situation with regard to the
independent fitting of h�sG

2=�i for each Ok is potentially
more complicated, and will be discussed further below.

The resulting best fit value for �0
V , averaged over the

various observables, was then matched to the nf ¼ 3 MS

coupling, and the corresponding nf ¼ 5 result, �sðMZÞ,
obtained via standard running and matching at the flavor
thresholds [21,22], yielding the result, �sðMZÞ ¼
0:1170ð12Þ, already quoted above.

Regarding the conversion from �V to �s, one should
bear in mind that, while the expansion for �V in terms of
�s is, in principle, defined to all orders (see below for more
on this point), the coefficients beyond Oð�4

sÞ involve the

currently unknownMS� function coefficients�4; �5; � � � .
The nf ¼ 3 conversion step is thus subject to a (hopefully

small) higher order perturbative uncertainty. As will be
explained in Sec. II C, with the definition of �V employed
in Ref. [1], the higher order perturbative uncertainties are,

in fact, entirely isolated in the V ! MS conversion step of
the analysis.

B. An alternate implementation of the
HPQCD/UKQCD approach

The higher order perturbative uncertainty encountered in
matching �V to �s can be removed entirely by working
with any expansion parameter, �T , whose expansion in �s

is fully specified. We take �T to be defined by the third-
order-truncated form of the relation between �p

Vð�2Þ and
�sð�2Þ [23] which, for nf ¼ 3, yields

�Tð�2Þ ¼ �sð�2Þ½1þ 0:5570�sð�2Þ þ 1:702�2
sð�2Þ�:

(2)

The� function for�T ,�
T , is then determined to 4 loops by

the known values of �0; � � � ; �3. With all coefficients on
the right-hand side (RHS) positive, �T runs much faster
than �s, a fact reflected in the significantly larger values of
the nonuniversal � function coefficients, �T

2 ¼ 33:969 and
�T

3 ¼ �324:393. This makes running �T using the 4-loop-

truncated �T function typically unreliable at the BLM
scales corresponding to the coarsest (a� 0:18 fm) lattices

considered here. Since, however, the 4-loop-truncated MS
running of �s remains reliable down to these scales, and
the relation Eq. (2) is, by definition, exact, the running of
�T may be performed by converting from �T to �s at the
initial scale, running �s to the final scale, and then con-
verting back to �T . This procedure will be especially
reliable for Ok like logðW11Þ and logðW12Þ with lowest
BLM scales >3 GeV.
Though the conversion from the fitted reference scale�T

value to the equivalent MS coupling �s can be accom-
plished without perturbative uncertainties, higher order
perturbative uncertainties do remain in the analysis. To
see where, define �0 � �TðQ0Þ, with Q0 ¼ Qmax

k ¼
dk=amin the maximum of the BLM scales (corresponding
to the finest of the lattice spacings, amin) for the observable
in question. Expanding the couplings at those BLM scales
corresponding to coarser lattices, but the same observable,
in the standard manner as a power series in �0, �TðQkÞ ¼P

N¼1pNðtkÞ�N
0 [where tk ¼ logðQ2

k=Q
2
0Þ, and the pNðtÞ are

polynomials in t], one finds, on substitution into Eq. (1),
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Ok

Dk

¼ � � � þ �4
0ðcðkÞ3 þ � � �Þ þ �5

0ðcðkÞ4 � 2:87cðkÞ3 tk þ � � �Þ

þ �6
0ðcðkÞ5 � 0:0033�T

4 tk � 3:58cðkÞ4 tk þ ½5:13t2k
� 1:62tk�cðkÞ3 þ � � �Þ þ �7

0ðcðkÞ6 � 0:0010�T
5 tk

þ ½0:0094t2k � 0:0065cðkÞ1 tk��T
4 � 4:30cðkÞ5 tk

þ ½7:69t2k � 2:03tk�cðkÞ4 þ ½�7:35t3k þ 6:39t2k

� 4:38tk�cðkÞ3 þ � � �Þ þ � � � ; (3)

where the known numerical values of �T
0 ; � � � ; �T

3 have

been employed, and we display only terms involving one
or more of the unknown quantities �T

4 ; �
T
5 ; � � � ,

cðkÞ3 ; cðkÞ4 ; � � � .
Running theMS coupling numerically using the 4-loop-

truncated � function is equivalent to keeping terms involv-
ing �0; � � � ; �3 to all orders, and setting �4 ¼ �5 ¼ � � � ¼
0. The neglect of �4; �5 � � � means that �T

4 ; �
T
5 ; � � � do not

take on their correct physical values either, leading to an
alteration of the true tk dependence, beginning at Oð�6

0Þ.
Since it is the scale dependence of Ok which is used to fit

the unknown coefficients cðkÞ3;4;���, as well as �0, we see

immediately that the 4-loop truncation necessarily forces

compensating changes in at least the coefficients cðkÞ4;5;���. A
shift in cðkÞ4 , however, also alters the Oð�5

0Þ coefficient,

which will, in general, necessitate an approximate com-

pensating shift in cðkÞ3 as well, and, in consequence, a

further compensating shift in �0. From Eq. (3), the size
of such effects, associated with the truncation of the run-
ning and unavoidable at some level, can be minimized by
taking Q0 as large as possible (achieved by working with
the observable with the highest intrinsic BLM scale) and
keeping tk from becoming too large (achieved by restrict-
ing one’s attention, if possible, to a subset of finer lattices)
[24].

C. More on the relation between the two
implementations

For nf ¼ 3, in our notation, the relation between �p
V and

�s, to Oð�3
sÞ, is [23]

�p
Vðq2Þ ¼ �sð�2Þ½1þ 	1ð�2=q2Þ�sð�2Þ

þ 	2ð�2=q2Þ�sð�2Þ� (4)

where 	2ðxÞ ¼ ½a2 þ 16�2
0log

2ðxÞ þ ð16�1 þ 8�0a1Þ�
logðxÞ�=16�2, with a2 ¼ 695

6 þ 36�2 � 9
4�

4 þ 14
ð3Þ,
and 	1ðxÞ ¼ ½7þ 4�0 logðxÞ�=4�. Our expansion parame-
ter �Tðq2Þ is defined to be equal to the RHS of Eq. (4) with
�2 ¼ q2, leading to the numerical result given in Eq. (2).
The conversion from �T to �s can be performed exactly
but the absence in �T

4;5;��� of terms / �4;5;��� induces a

perturbative uncertainty in the values of our fitted parame-
ters, one which can, however, be reduced by working with

high-scale observables and fine lattices. It is also possible
to test for its presence by expanding the fits to include
coarser lattices, where the effects of the omitted contribu-
tions will be larger.
The construction of the expansion parameter �V is

somewhat more complicated, but turns out to be equivalent
to the following [25]. One first takes the RHS of Eq. (4),

with �2 ¼ e�5=3q2, to define an intermediate coupling,
�0
Vðq2Þ. The corresponding � function, �0, is then deter-

mined to 4 loops by �0; � � � ; �3. The higher order coef-
ficients,�0

4;5;���, however, depend on the presently unknown
�4;5;���, and hence are themselves unknown. The final

HPQCD coupling, �V , is obtained from �0
V by adding

terms of Oð�5
sÞ and higher with coefficients chosen to

make �V
4 ¼ �V

5 ¼ � � � ¼ 0. Since �4;5;��� are not known,

the values of the coefficients needed to implement these
constraints are also not known. The coupling is nonethe-
less, in principle, well defined, with higher order coeffi-
cients computable as soon as the corresponding higher
order �k become available. Since the 4-loop-truncated
�V function is, by definition, exact, the distortions of the
fit parameters induced, in general, by the 4-loop truncation
of the running are absent for the �V coupling. The price to
be paid for this advantage is the unknown perturbative
uncertainty in the relation between �V and �s, which
affects the conversion and running to �sðMZÞ. With this
definition, �V differs from �T beginning at Oð�4

sÞ.
The other difference between the two reanalyses lies in

the treatment of r1=a, r1, and h�sG
2=�i. In Ref. [1], these

are allowed to vary independently, though within the range
of the input prior constraints, for each Ok, whereas in our
analysis, they are treated as fixed external input, and have
the same central values for all Ok. As noted above, the
difference in the treatment of r1=a and r1 is expected to
have a negligible impact. The impact of the differing treat-
ments of h�sG

2=�i should be similarly negligible for
observables with intrinsic scales high enough that the
associated correction is small.
The two different implementations of the original

HPQCD/UKQCD approach will thus, when restricted to
high-scale observables, correspond to isolating residual
higher order perturbative uncertainties in different sectors
of the analysis. If these uncertainties are, as desired, small
in both cases, the two analyses should be in good agree-
ment. Such agreement (which is, in fact, observed, pro-
vided comparison is made to the very recent HPQCD
update) serves to increase confidence in the results of
both analyses.

III. DETAILS OF OUR REANALYSIS

In our analysis, we have calculated the desired Wilson
loops using the publicly available a� 0:09, 0.12, 0.15, and
0.18 fm MILC nf ¼ 2þ 1 ensembles and incorporated

information on W11 and W12 for the three a� 0:06 fm
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USQCD ensembles provided to us by Doug Toussaint of
the collaboration.

We follow the basic strategy of the earlier analysis, using
the same 3-loop perturbative input, but with the following
differences in implementation. First, we employ the ex-
pansion parameter �T throughout. All running of �T is
carried out using exact 4-loop-truncated running of the
intermediate variable �s, whose relation to �T is given
by Eq. (2). Second, to minimize the effect of our incom-
plete knowledge of the running of �T beyond 4-loop order,
the impact of which will be larger for coarser lattices, we
perform ‘‘central’’ 3-fold versions of our fits using the
three finest lattices, with a� 0:12, 0.09, and 0.06 fm.
Expanded 5-fold fits then serve as a way of studying the
impact of the truncated running, as well as of the truncation
of the perturbative expansion for the Ok. Since we do not
currently have access to the actual a� 0:06 fm configura-
tions, we are restricted to analyzing the three observables
indicated above. One of these, logðW12=u

6
0Þ, has a signifi-

cantly lower BLM scale, and hence is particularly useful
for studying the impact of these truncations. As in Ref. [1],
we extrapolate linearly in the quark masses [26], and
estimate (and subtract) residual mass-independent NP ef-
fects using the known form of the leading order gluon
condensate contributions to the relevant Wilson loops.

Regarding the mass extrapolation, the sets of configura-
tions for different mass combinations am‘=ams corre-
sponding to approximately the same lattice spacing a in
fact have slightly different measured r1=a. Since theOk we
study are themselves scale dependent, full consistency
requires converting the results corresponding to the differ-
ent am‘=ams to a common scale before extrapolation. This
could be done with high accuracy if the parameters appear-
ing in the perturbative expansion of the Ok were already
known. Since, however, some of these parameters are to be
determined as part of the fit, the extrapolation and fitting
procedure must be iterated. With sensible starting points,
convergence is achieved in a few iterations. The dominant
uncertainty in the converged iterated extrapolated values is
that associated with the uncertainties in r1=a. There is also
a 100%-correlated global scale uncertainty associated with
that on r1. We employ r1 ¼ 0:318ð7Þ fm, as given in the
MILC Lattice 2007 pseudoscalar project update [27].

The mass-independent NP subtractions are estimated
using the LO D ¼ 4 gluon condensate contribution,
�gWmn, to the m� n Wilson loop, Wmn [18],

�gWmn ¼ ��2

36
m2n2a4h�sG

2=�i (5)

and the central value, h�sG
2=�i ¼ ð0:009� 0:007Þ GeV4,

of the updated charmonium sum rule analysis [28]. Since
the error here is already close to 100%, we take the
difference between results obtained with and without the
related subtraction as a measure of the associated uncer-
tainty. This should be sufficiently conservative if the cor-

rection is small. If not, the measured Ok values may
contain additional non-negligible mass-independent con-
tributions, of dimensionD> 4, which we do not know how
to estimate and subtract. Ok for which this occurs will thus
provide a less reliable determination of �s.
Fortunately, for the observables we consider, the gluon

condensate correction is, as desired, small. For Ok ¼
logðW11Þ, the corrections required for the 3-fold (5-fold)
fit do not exceed �0:1% (� 0:5%). The corrections re-
main small [less than �0:4% (� 1:8%)] for Ok ¼
logðW12Þ. The effect is somewhat larger for logðW12=u

6
0Þ,

as a consequence of cancellations encountered in combin-
ing the uncorrected logðW11Þ and logðW12Þ values, but still
reaches only �1:3% (� 5:6%) for the 3-fold (5-fold) fit
[29].
In line with what was seen in Ref. [1], we find that the

known terms in the perturbative expansions of the Ok are
insufficient to provide a description of the observed scale
dependence, even when only the three finest lattices are

considered. When cðkÞ3 is added to the fit, however, we find

very good fits, with �2=dof < 1 (very significantly so for
the 3-fold fits). With current errors, it is thus not possible to

sensibly fit additional coefficients cðkÞm>3. This raises con-

cerns about possible truncation uncertainties. Comparison
of the results of the 3-fold and 5-fold fits provides one
handle on such an uncertainty since the relative weight of
higher order to lower order terms grows with decreasing
scale. If neglected higher order terms are, in fact, not
negligible, the growth with decreasing scale of the result-
ing fractional error should show up as an instability in the
values of the parameters extracted using the different fits.
We see no signs for such an instability within the errors of
our fits, but nonetheless include the difference of central
values obtained from the 3-fold and 5-fold fits as a com-
ponent of our error estimate.

IV. RESULTS

Central inputs for our fits are the measured lattice ob-
servables (whose errors are tiny on the scale of the other

uncertainties), the computed Dk, c
ðkÞ
1 and cðkÞ2 [1,15], r1=a,

r1 and h�sG
2=�i, and the choice of the 3-fold fitting

procedure. In addition to the uncertainties generated by
the errors on r1=a, r1, and h�sG

2=�i are those due to

uncertainties in numerical evaluations of the Dk, cðkÞ1 ,

and cðkÞ2 .
We construct an ‘‘overall scale uncertainty error’’ by

adding linearly the fit uncertainties generated by those on
r1 and r1=a. This combined error is added in quadrature to

(1) uncertainties produced by varying the cðkÞ2 (and, if

relevant, cðkÞ1 ) within their errors, (2) the difference be-

tween results obtained with and without the gluon conden-
sate correction, and (3) the difference between the results
of the 3-fold and 5-fold fits. Because of the iterative nature
of the fit procedure, the mass extrapolation uncertainty is
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incorporated into what we have here identified as the over-
all scale uncertainty.

We run our nf ¼ 3 results to MZ using the self-

consistent combination of 4-loop running and 3-loop
matching at the flavor thresholds, taking the flavor thresh-
olds to lie at rmcðmcÞ and rmbðmbÞ, with mcðmcÞ ¼
1:286ð13Þ GeV and mbðmbÞ ¼ 4:164ð25Þ GeV [30], and r
allowed to vary between 1 and 3. These uncertainties in the
matching thresholds, together with standard estimates for
the impact of the truncated running and matching, produce
an evolution contribution to the uncertainty on �sðMZÞ of
�0:0003 [3].

Our central fit results for�sðMZÞ and the cðkÞ3 are given in

Table II. For comparison, the results for �sðMZÞ obtained
in Ref. [1] were 0:1171ð12Þ, 0:1170ð12Þ, and 0:1162ð12Þ,
for logðW11Þ, logðW12Þ, and logðW12=u

6
0Þ, respectively. Our

�sðMZÞ are significantly larger, and in closer mutual agree-
ment. The recent HPQCD update [16] also finds signifi-
cantly larger values. (We will return to a more detailed
comparison of the two updates below.) The very good
agreement between the �sðMZÞ values obtained in our
fits using both low- and high-scale observables suggests

that the effects of the truncated running, present at some
level in all such fits, are small in the cases we have studied.
One-sided versions of the various components of the

total errors on �sðMZÞ are displayed in Fig. 1. The differ-
ence of the 3-fold and 5-fold determinations is �0:0004,
significantly smaller than the�0:0009 overall scale uncer-
tainty. The results thus show no evidence for any instability
associated with opening up the fit to lower scales.
While the total error on �sðMZÞ is the same for all three

Ok considered, the general arguments above lead us to
believe that the most reliable determination is that obtained
using the highest-scale observable, logðW11Þ, and highest-
scale (3-fold fit) analysis window. Our final assessment,

�sðMZÞ ¼ 0:1192� 0:0011; (6)

is in excellent agreement with the nonlattice average and
the result, 0:1184� 0:0009, of the independent HPQCD
analysis. The various results are shown for comparison in
Fig. 2. A more detailed discussion of the relation between
our reanalysis and that of HPQCD may be found in the
Appendix.
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logðW12Þ 0:1193� 0:0011 �4:0� 0:9
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FIG. 1 (color online). Contributions to the errors on �sðMZÞ.
Shown are the �sðMZÞ obtained using (i) the 3-fold fit strategy,
with all central input, (ii) the alternate 5-fold fit strategy, with all
central input, and (iii) the 3-fold fit strategy, with, one at a time,
each input shifted from its central value by 1�, retaining central
values for the remaining input parameters. The error bars shown
are those associated with the uncertainties in r1=a.

FIG. 2 (color online). Comparison of the results for �sðMZÞ
from our fits, the fits of Ref. [1], and the updated fits of Ref. [16]
with the average of recent nonlattice determinations.
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the original lattice analysis and the recent HPQCD update,
and providing information on ongoing work.

APPENDIX: MORE ON THE RELATION TO THE
HPQCD REANALYSIS

After the completion of the work reported in this paper,
the HPQCD Collaboration posted an update of their earlier
2005 analysis [16]. This update works with a subset of 11
of the available MILC ensembles, spanning the a� 0:18,
0.15, 0.12, 0.09, and 0.06 fm lattices and a range of
am‘=ams. The fits follow the strategy of the earlier analy-
sis [1], employing the expansion parameter �V , and fitting

the unknown �cðkÞn using priors. Linear mass extrapolation
has been employed, and mass-independent NP D ¼ 4
contributions estimated and subtracted using the LO for-
mula for �gWmn. The fitting of r1=a, r1, and h�sG

2=�i,
observable by observable, using central input and prior
widths, is also as in the earlier analysis, with the exception
that the central value and width for h�sG

2=�i are now 0
and �0:012 GeV4, respectively.

The HPQCD implementation differs from ours in the
choice of expansion parameter, and in the implementation
of the input information on r1=a, r1, and h�s

� G2i. For the
reasons discussed above, we expect the impact on �sðMZÞ
of the observable-by-observable fitting of r1=a, r1, and
h�sG

2=�i in the HPQCD approach to be small for Ok

having small gluon condensate corrections. Since the dif-
ferent choices of expansion parameter correspond to differ-
ent ways of isolating residual higher order perturbative
uncertainties, one expects the results of the two analyses
to be in good agreement so long as (i) one is working with
Ok having small mass-independent NP corrections, (ii) the
same input values are used for both, and (iii) residual NP
and higher order perturbative uncertainties are indeed
small. The situation is likely to be more complicated for
Ok with sizable estimated D ¼ 4 gluon condensate
corrections.

The results of the HPQCD fit for the three Ok we
consider are �sðMZÞ ¼ 0:1186ð9Þ, 0.1186(9), and 0.1183
(8) for logðW11Þ, logðW12Þ, and logðW12=u

6
0Þ, respectively

[16]. All are in good agreement within errors with the
corresponding results from our analysis. This agreement
is further improved if one takes into account the small
difference in input r1 values. Were we to switch from r1 ¼
0:318 fm to the central value of the HPQCD determination,
0:321ð5Þ fm, all three of our �sðMZÞ results would de-
crease by 0.0002. Note also that use of the central charmo-
nium sum rule input for h�sG

2=�i in our calculation raises
the output �sðMZÞ obtained from logðW11Þ, logðW12Þ, and
logðW12=u

6
0Þ by 0.0001, 0.0004, and 0.0005, respectively.

Our fitted values would thus be in even closer agreement
with those of the HPQCD update were we to impose the
HPQCD central zero value of h�sG

2=�i in our fits. Since
the fitted h�sG

2=�i values obtained by analyzing the vari-
ous Ok are not quoted in Ref. [16], it is not possible to

quantify further the role of this effect. The agreement for
the three observables under discussion is, in any case,
good, within expectations, independent of this question.
We now turn to a more detailed discussion of the issue of

the subtraction of the mass-independent NP contributions.
If the estimated LO, D ¼ 4 gluon condensate subtraction
represents only a small fraction of the measured Ok at the
scales under consideration, analogous mass-independent
NP contributions with D> 4 should be even smaller, and
hence safely negligible. If, however, the estimated D ¼ 4
correction is sizable, analogous D> 4 corrections can no
longer be expected to be small. These necessarily scale
differently with lattice spacing than do the D ¼ 0 pertur-
bative and D ¼ 4 NP contributions and hence, if not
included when fitting the data, are likely to force shifts in
both �s and h�sG

2=�i if present at a non-negligible level.
We deal with this potential problem by focusing on Ok

for which the impact of the estimated D ¼ 4 gluon con-
densate subtraction is small compared to the variation of
the Ok in question over the lattice scales employed in the
fit. In the initial version of the HPQCD reanalysis, mass-
independent NP subtractions were estimated using only the
D ¼ 4 gluon condensate form, even for observables where
the estimated correction is sizable. In the more recent
update, additional terms, scaling as would mass-
independent contributions of D> 4, are added to the fit
function for each observable, and the accompanying coef-
ficients extracted as part of the augmented Bayesian fit.
The impact of including the D> 4 terms is, as expected,
small for those observables having small values of the
estimated D ¼ 4 subtraction. For observables with larger
D ¼ 4 subtractions, the fit errors are increased (by factors
of �2 for those observables having the largest D ¼ 4
corrections) and some shifts in �sðMZÞ of order 1=2 to 1
times the smaller preliminary errors are observed. The
shifts serve to reduce the spread of �sðMZÞ values com-
pared to that seen in the original version of the reanalysis.
The values of h�sG

2=�i obtained from the independent fits
to the different observables are not quoted in Ref. [16], but
a useful test of the self-consistency of the approach would
be to verify that the inclusion of the D> 4 contributions
has brought these values into good agreement with one
another.
It is worth noting that the observables, logðW23=u

10
0 Þ,

logðW14=W23Þ, and logðW11W23=W12W13Þ, which produce
the three smallest results for �sðMZÞ, have estimated D ¼
4 corrections significantly larger than those for any of the
other observables. The magnitudes of the corrections in
these cases represent �50%–100% of the variation with
scale of the uncorrected Ok between the lightest mass a�
0:06 and a� 0:12 fm ensembles. (This variation with
scale provides a suitable measure for use in assessing the
importance of NP corrections since it is the variation with
scale which provides the input needed to fix the fit parame-
ters, and, as explained in Ref. [16], the a� 0:06, 0.09, and
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0.12 fm ensembles which dominate the HPQCD reanaly-
sis.) These observables are thus, for the purposes of the
analysis, rather nonperturbative. Were one to exclude ob-
servables with larger NP contributions from the HPQCD
average, on the grounds that the related subtractions in-
troduce additional theoretical systematic uncertainties, the
HPQCD result would be brought into even closer agree-
ment with ours, though the resulting shift would, in fact, be
small (at the � 1

4� level).

We stress that, independent of these questions, our re-
sults agree well within errors with those of the HPQCD
update. This agreement is further improved by a shift to

common input. We argue that the nonzero central value for
h�sG

2=�i obtained from the updated charmonium sum
rule analysis represents our best present knowledge of
this quantity, and hence also the best choice as input for
evaluating the small mass-independent NP subtractions
needed for extracting �sðMZÞ. In addition, for the reasons
just discussed, we believe that the most reliable determi-
nations of �sðMZÞ are those based on those observables for
which theD ¼ 4 correction is as small as possible. Such an
assessment produces the results already noted above,
which are in extremely good agreement with what is
known from other sources.
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