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We investigate the Taylor expansion of the baryon number susceptibility, and hence, pressure, in a

series in the baryon chemical potential (�B) through a lattice simulation with two flavors of light

dynamical staggered quarks at a finer lattice cutoff a ¼ 1=6T. We determine the QCD cross over coupling

at �B ¼ 0. We find the radius of convergence of the series at various temperatures, and bound the location

of the QCD critical point to be TE=Tc � 0:94 and �E
B=T < 1:8. We also investigate the extrapolation of

various susceptibilities and linkages to finite chemical potential.
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I. INTRODUCTION

In the near future experiments at the Relativistic Heavy-
Ion Collider (RHIC) in Brookhaven [1] will begin to search
for the critical end point of QCD [2], and in the process
also study other physics at finite chemical potential. In this
paper we present an improvement on previous lattice re-
sults at finite chemical potential � and temperature T by
decreasing the lattice spacing to a ¼ 1=6T while working,
as before, in QCD with two flavors of light dynamical
staggered quarks. We investigate the physics at finite �
using the method of Taylor expansions that was developed
in [3] and used for QCD earlier with a ¼ 1=4T [4,5]. One
of the quantities we investigate is the radius of convergence
of the Taylor series, through which we estimate the QCD
critical point. We also investigate the dependence on � of
various other quantities of physical interest. Finally, we
investigate the linkage of quantum numbers and its depen-
dence on T and �. Related earlier works all used a ¼
1=4T, but different methods or inclusion of� and different
numbers of flavors [6].

That phase transitions are rounded off by finite-size
effects was discovered long ago by van Hove. The most
familiar aspects are seen when simulations are directly
performed in the vicinity of the critical coupling.
Quantities which would diverge in the thermodynamic
(infinite volume) limit are finite. As a result, a lattice
computation never sees a singularity, but infers its exis-
tence from some measures. Proofs of the existence usually
involve testing extrapolations: such are the main remaining
problems at finite temperature and vanishing chemical
potential. A well-developed finite-size scaling theory can
be used to study the size L dependence of such quantities
and extract critical exponents. To date, the immensity of
computational requirements has prevented full use of this
theory for QCD.

The study of the effect of the finite-size rounding of
critical points on series expansions is, to the contrary, in its

infancy. The clearest fact about such effects is the follow-
ing: since quantities which should diverge in the thermo-
dynamic limit merely have finite peaks at finite L, series
expansions, strictly speaking, have finite radii of conver-
gence for finite L. In the limit L ! 1 the radius of con-
vergence estimates the nearest critical point. The
mechanism by which this limit is reached is straightfor-
ward. Were one to examine some estimator of the radius of
convergence at order n, RnðLÞ, one would find that up to
some n � n�ðLÞ the RnðLÞ would approach a finite value.
Such behavior was exhibited for the series expansion in
QCD in Fig. 16 of [4]. For larger n the Rn would diverge, in
accordance with van Hove’s theorem. With increasing L
one would find that n�ðLÞ approaches infinity (see Fig. 1).
How the scaling of n�ðLÞ with L codes for the critical
exponent is presently unknown.
Another question that can be answered by the series

expansion is where the singularity lies. In the case of
QCD, the question is whether the finite radius of conver-
gence of the series expansion in � is due to a singularity at
real �. If it is, then the successive coefficients in the
expansion are positive. At finite L one must examine the
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FIG. 1. Series coefficients cnðLÞ for a quantity that diverges in
the thermodynamic limit, L ! 1, at the critical point have the
finite-size behavior shown here. The radius of convergence,
Rn ¼ cn�1=cn, plateaus for n < n�ðLÞ before rising to infinity.
The case shown here corresponds to a singularity on the real
axis, since all the cn in the plateau are positive.
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signs of the series coefficients for n < n�ðLÞ. If these are
positive, then the singularity which limits the expansion
when L ! 1 is on the real axis. In [4] this argument was
used to justify the identification of the radius of conver-
gence with the critical point. This argument is also implicit
in [7].

In summary, the quark number susceptibilities are
Taylor coefficients in the expansion of the pressure in
powers of the chemical potential. From the series expan-
sion for the pressure,

PðT;�BÞ ¼ PðTÞ þ 1

2
�ð2Þ
B ðTÞ�2

B þ 1

4!
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B ðTÞ�4

B

þ 1

6!
�ð6Þ
B ðTÞ�6

B þ 1

8!
�ð8Þ
B ðTÞ�8

B þ � � � ; (1)

we define the nonlinear susceptibilities (NLS) of the nth

order, �ðnÞ
B . The second order susceptibility, also called the

quark number susceptibility (QNS) [8], has the expansion

�BðT;�BÞ ¼ �ð2Þ
B ðTÞ þ 1
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This series is expected to diverge at the QCD critical end
point. Estimators of the radius of convergence of this series
are
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When successive estimators are equal within statistical
errors to the same value ��, we have identified the plateau
in the radius of convergence. This corresponds to the
critical point, provided the singularity in the series occurs
at a real value of ��. In turn, this is the case when the
coefficients from which the estimates are made are all
positive.

In the next section we present the details of the simula-
tion and the extraction of the critical coupling. This is
followed by a section in which we report the main results,
namely, the extraction of the QNS up to the eighth order.
This results in five terms of the series for the pressure, and
four terms of the series for the baryon number susceptibil-
ity. Using these we report our result for the radius of
convergence of the series, and extract from this our best
estimate of the critical point. In the section after this we
discuss the extrapolation of physical quantities to large
chemical potentials. This extrapolation throws more light
on the nature of the QCD critical point.

Note that the series in Eqs. (1) and (2) cannot be con-
tinued beyond �� even when all the terms are known
exactly. The truncated series expansion fails even faster.
As a result, it becomes difficult to extrapolate physical
quantities to large values of �B. One way to use the series

to a better advantage is well known: the method of Padé
approximants. The existing theory of Padé approximants
[9] is adapted to the case where each known series coeffi-
cient has infinite numerical accuracy. When coefficients
are extracted through Monte Carlo estimates, and hence
have statistical errors, new issues arise. We believe that it
would be useful to extend the theory of Padé approximants
in this direction. In the appendix we make a beginning
which is adequate for the purpose of this paper.

II. SIMULATIONS

The simulations were performed (see Table I) using the
R-algorithm for hybrid molecular dynamics. This uses a
finite step size, �t, for the molecular dynamics (MD). Our
main data set is generated using �t ¼ 0:01 and a total
trajectory length of t ¼ 1 in MD time units. We performed
tests of the accuracy and efficiency of the choices.
Most of our computations were performed with �t ¼

0:01. This was found to be adequate for computations at
Nt ¼ 4. We checked our results at T=Tc ¼ 1:00 by running
a long computation with �t ¼ 0:001 and trajectory length
of 3 MD time units. We found complete agreement be-
tween the runs with two different time steps. In Table II we
show the comparison of bulk quantities computed in the
two runs.
Changing the trajectory length from t ¼ 1 to t ¼ 3 at

T=Tc ¼ 0:94� 0:01, 1:00� 0:01, and 1:92� 0:05 did not
change the results for thermodynamic quantities within
errors. However, near Tc the longer trajectories were
more effective at reducing the autocorrelation time. For
example, we found that the longest autocorrelation time at
�c was �int � 267 trajectories for T ¼ 1, and it reduced to
36 for t ¼ 3. As a result, the CPU time taken to produce
decorrelated configurations is reduced by a factor of about
2.5 on taking the longer trajectories. At T=Tc ¼ 0:94�
0:01 the effective speedup, computed in the same way, was
a little under a factor of 2. In the high-temperature phase
the autocorrelation times were very small, and there was
little to be gained by using longer molecular dynamics
trajectories. There were no changes in thermodynamic
quantities on changing the trajectory length.
A range of � was scanned, as indicated in Table I, to

locate the bare coupling at the finite temperature crossover
�c. The crossover was located by the peak of the unrenor-
malized Polyakov loop susceptibility,

�L ¼ N3
s ðhL2i � hLi2Þ;

where L ¼ 1

3N3
s

X
x

ReTrPðxÞ and PðxÞ ¼ YNt

t¼1

Ut̂ðx; tÞ:

(4)

Here Ut̂ðx; tÞ is the gauge link in the time direction at the
spatial site x on the time slice t. We shall show later that the
fourth order quark number susceptibility also peaks at the
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same coupling. This is closely related to the inflection
point of the second order susceptibility which is used by
various groups [10].

From the peak of �L we identify �c ¼ 5:425� 0:005
form=Tc ¼ 0:1, where the uncertainty is due to resolution,
and not a statistical uncertainty. As expected, this is brack-
eted by results obtained with m=Tc ¼ 0:15 [11] and 0.075
[12]. There is a little finite volume shift in the position of
the peak of �L at the smallest volume, but no such shift is
observed in going from Ns ¼ 18 to Ns ¼ 24 (see Fig. 2).
While some volume dependence is visible in the peak of
�L, with data from just these three volumes it is not
possible to decide whether there is a crossover or a critical
point at �c. However, it is possible to rule out a first order
transition, since �max

L =N3
s definitely drops with increasing

Ns, as shown in Fig. 2.
Subsequently, T ¼ 0 runs were performed on lattices of

size 164 and 244 on a grid of � to determine the scale. The
scale determination used the value of the plaquette to

obtain the renormalized gauge coupling in theMS scheme.
The errors in the scale setting involve the uncertainty in the
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FIG. 2 (color online). The first figure shows �L as a function of �. There is some finite-size shift in the position of the peak at the
lowest volumes. The second figure shows the volume dependence of the value of the peak, �max

L as a function of Ns. It is clear that the
peak grows slower than the volume N3

s .

TABLE I. The simulation parameters. These simulations used the R-algorithm with a step size of �TMD ¼ 0:01 and a trajectory
length of TMD ¼ 1. For tests of accuracy, see later.

� mb=Tc T=Tc 6� 123 6� 183 6� 243

Nt �int Nt �int Nt �int

5.39 0:092� 0:005 0:89� 0:01 2284 33

5.40 0:100� 0:003 0:92� 0:01 22 599 88 10 099 48 919 35

5.41 0:094� 0:003 0:94� 0:01 50 584 197 14 580 131

5.415 0:097� 0:001 0:97� 0:01 17 518 179 14 044 158

5.42 0:099� 0:001 0:99� 0:01 39 649 164 35 649 165 27 974 140

5.425 0:1 1:00� 0:01 50 589 189 47 329 214 53 563 267

5.43 1:012� 0:001 54 619 218 41 349 147 41 869 202

5.46 0:11� 0:01 1:21� 0:01 309 13 10 719 13 1214 13

5.54 0:10� 0:01 1:33� 0:01 969 7

5.60 0:10� 0:03 1:48� 0:03 2891 4

5.75 0:10� 0:04 1:92� 0:05 3626 4

TABLE II. Comparison of bulk quantities, namely, the average
and difference of spatial and temporal plaquette averages, the
Wilson line, and the chiral condensate in runs with two different
MD time steps for � ¼ 5:425 on 6� 243 lattices. In both cases
the trajectory length was 3 MD time units and the first 1002 MD
time units were discarded for thermalization. The number of
trajectories used in the comparison was 2916 for the larger time
step and 733 for the smaller time step.

Operator �t ¼ 0:01 �t ¼ 0:001

hPs þ Pti=2 1.611(1) 1.611(2)

104hPt � Psi 7.8(4) 8.3(6)

hReLi 0.031(3) 0.032(6)

h �c c i 0.293(9) 0.291(9)
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location of the crossover coupling �c, statistical errors in
plaquette measurements, and scheme dependence esti-
mated by evaluating the scale also in the E and V schemes.
In the range of temperatures within 20% of Tc, the largest
errors came from the uncertainty in the determination of
�c. Better results can only be obtained by using larger
spatial volumes. At larger temperatures, the scheme de-
pendence of the scale set the largest errors. These can be
reduced by going to smaller lattice spacing, i.e., to larger
Nt. The scale setting using the crossover for Nt ¼ 6 is
compatible within errors with that obtained earlier for a
similar setting of scales for Nt ¼ 4 [4].

III. QUARK NUMBER SUSCEPTIBILITIES

A quick reminder of our notation [3,4] is in order. A
quark number susceptibility is obtained by taking a deriva-
tive of the pressure with respect to the chemical potential.
In two-flavor QCD there are two possible chemical poten-
tials, �u and �d. If one takes ju derivatives with respect to
�u and jd with �d, then the order of the quark number
susceptibility is n ¼ ju þ jd. Since the u and d quarks are
degenerate, and indistinguishable at �u ¼ �d ¼ 0, we
denote the susceptibilities by �jujd when ju > jd and

�jdju when jd > ju. The susceptibilities are constructed

from expectation values of a string of �0 operators sand-
wiched between quark propagators. The operatorOn is the
operator with n insertions of �0 into a single fermion loop,
and hence contributes only to�n0. The operatorsOabc��� are
products OaOb � � � and may contribute to several of the
�nm. The construction ofOn on the lattice is given in detail
in [4]. We shall discuss results for �nm as well as the
expectation values ðT=VÞhOabc���i (since we discuss only
the connected pieces of these expectation values, we have
not used a separate notation for that).

The quark number susceptibilities are obtained as ex-
pectation values of fermion loops with various operator

insertions [4]. These are evaluated as usual through sto-
chastic estimators. The computations were optimized using
the methods of [4]. The need to use a large number of
stochastic vectors has been discussed in detail elsewhere
[13]. We have taken 500 random vectors for each trace
evaluation. The necessity for such large numbers of vectors
is clearly demonstrated in the data exhibited in Fig. 3.
With this we are able to control statistical errors on loops

with up to six operator insertions. Even so, operators with
larger numbers of loops remain noisy. Thus, at Tc on the
largest volume, �20 gives a signal at 53� and �40 at 23�,
whereas �60 and �80 give signals at 5� and 3�, respec-
tively. For the two highest susceptibilities, this level of the
signal is an improvement over the corresponding results
with Nt ¼ 4 at equal Ns=Nt. It was our experience at
coarser lattice spacing that one needs lattices with larger
spatial volumes to control loops with more insertions. We
see this also at the current lattice spacings; at the smallest
volumes, even loops with six insertions are hard to control.
In the following sections we will often compare results

for Nt ¼ 4 and Nt ¼ 6. These results are meaningful only
if they are done holding other factors fixed. We shall
therefore compare the new results obtained on 6� 243

lattices with those obtained earlier on 4� 163 with the
same quark mass, m=Tc.

A. Second order

The lowest order quark number susceptibilities are
shown in Fig. 4. The diagonal susceptibility �20 seems to
show significant dependence onNt, i.e., the lattice spacing.
This is not a surprise; after all, even in the quenched theory
a similar effect was seen [14]. The off-diagonal suscepti-
bility �11 seems to scale better with the lattice spacing.
Note that �11 takes contributions only from ðT=VÞhO11i,

whereas �20 has contributions from this as well as ðT=VÞ�
hO2i. The results shown in Fig. 4 indicate that the quark-
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line disconnected operator has, at best, marginal lattice
spacing dependence. Most of the lattice spacing depen-
dence seen in �20 therefore comes from ðT=VÞhO2i. This
last expectation value is the response to a chemical poten-
tial on the isospin component I3 and hence was called �3 in
some of our early papers. Both this and �20 change rapidly
near Tc and the ‘‘inflection point,’’ i.e. the point at which
the slope is maximum can be used as a corroborative
measure of �c. Because of the numerical uncertainties in
taking derivatives of noisy data, we will instead use the
peak in the fourth-order susceptibility. We discuss these
next.

B. Fourth order

Two of the fourth-order susceptibilities are shown in
Fig. 5. Both �40 and �22 peak at Tc. This was already
seen in earlier simulations with Nt ¼ 4. Within the reso-
lution of our measurements, we see that the peak in these

quantities comes at exactly the same coupling as the peak
in �L, at both Nt ¼ 4 and 6. Like the second order suscep-
tibilities, these too have significant cutoff dependence. �31

is much smaller than either of these susceptibilities and
shows no special structure near Tc.
The peak at Tc can be resolved into a single operator

expectation value, ðT=VÞhO22i. This expectation value
peaks at Tc and falls off rapidly on both sides, as shown
in Fig. 6. Therefore it can serve as a good measure of the
critical coupling. The expectation value ðT=VÞhO4i, on the
other hand, shows a crossover near Tc. One could construct
yet another measure of the critical coupling from the point
of steepest slope of this expectation value, or from its
variance, the expectation value ðT=VÞhO44i. This last quan-
tity contributes to eighth order susceptibilities.
Using the fourth and second order quark number sus-

ceptibilities, one can form the first two terms of the series
expansion of �20ð�BÞ [4]. From these coefficients can
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obtain the lowest order estimate of the radius of conver-

gence of this series, �ðnÞ
� . This is shown as a function of

T=Tc in Fig. 7. Note that the large dependence on the lattice
spacings seen in each of the susceptibilities almost cancel

out in the estimate of the radius of convergence. The radius
of convergence has smaller dependence on the lattice
spacing.

C. Sixth order

The sixth order NLS is shown in Fig. 8. It has been
pointed out earlier that �20 has the form of a rounded step
function, and that successively higher order NLS have the
form of rounded derivatives of the step function [15]. For
example, the fourth-order NLS has a peak. The sixth order
NLS changes sign near Tc and has a maximum and a
minimum flanking the zero. This behavior is clearly visible
in Fig. 8. This peculiar structure comes from the behavior
of the expectation value hO222i, also shown in Fig. 8. Note
that the measurement of hO222i is noisier than that of hO22i.
The quark-line connected operator expectation value at

this order is hO6i. This is shown in Fig. 9. Note that this has
interesting structure below Tc and that the structure is seen
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for both Nt ¼ 4 and 6. As a result, one cannot use hO6i or
its variance for determining Tc.

D. Eighth order

The eighth order NLS are fairly noisy below and in the
vicinity of Tc. This is partly due to the fact that operators
with multiple quark loops, such as O2222, become noisier
as the number of loops increases. However, single-loop
operators such asO8 are also not under sufficient control at
these lattice volumes. We exhibit the expectation values
hO8i and hO44i in Fig. 10. Note that there could be structure
in the former below Tc, but this is currently obscured by
noise. The latter has a single sharp peak at Tc, as argued
before, and shows that Tc identified by the peaks in �L,
�40, �22, and ðT=VÞhO44i are identical within the resolu-
tion of our study.

E. Radius of convergence

The radius of convergence of the series expansion can be
used to estimate the position of the critical end point of

QCD as before. The radius of convergence gives the dis-
tance from the origin where the expansion ceases to hold.
The corresponding singularity lies at real � if the coeffi-
cients of the series expansion are all positive. In Fig. 11 we
show that there is a window in the temperature, just below
Tc, in which all the measured coefficients are positive (see
also Table III). Interestingly, at all lower temperatures, the

coefficients except �ð2Þ turn negative. The slopes indicate
that the change from negative to positive values may occur
at different temperatures for different coefficients.
In the window of temperature where the critical point

can be found, we see that only at one of the temperatures in
our scan are our estimators of the radius of convergence
independent of the method and order (see Fig. 12). At the
same temperature we also found that the finite-size effects
are in accordance with our expectations: at the smallest
volumes the estimators of the radius of convergence in-
crease with order, becoming flat only on the largest volume
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we studied. With these three interlinked pieces of evidence
we estimate the location of the end point to be at

TE

Tc

¼ 0:94� 0:01 and
�E

B

TE ¼ 1:8� 0:1; (5)

with a lattice spacing of 1=6T and a renormalized quark
mass that corresponds to tuning m� ’ 230 MeV, when the
spatial size of the box is L ¼ 4=T.

In comparison, with a lattice spacing of 1=4T at the
same renormalized quark mass and the same spatial vol-
ume, it was found that TE=Tc remained unchanged

whereas one had �E
B=T

E ¼ 1:3� 0:3. Extrapolation of
this result to the thermodynamic limit, L ! 1, on the
coarse lattice yielded an estimate �E

B=T
E ¼ 1:1� 0:1,

which, although statistically compatible with the finite
volume result, had a lower mean. It would be interesting
to check how much the new estimate of the QCD critical
end point is lowered upon taking the thermodynamic limit.
However, this extrapolation lies outside the scope of the
current work because of the CPU resources needed.

IV. PHYSICS AT FINITE �

A. Fluctuations and the quark number susceptibility

Baryon number fluctuations, by an amount �B from the
expectation value in a grand canonical ensemble, have a
spectrum

Pð�BÞ ¼ exp

�
� ð�BÞ2
2VT�B

�
; so hð�BÞ2i ¼ VT�B: (6)

It has been proposed that the susceptibilities be measured
in event-to-event fluctuations in heavy-ion collisions [16].
Indeed, the divergence of the width of the spectrum of
fluctuations could be one signal for the detection of the
QCD critical point in experiments [17]. In view of this, it is
interesting to estimate �B as a function of �B along the
critical isotherm.
While the truncated series expansion can be used to

estimate the radius of convergence, it cannot be used to
extrapolate the susceptibility up to that point. As shown in
Fig. 13, the series expansion for �Bð�B; TÞ=T2 taken to
orders n ¼ 2 and n ¼ 4 fail to agree long before the radius
of convergence is reached; nor do they show any diver-
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FIG. 12 (color online). Two different estimators of the radius of convergence, ��ðnÞ
� (filled symbols) and �ðnÞ

� (open symbols), for
different orders, n, on our largest lattice (LT ¼ 4) at three different temperatures. Only at one temperature do all the estimators agree.

TABLE III. The Taylor series coefficients at different tempera-
tures on the lattice with LT ¼ 4. There is a lot of structure in
these coefficients near Tc (see, for example, [4]). The coeffi-
cients are strongly correlated, since they are measured on the
same configurations, and hence the computation of the ratios
(radii of convergence) and their errors are done through a jack-
knife analysis.

T=Tc �ð2Þ
B =T2 �ð4Þ

B =2! �ð6Þ
B T2=4! �ð8Þ

B T4=6!

0.89(1) 0.13(3) �1:2ð1Þ 16(2) �232ð36Þ
0.92(1) 0.22(4) �0:6ð1Þ �7ð2Þ �61ð18Þ
0.94(1) 0.32(2) 0.9(1) 2(1) 5(11)

0.97(1) 0.40(1) 1.40(8) 1(1) 27(7)

0.99(1) 0.50(1) 1.31(4) 8.0(5) 19(7)

1.00(1) 0.63(4) 1.9(1) 0.7(9) �40ð12Þ
1.01(1) 0.73(3) 1.54(8) �2:5ð8Þ �10ð3Þ
1.21(1) 1.16(1) 0.82(1) 1.5(4) 8(3)

1.33(1) 1.34(1) 0.52(1) �0:27ð7Þ �0:9ð3Þ
1.48(3) 1.39(1) 0.53(1) 0.11(3) �0:06ð4Þ
1.92(5) 1.449(7) 0.59(2) 0.05(2) 0.16(2)
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gence at ��. In order to extrapolate the QNS, one must
therefore find more robust techniques.

The usual method is to convert the series to a Padé
approximant (see [18] for a previous application to
QCD). There is extensive literature on the use of these
methods when the series expansion is known exactly. In
Appendix A we extend this theory to the case relevant to
our study, i.e., when the series coefficients are known only
through a Monte Carlo procedure, and hence are known
with certain errors. The appendix examines error propaga-
tion in the Padé approximants and sets out the basic
methods to control these errors. For our purposes we use
the Padé approximants labeled PL

1 ð�2
B=T

2Þ in the notation
in Appendix A.

The Padé approximants P0
1ð�2=T2Þ and P1

1ð�2=T2Þ are
shown in Fig. 13. It is interesting to note that they diverge
as�E

B=T is approached. While they disagree with the series
expansions as the radius of convergence is approached,
they remain consistent with each other except very close
to the divergence. Note that the errors are large near the
divergence. This seems unavoidable, since any error in the
coefficients will be magnified near the pole. There are also
large errors beyond the pole. It should be possible to
control these in future work.

Note that in two-flavor QCD one has �B ¼ 2�BQ, at all

�B, as long as the isospin chemical potential remains zero.
So there are two independent susceptibilities, �B and �Q.

In terms of the previously computed quantities, they are
[19]

�B ¼ 2
9ð�20 þ �11Þ and �Q ¼ 2

81ð5�20 � 4�11Þ: (7)

It turns out that �11 remains small within errors even at
larger chemical potential, so that the behavior exhibited in
Fig. 13 for �B is also almost quantitatively correct for �Q

after an overall normalization by a factor of 5=9. In par-

ticular, the divergence in �B is also reflected in �Q. This

has consequences which we deal with next.

B. Linkage

Earlier works have introduced quantities which measure
whether two quantum numbers vary together in thermody-
namic fluctuations [19,20]. The most straightforward mea-
sure, called the linkage, utilizes diagonal and off-diagonal
QNS in the form of the ratio

CðNMÞjN ¼ CðMNÞjN ¼ �NM

�N

; (8)

for any two quantum numbers N andM. The linkage gives
the thermal averaged amount of the quantum number M
excited per unit N in a thermal fluctuation taking place in
the grand canonical ensemble. In two-flavor QCD one may
measure the linkage between U and D quantum numbers
(conventionally þ1 for quarks, �1 for antiquarks of the
correct flavor, and zero otherwise). Also related is the
linkage between the baryon number B and the electrical
charge Q.
In Fig. 14 we show the temperature dependence of

CðUDÞjU. At T ¼ 0 this quantity should be �2=3, since
the lightest excitation is a pion, and the two charged pions
each give a contribution of �1, whereas the neutral pion
gives a contribution of 0. In the high-temperature phase,
when the lightest excitations are quark quasiparticles, the
linkage should vanish. We see a rapid crossover between
these two regimes, with a very small but nonzero value
being reached at Tc. We also exhibit the linkageCðBQÞjQ. At
T ¼ 0 this quantity is expected to vanish, since the lightest
charged particle, the pion, has no baryon number. In an
ideal quark gas, this linkage has value 1=5. One sees a
rapid crossover between these two values in the vicinity of
Tc, exactly as for CðUDÞjU.
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FIG. 13 (color online). �Bð�B; T
EÞ=ðTEÞ2 obtained through various extrapolations to finite chemical potential. On the left are shown

the series expansions to orders n ¼ 2 and n ¼ 4 (obtained from the fourth and sixth order NLS). The panel on the right shows the
extrapolations using Padé approximants.
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In the chiral limit, i.e., when the quark masses vanish,
and a second order phase transition to occur, one would
expect that ðT=VÞhO22i becomes infinitely peaked at Tc. As
a result, one expects the diagonal susceptibilities to be-
come infinitely sharp, and the linkages to jump abruptly
across the transition. Some part of the rounding in the
linkages is therefore due to the fact that the quark masses
are finite. However, the rounding of the crossover in the
linkages would be a direct demonstration that there is no
abrupt change from the hadronic to the quark phase: one
may use either description over a small range of tempera-
tures near Tc. This could have implications for the descrip-
tion of hadronization in a fireball, a process which, at the
moment, has a very crude description in terms of the
Cooper-Frye mechanism [21]. However, a part of the
rounding is also due to finite volume effects, and it is
hard to disentangle the two in our computation. It would
be an interesting future computation to understand quanti-
tatively what part of this slow crossover is a finite volume
effect and how much is the effect of a finite quark mass.

Since we have control over the higher order NLS, we can
construct a Taylor series expansion for the linkage and
examine its behavior at finite chemical potential. For the
analytic continuation of the linkage, we perform a jack-
knife analysis. In each jackknife bin the Padé approximant
is evaluated at the chemical potential of interest. The mean
of these values is used as the estimator for the continuation,
and the 68% interval, evaluated nonparametrically, is
quoted as the error bound. The results are shown in
Fig. 15 for several different temperatures.

At the highest temperature, i.e. T=Tc ’ 2, the linkage
CðUDÞjU is close to zero at �B ¼ 0 and remains zero for

�B=T ’ 1. At temperatures below Tc, the linkage is non-
zero at �B ¼ 0 but evolves smoothly with the chemical
potential. For T > TE we find a smooth increase with �B,
the linkage decreasing with larger �B. This illustrates the
important point that a finite radius of convergence for one

susceptibility does not imply divergences in other
quantities.
Interestingly, the linkage CðBQÞjQ seems to fall margin-

ally with increasing �B. This mild effect can be traced to
the fact that the fourth-order coefficient in the Taylor
expansion of this linkage is small and negative. This results
in a fall at large �B. It would be useful to check whether
this persists at larger volumes, and whether higher order
terms in the expansion turn this around and cause the
linkage to increase. An interesting alternative possibility
is that the fall in CðBQÞjQ is physical, as is the rise in
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FIG. 15 (color online). The linkages CðUDÞjU (left) and CðBQÞjQ
(right) as functions of �=T, as evaluated on 6� 243 lattices, at
four different temperatures.
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CðUDÞjU, and the two together imply the existence of a

phase analogous to the quarkyonic phase at large Nc

[22]. It is therefore of interest to check these results further.
Unfortunately, both checks require massive investment of
CPU resources, but are interesting enough that we hope to
return to this soon.

V. SUMMARY

We have examined QCD with two flavors of dynamical
staggered quarks at finite temperature with lattice spacing
a ¼ 1=6T and bare quark masses tuned to m=Tc ¼ 0:1.
This quark mass is expected to correspond to m�=m	 ¼
0:3, and hence our new results are directly comparable to
the older results which were obtained on a coarser lattice
with a ¼ 1=4T [4]. Our simulations were performed on
lattices with size LT � 4, where L is the spatial size of the
box. We used the R-algorithm with a step size in MD time
units of 0.01. We have checked that decreasing this by an
order of magnitude to 0.001 does not change thermody-
namic results (see Table II). Similarly, we have checked
that the physics results remain unchanged when the trajec-
tory length is changed.

We identified the crossover at vanishing chemical po-
tential through the Polyakov loop susceptibility �L (see
Fig. 2) and then cross checked this through two measures
related to the QNS. One is the peaking of �40 and �22 (see
Fig. 5) which is related to the ‘‘inflection point’’ of the
QNS. The other is the peaking of the operator ðT=VÞhO44i,
(see Fig. 10) which is related to a similar inflection point in
ðT=VÞhO4i. These measures are consistent with each other
within the accuracy of our computations. The scale setting
using this identification of the crossover is consistent with
the earlier scale setting using coarser lattice spacing [4].

We presented results for the NLS up to eighth order.
There are clear lattice spacing effects, as expected. These
are roughly consistent with earlier determinations of some
of these quantities in quenched theory. While the lattice
spacing artifacts for the NLS are very large, sometimes as
much as 100%, the effect on the radius of convergence is
much smaller (see Fig. 7). Our estimate of the critical point
of QCD is based on this radius of convergence. The critical
point occurs when the radius of convergence identifies a
singularity on the real axis, through the fact that the series
coefficients are all positive. Caveats on this are presented
in the introduction. Our estimate of the critical point using
finite volume data is [see Eq. (5)]

TE

Tc

¼ 0:94� 0:01 and
�E

B

TE ¼ 1:8� 0:1:

This should be compared with our earlier estimate on the
same lattice volume and the same renormalized quark mass
which gave �E

B=T
E ¼ 1:3� 0:3. This is a change of about

26%, and is statistically significant. Extension of our re-
sults to larger volumes is outside the scope of this work. In

simulations with a ¼ 1=4T, the estimate of�E
B dropped by

about 16% on extrapolating to infinite volume.
The series expansion is a good tool for extracting the

radius of convergence, and, through it, the critical point.
However, as we show in Fig. 13, it is a bad tool to
extrapolate physical results to high �B=T. Padé approx-
imants adjusted to give the same series expansion seem to
perform better, even after taking into account the propaga-
tion of statistical errors. One sees the divergence of the
susceptibility at the critical end point, something that the
series expansion misses altogether.
We also examined the linkages CðUDÞjU and CðBQÞjQ (see

Fig. 14). At vanishing chemical potential they show a rapid
crossover from the values expected in the hadronic phase to
those expected for the nearly ideal quarks. The rounding of
this transition is closely related to the question of how
sharp the hadronization transition can be in heavy-ion
collisions. A discussion of the issue was presented in
Sec. IVB.
The measurements of the linkages were extended to

finite chemical potential using Padé approximants.
Unlike the QNS, they evolve smoothly through the critical
point. Interestingly, on isotherms below Tc, with increasing
�B, the linkage between U and D quantum numbers
changes towards the ideal quark gas, whereas the linkage
between B and Q changes away from the quark gas. This
could indicate the presence of a quarkyonic phase of QCD
matter, although technicalities need to be sorted out before
one can establish this.
The computations were performed over the last two

years on the Cray X1 of the Indian Lattice Gauge Theory
Initiative (ILGTI) at TIFR.We thank Ajay Salve for single-
handedly taking care of the machine during this extended
period.

APPENDIX: PADÉ APPROXIMANTS

We follow Baker’s definition [9] of a Padé approximant
[23,24]. The series expansion

fNðxÞ ¼ c0 þ c1xþ � � � cNxN þOðxNþ1Þ (A1)

evaluated to order N can be used to define the Padé
approximant of order L=M,

PL
M½fNðxÞ� ¼

AL
MðxÞ

BL
MðxÞ

; BL
Mð0Þ ¼ 1;

BL
MðxÞfNðxÞ � AL

MðxÞ ¼ OðxLþMþ1Þ;
(A2)

where AL
MðxÞ and BL

MðxÞ are polynomials in x or order up to
L and M, respectively. From the matching condition it
follows that LþM � N. Introduce the notation—

AL
MðxÞ ¼ a0 þ a1xþ � � � þ aLx

L;

BL
MðxÞ ¼ 1þ b1xþ � � � þ bMx

M:
(A3)

Then, writing out the matching condition order by order,
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one obtains the Padé approximants by solving first for the
denominator

cL�Mþ1 cL�Mþ2 � � � cL
cL�Mþ2 cL�Mþ3 � � � cLþ1

..

. ..
. ..

.

cL cLþ1 � � � cLþM�1

0
BBBB@

1
CCCCA

bM
bM�1

..

.

b1

0
BBBB@

1
CCCCA

¼ �
cLþ1

cLþ2

..

.

cLþM

0
BBBB@

1
CCCCA; (A4)

(with the convention that cj ¼ 0 for j < 0) and then for the

numerator

a0 ¼ c0;

a1 ¼ c1 þ b1c0;

..

.

aL ¼ cL þ XminðL;MÞ

i¼1

bicL�i:

(A5)

The practical importance of Padé approximants arises from
the fact that if the series fN has a radius of convergence R
as N ! 1, then the series expansion is reliable only for
x < R, whereas the Padé approximants can be used for
analytic continuation beyond this. Much of the standard
theory of Padé approximants deals with the cases when the
coefficient matrix in Eq. (A4) has a vanishing determinant,
and the information which can then be extracted.

Here we concentrate on a different problem—that of
controlling errors when the series coefficients are obtained
by a Monte Carlo program, and hence have a given statis-
tical distribution. We found no discussion of this in the
literature, although it is likely that sporadic attempts to
answer related questions have been made in the past. These
questions become important now that new developments in
QCD at finite chemical potential lead us to analyze series
coefficients obtained in a Monte Carlo process.

When the Padé coefficients are well defined, the joint
probability distribution of the series coefficients can be
transformed into that of the coefficients of the Padé ap-
proximant using the usual Jacobian formula—

P L
Mða0; a1; � � � ; aL; b1; b2; � � � ; bMÞ
¼ P ðc0; c1; � � � ; cLþMÞJ;

where J ¼ @ða0; a1; � � � ; aL; b1; b2; � � � ; bMÞ
@ðc0; c1; � � � ; cLþMÞ : (A6)

Take the example of P0
1, where a0 ¼ c0 and b1 ¼ c1=c0, so

that J ¼ a0. Assume that c0 and c1 are drawn from inde-
pendent Gaussian distributions of unit mean—

P 0
1ðc0; c1Þ ¼

1

2��0�1

exp

�
�1

2

�ðc0� 1Þ2
2�2

0

þðc1� 1Þ2
2�2

1

��
:

(A7)

Then the joint distribution of the Padé coefficients can be
written down. The marginal distribution of the Padé coef-
ficient b1, being the ratio of two Gaussian distributed
numbers, is well known [25] and given by

P 0
1ðb1Þ ¼ e��ðb1Þ 2þ

ffiffiffiffiffiffiffi
2�

p

ðb1Þ

2��0�1�
2ðb1Þ

;

where �2 ¼ 1

�2
0

þ b21
�2

1

;


 ¼ 1

�

�
1

�2
0

þ b1
�2

1

�
; � ¼

�
1

�2
0

þ 1

�2
1

�
� 
2

4
:

(A8)

Note that 
ð�1Þ ¼ 1=�2
1, and hence �ð�1Þ is a finite

number which depends only on �0;1. As a result, the

marginal distribution of b1 is not exponentially damped
at infinity. The power-law damping comes from the factor
1=�2 ’ 1=b21. Clearly this distribution has a well-defined

expectation value for b1, but the variance and higher cu-
mulants do not exist. Thus, statistical measurements of b1
are not subject to the central limit theorem.
A similar phenomenon occurs with any PL

1 . Assume that

the series coefficients are statistically independent and
drawn from a Gaussian of unit mean, then the probability
distribution of the Padé coefficients can be written as

P L
1 ða0; a1; � � � ; aL; b1Þ ¼

�YLþ1

i¼0

1ffiffiffiffiffiffiffiffiffiffiffiffi
2��i

p
�
J exp

�
�Q

2

�
;

(A9)

where J is the Jacobian of the transformation given by ci ¼P
j�iai�jð�b1Þj for i � L and cLþ1 ¼ cLb1, and Q is a

quadratic form obtained by transforming the arguments of
the Gaussians.
The Jacobian of this transformation is
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JL ¼

�����������������������������

1 0 0 � � � 0 0
�b1 1 0 � � � 0 c01ðb1Þ

ð�b1Þ2 �b1 1 � � � 0 c02ðb1Þ
..
. ..

. ..
. ..

. ..
.

ð�b1ÞL ð�b1ÞL�1 ð�b1ÞL�2 � � � 1 c0Lðb1Þ
b1ð�b1ÞL b1ð�b1ÞL�1 b1ð�b1ÞL�2 � � � b1 c0Lþ1ðb1Þ

�����������������������������

; (A10)

where c0iðb1Þ is the derivative of ci with respect to b1.
Multiplying the second row from the bottom by b1 and
subtracting that from the last row gives

JL ¼

�����������������������������������

1 0 0 � � � 0 0

�b1 1 0 � � � 0 c01
ð�b1Þ2 �b1 1 � � � 0 c02

..

. ..
. ..

. ..
. ..

.

ð�b1ÞL ð�b1ÞL�1 ð�b1ÞL�2 � � � 1 c0L
0 0 0 � � � 0 cL

�����������������������������������
¼ cL ¼ XL

i¼1

aL�ib
i
1; (A11)

where we have used the relation cLþ1 ¼ b1cL to write
c0Lþ1 � b1c

0
L ¼ cL.

The quadratic form in the argument of the exponent can
be manipulated into a particularly useful form by complet-
ing the squares—

Q 	 XLþ1

i¼1

ðci � 1Þ2
�2

i

¼ aTQaþ 2bTaþ XLþ1

i¼1

1

�2
i

¼ ða� �aÞTQða� �aÞ þ�;

where � ¼ XLþ1

i¼1

1

�2
i

� �aTQ �a and �a ¼ Q�1b; (A12)

where the real symmetric matrix Q and the vector b can be
easily written down. We do this next for the special case
when all the �i are equal to �.

Define the sequence of polynomials

pjðb1Þ ¼ 1þ b21 þ b41 þ � � � þ b2j1 ¼ 1þ b21pj�1ðb1Þ;
qjðb1Þ ¼ 1� b1 þ b21 � � � � þ ð�b1Þj ¼ 1� b1qj�1ðb1Þ:

(A13)

In terms of these, one writes

Q ¼ 1

�2

pLþ1 �b1pL b21pL�1 � � �
�b1pL pL �b1pL�1 � � �
b21pL�1 �b1pL�1 pL�1 � � �

..

. ..
. ..

.

0
BBBBBB@

1
CCCCCCA;

b ¼

qL

qL�1

qL�2

� � �

0
BBBBB@

1
CCCCCA: (A14)

In order to find the determinant of Q, we do the following
row operations—starting from the top, add to each row b1
times the next row. This reduces the determinant to a lower
triangular form

DetQ¼ 1

�2

���������������������������

1 0 0 ��� 0

�b1 1 0 ��� 0

b21 �b1 1 ��� 0

..

. ..
. ..

. ..
.

ð�b1ÞLp1 ð�b1ÞL�1p1 ð�b1ÞL�2p1 ��� p1

���������������������������
¼p1ðb1Þ

�2
: (A15)

The solution of the equationQ �a ¼ b can be obtained by
the same operations. They yield the reduced equation

1 0 0 � � � 0

�b1 1 0 � � � 0

b21 �b1 1 � � � 0

..

. ..
. ..

. ..
.

ð�b1ÞLp1 ð�b1ÞL�1p1 ð�b1ÞL�2p1 � � � p1

0
BBBBBBBBB@

1
CCCCCCCCCA
�a

¼ �2

1

1

1

..

.

1

0
BBBBBBBBB@

1
CCCCCCCCCA
; (A16)

where we have used the relation qiðxÞ ¼ 1� xqi�1ðxÞ, to
reduce the vector b. This gives
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�a ¼ �2

1
1þ b1
1þ b1

..

.

1þ b1
1

1þb2
1

þ b1

0
BBBBBBBBBB@

1
CCCCCCCCCCA
: (A17)

Finally,

� ¼ Lþ 1

�2
� bT �a

¼ Lþ 1

�2
�XL

i¼1

½qiðb1Þ þ b1qi�1ðb1Þ� � 1

1þ b21
:

(A18)

Clearly, � remains finite in the limit b1 ! �1, so that
expð��=2Þ does not damp the marginal distribution of b1.
In fact, that damping comes from the factor of 1=DetQ ¼
1=ð1þ b21Þ. As a result, b1 has a well-defined mean but its
variance is undetermined. Thus, estimators of b1 evade the
central limit theorem.

Nevertheless, the situation is pretty well under control.
The appropriate question to ask of a distribution such as
that in Eq. (A9) in the context of parameter estimation is
not the value of the variance, but an appropriate measure of
the variation in the estimate. One could quote the width at
half maximum, or the limits such that 68% of the proba-
bility lies within these limits. Along with this one asks, if
we make N measurements of b1 then how does such a
measure of variation change with N.

A numerical investigation shows that when �0 ¼ �1 ¼
1, the modal value is b ¼ 0:345 897. Since the distribution
is skew, the modal value and the mean are different. The
full width at half maximum is contained in �0:3485 �
b1 � 1:266 41, and this range contains 56.1% of the inte-
gral. The 68% probability interval is�0:575 � b1 � 1:38.
Either of these ranges can be quoted as an estimate of the
error in the modal value.

To answer the question about the distribution of means,
we use the characteristic function. If fðxÞ is the distribution
of x, then the Fourier transform ~fðxÞ is called the character-
istic function. Since fðxÞ is non-negative and integrable,
being a probability distribution, it is also square integrable,
so that the characteristic function exists. The characteristic
function of the mean of N numbers, �N , is

�Nð!Þ ¼
Z

d�N expði!�NÞ
Z �YN

j¼1

dxifðxiÞ
�

� �

�XN
j¼1

dxi � N�N

�
¼ ~fN

�
!

N

�
: (A19)

Fourier transforming this gives the distribution of �N.
While this general method remains valid for the distribu-
tions P L

1 above, it does not seem possible to perform the
Fourier transformations in closed form. So, instead of
writing down an impenetrable formula for the distribution
of means, we investigate useful subsidiary questions.
Define the skew of a distribution by

S ¼ xm
hxi � 1; (A20)

where xm denotes the modal (most probable) value and hxi
is the mean. The skew is nonzero for every skewed distri-
bution, being positive if the distribution is skewed to the
left and negative otherwise. For the distribution P 0

1, we

found S ¼ 1:3 � � � . For the distribution of means of N
values, S decreases. A Monte Carlo estimate for �0 ¼
�1 ¼ 1 indicates that S � 3:5=

ffiffiffiffi
N

p
. This estimate was

obtained using values of N between 1 and 100. A similar
result was obtained for a measure of skewness that com-
pares the median and the mean in a manner analogous to
Eq. (A20).
At the median of a distribution, the cumulative distribu-

tion becomes equal to 0.5. The errors on the median can be
defined as the points at which the cumulative distribution is
either 0.34 above or below. The distribution of the means of
N numbers narrows rapidly, and we find in a Monte Carlo

estimate that both these intervals decrease as 1=
ffiffiffiffi
N

p
.

In conclusion, for the estimation of b1 and confidence
limits on the estimate, it matters little that the central limit
theorem does not hold. The mean is well defined, and its
difference with the mode and median scale with a factor of

1=
ffiffiffiffi
N

p
. The 68% confidence limits also scale as 1=

ffiffiffiffi
N

p
. We

therefore quote the mean and 68% confidence limits on it
as estimators for the Padé coefficients. These estimators
are easy to incorporate into jackknife and bootstrap analy-
ses. In parts of our analysis the estimators of the series
coefficients are also not Gaussian distributed; even so, the
nonparametric statistical analysis outlined here suffices.

[1] P. Sorensen (STAR Collaboration), Proc. Sci., CPOD2006
(2006) 20; J. T. Mitchell (PHENIX Collaboration), arXiv:
nucl-ex/0701079.

[2] A. Barducci et al., Phys. Lett. B 231, 463 (1989); M.A.
Halasz et al., Phys. Rev. D 58, 096007 (1998); J. Berges

and K. Rajagopal, Nucl. Phys. B538, 215 (1999).
[3] R. V. Gavai and S. Gupta, Phys. Rev. D 68, 034506 (2003).
[4] R. V. Gavai and S. Gupta, Phys. Rev. D 71, 114014 (2005).
[5] C. R. Allton et al., Phys. Rev. D 71, 054508 (2005).
[6] Z. Fodor and S. Katz, J. High Energy Phys. 03 (2002) 014;

R. V. GAVAI AND SOURENDU GUPTA PHYSICAL REVIEW D 78, 114503 (2008)

114503-14



C.R. Allton et al., Phys. Rev. D 66, 074507 (2002); M.-P.
Lombardo and M. d’Elia, Phys. Rev. D 67, 014505 (2003);
Ph. de Forcrand and O. Philipsen, Nucl. Phys. B642, 290
(2002); C. R. Allton et al., Phys. Rev. D 68, 014507
(2003); Z. Fodor and S. Katz, J. High Energy Phys. 04
(2004) 050; Ph. de Forcrand and O. Philipsen, J. High
Energy Phys. 01 (2007) 077; C. Bernard et al., Phys. Rev.
D 77, 014503 (2008).

[7] M.A. Stephanov, Phys. Rev. D 73, 094508 (2006).
[8] S. A. Gottlieb et al., Phys. Rev. Lett. 59, 2247 (1987).
[9] G. A. Baker and P. Graves-Morris, Encyclopedia of
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