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In this paper we study the properties of the phase diagram of a simple extra-dimensional model on the

lattice at finite temperature. We consider the five-dimensional pure gauge Abelian model with anisotropic

couplings which at zero temperature exhibits a new interesting phase, the layer phase. This phase is

characterized by a massless photon living on the four-dimensional subspace and confinement along the

extra dimension. We show that, as long as the temperature takes a nonzero value, the aforementioned layer

phase disappears. It would be equivalent to assume that at finite temperature the higher-dimensional lattice

model loses any feature of the layered structure due to the deconfinement which opens up the interactions

between the three-dimensional subspaces at finite temperature.
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I. INTRODUCTION

The original idea of Fu and Nielsen in the mid-eighties
of the last century consisted in proposing a new way of
dimensional reduction through higher-dimensional lattice
models with anisotropic couplings [1]. Since then in a se-
ries of papers the phase diagram of the higher-dimensional
lattice models was studied by mean field and Monte
Carlo methods. Besides that a mechanism of produc-
ing the anisotropic couplings was proposed invoking a
Randall-Sundrum space-time metric to the (continuum)
higher-dimensional models [2,3]. The lattice model with
anisotropic couplings which came up could help in under-
standing the localization of the gauge interaction on the
brane; the idea was that the usual four-dimensional space-
time is embedded in a higher-dimensional bulk in which
the extra dimensions are subject to confinement. Indeed the
assumed strong coupling dynamics along the extra dimen-
sion requires a nonperturbative study. The numerical study
on the lattice has verified the prediction of a new phase
(layer phase) proposed by Fu and Nielsen who used mean
field methods. In this new phase we established the exis-
tence of a massless photon on the four-dimensional sub-
space while at the same time the extra dimension is
confined [4]. This confinement is responsible for the fact
that the higher-dimensional space is layered-like and the
interactions are confined in the four-dimensional space-
time slices.

It is worthwhile to mention that in the Dvali-Shifman
model a similar way of thinking has been used in order to
achieve a localization mechanism on a brane: the assump-
tion of confinement (of a non-Abelian nature) along one of
the dimensions which limits the dynamics of the model in a
subspace with one dimension less [5]. It is possible to
generate gravitationally this localization mechanism for

the trapping of the charged fields, under a non-Abelian
gauge field, on a 3D submanifold (brane) using the non-
minimal coupling of gravity with a scalar field [6]. The
result is a spontaneously broken phase on the brane (Higgs
phase) and a confining (symmetric phase) in the transverse
directions (bulk).
In this work we consider the following exercise: we

assume a five-dimensional U(1) lattice model with aniso-
tropic couplings at finite temperature. Our intention is to
discover the fate of the layer phase as we switch on the
temperature to nonzero values. By means of numerical
methods we study the phase diagram and our main result
is that for T � 0 the layer phase becomes a deconfined
phase with new properties. In other words, the confining
extra dimension that is detected at T ¼ 0, becomes decon-
fined for nonzero values of the temperature and the system
is lacking the four-dimensional layered structure.1

The previous result is suggestive for the behavior of a
multidimensional anisotropic gauge-Higgs model at finite
temperature.2 It is well known that at high temperature the
Higgs phase turns into a symmetric phase. We expect then
that the layer Higgs phase disappears at this tempera-
ture. The new phase is probably a multidimensional high-
temperature symmetric phase: a hot multidimensional
world in the ‘‘quark-gluon plasma’’ phase. In this rather
hypothetical scenario the Universe starts as a hot multi-
dimensional system that cools down, passes through a
series of phase transitions and ends up as a brane
Universe at zero temperature.
To explore the phase diagram of the anisotropic 5D U(1)

gauge model we have to understand first the phase struc-
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1Our results contradict the prediction based on a Variational
Cumulant Expansion by the authors of Ref. [7] for which
the layer phase of the anisotropic lattice gauge models persists
at high temperature.

2For the analysis of anisotropic gauge-Higgs models at zero
temperature see Refs. [8,9].
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ture of the 4D U(1) gauge model at high temperature. The
study of the phase structure of lattice electrodynamics in
three and four dimensions at zero temperature, using the
topological excitations of the theory (monopoles), was first
performed by the authors of Ref. [10]. Computer simula-
tions for the 3D compact QED at finite temperature were
performed in Ref. [11] for the deconfinement transition
from the monopole-antimonopole point of view. In three
dimensions and zero temperature the theory is confining
for all values of the coupling constant and a monopole and
antimonopole plasma is responsible for the permanent
confinement of oppositely charged particles. For nonzero
temperature the binding of monopoles and the formation of
magnetic dipoles lead to loss of confinement. The dipole
plasma cannot sufficiently screen the field created by elec-
tric currents and the screening mass vanishes.

In four dimensions the pointlike topological excitations
become one-dimensional objects (strings of monopole
currents). Again, in the zero-temperature case and for
small values of the coupling constant �, there is a large
number of monopole loops winding around the system and
causing disorder. As a consequence, if an external field is
applied it will be shielded after a small penetration. For
large values of �, on the other hand, the situation is differ-
ent. A long-distance penetration of the external field is
observed, accompanied by the renormalization of the mag-
netic charges due to the monopole currents. The case of
4D compact U(1) gauge theory at finite temperature was
studied separately in [12,13]. The authors of Ref. [12]
reported a second-order phase transition to a Coulomb
phase for Lt � 4, with critical exponents consistent with
3D Gaussian values and no obvious dependence on Lt. A
different picture emerged in Ref. [13], where among other
things the disappearance of the Coulomb phase for all
values of Tð� 1=LtÞ � 0 was predicted. Instead of a Cou-
lomb phase we are left with a spatial confining–temporal
Coulomb phase for all temperatures.

In this paper, we are not going to present a detailed study
of the nature of the phase transitions; however, some of our
findings seem to indicate the absence of a Coulomb phase
for all temperatures different from zero for the case of four-
dimensional compact QED (as long as the condition Lt �
Ls is satisfied). We go one step further and examine a finite
temperature scenario in five dimensions through the aniso-
tropic U(1) gauge model with couplings � and �0. The
connection of this model with the brane model scenarios
makes it an ideal candidate for the study of the brane
models in the nonzero temperature case. We are mostly
interested to discover if some of the most promising char-
acteristics of this model survive in the high-temperature
regime. In what follows we will try to give a brief summary
of our findings through the description of the limiting cases
of our model.

For�0 ¼ 0we obtain the four-dimensional QED at finite
temperature. From the study of the system with volume

V4D ¼ Lt � L3
s and Lt ¼ 2, 4 and 6 we come to the con-

clusion that, although phase transitions seem to appear for
finite Ls, they are actually finite-size effects and disappear
in the limit Ls ! 1. For all values of Lt � 0 the Coulomb
phase gives its place to a temporal Coulomb–spatial con-
fining phase (deconfining phase) [14]. The Coulomb phase
is recovered only at T ¼ 0.
For �0 � 0 and Lt ¼ 2 we have a five-dimensional

anisotropic model in a high-temperature state. The zero-
temperature model has been already studied, and it is
characterized by three distinct phases [3,4,15,16]. A five-
dimensional confining phase, a 5D Coulomb phase and the
layer phase where the system is confining along the fifth
direction while, along the four remaining directions, it ex-
hibits the Coulomb behavior with a massless photon. These
characteristics change when the temperature becomes non-
zero. We observed the replacement of the layer phase by a
deconfining phase, due to the same mechanism responsible
for the disappearance of the Coulomb phase in four dimen-
sions. The behavior of the system in the time direction is
Coulombic and confining in the remaining four directions.
Our work is organized as follows. In Sec. II we present

the action of the model and the observables, the helicity
modulus and the Polyakov line, that we use in order to
characterize the phase diagram of the model. In Sec. III we
analyze the system in the three limiting cases: 5D aniso-
tropic for T ¼ 0, �0 ¼ 0 and Lt ¼ 1. Finally in Sec. IV we
present the phase diagram for the 5D anisotropic model at
finite temperature and, in particular, for Lt ¼ 2.3

II. THE MODEL

A. Definition

The five-dimensional anisotropic U(1) gauge model
with two couplings, � and �0, at finite temperature is
defined as:

S5Dgauge

¼�
X

x;1��<��3

ð1�ReðU��ðxÞÞþ�
X

x;1���3

ð1�ReðU�tðxÞÞ

þ�0 X
x;1���3

ð1�ReðU�5ðxÞÞþ�0X
x

ð1�ReðUt5ðxÞÞ

(1)

where

U��ðxÞ ¼ U�ðxÞU�ðxþ as�̂ÞUy
�ðxþ as�̂ÞUy

� ðxÞ
U�tðxÞ ¼ U�ðxÞUtðxþ as�̂ÞUy

�ðxþ att̂ÞUy
t ðxÞ

U�5ðxÞ ¼ U�ðxÞU5ðxþ as�̂ÞUy
�ðxþ a55̂ÞUy

5 ðxÞ
Ut5ðxÞ ¼ UtðxÞU5ðxþ att̂ÞUy

t ðxþ a55̂ÞUy
5 ðxÞ

3We recall that T � 1=Lt in lattice units.
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are the plaquette variables defined on the 4D-subspaces
fð�; � ¼ 1; 2; 3Þ � tg and planes containing an extra fifth
dimension (x5). With an obvious notation we call these
plaquettes Ps, Pst, P

0
s5 and P0

t5.

The link variables are defined as

U�ðxÞ ¼ ei��ðxÞ;

UtðxÞ ¼ ei�tðxÞ and U5ðxÞ ¼ ei�5ðxÞ:

Let us make the notation clear. The action is defined in
an Euclidean lattice volume, namely V ¼ Lt � L3

s � L5 in
lattice units. Lt is the compactified temporal dimension
which is related to the temperature through the relationship

T ¼ 1

Ltat
: (2)

We denote with at the lattice spacing, Lt is an integer
number, Ls¼1;2;3 are the usual ’’infinite’’ space dimensions

and finally L5 is an extra fifth dimension, which we con-
sider to be infinite and equal to Ls. We assume periodic
boundary conditions for the U(1) gauge field in all direc-
tions. The proclaimed anisotropy of the model has nothing
to do with the ’’time’’ direction. In this model the lattice
spacings as, at are equal. The anisotropy is introduced
through the interaction along the extra direction. So, we
have as ¼ at � a and a5 � a where a5 is the lattice spac-
ing related to the extra dimension.

In our model the gauge couplings � and �0 are generally
independent from each other and the coordinates. The lat-
tice spacing is determined from the value of the couplings
� and �0. In some cases we can have a coordinate depen-
dence and it is possible to relate them with extra fields, as
in the brane model [2,3,17]. In terms of the continuum
fields the link angles, �M, can be written as:

�MðxÞ ¼ aM �AMðxÞ
where �AMðxÞ are the gauge potentials [3,8] and with M
we denote M ¼ ðt; �; 5Þ. In the naı̈ve continuum limit
ða; a5 ! 0Þ we define:

� ¼ a5
g25

and �0 ¼ a2

g25a5

where g5 is the bare five-dimensional coupling constant for
the gauge field. The resulting continuum action takes the
standard form:

Sgauge ¼
Z

d5x
1

g25
�F2
MN; �FMN ¼ @M �AN � @N �AM:

Note that g25 has dimensions of length and is related to a

characteristic scale for five dimensions. The previous ex-
pression does not exhibit any anisotropy at all. However,
the results that we present below indicate that the anisot-
ropy may survive in the continuum limit.

B. Observables

We now proceed to the introduction of the observables,
i.e., the gauge-invariant quantities which are used for the
study of the model.

1. The helicity modulus

Among the quantities used to distinguish the various
phases and the respective phase transitions in a statistical
model the ones that attract the most attention are the so-
called order parameters. Their great significance comes
from the fact that they display completely different behav-
ior between the various phases. Their ’’thermal average’’ is
zero on the one side of the transition and moves away from
zero on the other side. For the case of a confining-Coulomb
transition a quantity with the properties of an order pa-
rameter is the helicity modulus (h.m.). It was first intro-
duced in the context of lattice gauge theories by P.de
Forcrand and M. Vettorazzo and it characterizes the re-
sponse of a system to an external flux. It is zero in a
confining phase and nonzero in a Coulombic one [13].
Let us consider our five-dimensional system with

ðL�; L�; L�; Lt; L5Þ and let us choose a particular orien-

tation, for example, ð�; �Þ. Through the remaining or-
thogonal directions it is defined a stack of L� � Lt � L5

plaquettes parallel to the ð�; �Þ orientation. In order to
study the response of the system to an external static field
we assume the presence of an external flux � through this
stack of plaquettes. By a suitable choice of variable trans-
formations we can spread the flux homogeneously over the
parallel planes. In other words, we can add the constant

value of �P ¼ �
L�L�

to each of the plaquettes of the given

ð�; �Þ orientation. Also we can impose an external flux by
changing the boundary links using twisted boundary con-
ditions instead of using pure periodic [13,18]. The partition
function, in the presence of the external flux, is

Zð�Þ ¼
Z

D�e�Sð�;�Þ (3)

Sð�; �Þ ¼ ��
X

ð��Þplanes
cos

�
��� þ �

L�L�

�

� �
X

ð��Þplanes
cosð���Þ � �

X
x;1���3

cosð��tðxÞÞ

� �0 X
x;1���3

cosð��5ðxÞÞ � �0X
x

cosð�t5ðxÞÞ

(4)

where
P

ð��Þplanes is the sum over the plaquettes of the given

orientation ð�; �Þ, containing the flux and
P

ð��Þplanes its

complement, consisting of all the plaquettes that remained
unchanged (plaquettes belonging to the other planes).
From the partition function we can obtain the flux-

dependent free energy
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Fð�Þ ¼ � lnðZð�ÞÞ ¼ � ln

�Z
D�e�Sð�;�Þ

�
: (5)

An important observation is that the partition function
Zð�Þ of Eq. (3) and hence the flux-free energy is clearly
2� periodic. So, the extra flux we impose on the system is
defined as only modð2�Þ.

In the confining phase the flux-free energy Fð�Þ is
constant in the thermodynamic limit because the correla-
tion length and the effect of the external flux through the
twisted boundary links is exponentially decreasing. On the
contrary, in the Coulomb phase we have an infinite corre-
lation length, so the influence of the twisted boundary
conditions is extended to the full extent of the system. As
a result we have a nontrivial dependence of Fð�Þ by the
external flux �.

The helicity modulus is defined as

hð�Þ ¼ @2Fð�Þ
@�2

���������¼0
; (6)

and it gives a measure of the curvature of the free-energy
profile around � ¼ 0. From the above equation and for
various choices with respect to the orientation, due to the
anisotropy of the model, we have

hsð�Þ ¼ 1

ðL�L�Þ2
��X

Ps

ð� cosð���Þ
��

�
��X

Ps

ð� sinð���ÞÞÞ2
��

(7)

htð�Þ ¼ 1

ðL�LtÞ2
��X

Pst

ð� cosð��tÞÞ
�

�
��X

Pst

ð� sinð��tÞÞÞ2
��

(8)

hs5ð�0Þ ¼ 1

ðL�L5Þ2
��X

P0
s5

ð�0 cosð��5ÞÞ
�

�
��X

P0
s5

ð�0 sinð��5ÞÞ
�
2
��

(9)

ht5ð�0Þ ¼ 1

ðLtL5Þ2
��X

P0
t5

ð�0 cosð�t5ÞÞ
�

�
��X

P0
t5

ð�0 sinð�t5ÞÞ
�
2
��

: (10)

Now, consider for the moment the classical limit (� ! 1)
for the action (4) where all the fluctuations are suppressed.
In this limit the flux is distributed equally over all the
plaquettes of each plane and it does not change as we cross
the parallel planes. If we expand the classical action in

powers of the flux, since in the thermodynamic limit the

quantity �
L�L�

is always small, we find

Sclassicalð�Þ ¼ 1

2
��2 V5D

ðL�L�Þ2
þ constant

) Fclassicalð�Þ � Fclassicalð0Þ

¼ 1

2
��2 V5D

ðL�L�Þ2

where V5D ¼ L�L�L�LtL5 is the 5D lattice volume.

The above expression for the free energy, F, holds all the
way up to the phase transition, where fluctuations are
present, if one only replaces the bare coupling by a renor-
malized coupling, � ! �Rð�Þ (for details see [13,18]):

F½finite ��ð�Þ � F½finite ��ð0Þ ¼ �R

2
�2

�
L�LtL5

L�L�

�
: (11)

From the Eqs. (6) and (11) we have for the ‘‘spatial’’ h.m.

hsð�Þ � �RLt; (12)

and following the same steps, we can get the scaling re-
lations for the remaining quantities:

htð�Þ � �R

L2
�

Lt

(13)

hs5ð�0Þ � �0
RLt (14)

ht5ð�0Þ � �0
R

L2
�

Lt

: (15)

Although the arguments presented above are based mainly
on the classical approach, this is indeed the case in the
Coulomb phase, and the helicity moduli applied for the
five-dimensional system behave exactly as the above equa-
tions predict.

2. Polyakov loop (or Wilson line)

For the evaluation of the potential between a static
quark-antiquark pair at zero temperature, the study of the
ground state expectation value of the Wilson loop for large
Euclidean times is needed. When the temperature is non-
zero (Lt � Ls as opposed to the former case) the same
information is obtained by using a different quantity which
is the Polyakov loop or the Wilson line. It consists of the
product of link variables along topologically nontrivial
loops, winding around the time direction due to periodic
conditions.

Ptð ~n; n5Þ ¼
YLt

nt¼1

Utð ~n; nt; n5Þ Pt ¼ 1

L4
s

X
ð ~n;n5Þ

Ptð ~n; n5Þ

(16)

where fng�Z5 denotes a lattice site.
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Physically, the expectation value of the Polyakov loop
determines the free energy of a system with a single, static
heavy quark, measured relative to the vacuum:

hjPtji ¼ e�LtFq (17)

where jPj is the absolute value of P and h. . .i the statistical
average value evaluated using the action of Eq. (1). The
above relation holds even in the presence of finite mass
quarks coupled to the gauge potential with the only differ-
ence that in that case the expectation value has to be
calculated using the finite temperature action that includes
the dynamical fermions.

The Polyakov loop is somewhat the world line of a static
quark in a Wilson loop and that suggests that the free
energy of a quark-antiquark pair located at ð ~n1; n51Þ andð ~n2; n52Þ respectively is given by the correlation function of
two such loops, with bases at the aforementioned points
and having opposite orientations. Consequently we have

hPt1ð ~n1; n51ÞPy
t2ð ~n2; n52Þi ¼ e�LtFq �qðf ~n1;n51 g;f ~n2;n52 gÞ (18)

keeping Lt constant.
For large-distance separation of the quark-antiquark pair

and assuming that the correlation functions satisfy cluster-
ing, the above expression reduces to

hPt1ð ~n1; n51ÞPy
t2ð ~n2; n52Þi ! jhPtij2 for jR̂j ! 1

ðwhere R̂ ¼ f ~n1; n51g � f ~n2; n52gÞ
(19)

which is just the self-energy of two isolated quarks.
In the confinement phase the correlation function of the

Polyakov loop decays exponentially for large distances:

hPtð0ÞPy
t ðR̂Þi � e�Lt�jR̂j (20)

giving a linear potential with string tension � and

Fq �q ’ �jR̂j.
The flux-free energy Fq �q increases, in general, for large

separation of the quarks in the confining phase, giving
eventually hjPtji ¼ 0 and Fq �q ¼ 1 in the thermodynamic

limit. We interpret hjPtji ¼ 0 as a signal for confinement. If
we have hjPtji � 0, then the free energy of the static quark-
antiquark pair tends to a constant value, for large separa-
tion of the heavy charges, as shown in Eqs. (18) and (19),
and this is a signal for deconfinement. In other words, the
expectation value of the temporal Polyakov loop serves as
an order parameter in finite temperature gauge theories.

III. THREE LIMITING CASES

A. The zero-temperature case

The five-dimensional anisotropic U(1) gauge model, at
zero temperature, was first introduced by Fu and Nielsen
[1] as an attempt to offer an alternative way to achieve
dimensional reduction. Since then many numerical inves-
tigations of the model have been made [15,16]. As we have
already noted in the Introduction, the interest in this comes

from the fact that the anisotropy of the model produces a
new phase, the so-called layer phase, which can serve as a
mechanism for gauge field localization on a brane. We can
induce this anisotropy to the gauge coupling using, for ex-
ample, the Randall-Sundrum (RS) metric background in
five dimensions. The effect of the warp factor from the RS
background or a general anti-de-Sitter (AdS5) background
on the U(1) gauge theory is to provide the gauge theory
with a different gauge coupling in the fifth direction ([3]).
In Fig. 1 we present the phase diagram of the theory. It

consists of three distinct phases. For large values of � and
�0 the model lies in a Coulomb phase (C) on the 5D space.
Now, if one keeps � constant and bigger than 1 and at the
same time decreases �0, one will eventually come across
the new phase, the layer phase (L), where the forces in four
dimensions will still be Coulomb-like but in the fifth
dimension the confinement is present. For small values of
� and �0 the force is confining in all five directions and the
corresponding phase is the Strong phase (S). The proper-
ties of the three phases can become more transparent in
terms of two test charges. In the Coulomb phase the force
between two heavy charges is 5D Coulomb-like, and be-
comes the exact five-dimensional Coulomb law in the
diagonal line, defined by � ¼ �0 for which no anisotropy
appears (for a numerical investigation see [4]). The com-
pletely opposite picture emerges in the Strong phase. There
the force is confining in all five directions giving infinite
energy for the separation of the test charges in any direc-
tion. Now, two test charges in the layer phase will experi-
ence a Coulomb force in the four-dimensional layers, with
the coupling given by the four-dimensional coupling �;
there are strong indications of the similarity with the usual
4D Coulomb law (see [4] for details), while along the fifth
direction the test charges will experience a strong force as
the corresponding coupling �0 takes small values. This
means that charged particles in the layer phase will mainly

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6

β

β′

The phase diagram for zero temperature

Strong

Layer Coulomb

FIG. 1. The phase diagram for the 5D anisotropic U(1) gauge
model at zero temperature. Three phases are present: Strong
confining phase, 5D Coulomb phase and the Layer phase.
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run only along a layer since in an attempt to leave the layer
in which they belong they will be driven back by a linear
potential, analogous to the one responsible for the quark
confinement. This is the mechanism on which the gauge
field localization scheme is based.

Now we would like to sketch the three phases in terms
of the helicity modulus. In the zero-temperature case (Lt ¼
Ls � L5) we are left with only two possible choices.
Instead of the Eqs. (7)–(10) we have

hSð�Þ ¼ 1

ðL�L�Þ2
��X

P

ð� cosð���ÞÞ
�

�
��X

P

ð� sinð���ÞÞ
�
2
��

(21)

h5ð�0Þ ¼ 1

ðL�L5Þ2
��X

P0
ð�0 cosð��5ÞÞ

�

�
��X

P0
ð�0 sinð��5ÞÞ

�
2
��

: (22)

The first one, hSð�Þ, is used to probe the response of the
system to an external flux in the spatial planes (belonging
to a 4D layer) while the second one, h5ð�0Þ, is used in a
similar way for the planes containing the extra transverse
direction.

(i) In the Strong phase (keeping�0 constant) the space-
like helicity modulus vanishes (which is a clear
signal of confinement); as we approach and even-
tually pass the phase boundary it becomes nonzero
in the layer phase with a value that approaches 1 as
� increases further. On the other hand, the trans-
verse h.m., h5ð�0Þ, remains zero throughout the
transition since both phases exhibit confinement in
the fifth direction.

(ii) For the transition between the 5D Coulomb phase
and the layer phase, hSð�Þ retains a value close to 1
for all values of �0, since the four-dimensional
layers experience already a 4D Coulomb-like phase,
while h5ð�0Þ vanishes for the layer phase; as the
system crosses the critical point and enters the
Coulomb phase it grows towards 1 as �0 increases
further [4,15].

B. The �0 ¼ 0 case

On the axis defined by �0 ¼ 0 we consider the four-
dimensional U(1) model. In this section our intention is to
strengthen the arguments given in Ref. [13]. We present
numerical results showing that we have a Coulomb phase
only for T ¼ 0, in accordance with Fig. 12 of [13]. Our
findings contradict the ones of Ref. [12] that stipulate
the existence of a Coulomb phase for Lt � 4 and � �
�c. The numerical results presented below show that we
have a spatial confinement phase when the spatial lattice

size Ls gets big enough, compared to the temporal size Lt

ðLs * 4LtÞ.
This behavior can be understood, following closely

Ref. [13], using simple theoretical arguments. In order to
have hsð�Þ � 0, one must have at least two monopole
loops (far apart) winding around the time direction with
opposite orientations. A noncontractible timelike mono-
pole loop can, in principle, disorder all the spatial planes in
the lattice. The probability to have one such loop passing

through a given lattice site is, roughly, e�mmonð�ÞLt , where
mmonð�Þ is the monopole mass. So the condition to achieve
a probability of order 1 for a system to containing one (or
two) wrapping monopole loops, is

L3
s � e�mmonð�ÞLt � 1 ) Ls � eðLt=3Þmmonð�ÞÞ

) Ls � eðLt=3Þc� (23)

since mmonð�Þ is of order �. Now, starting from the above
equation we can make two statements. First, it predicts a
pseudocritical coupling �c � logðLsÞ which was verified
by our measurements and second, that as we go to smaller
temperatures (bigger Lt), for sufficiently large Ls Eq. (23)
is satisfied; hence the spatial planes become completely
disordered and the Coulomb phase disappears.
In Fig. 2 we show the mean value of the temporal

Polyakov loop Ptð�Þ for Lt ¼ 2. There is an obvious con-
tinuous phase transition from the confining phase ð� �
�c ’ 0:90Þ, where hjPtji is zero, to the deconfining phase
where hjPtji approaches the value of one. In the confining
phase the free energy of a single static charge, relative to
the vacuum, goes to infinity with Ls while it gets a positive
value in the deconfining phase which vanishes as � in-
creases. The mean value of the temporal Polyakov loop
remains always nonzero in the finite temperature phase as
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FIG. 2. The mean value hjPtji of the temporal Polyakov loop
for �0 ¼ 0 and temporal size Lt ¼ 2. hjPtji goes to zero in the
confining phase for Ls ! 1. In the deconfinement phase (�>
�cðLtÞ) hjPtji is nonzero, approaching the value of one as �
increases.
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we switch on �0. This is the case presented in Sec. IV.
However this order parameter does not help us to charac-
terize further the nature of the different phases. We arrived
at the conclusion that the helicity modulus is a more
promising quantity to study the phase diagram in detail.

In Fig. III we present our results for the temporal helicity
modulus htð�Þ for two different ‘‘temperatures’’ Lt ¼ 2
and Lt ¼ 6. The temporal h.m. is zero in the confining
phase for �<�cðLtÞ and nonzero for � � �cðLtÞ in the
deconfining phase, indicating Coulombic behavior. The
signal for htð�Þ in the deconfining phase (� � �c) is being
enhanced with increasing Ls, following the scaling relation

ht � Ls

Lt
. The transition point has only a weak dependence

from the lattice volume showing convergence to a critical
value �cðLtÞ with Ls. We see that �cðLtÞ tends to smaller
values as Lt decreases.

4 Another noticeable difference is
the behavior of ht in the critical region. For Lt ¼ 2, htð�Þ
goes continuously to zero when � approaches �c from
above. For Lt ¼ 6, on the other hand, the ht has an obvious
discontinuity as � approaches �c and the volume in-
creases. This behavior indicates a different order for the
phase transition, a second-order phase transition for Lt ¼ 2
and a first-order for Lt ¼ 6 (for details see Ref. [13]).

In Fig. 4 we show the spatial helicity modulus hsð�Þ for
Lt ¼ 2 and spatial lattice sizes Ls ¼ 4, 18, 16 and 24. The
spatial helicity modulus is zero for � smaller than a critical
value �cðLsÞ that depends strongly on Ls. We shall refer
from now on to �cðLsÞ as the pseudocritical value, to dis-
tinguish it from the real critical value of � that comes from
the temporal helicity modulus htð�Þ. For � � �cðLsÞ, hs

takes nonzero values, increasing linearly as � takes bigger
values. On the other side, the magnitude of this quantity

decreases according to the ratio � Lt

Ls
, as we increase Ls

and tends to zero for Ls ! 1. The pseudocritical value

�cðLsÞ increases with Ls as logðLsÞ [13] and the ratio �cðLsÞ
logðLsÞ

tends to the value 0.5 for Ls � 16. In this way �cðLsÞ goes
to infinity when Ls ! 1. As a result the spatial h.m. is
always zero in the infinite volume limit and as a conse-
quence we have a spatial confining phase.
Finally we study the spatial helicity modulus for Lt ¼ 4

and Lt ¼ 6. The results are shown in Figs. 5(a) (Lt ¼ 4)
and 5(b) (Lt ¼ 6). We have, in general, the same situation
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FIG. 4. The spatial helicity modulus hs for Lt ¼ 2 and �0 ¼ 0,
versus the four-dimensional coupling �. The pseudocritical
value of � increases very fast, towards an infinite value, as the
spatial lattice size Ls increases. The shift of the transition region
to bigger values of � is obvious even in the smaller volumes.
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FIG. 3. The temporal helicity modulus ht for Lt ¼ 2 (a) and Lt ¼ 6 (b) and �0 ¼ 0. Results from three different volumes are present.
The value of ht increases with Ls in the deconfine region, for � bigger than a critical value, again with accordance with the scaling
predictions of Sec. II B 1. The transition for Lt ¼ 2 is continuous, as opposed to the Lt ¼ 6 case, where we have a discontinuous
behavior.

4�cðLt ¼ 2Þ ¼ 0:9008ð3Þ, �cðLt ¼ 4Þ ¼ 1:00340ð1Þ and
�cðLt ¼ 6Þ ¼ 1:0094491ð1Þ. The results are taken from
Ref. [13].
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as for Lt ¼ 2. There is a pseudocritical value of � that
moves to larger values as Ls increases showing a strong
dependence on Lt. The signal for Lt ¼ 4 is clear only for
Ls � 16. For Lt ¼ 6 it seems that Ls ¼ 16 is not enough
but for Ls � 24 we get a clear displacement of �cðLsÞ to
the right. In the region � � �cðLsÞ the spatial helicity
modulus is zero (confining region). For �>�c the spa-

tial h.m. scales with � Lt

Ls
and tends to zero for Ls ! 1. If

we examine the Lt ¼ 8 case, for example, we would
probably need volumes bigger than 8� 323 in order to
get a clear picture of the behavior of the system. From the
previous observations we can say that hsð�Þ is zero for
every value of � in the infinite volume limit, and conse-
quently, we have spatial confinement for all temperatures
different from zero.

We conclude that the phase diagram on the �, T ¼ 1=Lt

plane has three phases: a confining phase for �<�cðLtÞ,
a temporal Coulomb–spatial confining phase for �>
�cðLtÞ5 and the pure Coulomb phase for Lt ! 1 and �>
�c [13,14].

C. Lt ¼ 1

In this case the temporal link is a Polyakov loop by itself,
and of course it is a gauge invariant quantity. The temporal
plaquette becomes

��tðxÞ ¼ ��ðxÞ þ �tðxþ �̂Þ � ��ðxÞ � �tðxÞ:
The two spatial links cancel each other, so in the U(1) case
we get

��tðxÞ ¼ �tðxþ �̂Þ � �tðxÞ:
The contribution to the action is

St ¼ ��
X

x;1���3

cosð�tðxþ �̂Þ � �tðxÞÞ: (24)

The same applies for the ‘‘temporal-transverse’’ plaquettes
and following the same steps as above we find that their
contribution to the action is

St0 ¼ ��0X
x

cosð�tðxþ 5̂Þ � �tðxÞÞ: (25)

From the above equations it can be observed that the tem-
poral plaquettes decouple from the space and transverse
ones. Equations (24) and (25) describe a 4D XY model
with anisotropic couplings ð�;�0Þ. The three spatial
links and the fifth transverse link form a separate four-
dimensional anisotropic U(1) gauge theory with two cou-
plings, � and �0. As a result the partition function of the
model reduces to

Z ðLt¼1Þ ¼ Zanisotropic 4D�XY � Zanisotropic 4D�Uð1Þ; (26)

and it describes two independent lattice field theories.
The anisotropic 4D�XY model, for�0 ¼ 0, reduces to

the three-dimensionalXY model which has a second-order
phase transition for � ¼ 0:4542 [19]. The phase transition
line continues to the ð�;�0Þ plane for smaller values of �
as �0 increases and the critical value of � seems to tend
asymptotically to the value of 0.1 as �0 goes to infinity.6

The 4D gauge model for �0 ¼ 0 reduces to a three-
dimensional U(1) gauge theory which is always in the
confining phase. In the ð�;�0Þ plane we have a critical
line which separates the strong confining phase from the
four-dimensional Coulomb phase. If we move along the
diagonal, for example, where � ¼ �0, we get the usual
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FIG. 5. In figures (a) and (b) we present the spatial h.m. (hs) for �
0 ¼ 0 and different temporal sizes, Lt ¼ 4 and Lt ¼ 6, for a variety

of spatial volumes. The size of hs decreases with Ls when � takes values bigger than the pseudocritical value, as predicted in
Sec. II B 1. The transition region moves clearly to the right as the volume increases, in agreement with the Lt ¼ 2 behavior.

5This phase is usually called deconfining phase.

6For example, for the 4D XY model the critical value is at
� ¼ �0 ¼ 0:29ð1Þ (see Fig. 6).
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weak first-order phase transition for � ¼ �0 ¼ 1:001113
[15,20].

The above discussion can be summarized in the three-
dimensional plot of Fig. 6. The vertical axis is for the
temperature given in terms of the discrete variable Lt.
The upper plane for Lt ¼ 1 corresponds to ‘‘infinite’’
temperature while the lower plane for Lt ¼ L5 ¼ Ls cor-
responds to the zero-temperature case.

IV. STUDY OF THE PHASE DIAGRAM FOR Lt ¼ 2

In five dimensions the phase diagram at zero tempera-
ture is given in Fig. 1.7 For 0 � �0 < 0:40 and � 	 1 there
is a critical horizontal line in the phase diagram separating
the 5D strong confining phase from the layer phase. For
�> 1 and�0 ’ 0:35 there is a critical vertical line that sep-
arates the layer from the 5D Coulomb phase. Our intention
in this section is to explore the effects of finite temperature
on our system and, most important, the feasibility (if any)
of a layer phase, through the study of the changes in the
aforementioned phase line boundaries and the phases
themselves. To that end we move, first, on the line �0 ¼
0:20 in order to study the strong-layer phase transition at
finite T; we know that for �0 ¼ 0 (Sec. III B) there is phase
transition for � ’ 0:90. Second, we move along the line
� ¼ 1:10, in order to study the layer-Coulomb phase
transition at finite temperature.8 As we will explain in
Sec. IVB and using the Figs. 4 and 7 in order to have a
clear picture of the behavior of the system for bigger values

of �, we need even bigger five-dimensional volumes than
those that we can presently achieve.
Using the results presented in the two following sections

we can argue that the layer phase disappears for Lt ¼ 2 and
becomes a deconfined phase with new properties which
will be described below. We can also generalize the ar-
guments and say that there is no layer phase in finite
temperature for any temperature different from zero. The
existence of the layer phase is based strongly on the
existence of the Coulomb phase for �0 ¼ 0. However there
is no Coulomb phase for �0 ¼ 0 at T � 0 as it is argued in
Ref. [13]. We also confirm this result (see Sec. III B).

A. Moving along the line �0 ¼ 0:20

We begin the investigation of the 5D anisotropic pure U
(1) gauge model at finite temperature with what used to be
called as a 5D strong-layer phase transition at zero tem-
perature (Fig. 1). We utilize the helicity modulus hsð�Þ,
htð�Þ in order to bring out the features of the transition
and compare them with the T ¼ 0 and �0 ¼ 0 cases. As
it is shown in Fig. 3 the first deviation from the zero-
temperature case comes from the fact that now, the tran-
sition line boundary between the two phases, is found at a
lower value of � ¼ 0:90 in contrast with the value of � ¼
1:001113 for the T ¼ 0 case. Another observation is that
the values obtained here concerning htð�Þ are of the same
order of magnitude as the ones for the �0 ¼ 0 case; the
only difference is the slight movement of the critical region
to a value between 0.85 and 0.90.
Moving now to a discussion of Fig. 7 and the spatial

helicity modulus hsð�Þ we encounter many similarities
with the results of Sec. III B:

(i) There is a pseudocritical value �cðLsÞ for each lat-
tice size, with hs equal to zero for � � �cðLsÞ,
signal of spatial confinement. For �>�cðLsÞ the
spatial helicity modulus hs increases with �, as one
would expect from a Coulomb phase. But the tran-
sition point moves to higher and higher values of �
as the spatial extent of the lattice (Ls) grows. What
we see here is only a finite-size effect that ceases to
exist in the thermodynamic Ls ! 1 limit.

(ii) The magnitude of hsð�Þ, calculated on a single 4D
layer, decreases with Ls for the same value of � for
�>�cðLsÞ, following the ratio� 1

Ls
. So we expect,

as in the 4D case for �0 ¼ 0, that the spatial helicity
modulus tends to zero for all values of � as Ls ! 1
(indicating spatial confinement); the phase tran-
sition to a Coulomb phase disappears together
with the layer phase in the infinite volume limit.
We mention also that the spatial-transverse helicity
modulus (hs5ð�Þ) remains zero throughout the
transition.

In Fig. 8(a) we present the temporal helicity modu-
lus ht; also, in Fig. 8(b) we present the temporal-transverse

FIG. 6 (color online). Three-dimensional phase diagram of the
model, the vertical axis (1=Lt) represents the temperature. We
present the critical curves for the three limiting cases. C4 and C5

are the four-dimensional and the five-dimensional Coulomb
phases, respectively. L stands for the layer phase at zero tem-
perature. D4 is the temporal Coulomb–spatial confining phase
for �0 ¼ 0.

7Lower plane (1=Lt ¼ 0:0), see Fig. 6.
8We refer to the case of the plane ð�;�0Þ at 1=Lt ¼ 0:5 in

Fig. 6.
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helicity modulus ht5 versus �, for three different volumes.
The two quantities have the same behavior: both take
values equal to zero for � � 0:85 and nonzero for �>
0:85 and they increase with the lattice size Ls, indicating a
Coulombic behavior in the temporal direction. We also
note that the Polyakov loop in the temporal direction, a
result not shown here, is zero for � smaller than a critical
value (�c ’ 0:85) and tends to 1 for �> �c. The transi-
tion, for the three quantities ht, ht5 and hjPtji, concerning
the strong confining phase (� � 0:85) to the deconfining
phase (�> 0:85) is a continuous one. Although we do not
analyze further the order of this phase transition we may
guess that it may not be the case of a first-order phase
transition.

All of the results obtained so far advocate for the dis-
appearance of the layer phase at finite temperature. The
layer gives its place to a phase showing a confining behav-
ior in the 4D subspaces (formed by the three spatial coor-
dinates and the transverse one) and a Coulombic behavior
along the temporal direction.

B. Moving along the line � ¼ 1:10

As we have seen in the previous sections the system
undergoes a continuous phase transition from the strong,
confining phase to a new phase. The transition point for
�0 ¼ 0 is shown to be �c ’ 0:90 and for �0 ¼ 0:20 it is
slightly smaller being in the interval 0:85 � �c < 0:90
region. In order to study the nature and the extent of the
new phase, we choose to keep � fixed at the value of 1.10
and let �0 vary. In Figs. 9(a) and 9(b) we present the spatial
helicity modulus hsð�0Þ and the spatial-transverse helicity
modulus hs5ð�0Þ for three values of the volume. The hs and
hs5 are zero, within the statistical error, for �

0 smaller than
0.445 signaling disordering in the spatial and transverse di-
rections. This phase is the continuation of the�0 ¼ 0 phase
to nonzero values of �0. The 3D U(1) theory obtained
through dimensional reduction for �0 ¼ 0 is extended (for
0 � �0 � 0:445) to a 4D dimensionally reduced U(1) the-
ory in the confining phase. We observe that the layer phase,
consisting of a combination of 4D Coulomb phase and
confinement in the extra dimension, becomes a deconfined
phase.
There is a critical region defined in the interval (0:445 �

�0 � 0:450) in which a finite discontinuity in both quanti-
ties ðhs; hs5Þ is shown up. For �0 >�0

c the spatial helicity
modulus is nonzero and almost constant which is a char-
acteristic of a Coulomb phase. The value of hs5ð�0Þ in-
creases linearly with �0, following the lattice weak
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FIG. 8. The temporal helicity modulus ht (a) and the temporal-transverse helicity modulus ht5 (b) for Lt ¼ 2 and �0 ¼ 0:20 versus
�. The ht is evaluated on the 4D-subspaces (Lt � L3

s) and scales as Ls for �>�c. The ht5 is evaluated on the whole lattice and scales
as L2

s for �>�c.
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coupling expansion, approaching hsð�0Þ as �0 ! �. The
values of hs and hs5 in Fig. 9 are divided by Lt and are
independent of the spatial lattice size Ls. The spatial
helicity modulus gives the renormalized coupling �R ¼
1
e2R

of the 5D U(1) theory in the Coulomb phase which

is fixed by the value of � ¼ 1:10 [4].
The temporal and the temporal-transverse helicity mod-

ulus (not shown here), remain nonzero and increase with
�0. Also the temporal Polyakov loop is nonzero which is a
signal of a finite temperature phase.

By close inspection of Fig. 4 (�0 ¼ 0) and Fig. 7 (�0 ¼
0:20), it becomes obvious that for a constant value of � the
spatial helicity modulus is nonzero for some of the vol-
umes that we used and it vanishes as the spatial volume
increases beyond a definite value. For � ¼ 1:10, for ex-
ample, the lattice size Ls ¼ 16 is enough to show the
correct thermodynamic limit behavior. If we move to larger
values of �, like � ¼ 1:40, we have to use a spatial size of
the order Ls � 24 in order to find the correct behavior. This
is beyond our current computer capabilities.

In Fig. 10 we sketch, roughly, the phase diagram for
Lt ¼ 2 in the ð�;�0Þ plane. There are three phases with
different behavior of the observables we used:

(1) 5D confining phase with: Pt ¼ 0, ht ¼ 0, ht5 ¼
hs5 ¼ 0 and hs ¼ 0

(2) Finite temperature 5D Coulomb phase: Pt � 0, ht,
hs, ht5 and hs5 � 0

(3) Dimensionally reduced 4D confining phase-
temporal Coulomb: Pt � 0, ht � 0, ht5 � 0 and
hs, hs5 ¼ 0

From the discussion in Sec. III B for �0 ¼ 0 we argue
that the critical temperature for the appearance of the phase
diagram of Fig. 10 it is the zero temperature. The reason is
that the layer phase strongly depends on the existence of

the phase transition in the Coulomb phase for �0 ¼ 0. All
the results we have presented in Sec. III B for T > 0 and
�0 ¼ 0 point to a 3D confining phase, in the infinite
volume limit, for � larger than a critical value �cðLtÞ. A
Coulomb phase does not seem to be the case. From this
analysis we conclude that the phase diagram presented in
Fig. 10 is reproduced for every temperature bigger than
zero. Especially for �>�cðLtÞ and 0<�0 <�0

cðLtÞ we
have a 4D confining-temporal Coulombic phase instead of
a layer phase. Two charges are not localized (confined)
anymore on a three-dimensional subspace (brane), but the
temperature gives the possibility of having interactions be-
tween the neighbor three-dimensional subspaces. It seems
that there are two characteristic correlation lengths in this
deconfining phase. The correlation length given by the
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FIG. 9. The spatial helicity modulus (a) and the spatial-transverse helicity modulus (b) as a function of �0, measured for the temporal
lattice size Lt ¼ 2. The critical value of �0 remains constant with the lattice volume.
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spatial string tension and a second one characterizing
the thickness of the brane given by the interaction in the
transverse direction and the temperature. We did not study
quantitatively these two correlation lengths at finite tem-
perature but we may easily see from Fig. 6 what happens
in two limiting cases. For Lt ¼ 1 (infinite temperature) we
have a 4D U(1) gauge theory in the strong confining phase
and the two correlation lengths are indistinguishable and
approach each other. For the zero-temperature case on the
other hand, there is no spatial string tension; we get a
massless photon on the branes. Note that in this case
the branes are characterized by zero thickness. In between
these two limiting cases we expect a continuous change in
the behavior depending strongly on the temperature.

V. DISCUSSION

The extra dimensional models, like the brane models,
are usually studied in the zero-temperature case. But if we
imagine that our brane world is a part of the Universe
history then the inclusion of the temperature in the problem
is required. In this paper we tried to do a first approach to
this open problem, namely, the study of the behavior of
brane models at high temperature (though neglecting the
gravity effects). We believe that our toy model which con-
sists in a five-dimensional U(1) anisotropic lattice gauge
theory has most of the essential required characteristics.
This model has a very rich phase diagram with respect to
the temperature which is summarized in Figs. 6 and 10.

At this point we would like to present a synthesis of our
results concerning the three parametric ð�;�0; T ¼ 1=LtÞ
phase diagram. The starting point is the plane defined by
ð�;�0; 1=Lt ¼ 0:0Þ in Fig. 6; this choice of parameters
indicates the zero-temperature case (Fig. 1).

At zero temperature and �> 1, �0 small, the phase
diagram contains a phase (Layer phase) in which we can
simulate the 3D brane models. It is characterized by a Cou-
lomb behavior with a massless photon on the brane and
confining force along the extra fifth dimension. A Strong
phase is found to exist for � and �0 both small where
confinement is present along all directions. It is separated
from the Layer phase by a weak first-order phase transition.
Moreover a five-dimensional Coulomb phase, which is met
for� and�0 both bigger than 1, is separated from the Layer
phase by a second-order phase transition. We cannot con-
sider these two phases (Strong and 5D Coulomb) as being
connected in any way to our four-dimensional world.

The main tool for the determination of the nature of
the different phases is helicity modulus hMN defined on the
various ðM;NÞ planes. The mean value of the helicity
modulus is zero in the confinement regime while it takes
nonzero values (and scales with the lattice size) in the
Coulomb phase. Using the helicity modulus (Eqs. (7)–
(10)) we can summarize the properties of the phase dia-
gram at zero temperature as follows:

(1) Strong (confined) phase, for small � and �0: hs, ht,
hs5 and ht5 ¼ 0

(2) 5D Coulomb phase, for large � and �0: hs, ht, hs5
and ht5 � 0

(3) Layer phase, for large � and small �0: hs, ht � 0
and ht5 ¼ 0, ht5 ¼ 0

Now we come to the finite temperature phase diagram
with fixed Lt ¼ 2 (see Fig. 10). To this end we have used
the mean value of the temporal Polyakov loop Pt and the
helicity modulus, which is considered as a safe observable
for the characterization of the phases. We have identified
three phases:

(1) Strong (confined) phase, for small � and �0: Pt, hs,
ht, hs5 and ht5 ¼ 0

(2) Finite temperature 5D Coulomb phase, for large �
and �0: Pt, hs, ht, hs5 and ht5 � 0

(3) Deconfined phase, 4D confining phase-temporal
Coulomb, for large � and small �0: hs, hs5 ¼ 0
and Pt, ht, ht5 � 0

The 4D confining subspace is formed by the three spatial
coordinates and the transverse one. The layer phase is
replaced for finite temperature by the deconfined phase.
From the behavior of the helicity modulus we argue that

the phase transition between the strong phase and the
deconfined phase is a continuous one. The other two criti-
cal lines in the phase diagram are possibly of first order
with an abrupt discontinuous change in the order parame-
ters. In this paper we have not worked out the order of these
transitions.
As we have already mentioned, in this work we have

kept Lt fixed (Lt ¼ 2). In order to define the critical tem-
perature for which the layer phase ceases to exist we have
to move to bigger Lt or equivalently to smaller tempera-
tures. The existence of the layer phase is strongly con-
nected to the existence of the Coulomb phase in the
corresponding 4D U(1) model for �0 ¼ 0. For this reason
we study the four-dimensional pure U(1) lattice gauge
model at finite temperature. This corresponds to the plane
�0 ¼ 0 in the three parametric phase diagram in Fig. 6. We
confirm the results of the authors in Ref. [13] concerning
the four-dimensional systems with Lt ¼ 2, Lt ¼ 4 and
Lt ¼ 6. The result is that the Coulomb phase exists only
for T ¼ 0. For T � 0 we get a deconfined
phase characterized as a spatial confining–temporal Cou-
lomb phase.
In conclusion, we would like to stress that the layer

phase for zero temperature (with a massless photon on
the brane and confinement in the extra dimensions) gives
its place to a deconfined phase at nonzero temperature. In
this phase the three spatial dimensions and the transverse
one form a 4D subspace with confining properties, while
the temporal direction shows a Coulombic behavior.

K. FARAKOS AND S. VRENTZOS PHYSICAL REVIEW D 78, 114502 (2008)

114502-12



ACKNOWLEDGMENTS

We would like to thank K. Anagnostopoulos, P.
Dimopoulos and G. Koutsoumbas for their help and
support with the manuscript. In particular we wish to

thank K. Anagnostopoulos for his help concerning the
4D XY model. We are also grateful to P. de Forcrand for
his comments and discussions on this work.

[1] Y. K. Fu and H. B. Nielsen, Nucl. Phys. B236, 167
(1984).

[2] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 4690
(1999); 83, 3370 (1999).

[3] P. Dimopoulos, K. Farakos, A. Kehagias, and G.
Koutsoumbas, Nucl. Phys. B617, 237 (2001).

[4] K. Farakos and S. Vrentzos, Phys. Rev. D 77, 094511
(2008).

[5] G. R. Dvali and M.A. Shifman, Phys. Lett. B 396, 64
(1997); 407, 452(E) (1997).

[6] K. Farakos and P. Pasipoularides, Phys. Lett. B 621, 224
(2005); Phys. Rev. D 73, 084012 (2006); 75, 024018
(2007); P. Pasipoularides and K. Farakos, J. Phys. Conf.
Ser. 68, 012041 (2007).

[7] L. X. Huang, T. L. Chen, and Y.K. Fu, Phys. Lett. B 329,
175 (1994).

[8] P. Dimopoulos, K. Farakos, C. P. Korthals-Altes, G.
Koutsoumbas, and S. Nicolis, J. High Energy Phys. 02
(2001) 005.

[9] P. Dimopoulos and K. Farakos, Phys. Rev. D 70, 045005
(2004); P. Dimopoulos, K. Farakos, and G. Koutsoumbas,
Phys. Rev. D 65, 074505 (2002); P. Dimopoulos, K.
Farakos, and S. Nicolis, Eur. Phys. J. C 24, 287 (2002).

[10] T.A. DeGrand and D. Toussaint, Phys. Rev. D 22, 2478
(1980).

[11] M.N. Chernodub, E.M. Ilgenfritz, and A. Schiller, Phys.

Rev. D 64, 054507 (2001); Nucl. Phys. B, Proc. Suppl.
106, 703 (2002).

[12] B. A. Berg and A. Bazavov, Phys. Rev. D 74, 094502
(2006); Proc. Sci., LAT2006 (2006) 061 [arXiv:hep-lat/
0609006].

[13] M. Vettorazzo and P. de Forcrand, Nucl. Phys. B686, 85
(2004); Nucl. Phys. B, Proc. Suppl. 129, 739 (2004); Phys.
Lett. B 604, 82 (2004).

[14] C. Borgs, Nucl. Phys. B261, 455 (1985).
[15] P. Dimopoulos, K. Farakos, and S. Vrentzos, Phys. Rev. D

74, 094506 (2006).
[16] A. Hulsebos, C. P. Korthals-Altes, and S. Nicolis, Nucl.

Phys. B450, 437 (1995); C. P. Korthals-Altes, S. Nicolis,
and J. Prades, Phys. Lett. B 316, 339 (1993).

[17] A. Kehagias and K. Tamvakis, Phys. Lett. B 504, 38
(2001).

[18] J. L. Cardy, Nucl. Phys. B170, 369 (1980); G. ’t Hooft,
Nucl. Phys. B153, 141 (1979); J. Groeneveld, J.
Jurkiewicz, and C. P. Korthals Altes, Phys. Lett. B 92,
312 (1980).

[19] A. P. Gottlob and M. Hasenbusch, Physica A (Amsterdam)
201, 593 (1993).

[20] G. Arnold, B. Bunk, T. Lippert, and K. Schilling, Nucl.
Phys. B, Proc. Suppl. 119, 864 (2003); G. Arnold, T.
Lippert, K. Schilling, and T. Neuhaus, Nucl. Phys. B,
Proc. Suppl. 94, 651 (2001).

FINITE TEMPERATURE AND CONFINEMENT ALONG THE . . . PHYSICAL REVIEW D 78, 114502 (2008)

114502-13


