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The weak decays of �b ! �lþl� (l ¼ e, �) are investigated in the minimal supersymmetric standard

model (MSSM) and also in supersymmetric (SUSY) SO(10) grand unified models. In the MSSM special

attention is paid to the neutral Higgs bosons (NHBs) as they make quite a large contribution in exclusive

B ! Xsl
þl� decays at large tan� regions of parameter space of SUSY models, since part of SUSY

contributions is proportional to tan3�. The analysis of decay rate, forward-backward asymmetries, lepton

polarization asymmetries, and the polarization asymmetries of the� baryon in�b ! �lþl� show that the

values of these physical observables are greatly modified by the effects of NHBs. In the SUSY SO(10)

grand unified theory model, the new physics contribution comes from the operators which are induced by

the NHBs’ penguins and also from the operators having chirality opposite to that of the corresponding

standard model (SM) operators. SUSY SO(10) effects show up only in the decay �b ! �þ �þ�� where

the longitudinal and transverse lepton polarization asymmetries deviate significantly from the SM value

while the effects in the decay rate, forward-backward asymmetries, and polarization asymmetries of final

state � baryon are very mild. The transverse lepton polarization asymmetry in �b ! �þ �þ�� is almost

zero in the SM and in the MSSM model. However, it can reach to�0:1 in the SUSY SO(10) grand unified

theory model and could be seen at the future colliders; hence this asymmetry observable will provide us

useful information to probe new physics and discriminate between different models.
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I. INTRODUCTION

From the last decade, rare decays induced by flavor-
changing neutral currents (FCNCs) b ! slþl� have be-
come the main focus of the studies due to the CLEO
measurement of the radiative decay b ! s� [1]. In the
standard model (SM) these decays are forbidden at tree
level and can only be induced by the Glashow-Iliopoulos-
Maiani mechanism [2] via loop diagrams. Hence, such
decays will provide helpful information about the parame-
ters of the Cabbibo-Kobayashi-Maskawa (CKM) matrix
[3,4] elements as well as various hadronic form factors.
In the literature there have been intensive studies on the
exclusive decays B ! PðV; AÞlþl� [5–11] both in the SM
and beyond, where the notions P, V, and A denote the
pseudoscalar, vector, and axial vector mesons, respec-
tively.

It is generally believed that supersymmetry (SUSY) is
not only one of the strongest competitors of the SM but is
also the most promising candidate of new physics. The
reason is that it offers a unique scheme to embed the SM in
a more fundamental theory where many theoretical prob-
lems such as gauge hierarchy, origin of mass, and Yukawa
couplings can be resolved. One direct way to search for
SUSY is to discover SUSY particles at high-energy col-
liders, but unfortunately, so far no SUSY particles have
been found. Another way is to search for its effects through
indirect methods. The measurement of invariant mass
spectrum, forward-backward asymmetry, and polarization

asymmetries are the suitable tools to probe new physics
effects. For most of the SUSY models, the SUSY contri-
butions to an observable appear at loop level due to the
R-parity conservation. Therefore, it has been realized for a
long time that rare processes can be used as a good probe
for the searches of SUSY, since in these processes the
contributions of SUSY and SM arise at the same order in
perturbation theory [12].
Motivated from the fact that in the two Higgs doublet

model and in other SUSY models, neutral Higgs bosons
(NHBs) could contribute largely to the inclusive processes
B ! Xsl

þl�, as part of supersymmetric contributions is
proportional to the tan3� [13]. Subsequently, the physical
observables, like branching ratio and forward-backward
asymmetry, in the large tan� region of parameter space
in SUSYmodels can be quite different from that in the SM.
In addition, similar effects in exclusive B ! KðK�Þlþl�
decay modes are also investigated [12], where the analysis
of decay rates, forward-backward asymmetries, and polar-
ization asymmetries of the final state lepton indicate the
significant role of NHBs. It is believed that physics beyond
the SM is essential to explain the problem of neutrino
oscillation. To this purpose, a number of SUSY SO(10)
models have been proposed in the literature [14–17]. One
such model is the SUSY SO(10) grand unified models
(GUT), in which there is a complex flavor nondiagonal
down-type squark mass matrix element of 2nd and 3rd
generations of order one at the GUT scale [16]. This can
induce large flavor off-diagonal coupling such as the cou-
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pling of the gluino to the quark and squark which belong to
different generations. These couplings are in general com-
plex and may contribute to the process of flavor-changing
neutral currents (FCNCs). The above analysis of physical
observables in B ! KðK�Þlþl� decay is extended in the
SUSY SO(10) GUT model in Ref. [18]. It is believed that
the effects of the counterparts of usual chromomagnetic
and electromagnetic dipole moment operators as well as
semileptonic operators with opposite chirality are sup-
pressed by ms=mb in the SM, but in SUSY SO(10) GUTs
their effect can be significant, since �dRR

23 can be as large as

0.5 [16,18]. Apart from this, �dRR
23 can induce new opera-

tors as the counterparts of usual scalar operators in SUSY
models due to NHB penguins with gluino-down-type
squark propagator in the loop. It has been shown [18]
that the forward-backward asymmetries as well as the
longitudinal and transverse decay widths of B !
KðK�Þlþl� decay are sensitive to these NHBs’ effect in
the SUSY SO(10) GUTmodel which can be detected in the
future B factories. Apart from these decays, there are some
studies in the literature on the rare B decays in some of
these SUSY models [19–21].

Compared to the B meson decays, the investigations of
FCNC b ! s transition for bottom baryon decays �b !
�lþl� are much behind because more degrees of freedom
are involved in the bound state of the baryon system at the
quark level. From the experimental point of view, the only
drawback of bottom baryon decays is that the production
rate of the �b baryon in b quark hadronization is about 4
times less than that of the B meson. Theoretically, the
major interest in baryonic decays can be attributed to the
fact that they can offer a unique ground to extract the
helicity structure of the effective Hamiltonian for b ! s
transition in the SM and beyond, which is lost in the
hadronization of the mesonic case. The key issue in the
study of exclusive baryonic decays is to properly evaluate
the hadronic matrix elements for �b ! �, namely, the
transition form factors which are obviously governed by
nonperturbative QCD dynamics. Currently, there have
been some studies in the literature on �b ! � transition
form factors in different models including pole model
(PM) [22], covariant oscillator quark model (COQM)
[23], MIT bag model (BM)[24], and the nonrelativistic
quark model [25], QCD sum rule approach (QCDSR)
[26], perturbative QCD (pQCD) approach [27], and also
in the light-cone sum rules approach (LCSR) [28]. Using
these form factors, the physical observables like decay
rates, forward-backward asymmetries, and polarization
asymmetries of the � baryon as well as of the final state
leptons in �b ! �lþl� were studied in great detail in the
literature [29–37]. It is pointed out that these observables
are very sensitive to the new physics, for instance, the
polarization asymmetries of the � baryon in �b !
�lþl� decays heavily depend on the right-handed current,
which is much suppressed in the SM [32].

In this paper, we will investigate the exclusive decay
�b ! �lþl� (l ¼ �, �) both in the minimal supersym-
metric standard model (MSSM) as well as in the SUSY SO
(10) GUT model [16]. We evaluate the branching ratios,
forward-backward asymmetries, lepton polarization asym-
metries and polarization asymmetries of the� baryon with
special emphasis on the effects of NHBs in the MSSM. It is
pointed out that different sources of the vector current
could manifest themselves in different regions of phase
space. For a low value of momentum transfer, the photonic
penguin dominates, while the Z penguin and W box be-
come important towards a high value of momentum trans-
fer [12]. In order to search the region of momentum
transfer with large contributions from NHBs, the above
decay in a certain large tan� region of parameter space has
been analyzed in SuperGravity (SUGRA) and M-theory
inspired models [38]. We extend this analysis to the SUSY
SO(10) GUT model [12], where there are some primed
counterparts of the usual SM operators. For instance, the
counterparts of usual operators in B ! Xs� decay are
suppressed by ms=mb and consequently negligible in the
SM because they have opposite chiralities. These operators
are also suppressed in minimal flavor violating (MFV)
models [39,40], however, in the SUSY SO(10) GUT model
their effects can be significant. The reason is that the flavor
nondiagonal squark mass matrix elements are the free
parameters and some of them have significant effects in
rare decays of Bmesons [41]. In our numerical analysis for
�b ! �lþl� decays, we shall use the results of the form
factors calculated by the LCSR approach in Ref. [28], and
the values of the relevant Wilson coefficient for MSSM and
SUSY SO(10) GUT models are borrowed from
Refs. [12,18]. The effects of SUSY contributions to the
decay rate and zero position of forward-backward asym-
metry are also explored in this work. Our results show that
not only the decay rates are sensitive to the NHBs’ con-
tribution but the zero-point of the forward-backward asym-
metry also shifts remarkably. It is known that the hadronic
uncertainties associated with the form factors and other
input parameters have negligible effects on the lepton
polarization asymmetries and polarization asymmetries
of the � baryon in �b ! �lþl� decays. We have also
studied these asymmetries in the SUSY models mentioned
above and found that the effects of NHBs are quite signifi-
cant in some regions of parameter space of SUSY.
The paper is organized as follows. In Sec. II, we present

the effective Hamiltonian for the dilepton decay �b !
�lþl�. Section III contains the definitions and numbers
of the form factors for the said decay using the LCSR
approach. In Sec. IV we present the basic formulas of
physical observables like decays rate, forward-backward
asymmetries (FBAs), and polarization asymmetries of the
lepton and that of the� baryon in�b ! �lþl�. Section V
is devoted to the numerical analysis of these observables,
and the brief summary and concluding remarks are given in
Sec. VI.
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II. EFFECTIVE HAMILTONIAN

After integrating out the heavy degrees of freedom in the
full theory, the general effective Hamiltonian for b !
slþl� in the SUSY SO(10) GUT model can be written as
[18]

Heff ¼ � 4GFffiffiffi
2

p VtbV
�
ts

�X2
i¼1

Cið�ÞOið�Þ þX10
i¼3

ðCið�ÞOið�Þ

þ C0
ið�ÞO0

ið�ÞÞ þX8
i¼1

ðCQi
ð�ÞQið�Þ

þ C0
Qi
ð�ÞQ0

ið�ÞÞ
�
; (1)

where Oið�Þ (i ¼ 1; . . . ; 10) are the four-quark operators
and Cið�Þ are the corresponding Wilson coefficients at the

energy scale � [42]. Using renormalization group equa-
tions to resum the QCD corrections, Wilson coefficients
are evaluated at the energy scale � ¼ mb. The theoretical
uncertainties associated with the renormalization scale can
be substantially reduced when the next-to-leading-
logarithm corrections are included [43]. The new operators
Qið�Þ (i ¼ 1; . . . ; 8) come from the NHBs’ exchange dia-
grams, whose manifest forms and corresponding Wilson
coefficients can be found in [44,45]. The primed operators
are the counterparts of the unprimed operators, which can
be obtained by flipping the chiralities in the corresponding
unprimed operators. It needs to be pointed out that these
primed operators will appear only in the SUSY SO(10)
GUT model and are absent in the SM and MSSM [12].
The explicit expressions of the operators responsible for

�b ! �lþl� transition are given by

O7¼ e2

16�2
mbð �s���PRbÞF��; O0

7¼
e2

16�2
mbð �s���PLbÞF�� O9¼ e2

16�2
ð �s��PLbÞð�l��lÞ;

O0
9¼

e2

16�2
ð �s��PRbÞð�l��lÞ O10¼ e2

16�2
ð �s��PLbÞð�l���5lÞ; O0

10¼
e2

16�2
ð�s��PRbÞð�l���5lÞ

Q1¼ e2

16�2
ð �sPRbÞð�llÞ; Q0

1¼
e2

16�2
ð�sPLbÞð�llÞ Q2¼ e2

16�2
ð �sPRbÞð�l�5lÞ; Q0

2¼
e2

16�2
ð �sPLbÞð�l�5lÞ

(2)

with PL;R ¼ ð1� �5Þ=2. In terms of the above
Hamiltonian, the free quark decay amplitude for b !
slþl� can be derived as [13]:

Mðb ! slþl�Þ ¼ �GF	ffiffiffi
2

p
�
VtbV

�
ts

�
Ceff
9 ð�s��PLbÞð�l��lÞ

þ C10ð �s��PLbÞð�l���5lÞ � 2mbC
eff
7

�
�
�si���

q�

s
PRb

�
ð�l��lÞ þ CQ1

ð�sPRbÞ
� ð�llÞ þ CQ2

ð �sPRbÞð�l�5lÞ
þ ðCiðmbÞ $ C0

iðmbÞÞ
�

(3)

where s ¼ q2 and q ¼ p�b
� p� is the momentum trans-

fer. Because of the absence of the Z boson in the effective
theory, the operatorO10 can not be induced by the insertion
of four-quark operators. Therefore, the Wilson coefficient
C10 does not renormalize under QCD corrections and
hence it is independent on the energy scale. Moreover,
the above quark level decay amplitude can receive addi-
tional contributions from the matrix element of four-quark
operators,

P
6
i¼1hlþl�sjOijbi, which are usually absorbed

into the effective Wilson coefficient Ceff
9 ð�Þ. To be more

specific, we can decompose Ceff
9 ð�Þ into the following

three parts [46–52]

Ceff
9 ð�Þ ¼ C9ð�Þ þ YSDðz; s0Þ þ YLDðz; s0Þ;

where the parameters z and s0 are defined as z ¼ mc=mb,

s0 ¼ q2=m2
b. YSDðz; s0Þ describes the short-distance contri-

butions from four-quark operators far away from the c �c
resonance regions, which can be calculated reliably in the
perturbative theory. The long-distance contributions
YLDðz; s0Þ from four-quark operators near the c �c resonance
cannot be calculated from first principles of QCD and are
usually parametrized in the form of a phenomenological
Breit-Wigner formula making use of the vacuum saturation
approximation and quark-hadron duality. The manifest
expressions for YSDðz; s0Þ and YLDðz; s0Þ can be written as
[28–32]

YSDðz; s0Þ ¼ hðz; s0Þð3C1ð�Þ þ C2ð�Þ þ 3C3ð�Þ þ C4ð�Þ
þ 3C5ð�Þ þ C6ð�ÞÞ � 1

2
hð1; s0Þð4C3ð�Þ

þ 4C4ð�Þ þ 3C5ð�Þ þ C6ð�ÞÞ � 1

2
hð0; s0Þ

� ðC3ð�Þ þ 3C4ð�ÞÞ þ 2

9
ð3C3ð�Þ þ C4ð�Þ

þ 3C5ð�Þ þ C6ð�ÞÞ; (4)

YLDðz; s0Þ ¼ 3

	2
em

ð3C1ð�Þ þ C2ð�Þ þ 3C3ð�Þ þ C4ð�Þ

þ 3C5ð�Þ þ C6ð�ÞÞ X
j¼c ;c 0

!jðq2Þkj

� ��ðj ! lþl�ÞMj

q2 �M2
j þ iMj�

tot
j

; (5)
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with

hðz; s0Þ ¼ � 8

9
lnzþ 8

27
þ 4

9
x� 2

9
ð2þ xÞj1� xj1=2

�
8<
: lnj

ffiffiffiffiffiffiffi
1�x

p þ1ffiffiffiffiffiffiffi
1�x

p �1
j � i� for x � 4z2=s0 < 1

2 arctan 1ffiffiffiffiffiffiffi
x�1

p for x � 4z2=s0 > 1
;

hð0; s0Þ ¼ 8

27
� 8

9
ln
mb

�
� 4

9
lns0 þ 4

9
i�: (6)

The nonfactorizable effects [53–56] from the charm
loop can bring about further corrections to the radiative
b ! s� transition, which can be absorbed into the effective
Wilson coefficient Ceff

7 . Specifically, the Wilson coefficient
Ceff
7 is given by [32]

Ceff
7 ð�Þ ¼ C7ð�Þ þ Cb!s�ð�Þ;

with

Cb!s�ð�Þ ¼ i	s

�
2

9

14=23ðG1ðxtÞ � 0:1687Þ

� 0:03C2ð�Þ
�
; (7)

G1ðxÞ ¼ xðx2 � 5x� 2Þ
8ðx� 1Þ3 þ 3x2ln2x

4ðx� 1Þ4 ; (8)

where 
 ¼ 	sðmWÞ=	sð�Þ, xt ¼ m2
t =m

2
W , Cb!s� is the

absorptive part for the b ! sc �c ! s� rescattering and
we have dropped out the tiny contributions proportional
to the CKM sector VubV

�
us. In addition, C0eff

7 ð�Þ and
C0eff
9 ð�Þ can be obtained by replacing the unprimed

Wilson coefficients with the corresponding prime ones in
the above formula.

III. MATRIX ELEMENTS AND FORM FACTORS IN
LIGHT-CONE SUM RULES

With the free quark decay amplitude available, we can
proceed to calculate the decay amplitudes for �b ! ��
and �b ! �lþl� at hadron level, which can be obtained
by sandwiching the free quark amplitudes between the
initial and final baryon states. Consequently, the following
four hadronic matrix elements,

h�ðPÞj �s��bj�bðPþ qÞi;
h�ðPÞj �s���5bj�bðPþ qÞi;
h�ðPÞj �s���bj�bðPþ qÞi;
h�ðPÞj �s����5bj�bðPþ qÞi;

(9)

need to be computed. Generally, the above matrix elements
can be parametrized in terms of the form factors as [32–
36]:

h�ðPÞj�s��bj�bðPþ qÞi ¼ ��ðPÞðg1�� þ g2i���q
�

þ g3q�Þ�bðPþ qÞ; (10)

h�ðPÞj�s���5bj�bðPþ qÞi ¼ ��ðPÞðG1�� þG2i���q
�

þG3q�Þ�5�bðPþ qÞ;
(11)

h�ðPÞj�s���bj�bðPþ qÞi ¼ ��ðPÞ½h1��� � ih2ð��q�

� ��q�Þ � ih3ð��P�

� ��P�Þ � ih4ðP�q�

� P�q�Þ��bðPþ qÞ; (12)

h�ðPÞj �s����5bj�bðPþ qÞi ¼ ��ðPÞ½H1��� � iH2ð��q�

� ��q�Þ � iH3ð��P�

� ��P�Þ � iH4ðP�q�

� P�q�Þ��5�bðPþ qÞ;
(13)

where all the form factors gi,Gi, hi andHi are functions of
the square of momentum transfer q2. Contracting Eqs. (12)
and (13) with the four momentum q� on both sides and
making use of the equations of motion

q�ð �c 1��c 2Þ ¼ ðm1 �m2Þ �c 1c 2 (14)

q�ð �c 1���5c 2Þ ¼ �ðm1 þm2Þ �c 1�5c 2 (15)

we have

h�ðPÞj �si���q
�bj�bðPþ qÞi

¼ ��ðPÞðf1�� þ f2i���q
� þ f3q�Þ�bðPþ qÞ; (16)

h�ðPÞj �si����5q
�bj�bðPþ qÞi

¼ ��ðPÞðF1�� þ F2i���q
� þ F3q�Þ�5�bðPþ qÞ;

(17)

with

f1 ¼
2h2 � h3 þ h4ðm�b

þm�Þ
2

q2; (18)

f2 ¼
2h1 þ h3ðm� �m�b

Þ þ h4q
2

2
; (19)

f3 ¼
m� �m�b

q2
f1; (20)

F1 ¼
2H2 �H3 þH4ðm�b

�m�Þ
2

q2; (21)
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F2 ¼
2H1 þH3ðm� þm�b

Þ þH4q
2

2
; (22)

F3 ¼
m� þm�b

q2
F1: (23)

Because of the conservation of vector current, the form
factors f3 and g3 do not contribute to the decay amplitude
of �b ! �lþl�. To incorporate the NHBs’ effect one
needs to calculate the matrix elements involving the scalar
�sb and the pseudoscalar �s�5b currents, which can be
parametrized as

h�ðPÞj �sbj�bðPþ qÞi ¼ 1

mb þms

��ðPÞ½g1ðm�b
�m�Þ

þ g3q
2��bðPþ qÞ; (24)

h�ðPÞj �s�5bj�bðPþ qÞi ¼ 1

mb �ms

��ðPÞ½G1ðm�b
þm�Þ

�G3q
2��5�bðPþ qÞ: (25)

The various form factors fi and gi appearing in the
above equations are not independent in the heavy quark
limit and one can express them in terms of two independent
form factors �1 and �2 in HQET defined by [28]

h�ðPÞj �b�sj�bðPþ qÞi ¼ ��ðPÞ½�1ðq2Þ þ v6 �2ðq2Þ�
� ��bðPþ qÞ; (26)

with � being an arbitrary Lorentz structure and v� being

the four-velocity of the �b baryon. Comparing Eqs. (10),
(11), (16), and (17) and Eq. (26), one can arrive at [32–36]

f1 ¼ F1 ¼ q2

m�b

�2; (27)

f2 ¼ F2 ¼ g1 ¼ G1 ¼ �1 þ m�

m�b

�2; (28)

f3 ¼
m� �m�b

m�b

�2; (29)

F3 ¼
m� þm�b

m�b

�2; (30)

g2 ¼ G2 ¼ g3 ¼ G3 ¼ �2

m�b

: (31)

It is known that Eq. (26) is successful at the zero recoil
region (with large q2) in the heavy quark limit. As for the
large recoil region, one might think that these relations
would be broken since light degrees of freedom could
receive large excitations. However, as pointed out in
Ref. [57], the effective theory of soft-collinear interactions
and HQET are independent on both the energy of the light
hadron (E) and heavy quark mass (mb) in the limit of E !

1, which indicates that Eq. (26) is still well defined owing
to the tiny effects from 1=mb, 1=E, and 	s corrections [57]
under the assumption of the Feynman mechanism.
Because of our poor understanding of nonperturbative

QCD dynamics, one has to rely on some approaches to
calculate the form factors answering for �b ! � transi-
tion. It is suggested that the soft nonperturbative contribu-
tion to the transition form factor can be calculated
quantitatively in the framework of the LCSR approach
[58–62], which is a fully relativistic approach and well
rooted in quantum field theory, in a systematic and almost
model-independent way. As a marriage of standard
QCDSR technique [63–65] and theory of hard exclusive
process [66–73], LCSR cures the problem of QCDSR
applying to the large momentum transfer by performing
the operator product expansion (OPE) in terms of twist of
the relevant operators rather than their dimension [74].
Therefore, the principal discrepancy between QCDSR
and LCSR consists in that nonperturbative vacuum con-
densates representing the long-distance quark and gluon
interactions in the short-distance expansion are substituted
by the light-cone distribution amplitudes (LCDAs) de-
scribing the distribution of longitudinal momentum carried
by the valence quarks of the hadronic bound system in the
expansion of transverse-distance between partons in the
infinite momentum frame.
Considering the distribution amplitude up to twist-6, the

form factors for �b ! �lþl� have been calculated in [28]
to the accuracy of leading conformal spin, where the pole
model was also employed to extend the results to the whole
kinematical region. Specifically, the dependence of form
factors on transfer momentum are parametrized as

�iðq2Þ ¼ �ið0Þ
1� a1q

2=m2
�b

þ a2q
4=m4

�b

; (32)

where �i denotes the form factors f2 and g2. The numbers
of parameters �ið0Þ, a1, a2 have been collected in Table I.

IV. FORMULA FOR OBSERVABLES

In this section, we proceed to perform the calculations of
some interesting observables in phenomenology including

TABLE I. Numerical results for the form factors f2ð0Þ, g2ð0Þ,
and parameters a1 and a2 involved in the double-pole fit of Eq.
(32) for both twist-3 and twist-6 sum rules with M2

B 2
½3:0; 6:0� GeV2, s0 ¼ 39� 1 GeV2.

Parameter Twist-3 Up to twist-6

f2ð0Þ 0:14þ0:02
�0:01 0:15þ0:02

�0:02

a1 2:91þ0:10
�0:07 2:94þ0:11

�0:06

a2 2:26þ0:13
�0:08 2:31þ0:14

�0:10

g2ð0Þð10�2 GeV�1Þ �0:47þ0:06
�0:06 1:3þ0:2

�0:4

a1 3:40þ0:06
�0:05 2:91þ0:12

�0:09

a2 2:98þ0:09
�0:08 2:24þ0:17

�0:13
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decay rates, forward-backward asymmetry, and polariza-
tion asymmetries of the final state lepton and of the �
baryon. From Eq. (3), it is straightforward to obtain the
decay amplitude for �b ! �lþl� as

M�b!�lþl� ¼ � GF	

2
ffiffiffi
2

p
�
VtbV

�
ts½T1

�ð�l��lÞ þ T2
�ð�l���5lÞ

þ T3ð�llÞ�; (33)

where the auxiliary functions T1
�, T

2
�, and T3 are given by

T1
� ¼ ��ðPÞ

�
f��ðg1 �G1�5Þ þ i���q

�ðg2 �G2�5Þ þ ðg3 �G3�5Þq�gCeff
9 þ f��ðg1 þG1�5Þ þ i���q

�ðg2 þG2�5Þ

þ ðg3 þG3�5Þq�gC0eff
9 � 2mb

s
f��ðf1 þ F1�5Þ þ i���q

�ðf2 þ F2�5Þ þ ðf3 þ F3�5Þq�gCeff
7

� 2mb

s
f��ðf1 � F1�5Þ þ i���q

�ðf2 � F2�5Þ þ ðf3 � F3�5Þq�gC0eff
7

�
�bðPþ qÞ; (34)

T2
� ¼ ��ðPÞ

�
f��ðg1 �G1�5Þ þ i���q

�ðg2 �G2�5Þ þ ðg3 �G3�5Þq�gC10 þ f��ðg1 þG1�5Þ þ i���q
�ðg2 þG2�5Þ

þ ðg3 þG3�5Þq�gC0
10 �

q�
2mlmb

f½g1ðm�b
�m�Þ þ g3q

2� þ ½G1ðm�b
þm�Þ �G3q

2��5gCQ2

� q�

2mlmb

f½g1ðm�b
�m�Þ þ g3q

2� � ½G1ðm�b
þm�Þ �G3q

2��5gC0
Q2
��bðPþ qÞ; (35)

and

T3 ¼ 1

mb

��ðPÞ½f½g1ðm�b
�m�Þ þ g3q

2� þ ½G1ðm�b
þm�Þ

�G3q
2��5gCQ1

þ f½g1ðm�b
�m�Þ þ g3q

2�
� ½G1ðm�b

þm�Þ �G3q
2��5gC0

Q1
��bðPþ qÞ: (36)

For convenience, we can also rewrite the decay amplitude
in the following form:

M�b!�lþl� ¼ � GF	

2
ffiffiffi
2

p
�
VtbV

�
ts½T1

�ð�l��lÞ þ T2
�ð�l���5lÞ

þ T3ð�llÞ�; (37)

with

T1
� ¼ ��ðPÞ½��ðA1 þ A2�5Þ þ i���q

�ðB1 þ B2�5Þ
þ q�ðD1 þD2�5Þ��bðPþ qÞ;

T2
� ¼ ��ðPÞ½��ðA3 þ A4�5Þ þ i���q

�ðB3 þ B4�5Þ
þ q�ðD3 þD4�5Þ��bðPþ qÞ;

T3
� ¼ ��ðPÞðE1 þ E2�5Þ�bðPþ qÞ:

(38)

The functions Ai, Bi, Di, and Ei are defined as

A1¼g1ðCeff
9 þC0eff

9 Þ�2mb

s
f1ðCeff

7 þC0eff
7 Þ; A2¼G1ð�Ceff

9 þC0eff
9 Þ�2mb

s
f1ðCeff

7 �C0eff
7 Þ;

B1¼g2ðCeff
9 þC0eff

9 Þ�2mb

s
f2ðCeff

7 þC0eff
7 Þ; B2¼G2ð�Ceff

9 þC0eff
9 Þ�2mb

s
F2ðCeff

7 �C0eff
7 Þ;

D1¼g3ðCeff
9 þC0eff

9 Þ�2mb

s
f3ðCeff

7 þC0eff
7 Þ; D2¼G3ð�Ceff

9 þC0eff
9 Þ�2mb

s
F3ðCeff

7 �C0eff
7 Þ;

A3¼g1ðC10þC0
10Þ; A4¼G1ð�C10þC0

10Þ; B3¼g2ðC10þC0
10Þ; B4¼G2ð�C10þC0

10Þ;

D3¼g3ðC10þC0
10Þ�

g1ðm�b
�m�Þþg3q

2

2mlmb

ðCQ2
þC0

Q2
Þ; D4¼G3ð�C10þC0

10Þ�
G1ðm�b

�m�ÞþG3q
2

2mlmb

ðCQ2
�C0

Q2
Þ;

E1¼
g1ðm�b

�m�Þþg3q
2

mb

ðCQ1
þC0

Q1
Þ; E2¼

G1ðm�b
�m�Þ�G3q

2

mb

ðCQ1
�C0

Q1
Þ:

(39)

It needs to be pointed out that the terms proportional to q� in T1
�, namely D1 and D2, do not contribute to the decay

amplitude with the help of the equation of motion for lepton fields. Besides, one can also find that the above results can
indeed reproduce those obtained in the SM with C0

i ¼ 0 and T3 ¼ 0.
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A. The differential decay rates of �b ! �lþl�

The differential decay width of �b ! �lþl� in the rest
frame of the �b baryon can be written as [75],

d�ð�b ! �lþl�Þ
ds

¼ 1

ð2�Þ3
1

32m3
�b

�
Z umax

umin

j ~M�b!�lþl�j2du; (40)

where u ¼ ðp� þ pl�Þ2 and s ¼ ðplþ þ pl�Þ2; p�, plþ ,
and pl� are the four-momenta vectors of �, lþ, and l�,
respectively. ~M�b!�lþl� denotes the decay amplitude after

performing the integration over the angle between the l�
and� baryon. The upper and lower limits of u are given by

umax ¼ ðE�
� þ E�

l Þ2 � ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�2
� �m2

�

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�2
l �m2

l

q
Þ2;

umin ¼ ðE�
� þ E�

l Þ2 � ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�2
� �m2

�

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�2
l �m2

l

q
Þ2;
(41)

where E�
� and E�

l are the energies of � and l� in the rest

frame of lepton pair

E�
� ¼ m2

�b
�m2

� � s

2
ffiffiffi
s

p ; E�
l ¼

ffiffiffi
s

p
2
: (42)

Putting everything together, we can achieve the decay rates
and invariant mass distributions of �b ! �lþl� with and
without long-distance contributions as

d�

ds
¼	2G2

FjVtbV
�
tsj2

128m3
�b
�4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

l

s

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðm2

�b
;m2

�; sÞ
q �

m�b
ml

2mb

f22ðm�b
�m�Þðs�ðm�þm�b

Þ2ÞðCQ1
C�
10þC�

Q1
C10Þ

þm�b
mbð1þ 2m2

l =sÞððm2
�b

�m2
�� tÞðf22 þg22sÞ� 4f2g2sm�b

ÞðC�eff
9 Ceff

7 þC�eff
7 Ceff

9 Þþ s
m2

�b

2m2
b

ððm�þm�b
Þ2

� sÞf22jCQ2
j2þ 2

3s
m2

bð1þ 2m2
l =sÞð�ð2f22 þg22sÞþ 3sðm2

�b
þm2

�� sÞðf22 þg22sÞþ 6f2g2sm�ðm2
�b

�m2
�þ sÞÞjCeff

7 j2

þ 1

6
ð1þ 2m2

l =sÞð�ðf22 þ 2g22sÞþ 3sðm2
�b

þm2
�� sÞðf22 þg22sÞþ 6f2g2sm�ðm2

�b
�m2

�þ sÞÞjCeff
9 j2

þ 1

6
ððð1þ 2m2

l =sÞ�þ 3ð1� 2m2
l =sÞðm2

�b
þm2

�� sÞÞf22 �g22sð1� 4m2
l =sÞð�� 3ððm2

�b
�m2

�Þ2þðm2
�b

þm2
�ÞsÞÞ

þ 6f2g2sm�ð1� 4m2
l =sÞðm2

�b
�m2

�þ sÞÞjC10j2
�
; (43)

where

� ¼ �ðm2
�b
; m2

�; sÞ
¼ m4

�b
þm4

� þ s2 � 2m2
�b
m2

� � 2m2
�s� 2sm2

�b
:

(44)

In Eq. (43) we have given the result in the MSSM with
NHBs and ignored the contribution from the primed op-
erators which appear in the SUSY SO(10) GUT model as
the results are very tiny.

B. FBAs of �b ! �lþl�

Now we are in a position to explore the FBAs of �b !
�lþl�, which is an essential observable sensitive to the
new physics effects. To calculate the forward-backward
asymmetry, we consider the following double differential
decay rate formula for the process �b ! �lþl�

d2�ðs; cos
Þ
dsd cos


¼ 1

ð2�Þ3
1

64m3
�b

�1=2ðm2
�b
; m2

�; sÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

l

s

s
j ~M�b!�lþl�j2; (45)

where 
 is the angle between the momentum of the �b

baryon and l� in the dilepton rest frame. Following
Refs. [32,52], the differential and normalized FBAs for
the semileptonic decay �b ! �lþl� are defined as

dAFBðq2Þ
ds

¼
Z 1

0
d cos


d2�ðs; cos
Þ
dsd cos


�
Z 0

�1
d cos


d2�ðs; cos
Þ
dsd cos


(46)

and

AFBðq2Þ ¼
R
1
0 d cos


d2�ðs;cos
Þ
dsd cos
 � R

0
�1 d cos


d2�ðs;cos
Þ
dsd cos
R

1
0 d cos


d2�ðs;cos
Þ
dsd cos
 þ R

0
�1 d cos


d2�ðs;cos
Þ
dsd cos


:

(47)

Following the same procedure as we did for the differential
decay rate, one can easily get the expression for the
forward-backward asymmetry.

C. Lepton polarization asymmetries of �b ! �lþl�

In the rest frame of the lepton l�, the unit vectors along
the longitudinal, normal, and transversal component of the
l� can be defined as [76]:
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s
��
L ¼ ð0; ~eLÞ ¼

�
0;

~p�
j ~p�j

�
;

s��
N ¼ ð0; ~eNÞ ¼

�
0;

~p� � ~p�
j ~p� � ~p�j

�
;

s
��
T ¼ ð0; ~eTÞ ¼ ð0; ~eN � ~eLÞ;

(48)

where ~p� and ~p� are the three-momenta of the lepton l�
and � baryon, respectively, in the center mass (CM) frame
of the lþl� system. Lorentz transformation is used to boost
the longitudinal component of the lepton polarization to
the CM frame of the lepton pair as

ðs��
L ÞCM ¼

�j ~p�j
ml

;
El ~p�
mlj ~p�j

�
(49)

where El and ml are the energy and mass of the lepton in
the CM frame. The normal and transverse components
remain unchanged under the Lorentz boost.

The longitudinal (PL), normal (PN) and transverse (PT)
polarizations of lepton can be defined as:

Pð�Þ
i ðsÞ ¼

d�
ds ð ~�� ¼ ~e�Þ � d�

ds ð ~�� ¼ � ~e�Þ
d�
ds ð ~�� ¼ ~e�Þ þ d�

ds ð ~�� ¼ � ~e�Þ (50)

where i ¼ L, N, T, and ~�
�
is the spin direction along the

leptons l�. The differential decay rate for the polarized
lepton l� in �b ! �lþl� decay along any spin direction
~�
�
is related to the unpolarized decay rate (40) with the

following relation:

d�ð ~��Þ
ds

¼ 1

2

�
d�

ds

�
½1þ ðP�

L ~e�L þ P�
N ~e�N þ P�

T ~e�T Þ � ~�
��:
(51)

We can achieve the expressions of longitudinal, normal,
and transverse polarizations for �b ! �lþl� decays as
collected below, where only the results in MSSM models
with NHB are given for the conciseness of this paper. Thus
the longitudinal lepton polarization can be written as

PLðsÞ ¼
�
1=

d�

ds

�	2G2
FjVtbV

�
tsj2�ðm2

�b
; m2

�; sÞ
768m2

bm
3
�b
�5

�
1� 4m2

l

s

�
f�6mlmbm�b

f22ðm� �m�b
Þðs� ðm� þm�b

Þ2ÞðCQ1
C�
10

þ C�
Q1
C10Þ � 6m2

�b
f22sðs� ðm� þm�b

Þ2ÞðC�
Q1
CQ2

þ CQ1
C�
Q2
Þ þm2

bð3ðm4
� þm4

�b
� s2Þðf22 þ g22sÞ

� 2m2
�b
m2

�ðf22 þ g22sÞ � �ðm2
�b
; m2

�; sÞðf22 � g22sÞÞðC�eff
9 C10 þ Ceff

9 C�
10Þ � 12m3

bm�b
ððm2

� �m2
�b

þ sÞðf22
� g22sÞ � 4f2g2m�sÞðC�

10C
eff
7 þ C�eff

7 C10Þg: (52)

Similarly, the normal lepton polarization is

PNðsÞ ¼
�
1=

d�

ds

�	2G2
FjVtbV

�
tsj2�ðm2

�b
; m2

�; sÞ
1024mbm

3
�b
�4

ffiffiffi
s

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

l

s

s �
ðs� 4m2

l Þðg2s� f2ðm� þm�b
ÞÞf2m�b

ðCQ1
C�
10 þ C�

Q1
C10Þ

� 2sm�b
mbðg2ðm� þm�b

Þ � f2Þf2ðC�
Q2
Ceff
7 þ C�eff

7 CQ2
Þ þ sm�b

ðf2ðm� þm�b
Þ � g2sÞf2ðC�

Q2
Ceff
9 þ C�eff

9 CQ2
Þ

� 2f2mlmbðf2ðm2
�b

�m2
�Þ þ g2m�sÞðCeff

9 C�
10 þ C�eff

9 C10Þ þ 8mlm
2
bm�b

ðf22 � g22sÞðCeff
9 C�eff

7 þ C�eff
9 Ceff

7 Þ

� 4mlm
2
bm�b

f22ðC�eff
7 C10 þ Ceff

7 C�
10Þ þ

16mlm
3
b

s
ðf22ðm�b

�m�Þ2 � g22s
2ÞjCeff

7 j2 þ 4mlmbsððf2 � g2m�Þ2

� g22m
2
�b
ÞjCeff

9 j2
�
; (53)

and the transverse one is given by

PTðsÞ ¼
�
1=

d�

ds

� i	2G2
FjVtbV

�
tsj2�ðm2

�b
; m2

�; sÞ
512m2

�b
�4

ffiffiffi
s

p
�
1� 4m2

l

s

�
ðm2

�b
�m2

� þ sÞ
�
1

2
ðg2ðm� þm�b

Þ � f2Þf2ðCQ1
C�eff
7

� C�
Q1
Ceff
7 Þ þ 1

4mb

f2ðf2ðm� þm�b
Þ � g2sÞðCQ1

ðC�eff
9 þ C�

10Þ � C�
Q1
ðCeff

9 þ C10ÞÞ þ ml

2m�b

ððf2 � g2m�Þ2

� g22m
2
�b
ÞðCeff

9 C�
10 � C�eff

9 C10Þ þmlmb

s
ðf22 � g22sÞðC�eff

7 C10 � C�
10C

eff
7 Þ
�
: (54)

The d�
ds appearing in the above equation is the one given in Eq. (43) and �ðm2

�b
; m2

�; sÞ is the same as defined in Eq. (44).
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D. � polarization in �b ! �lþl�

To study the � spin polarization, one needs to express

the � four spin vector in terms of a unit vector �̂ along the
� spin in its rest frame as [30]

s0 ¼ ~p� � ~�

m�

; ~s ¼ ~�þ s0
E� þm�

~p�; (55)

where the unit vectors along the longitudinal, normal, and
transverse components of the � polarization are chosen to
be

ê L¼ ~p�

j ~p�j ; êN ¼ ~p��ð ~p�� ~p�Þ
j ~p��ð ~p�� ~p�Þj ; êT ¼ ~p�� ~p�

j ~p�� ~p�j :

Similar to the lepton polarization, the polarization asym-
metries for the� baryon in�b ! �lþl� can be defined as

Pð�Þ
i ðsÞ ¼

d�
ds ð ~� ¼ êÞ � d�

ds ð ~� ¼ �êÞ
d�
ds ð ~� ¼ êÞ þ d�

ds ð ~� ¼ �êÞ (56)

where i ¼ L, N, T, and ~� is the spin direction along the �
baryon. The differential decay rate for the polarized �

baryon in �b ! �lþl� decay along any spin direction ~�
is related to the unpolarized decay rate (40) through the
following relation:

d�ð ~�Þ
ds

¼ 1

2

�
d�

ds

�
½1þðPL ~eLþPN ~eN þPT ~eTÞ � ~��: (57)

Following the same procedure as we did for the lepton
polarizations, we can derive the formulae for the longitu-
dinal, normal, and transverse polarizations of � baryon in
the MSSM as

PLðsÞ ¼
�
1=

d�

ds

�	2G2
FjVtbV

�
tsj2�ðm2

�b
; m2

�; sÞ
64m�m

3
�b
�5s3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

l

s

s �
m�m�b

ml

2mb

ðm� þm�b
Þs3=2f22ðCQ2

C�
10 þ C�

10CQ2
Þ

þm�m�b
mlð2m2

l þ sÞðg22s� f22Þ
ffiffiffi
s

p ðC�eff
7 Ceff

9 þ Ceff
7 C�eff

9 Þ þm2
b

3

�
m�ffiffiffi
s

p ðð12m2
l ððm2

� �m2
�b
Þf22 þ g22s

2ÞÞ

� 3sðs�m2
� þm2

�b
Þðf22 � g22sÞ þ

�
1� 4m2

l

s

�
ðsþm2

� �m2
�b
Þðf22 þ g22sÞÞ

�
jCeff

7 j2

þ s

12

�
12m2

l m�

ffiffiffi
s

p ððjC10j2 � jCeff
9 j2Þf22 þ g22ððm2

�b
�m2

�ÞjC10j2 � ðs�m2
� þm2

�b
ÞjCeff

9 j2ÞÞ

þm�

ffiffiffi
s

p ðf22 þ g22tÞð3ðs�m2
� þm2

�b
Þ �

�
1� 4m2

l

s

�
ðm2

� �m2
�b

þ sÞÞðjCeff
9 j2 þ jC10j2Þ

��
;

PNðsÞ ¼
�
1=

d�

ds

�	2G2
FjVtbV

�
tsj2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðm2

�b
; m2

�; sÞ
q

512mbm
3
�b
�4

ffiffiffi
s

p
�
1� 4m2

l

s

�
f2mbmlm�b

ðs� ðm� þm�b
Þ2Þðf2ðm�b

�m�Þ þ g2sÞ

� ðCQ1
C�eff
7 þ C�

Q1
Ceff
7 Þ þmlm�b

sðs� ðm� þm�b
Þ2Þðf2 þ g2ðm�b

�m�ÞÞðCQ1
C�eff
9 þ C�

Q1
Ceff
9 Þ

�mbsðm2
�b

�m2
� þ sÞðm�f

2
2 � g2ðm2

� �m2
�b

þ sÞf2 þ g22m�tÞðC10C
�eff
9 þ C�

10C
eff
9 Þ

þ 4mbm�b
sð�m�f

2
2 þ g2ðm2

� �m2
�b

þ sÞf2 � g22m�tÞðC10C
�eff
7 þ C�

10C
eff
7 Þg;

PTðsÞ ¼
�
1=

d�

ds

� i	2G2
FjVtbV

�
tsj2�ðm2

�b
; m2

�; sÞ
512mbm

2
�b
�4

ffiffiffi
s

p ml

�
1� 4m2

l

s

�
f2mbðf2ðm� þm�b

Þ � g2sÞðCQ1
C�eff
7 � C�

Q1
Ceff
7 Þ

þ sðg2ðm� þm�b
Þ � f2ÞðCQ1

C�eff
9 � C�

Q1
Ceff
9 Þg; (58)

where �ðm2
�b
; m2

�; sÞ is the same as that defined in Eq. (44),
and the mass of the strange quark is neglected to make the
expressions more compact.

V. NUMERICAL ANALYSIS

In this section, we would like to present the numerical
analysis of decay rates, FBAs, and polarization asymme-
tries of the lepton and � baryon. The numerical values of
Wilson coefficients and other input parameters used in our
analysis are borrowed from Refs. [12,18,28] and collected
in Tables I, II, III, and IV. In the subsequent analysis, we

will focus on the parameter space of large tan�, where the
NHBs’ effects are significant owing to the fact that the
Wilson coefficients corresponding to NHBs are propor-
tional to ðmbml=mhÞtan3� ðh ¼ h0; A0Þ. Here, one tan�
comes from the chargino-up-type squark loop and tan2�
comes from the exchange of the NHBs. At large value of

tan� the Cð0Þ
Qi

compete with Cð0Þ
i and can overwhelm Cð0Þ

i in

some region as can be seen from Tables III and IV [13].
Apart from the large tan� limit, the other two conditions
responsible for the large contributions from NHBs are:
(i) the mass values of the lighter chargino and lighter
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stop should not be too large; (ii) the mass splitting of
charginos and stops should be large, which also indicate
large mixing between the stop sector and chargino sector
[12]. Once these conditions are satisfied, the process B !
Xs� will not only impose constraints on C7, but it also puts
a very stringent constraint on the possible new physics. It is
well known that the SUSY contribution is sensitive to the
sign of the Higgs mass term � and SUSY contributes
destructively when the sign of this term becomes minus.
It is pointed out in literature [12] that there exist consid-
erable regions of SUSY parameter space in which NHBs
can largely contribute to the process b ! slþl� due to
change of the sign of C7 from positive to negative, while
the constraint on b ! s� is respected. Also, when the
masses of SUSY particles are relatively large, say about
450 GeV, there exist significant regions in the parameter
space of SUSY models in which NHBs could contribute
largely. However, in these cases C7 does not change its
sign, because contributions of charged Higgs and chargi-
nos cancel each other. Hopefully, we can distinguish be-

tween these two regions of SUSY by observing
�b ! �lþl� with (l ¼ �, �).
The numerical results for the decay rates, FBAs, and

polarization asymmetries of the lepton and � baryon are
presented in Figs. 1–8. Figure 1 describes the differential
decay rate of �b ! �lþl�, from which one can see that
the supersymmetric effects are quite significant for the
SUSY I and SUSY II model in the high momentum transfer
regions for the muon case, whereas these effects are ex-
tremely small for SUSY III and SUSY SO(10) GUT mod-
els in this case. The reason for the increase of differential
decay width in the SUSY I model is the relative change in
the sign of Ceff

7 ; while the large change in the SUSY II
model is due to the contribution of the NHBs. As for the
SUSY III and SUSY SO (10) models, the value of the
Wilson coefficients corresponding to NHBs is small and
hence one expects small deviations from SM. For the tauon
case, the values of Wilson coefficients corresponding to
NHBs in SUSY III are larger than those for the muon case
and therefore their effects are quite significant as shown in

TABLE III. Wilson Coefficients in the SM and different SUSY models but without neutral Higgs boson contributions. The primed
Wilson coefficients correspond to the operators, which are opposite in helicities from those of the SM operators and these come only in
the SUSY SO(10) GUT model.

Wilson coefficients Ceff
7 C0eff

7 C9 C0
9 C10 C0

10

SM �0:313 0 4.334 0 �4:669 0

SUSYI þ0:3756 0 4.7674 0 �3:7354 0

SUSYII þ0:3756 0 4.7674 0 �3:7354 0

SUSYIII �0:3756 0 4.7674 0 �3:7354 0

SUSY SO(10) ðA0 ¼ �1000Þ �0:219þ 0i 0:039� 0:038i 4:275þ 0i 0:011þ 0:0721i �4:732� 0i �0:075� 0:670i

TABLE II. Values of input parameters used in our numerical analysis.

GF ¼ 1:166� 10�5 GeV�2 jVtsj ¼ 41:61þ0:10
�0:80 � 10�3

jVtbj ¼ 0:9991 mb ¼ ð4:68� 0:03Þ GeV
mcðmcÞ ¼ 1:275þ0:015

�0:015 GeV msð1 GeVÞ ¼ ð142� 28Þ MeV
m�b

¼ 5:62 GeV m� ¼ 1:12 GeV
f�b

¼ 3:9þ0:4
�0:2 � 10�3 GeV2 f� ¼ 6:0þ0:4

�0:4 � 10�3 GeV2

TABLE IV. Wilson coefficient corresponding to NHBs’ contributions. SUSYI corresponds to the regions where SUSY can
destructively contribute and can change the sign of C7, but contribution of NHBs are neglected; SUSYII refers to the region where
tan� is large and the masses of the superpartners are relatively small. SUSY III corresponds to the regions where tan� is large and the
masses of the superpartners are relatively large. The primed Wilson coefficients are the contribution of NHBs in the SUSY SO(10)
GUT model. As the neutral Higgs bosons are proportional to the lepton mass, the values shown in the table are for the � and � case.
The values in the bracket are for the �.

Wilson coefficients CQ1
C0
Q1

CQ2
C0
Q2

SM 0 0 0 0

SUSYI 0 0 0 0

SUSYII 6.5 (16.5) 0 �6:5ð�16:5Þ 0

SUSYIII 1.2 (4.5) 0 �1:2ð�4:5Þ 0

SUSY SO(10) (A0 ¼ �1000) 0:106þ 0i �0:247þ 0:242i �0:107þ 0i �0:250þ 0:246i
(1:775þ 0:002i) (� 4:148þ 4:074i) (� 1:797� 0:002i) (� 4:202þ 4:128i)
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Figs. 1(c) and 1(d). The numerical values of the branching
fractions for �b ! �lþl� (l ¼ �, �) with and without
long-distance contribution in the SM and different SUSY
models are given in Table V.

In Fig. 2, the FBAs for �b ! �lþl� are presented.
Figures 2(a) and 2(b) describe the FBAs for �b !
��þ�� with and without long-distance contributions,
from which one can easily distinguish different SUSY
models. It is known that in the SM the zero position of
FBAs is due to the opposite sign ofCeff

7 andCeff
9 . In SUSY I

and SUSY II models, the sign of Ceff
7 and Ceff

9 are the same

and hence the zero point of the FBAs disappears. Whereas,

in the SUSY III model, due to the opposite sign of Ceff
7 and

Ceff
9 , forward-backward asymmetry passes from the zero

but this zero position shifts to the right from that of the SM
value due to the contribution from the NHBs. Similar
behavior is expected in the SUSY SO(10) GUT model
but in this case the shifting is very mild as the contribution
from the NHBs is very small. For �b ! ��þ�� the FBAs
with and without long-distance contributions are repre-
sented in Figs. 2(c) and 2(d). Again, one can easily dis-
tinguish between the contributions from different SUSY
models. Here, the most interesting point is that the FBAs
pass through the zero point in the SUSY SO(10) GUT
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FIG. 1. The differential width for the �b ! �lþl� (l ¼ �, �) decays as functions of q2 without long-distance contributions (a, c)
and with long-distance contributions (b, d). The solid, dashed, dashed-dot, dashed-double dot, and dashed-triple dot line represent the
SM, SUSY I, SUSY II, SUSY III, and SUSY SO(10) GUT model.

TABLE V. Branching ratio for�b ! �lþl�ðl ¼ �; �Þ in units of 10�6 in the SM and different
SUSY models.

Branching

ratio

�b ! ��þ��
without LD

�b ! ��þ��
with LD

�b ! ��þ��
without LD

�b ! ��þ��
with LD

SM 5.9 39 2.1 4

SUSYI 7.9 47 3.5 5.7

SUSYII 25 65 31 33

SUSYIII 5.6 45 3.2 5.6

SUSY SO(10) (A0 ¼ �1000) 5.92 23 2 2.6
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model. This is due to the same sign of the C0
Q1

and C0
Q2

which suppress the large contribution coming from the Ceff
7

and Ceff
9 in this model. Though SUSY effects are more

distinguishable in FBAs in this case, however, it is
too difficult to measure it experimentally due to its small
value.

Figures 3–5 describe the lepton polarization asymme-
tries for �b ! �lþl�. Before, we try to explain the be-
havior of different polarization asymmetries with the help
the formulas (52)–(54) given above. Equation (52) shows
the dependence of the longitudinal lepton polarization on
different Wilson coefficients, from which one can expect
that the value of lepton polarization asymmetries in the
SUSY I model should be greatly modified from that of the
SM due to the change of sign for the term proportional to
C�eff
7 C10. Because of this change in sign, the large positive

contribution comes and the magnitude of the longitudinal
polarization asymmetry decreases from that of the SM
value. However, this value is expected to increase in the
SUSY II model because of the NHBs’ contribution, which
lies in the first and second term of Eq. (52). In the SUSY III
model, this asymmetry lies close to that of the SM value
due to the same sign of C�eff

7 C10 and small contribution

from the NHBs. As we have considered all the primed
Wilson coefficients to be zero therefore the effect of SUSY
SO(10) on longitudinal lepton polarization asymmetry will
be explained by plotting it with the square of the momen-
tum transfer.
Now, Figs. 3(a) and 3(b) show the dependence of longi-

tudinal polarization asymmetry for the �b ! ��þ�� on
the square of momentum transfer. The value in the SUSY I
model is significantly different from that of the SM, how-
ever, this value is close to that in the SM for SUSY II and
SUSY III models. Furthermore, the absolute value of lon-
gitudinal polarization asymmetry in the SUSY SO(10) is
small compared to the SM model due to the complex part
of the Wilson coefficients and also due to small contribu-
tions of the NHBs in this model.
Figures 3(c) and 3(d) are for the longitudinal lepton

polarization asymmetries of �b ! ��þ�� with and with-
out long-distance contributions, where the different SUSY
models are easily distinguishable. Contrary to the muon
case, the values of this asymmetry in the SUSY II and
SUSY III models are even larger in magnitude than those
obtained in the SM owing to the large contributions from
NHBs, which are attributed to the first and second term of
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FIG. 2. Forward-backward asymmetry for the �b ! �lþl� (l ¼ �, �) decays as functions of q2 without long-distance contributions
(a, c) and with long-distance contributions (b, d). The line conventions are same as given in the legend of Fig. 1.
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Eq. (52). Though the large contributions come from the
first term which is proportional to ml in Eq. (52), this is
overshadowed by the much larger term proportional to
m�b

ðC�
Q1
CQ2

þ C�
Q2
CQ1

Þ.

The dependence of lepton normal polarization asymme-
tries for �b ! �lþl� on the momentum transfer square
are presented in Fig. 4. In terms of Eq. (53), one can
observe that this asymmetry is sensitive to the contribu-
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FIG. 3. Longitudinal lepton polarization asymmetries for the �b ! �lþl� (l ¼ �, �) decays as functions of q2 without long-
distance contributions (a, c) and with long-distance contributions (b, d). The line conventions are same as given in the legend of Fig. 1.
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tion of NHBs in the SUSY II and SUSY III models, while
it is insensitive to the contributions from the SUSY I
and SUSY SO(10) model. It can be seen that PN changes
its sign in the case of large contributions from NHBs
as indicated in Fig. 4, and this is also clear from the
first three terms of Eq. (53). As expected, the contribution
of NHBs from the �þ�� channel is much more signifi-
cant than that from the �þ�� channel. Now, the nor-
mal polarization is proportional to the � which ap-
proaches to zero at the large momentum transfer region
and hence the normal polarization is suppressed by � in
this region.

Figure 5 shows the dependence of transverse polariza-
tion asymmetries for �b ! �lþl� on the square of mo-
mentum transfer. From Eq. (54) we can see that it is
proportional to the imaginary part of the Wilson coefficient
which is negligibly small in the SM as well as in the SUSY
I, SUSY II and SUSY III models. However, complex flavor
nondiagonal down-type squark mass matrix elements of
2nd and 3rd generations are of order one at GUT scale in
the SUSY SO(10) model, which induces complex cou-

plings and Wilson coefficients. As a result, nonzero trans-
verse polarization asymmetries for �b ! �lþl� exist in
this model. Even though in this case, the asymmetry effects
are quite small in the �þ�� channel, the value of transverse
polarization asymmetry can reach to �0:1 when the mo-
mentum transfer is around 15 GeV2. Experimentally, to
measure hPTi of a particular decay branching ratioB at the
n� level, the required number of events are N ¼
n2=ðBhPTi2Þ and if hPTi 	 0:1, then the required number
of events are almost 108 for �b decays. Since at LHC and
BTeV machines, the expected number of b �b production
events is around 1012 per year, so the measurement of
transverse polarization asymmetries in the �b ! �lþl�
decays could discriminate the SUSY SO(10) model from
the SM and other SUSY models.
Figure 6 shows the dependence of longitudinal polariza-

tion of the � baryon on the square of momentum transfer.
One can see that the effects of NHBs are quite distinguish-
able in SUSY II and SUSY III models both for the �þ��
and �þ�� channels; but the values for SUSY I and SUSY II
are almost close to that of the SM. As observed from
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Eq. (58), the effects of NHBs are proportional to the mass
of leptons, therefore the large deviations from the SM are
expected for the tauon as presented in Fig. 6. In the SUSY
II model, the value of the longitudinal polarization even
changes its sign for the �þ�� channel.

With the help of Eq. (58), one can see that the normal
polarization asymmetry of the � baryon is sensitive to the
CQ1

and the sign of the Ceff
7 . It is shown that the sign of Ceff

7

is negative in the SUSY I and II models. In particular, this
asymmetry in the SUSY II model differs from that in the
SM remarkably due to the large value of CQ1

. Moreover,

the contributions from the SUSY III and SUSY SO(10)
models are also quite distinguishable from the SM as
shown in Fig. 7. Therefore, the measurements of normal
polarization asymmetries for �b ! �lþl� in future ex-
periments will help to distinguish different scenarios be-
yond the SM.

Similar to the transverse polarization asymmetry of the
lepton, the transverse polarization asymmetry of the �
baryon is also proportional to the imaginary part of
CQ1

C�eff
7 and CQ1

C�eff
9 (c.f. Eq. (58)). It is known that these

imaginary parts are quite small in the SM, SUSY I, SUSY
II, and SUSY III model, and hence the values of the
transverse polarization asymmetries of the � baryon are
almost zero in these models. However, the imaginary part
of the Wilson coefficient in the SUSY SO(10) model is
large, and hence its effects are quite different from the
other models discussed above as collected in Fig. 8. For the
muon case, the transverse polarization asymmetry can
reach the number �0:1 in the SUSY SO(10) model;
whereas the value is too small to measure experimentally
for the tauon case.

VI. CONCLUSION

We have carried out the study of invariant mass spec-
trum, FBAs, polarization asymmetries of the lepton and �
baryon in �b ! �lþl� (l ¼ �, �) decays in SUSY theo-
ries including the SUSY SO(10) GUT model. In particular,
we analyze the effects of NHBs to this process and our
main outcomes can be summarized as follows:
(i) The differential decay rates deviate sizably from that

of the SM especially in the large momentum transfer
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region. These effects are significant in the SUSY II
model where the value of the Wilson coefficients
corresponding to the NHBs is large. However, the
SUSY SO(10) effects in the differential decay rate of
�b ! �lþl� are negligibly small.

(ii) The SUSYeffects show up for the FBA of the �b !
�lþl� (l ¼ �, �) decays and the deviations from the
SM are very large especially in the SUSY I and
SUSY II model where the FBAs did not pass from
zero. The reason is the same sign of Ceff

7 and Ceff
9 in

these two models, but in the SUSY III scenario it
passes from the zero-point different from that of the
SM. The effects of the SUSY SO(10) are quite
distinguishable when the final state leptons are the
tauon pair, but these are too small to be measured
experimentally.

(iii) The longitudinal, normal, and transverse polariza-
tions of leptons are calculated in different SUSY
models. It is found that the SUSY effects are very
promising which could be measured at future experi-
ments and shed light on the new physics beyond the
SM.

(iv) Following the same line, the longitudinal, normal,
and transverse polarizations of the � baryon in
�b ! �lþl� (l ¼ �, �) decays are calculated at
length. The different SUSY effects are clearly dis-
tinguishable from each other and also from those of
the SM. The transverse polarization asymmetries are
proportional to the imaginary part of the Wilson
coefficients. Hence it is almost zero in the SM as
well as in the MSSM model, however, the Wilson
coefficients in the SUSY SO(10) GUT model have a
large imaginary part, and hence the value of the
transverse polarization is expected to be nonzero.
The maximum value of transverse polarization of
�b ! ��þ�� decay reaches to�0:1 for the square
of momentum transfer around 10 GeV2 and hence
can be measurable at future experiments like LHC
and BTeV machines where a large number of b �b
pairs are expected to be produced.

In short, the experimental investigation of observables,
like decay rates, FBAs, lepton polarization asymmetries,
and the polarization asymmetries of the� baryon in�b !
�lþl� (l ¼ �, �) decay will be used to search for the
SUSY effects, in particular, the NHBs’ effect, encoded in
the MSSM as well as the SUSY SO(10) models.
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APPENDIX A: HELICITYAMPLITUDE
OF �b ! �lþl� DECAY

In this appendix, we would like to present the helicity
amplitude of�b ! �lþl� decay. It is convenient to regard
this decay as a quasi-two-body decay �b ! �V� followed
by the leptonic decay V� ! lþl�, where V� is the off-shell
photon, Z boson or neutral Higgs boson. The matrix ele-
ment of�b ! �lþl� can be written in the following form:

M
�l��lþ
��

¼ g��hl�ðpl� ; �l�Þlþðplþ ; �lþÞjjðlÞ� j0i
� h�ðp�; ��ÞjjðhÞ� j�bðp�b

Þi þ . . . : (A1)

Notice that the dots represent the contributions from

the scalar leptonic current ��ðp�ÞðE1 þ E2�5Þ�bðp�b
Þ�

�lðpl�ÞlðplþÞ, which can be decomposed as the helicity
amplitudes directly. Below, we can concentrate on the
amplitudes contributed from the first part. It is known
that the polarization vector of V� satisfies the completeness
relation

X
�¼�1;0

��ðq; �Þ���ðq; �Þ ¼ �g�� þ q�q�

q2
: (A2)

Introducing a timelike polarization vector

��ðq; tÞ ¼ 1ffiffiffiffiffi
q2

p q�; (A3)

we can express the metric tensor g�� in terms of the
polarization vector of the virtual vector particle as

� g�� ¼ X
�¼�1;0;t


��
�ðq; �Þ���ðq; �Þ; (A4)

where the metric is given by 
� ¼ 
0 ¼ �
t ¼ þ1. Now
we can rewrite the matrix element of �b ! �lþl� as

M
�l��lþ
��

¼ �
�V�H��;�V�L
�l� ;�lþ
�V�

; (A5)

where

L
�l� ;�lþ
�V�

¼ ���V�
hl�ðpl� ; �l�Þlþðplþ ; �lþÞjjðlÞ� j0i;

H��;�V� ¼ ð���V�
Þ�h�ðp�; ��ÞjjðhÞ� j�bðp�b

Þi; (A6)

with �V� being the polarization vector of the virtual inter-

mediate vector boson. Since both L
�l� ;�lþ
�V�

and H��

�V�
are

Lorentz invariant, we can calculate these two amplitudes in
the rest frame of the lepton pair and �b baryon, respec-
tively. The kinematics in the rest frame of �b can be
specified as follows:
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p
�
�b

¼ ðm�b
; 0; 0; 0Þ; p

�
� ¼ ðE�; 0; 0; jp�jÞ;

q� ¼ ðEV� ; 0; 0;�jp�jÞ;
�
�
V� ð0Þ ¼ 1ffiffiffiffiffi

q2
p ðjp�j; 0; 0;�EV� Þ;

��V� ð�1Þ ¼ 1ffiffiffi
2

p ð0;�1; i; 0Þ; ��V� ðtÞ ¼ 1ffiffiffiffiffi
q2

p q�;

(A7)

where the variables E�, jp�j, and EV� are given by

E� ¼ m2
�b

þm2
� � q2

2m�b

; jp�j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
� �m2

�

q
;

EV� ¼ m�b
� E�:

(A8)

It needs to be pointed out that we choose the z axes as the
direction of � momentum. The kinematics in the rest
frame of lepton pair can be specified as

p
�
l� ¼ðEl;jpljsin
cos�;jpljsin
sin�;jpljcos
Þ;

p
�

lþ ¼ðEl;�jpljsin
cos�;�jpljsin
sin�;�jpljcos
Þ;
q�¼

ffiffiffiffiffi
q2

q
ð1;0;0;0Þ; ��V� ð0Þ¼ ð0;0;0;1Þ;

��V� ð�1Þ¼ 1ffiffiffi
2

p ð0;�1;i;0Þ; ��V� ðtÞ¼ 1ffiffiffiffiffi
q2

p q�; (A9)

where the variable El and jplj are

El ¼
ffiffiffiffiffi
q2

p
2

; jplj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
l �m2

l

q
: (A10)

It should be emphasized that we choose the direction of the
lepton’s momentum as ð
;�Þ in the spherical coordinate,
hence the direction of the antilepton’s momentum is (��

, �þ�). For convenience, we usually choose the x� z
plane as the virtual vector boson V� decay plane, that is to
say � ¼ 0.
Now we can calculate the helicity amplitude of �b !

�lþl� explicitly. To this purpose, we first give the expres-
sions of the Dirac spinor in terms of the helicity operator’s
eigenstate

uðp; sÞ ¼ p6 þmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0 þm

p �ðsÞ
0

 !
;

vðp; sÞ ¼ �p6 þmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0 þm

p 0

ðsÞ

� �
;

(A11)

with

�ð1=2Þ ¼ cos
2

sin
2 e
i’

 !
; �ð�1=2Þ ¼ � sin
2 e

i’

cos
2

 !
;


ð1=2Þ ¼ �ð�1=2Þ; 
ð�1=2Þ ¼ ��ð1=2Þ: (A12)

After some lengthy computations, we can finally derive the
following helicity amplitudes:

Mþþ
þ1=2 ¼ � ffiffiffi

2
p

ml sin
H
V
þ1=2;þ1 � 2ml cos
H

V
þ1=2;0 � 2mlH

A
þ1=2;t þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � 4m2

l

q
HS

1=2

Mþ�
þ1=2 ¼ �

ffiffiffiffiffiffiffiffi
2q2

q
cos2




2
ðHV

þ1=2;þ1 þ vHA
þ1=2;þ1Þ þ

ffiffiffiffiffi
q2

q
sin
ðHV

þ1=2;0 þ vHA
þ1=2;0Þ;

M�þ
þ1=2 ¼

ffiffiffiffiffiffiffiffi
2q2

q
sin2




2
ðHV

þ1=2;þ1 � vHA
þ1=2;þ1Þ þ

ffiffiffiffiffi
q2

q
sin
ðHV

þ1=2;0 � vHA
þ1=2;0Þ;

M��
þ1=2 ¼

ffiffiffi
2

p
ml sin
H

V
þ1=2;þ1 þ 2ml cos
H

V
þ1=2;0 � 2mlH

A
þ1=2;t �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � 4m2

l

q
HS

1=2;

Mþþ
�1=2 ¼ �2ml cos
H

V
�1=2;0 þ

ffiffiffi
2

p
ml sin
H

V
�1=2;�1 � 2mlH

A
�1=2;t þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � 4m2

l

q
HS

�1=2;

Mþ�
�1=2 ¼

ffiffiffiffiffi
q2

q
sin
ðHV

�1=2;0 þ vHA
�1=2;0Þ �

ffiffiffiffiffiffiffiffi
2q2

q
sin2




2
ðHV

�1=2;�1 þ vHA
�1=2;�1Þ;

M�þ
�1=2 ¼

ffiffiffiffiffi
q2

q
sin
ðHV

�1=2;0 � vHA
�1=2;0Þ þ

ffiffiffiffiffiffiffiffi
2q2

q
cos2




2
ðHV

�1=2;�1 � vHA
�1=2;�1Þ;

M��
�1=2 ¼ 2ml cos
H

V
�1=2;0 �

ffiffiffi
2

p
ml sin
H

V
�1=2;�1 � 2mlH

A
�1=2;t �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � 4m2

l

q
HS

�1=2;

(A13)

where the hadronic amplitude H��;�V� is given by
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HV
þ1=2;þ1 ¼

ffiffiffi
2

p ½ ffiffiffiffiffiffiffiffi
Q�

p ðA1 � B1ðm�b
þm�ÞÞ þ

ffiffiffiffiffiffiffiffi
Qþ

p ðA2 þ B2ðm�b
�m�ÞÞ�;

HV
þ1=2;0 ¼

1ffiffiffiffiffi
q2

p ½ ffiffiffiffiffiffiffiffi
Q�

p ðA1ðm�b
þm�Þ � B1tÞ þ

ffiffiffiffiffiffiffiffi
Qþ

p ðA2ðm�b
�m�Þ þ B2tÞ�

HA
þ1=2;t ¼

1ffiffiffiffiffi
q2

p ½ ffiffiffiffiffiffiffiffi
Q�

p ðA4ðm�b
þm�Þ �D4tÞ þ

ffiffiffiffiffiffiffiffi
Qþ

p ðA3ðm�b
�m�Þ þD3tÞ�;

HS
þ1=2 ¼ E1

ffiffiffiffiffiffiffiffi
Qþ

p � E2

ffiffiffiffiffiffiffiffi
Q�

p
;

HA
þ1=2;þ1 ¼

ffiffiffi
2

p ½ ffiffiffiffiffiffiffiffi
Q�

p ð�A3 þ B3ðm�b
þm�ÞÞ �

ffiffiffiffiffiffiffiffi
Qþ

p ðA4 þ B4ðm�b
�m�ÞÞ�;

HA
þ1=2;0 ¼

1ffiffiffiffiffi
q2

p ½ ffiffiffiffiffiffiffiffi
Q�

p ðA3ðm�b
þm�Þ � B3tÞ þ

ffiffiffiffiffiffiffiffi
Qþ

p ðA4ðm�b
�m�Þ þ B4tÞ�;

HV
�1=2;0 ¼

1ffiffiffiffiffi
q2

p ½ ffiffiffiffiffiffiffiffi
Q�

p ðA1ðm�b
þm�Þ � B1tÞ �

ffiffiffiffiffiffiffiffi
Qþ

p ðA2ðm�b
�m�Þ þ B2tÞ�;

HV
�1=2;�1 ¼

ffiffiffi
2

p ½ ffiffiffiffiffiffiffiffi
Q�

p ðA1 � B1ðm�b
þm�ÞÞ �

ffiffiffiffiffiffiffiffi
Qþ

p ðA2 þ B2ðm�b
�m�ÞÞ�;

HA
�1=2;t ¼

1ffiffiffiffiffi
q2

p ½� ffiffiffiffiffiffiffiffi
Q�

p ðA4ðm�b
þm�Þ �D4tÞ þ

ffiffiffiffiffiffiffiffi
Qþ

p ðA3ðm�b
�m�Þ þD3tÞ�;

HS
�1=2 ¼ E1

ffiffiffiffiffiffiffiffi
Qþ

p þ E2

ffiffiffiffiffiffiffiffi
Q�

p
:

HA
�1=2;0 ¼

1ffiffiffiffiffi
q2

p ½ ffiffiffiffiffiffiffiffi
Q�

p ðA3ðm�b
þm�Þ � B3tÞ �

ffiffiffiffiffiffiffiffi
Qþ

p ðA4ðm�b
�m�Þ þ B4tÞ�;

HA
�1=2;�1 ¼

ffiffiffi
2

p ½ ffiffiffiffiffiffiffiffi
Q�

p ðA3 � B3ðm�b
þm�ÞÞ �

ffiffiffiffiffiffiffiffi
Qþ

p ðA4 þ B4ðm�b
�m�ÞÞ�;

(A14)

with

Qþ ¼ ðm�b
þm�Þ2 � q2;

Q� ¼ ðm�b
�m�Þ2 � q2; v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

l

q2

s
:

(A15)

The square of the matrix element for the decay of �b !
�lþl� after averaging over the spin of �b baryon can be
written as

2j ~Mj2
�b!�lþl� ¼ jMþþ

þ1=2j2 þ jMþ�
þ1=2j2 þ jM�þ

þ1=2j2
þ jM��

þ1=2j2 þMþþ
�1=2j2 þ jMþ�

�1=2j2
þ jM�þ

�1=2j2 þ jM��
�1=2j2: (A16)

The differential decay rate formula for the process �b !
�lþl� can be written as

d2�ðs; cos
Þ
dsd cos


¼ 1

ð2�Þ3
1

64m3
�b

�1=2ðm2
�b
; m2

�; sÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

l

s

s
j ~M�b!�lþl�j2; (A17)

where 
 is the angle between the momentum of the �
baryon and l� in the dilepton rest frame.
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