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We found that spin-one new light particle exchanges are strongly bounded by high-energy and small

momentum transfer np elastic scattering data; the analogous bound for a scalar particle is considerably

weaker, while for a pseudoscalar particle no bounds can be set. These bounds are compared with the

bounds extracted from low-energy n-Pb scattering experiments and from the bounds of �0 and Kþ meson

decays.
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I. INTRODUCTION

The standard model of three fundamental forces de-
scribes interactions of elementary particles very well.
While the electromagnetic force has a long interaction
range, the short radius of the ‘‘weak force’’
(� 1=1000 fm) is determined by the heavy masses of
mediatingW and Z bosons (� 100 GeV). The QCD forces
are typically contained within a confinement radius of
�1 fm. The effects of the long-range gravitational force
can usually be neglected in elementary particle scattering
experiments.

The search for new forces of nature is a major goal of
experiments at high-energy colliders. Rare transitions and
decays of fundamental particles can also shed light on new
interactions. These experiments are probing for new forces
at distances shorter than 1=1000 fm. However, the exis-
tence of new forces at distances larger than the confine-
ment radius of a nucleon (� 1 fm) can also be probed and
constrained by sensitive experiments.

Experimental searches for and limits on these new forces
of nature can be pursued in two directions: (a) as deviations
from the Newtonian law of gravity where the new force is
expressed as a modification of the 1=r2 law, usually by an
additional Yukawa term that can be parametrized with two
parameters �, the relative strength of new interaction, and
�, the characteristic radius of the interaction. Applied in
the analysis of experimental data at macroscopic distances
down to �a micrometer, this ansatz describes the possible
deviations from classical gravity. (b) The second direction
is a quantum field theory description of the interactions
(excluding gravity) in a covariant form, which can be
expressed in the lowest perturbation order through the
coupling constant g and the mass of the exchanged particle

mediating the interaction �. Covariants that can be con-
sistently considered in this description are scalar (S), pseu-
doscalar (P), vector (V), and axial vector (A). We can argue
that higher spins of the intermediate particle should not be
considered since they lead to a nonrenormalizable theory.
The particles that mediate the new force could be absent
from the spectrum of known particles [1] due to their small
mass and coupling constant or due to some other reason
that is helping them avoid detection. In any case, if these
particles are not observed, direct experimental limits on
their existence in terms of g and � are required.
In Sec. II of the present paper, we reanalyze the experi-

mental small-angle np elastic scattering data at high en-
ergy [2] in terms of bounds on the existence of new forces
expressed as S, P, V, or A covariant interactions. In Sec. III,
we examine bounds that can be obtained from lower energy
data.

II. BOUNDS FROM HIGH-ENERGY np
SCATTERING

The data for small-angle np elastic scattering at high
energy were obtained in the NA-6 experiment [2] per-
formed at the CERN Super Proton Synchrotron a quarter
of a century ago. Incident neutron energy in the experiment
was 100–400 GeV, while the square of the 4-momentum
transfer jtj was varied in the range 6� 10�6 to 5�
10�1 GeV2. The data of this experiment are consistent
with extrapolation of the hadronic amplitude from higher
jtj values, while at jtj< 10�4 GeV2 the differential cross
section rises due to Schwinger scattering, which is the
interaction of the neutron’s magnetic moment with the
Coulomb field of the proton or electron. The purpose of
NA-6 [2] was to measure hadronic interactions at high s in
the region of momentum transfer (� jtj< 10�2 GeV2)
that was usually inaccessible in the scattering of charged
hadrons due to Coulomb interactions. This is the region
where the effect of a new force mediated by a light particle
may be present.
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Figure 1 (similar to Fig. 16 from [2]) demonstrates that
np elastic scattering data in this experiment are well
described by the following formula:

d�

dt
¼ A exp½bt� � 2

�
�kn
mn

�
2 �

t
; (1)

where A ¼ ð79:78� 0:26Þ mb=GeV2 and b ¼ ð11:63�
0:08Þ GeV�2 were determined from the fit to the data
(data are taken from Table 7 in [2]), mn is the neutron
mass, and kn ¼ �1:91 is the neutron magnetic moment in
nuclear magnetons. The factor of 2 in the Schwinger term,
as will be discussed later, accounts for the scattering of the
neutron’s magnetic moment on the proton plus an incoher-
ent contribution of scattering on electrons (gaseous hydro-
gen was used in [2] as a target). Smaller effects due to
neutron polarizability are not included in the description of
the data. This description (1) works rather satisfactorily
with �2 ¼ 41:5 for 31 degrees of freedom. We will refer to
this description as the ‘‘zero model’’ since no new force
contributions are included here.

Although quantum chromodynamics does not provide a
detailed theoretical description of the hadronic elastic scat-
tering at small jtj, i.e. at large impact parameters, hadronic
scattering has been studied experimentally in great detail in
the past and was phenomenologically well understood, e.g.
in the framework of Regge models. The description of
elastic data by a single exponent was a general universal
feature of hadronic scattering observed at low jtj in the

region where it was not obstructed by Coulomb scattering
(for example, see [3] and also the comparison with other
experiments in [2]). This justifies, at a phenomenological
level, our choice of the hadronic scattering description with
a single exponent. However, in an attempt to improve the
description of the data [2], we have tried several alternative
modifications of the exponential term in the ‘‘zero model’’
(1) involving additional parameters, including a quadratic
term in the exponent and the sum of two exponents. In all
of these cases, �2 per degrees of freedom was slightly
increased demonstrating that more complicated modifica-
tions of the ‘‘zero model’’ are not statistically justifiable.
We describe the contribution of a new interaction in the

following way: Let us suppose that a new light particle
with mass � exists which interacts with the neutron and
proton with couplings gn and gp, correspondingly.

Assuming scalar, pseudoscalar, vector, and axial vector
couplings of this particle with nucleons, we obtain the
following addition to expression (1):

d�i

dt
ðg;�Þjnew ¼ jAij2 � FF

16�sðs� 4m2Þ ; (2)

where s ¼ ðpn þ ppÞ2 is the invariant energy square andm
is the nucleon mass. We parametrize the hadronic form
factor’s contribution as

FF ¼ 1

ð1� t=�2Þ8 ; (3)

which comes from a 1=q4 decrease of the nucleon form
factor, and we set� equal to the mass of the lightest meson
resonance with appropriate quantum numbers (�0 in the
case of the pseudoscalar).1 Finally, we use the following
amplitude squares for different couplings:

jASj2 ¼ g4S
ðt��2Þ2 ð4m

2 � tÞ2; (4)

jAPj2 ¼ g4Pt
2

ðt��2Þ2 ; (5)

jAV j2 ¼ 4g4V
ðt��2Þ2

�
s2 � 4m2sþ 4m4 þ stþ 1

2
t2
�
; (6)

jAAj2 ¼ 4g4A
ðt��2Þ2

�
s2 þ 4m2sþ 4m4 þ stþ 1

2
t2

þ 4m4t2

�4
þ 8m4t

�2

�
; (7)

where coupling constants g2i � gipg
i
n.]2|t| [(GeV/c)
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FIG. 1. Elastic differential neutron-proton cross sections mea-
sured in experiment [2]. For comparison, the jtj region measur-
able in pp scattering is shown with the effect of the Coulomb
interaction indicated by the dashed line.

1We checked that our bounds for the cases of S, V, and A
exchanges do not change within 1% accuracy if we substitute
FF ¼ 1 into Eq. (2); for the P exchange, we do not get a reliable
bound (see below).
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It is quite natural to suppose that a new light particle’s
couplings with nucleons originates from its couplings with
quarks. In this case, (6) and (7) are modified. For the vector
exchange, the induced magnetic moment’s interaction term
should be added to the scattering amplitude. Since its
numerator contains a momentum transfer divided by mN ,
which in the considered kinematics gives a factor much
smaller than 1, we can safely neglect it and use (6) in what
follows. The case of the axial vector exchange is more
delicate and discussed in detail in the Appendix.

We can now turn to the discussion of other features of
the np elastic scattering amplitude. Though the strong
interaction amplitude cannot be determined theoretically
from the first principles, our confidence that 1=t depen-
dence is absent in strong interactions for jtj<m2

� opens
the road to bounding the light particle exchange if its mass
is smaller than that of the � meson. Experimental data at
jtj<m2

� matter for our bounds, which makes the precise
value of � in the expression for FF unimportant, since in
the relevant domain of jtj the form factor is close to 1. For
the same reason, no form factor is introduced for the
Schwinger term in (1).

For each fixed set of parameters g2i and� describing the

possible contribution of a ‘‘new force,’’ we fit the experi-
mental distribution with a combined function (1) and (2),
where parameters A and b describing the standard hadronic
contribution are free. Then the maps of A, b, and the
minimum values of �2 are composed as functions of g2i
and �. Analyzing the �2 map, we determined the level of
�2 [4] above which parameters of the ‘‘new force’’ become
incompatible with experimental data at a confidence level
(C.L.) greater than 90%. At this level we also examined
and ensured that parameters A and b remain within the
90% C.L. close to those in the ‘‘zero model.’’ In this way,
we can ensure that the new force contribution does not
substitute for the standard hadronic plus electromagnetic
contributions in the description of the data.

Figure 2 shows, for comparison, fits to the data for the
‘‘zero model’’ and for several excluded models for the new
vector particle exchange with parameters slightly beyond
the excluded limits for �V and g2V .

Two comments need to be made on formulas (4)–(7):
First, the amplitudes with the exchange in the t-channel of
a pointlike particle with spin � depend on s as s�. This
results in an amplitude behavior of s0 for scalar and pseu-
doscalar particles and of s for vector and axial vector
particles. This property of high-energy scattering ampli-
tudes would allow us to determine the value of the spin of
the new physics mediator. Second, the pseudoscalar ex-
change vanishes at t ¼ 0. These comments explain why we
will get the strongest bounds on gA and gV , a weaker bound
on gS, and no bound on gP.

Before presenting fit results, let us explain why we
neglect the interference of a new particle exchange ampli-
tude with the strong amplitude and with the photon ex-

change (Schwinger) amplitude. The strong amplitude is
almost entirely imaginary in the energy domain studied in
[2] (jRe=Imj< 0:1 [1]). That is why it does not interfere
with the real amplitude of a pointlike new particle ex-
change. Interference of the strong amplitude (as well as
the new force amplitude) with the Schwinger term is
negligible since the interference term is constant at
t ¼ 0,2 unlike the square of the Schwinger amplitude,
which contributes significantly at small jtj because of 1=t
behavior.
The mass of a light particle � was bounded in our fits to

be below 100 MeV, and the range of the coupling constants
varied depending on the particular model. Compilation of
the bounds obtained from the �2 limit for P, S, V, and A
models in coordinates g2 versus � is presented in Fig. 3.
In the next step of our analysis, we checked that, for each

model, fitted parameters A and b corresponding to the
boundary of the excluded domain of g2i and � must not
deviate from their zero model values by more than 1:28�,
where � is the corresponding error of parameters A and b
from the zero model. We found that these conditions are

]2|t| [(GeV/c)
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FIG. 2. Several fits to the experimental data of [2]: long-
dashed line—single exponent without the Schwinger contribu-
tion; solid line—the zero model description of (1); dotted line—
the zero model plus the new vector particle contribution with
� ¼ 1 MeV and g2 ¼ 0:0015; short-dashed line–the zero model
plus the new vector particle contribution with � ¼ 10 MeV and
g2 ¼ 0:005; dot-dashed line—the zero model plus the new
vector particle contribution with � ¼ 40 MeV and g2 ¼ 0:025.

2The Schwinger part of the interference term contains q�=q
2,

q2 � t, which may either multiply q� � ðp1 � p2Þ�, canceling
the 1=q2 enhancement, or multiply ðp1 þ p2Þ� giving zero.
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satisfied if �< 40 MeV for the S, V, and A models, and
cannot be satisfied for any value of � for the P model.
Thus, our bounds on the coupling strength g2 shown in
Fig. 3 should only be referred to in these validated domains
(indicated in Fig. 3 by brackets). No consistent limit can be
set for the P model. In addition, we should notice that the
very high value of gP obtained from the �2 analysis for the
P model makes our perturbative approach of formula (5)
invalid. We should conclude, therefore, that the experimen-
tal data [2] do not provide any limit for the pseudoscalar
exchange.

The factor of 2 in the Schwinger term of the zero model
in (1) is coming from both n-p and n-e scattering and is an
estimate of equal contribution from both. However, n-e
scattering occurs in a different kinematical range, and the
event selection criteria in [2] could suppress the detection
of electrons. Consequently, we varied the factor in the
Schwinger term of the zero model (1) from 1 (no n� e
contribution) to 3 (double n� e contribution) and found in
our analysis that this variation was not very significant,
changing our limiting value for g2 by �8% for a fixed
value of �.

One can notice that, since the average s � 540 GeV2 in
experiment [2], vector ðAVÞ and axial vector ðAAÞ ampli-
tudes, as follows from Eqs. (6) and (7), are practically the
same (see Fig. 3), except when � & 1 MeV. In this case,
the last two terms of Eq. (7) arising from the q�q�=�

2 part

of the propagator of the axial vector particle start to domi-
nate the amplitude.

Our bounds on the parameters g2V and g2A (Fig. 3) are
rather strong; say, for � ¼ 10 MeV, g2V;A < 5� 10�3 at

90% C.L., which corresponds to

gV;AN < 0:071; (8)

4 times smaller than the QED coupling constant
ffiffiffiffiffiffiffiffiffiffi
4��

p ’
0:3. For the scalar exchange, taking� ¼ 10 MeV, we get a
much weaker bound, g2S < 1:4.

III. BOUNDS FROM LOWER ENERGY DATA

We will now compare our results from the previous
section with other searches for new interactions [5–14] in
which new light particles participate. In the literature, the
effect of new forces is usually parametrized as a deviation
from the Newtonian gravitational potential:

VðrÞ ¼ �GN

m1m2

r
½1þ �G expð�r=�Þ�; (9)

which is an adequate approximation for the description of
the effect of a new particle exchange between nonrelativ-
istic constituents. The following relationship exists be-
tween the coupling constant �G and characteristic length
� and our parameters g2i and� in cases of vector and scalar
exchanges:

�G ¼ g2V;S
4�GNmpmn

¼ 1:35� 1037g2V;S;

lg� ¼ lgg2V;S þ 37:13;

(10)

�ðcmÞ ¼ 1

�ðMeVÞ5:05� 1010
; lg� ¼ � lg�� 10:7:

(11)

The pseudoscalar exchange would not modify the po-
tential in a nonrelativistic approximation, while axial cou-
pling leads to an interaction among spins of constituents.
References [5–7] show e.g. that values of �G larger than

1 are excluded for � larger than 0.1 mm, while for smaller
� the upper bounds on �G rapidly grow, reaching 109 at the
micron scale.
In Refs. [8–14], analogous bounds for shorter distances

are presented. We see e.g. that for � ¼ 10�13 m,�G should
be less than 1030, or g2V;S less than 10

�7. The corresponding

value of � is 2 MeV. In Fig. 4, our limits for the V and S
particle exchanges in terms of �G and � parameters are
compared with the limits obtained in Refs. [5–14].
Additionally, the data on low-energy (1 keV< En <

10 keV) neutron scattering on 208Pb [15] were applied in
Ref. [16] to obtain bounds on the possible contributions of
a light scalar particle exchange to a neutron-nucleus po-
tential. The upper bound on the coupling constant of a
10MeV boson to a nucleon obtained in [16] corresponds to
g2V;S < 4� 10�6. This rather restrictive bound was ob-

tained from the analysis of the shape of the differential
cross section of low-energy n-208Pb scattering, where the
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FIG. 3 (color online). Compilation of the upper bounds ob-
tained in the current analysis in terms of g2 and � at a 90% C.L.
No limit can be set for the pseudoscalar exchange. Brackets
indicate the interval of mass � where the analysis was validated
(see text).
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additional term, originating from the light scalar boson
exchange, leads to a modification of angular dependence
not observed in the experimental data. Let us stress that the
same bound is valid for gV .

According to [15,16], experimental data in the keV
energy range are well described by the following expres-
sion:

d�

d�
¼ �0

4�
½1þ!E cos	�; (12)

where
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0=4�

p � 10 fm and ! ¼ ð1:91�
0:42Þ10�3 keV�1. These numerical values are very reason-
able from the nuclear scattering point of view, and from the
demand that these values are not spoiled by a Yukawa
potential contribution originating from a light boson ex-
change, bounds on g and � were obtained in [16]. The
point is that the Yukawa amplitude, interfering with the
strong interaction amplitude, will show up in the following
contribution to ! for E ! 0:

j�!j ¼ 16m2
nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�0=4�
p �2

n

4�

A

�4
; (13)

and from the demand that �!<!, the above mentioned
bound was extracted. For an update of results obtained in
[16], see [17].

It is quite natural to assume that the coupling of a new
light boson with nucleons originates from its coupling with
u and d quarks. In this case, bounds from pion and kaon
decays [18] are applicable. Let us start with vector cou-
pling. According to the conservation of vector current,

couplings to nucleons are equal to the sum of the couplings
to quarks: 2fuV þ fdV for a proton and fuV þ 2fdV for a
neutron (fi are analogous to our g

i
N). The �

0 ! VV decay
contributes to�0 ! invisible decays and, using the experi-
mental bound Brð�0 ! ��Þ< 2:7� 10�7 in [18], the fol-
lowing bound was obtained:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jf2uV � f2dV j
q

	 4� 10�3; (14)

which is automatically satisfied for an isoscalar coupling,
fuV ¼ fdV . However, the bound on the �0 ! 
V decay,
with the latter contributing into the �0 ! 
þ invisible
mode, will translate into bounding of isoscalar couplings
as well [18]:

2fuV þ fdV
3

< 1:6� 10�3: (15)

Here, the experimental bound Brð�0 ! 
��Þ< 6�
10�4 was used. These numbers should be compared with
our bound on gVN (8).
Since �0 ! SS and �0 ! S
 decays violate the corre-

sponding P and C parities, we do not obtain bounds on fS
from these decays. C-parity conservation forbids the �0 !

A decay as well, while from the bound on �0 ! invisible
decays, we get the coupling constant bound (14) for the
axial vector boson.
More stringent upper bounds on the coupling constants

follow from very strong experimental limits on the branch-
ing ratio BrðKþ ! �þ þ ��Þ< 2� 10�10. The longitu-
dinal component of the axial vector boson contributes to
the decay amplitude proportionally as ð2mq=�ÞfqA [18],

and even if the axial vector boson couples only with light
quarks, we obtain

fu;dA & 10�6�ðMeVÞ: (16)

The factor of 2mq=� is absent when the axial vector

interaction is substituted by the scalar interaction, and thus
we obtain

fu;dS & 10�5: (17)

Fortunately, the conservation of vector current forbids
K ! �V decays for �2 ¼ 0, so that is why the bound on
the vector coupling for light � is not very strong:

fu;dV

�
�

mK

�
2
& 10�5: (18)

IV. CONCLUSIONS

Our bounds obtained from high-energy and very small
momentum transfer np elastic scattering data [2] provide
exclusions of new forces at distances above 5 fm, which
corresponds to exchanged particle masses lighter than
40 MeV. These bounds are extracted in a covariant ap-
proach, as an alternative to the bounds on couplings at
larger distances, extracted from the absence of deviations
from the Newtonian gravitational law.
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FIG. 4 (color online). Experimental limits on �G and � from
[5–14] parametrizing deviations from Newton’s law. Our limits
transformed into coordinates �G and � are also shown for
comparison.
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Both low-energy n-208Pb and high-energy np scattering
data lead to similar upper bounds on the coupling constants
for � 10 MeV vector bosons, though upper bounds from
n-Pb scattering on the coupling constant gVN are�30 times
lower and close to the bounds from �0 ! invisible and
�0 ! 
þ invisible decays on the vector coupling con-
stants with quarks.

Strong upper bounds on the new physics contribution
into the Kþ ! �þ þ invisible decay allow us to get very

strong bounds for scalar and axial vector bosons: gA;SN &
10�5 for a 10 MeV boson mass.
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APPENDIX

For vanishing light quark masses, their isotriplet axial
current is conserved. The same should hold for the nucleon
currents and is achieved by accounting for pion exchanges:

~AA ¼ g2A �n
�
5n

�
g�� � k�k�

k2 �m2
�

� ðg�� � k�k�
�2 Þ

k2 ��2

�
�
g�� �

k�k�

k2 �m2
�

�
�p
�
5p

¼ g2A
k2 ��2

�
g�� � k�k�

�2

ðm4
� � 2�2m2

� þ k2�2Þ
ðk2 �m2

�Þ2
�

� �n
�
5n �p
�
5p: (A1)

For a massless pion, the 1=�2 singularity cancels out
and the expression in square brackets contains k�k�=k

2,

which, acting upon fermionic axial currents, becomes
ð2mNÞ2=k2. The numerator of the expression for the differ-
ential cross section is regular at k2 � t ¼ 0 since the
square of the pseudoscalar exchange amplitude contains
t2 in the numerator [see (5)], while the interference of the
axial vector and pseudoscalar exchanges is proportional to
t [the denominator equals ðt��2Þ2 independently of the
spin of the exchanged boson].
In real life, light quarks, as well as pions, have nonzero

masses, and to obtain an amplitude square for the axial
vector boson exchange, we should substitute� by ~� in the
square brackets of (7), where

1

~�2 ¼ 1

�2

m4
� � 2�2m2

� þ t�2

ðt�m2
�Þ2

;

and for t, �2 
 m2
� we get ~� ¼ �.

The numerator of the expression for the differential
cross section is singular for � ! 0. However, in renorma-
lizable theory, the mass of the axial vector boson equals its
gauge coupling constant (gA in our case) times the vacuum
average of the corresponding Higgs field. As an example,
one can have in mind the expansion of the standard model
with two Higgs doublets with opposite hypercharges,
where Peccei-Quinn Uð1Þ symmetry is spontaneously bro-
ken, producing an axion. In order to suppress axion cou-
plings to quarks and leptons, the additional singlet neutral
Higgs field N is usually added, which makes the axion
invisible. Gauging of Peccei-Quinn Uð1Þ leads to the axial
coupling of the corresponding vector boson to matter. Such
a light axial vector boson is discussed, in particular, in [18],
where it is light due to the smallness of the gauge coupling
constant, while the vacuum average hNi � 100 GeV,
making it superweakly coupled to matter (gA=�� 1=hNi).
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