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We study singlet and triplet correlation functions of a static quark-antiquark pair defined through gauge

invariant timelike Wilson loops and Polyakov loop correlators in finite temperature SUð2Þ gauge theory.
We use the Lüscher-Weisz multilevel algorithm, which allows us to calculate these correlators at very low

temperatures. We observe that the naive separation of singlet and triplet states, in general, does not hold

nonperturbatively; however, it is recovered in the limit of small separation, and the temperature

dependence of the corresponding correlators is indeed very different.
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I. INTRODUCTION

It is well established that strongly interacting matter
undergoes a deconfining transition at some temperature
which is triggered by a large increase in the number of
degrees of freedom (e.g. a large increase in the entropy
density) as well as by melting of hadronic degrees of
freedom. One of the most important features of the decon-
fined phase is the screening of color charges. It has been
argued that color screening will lead to quarkonium disso-
ciation above the deconfinement temperature which can be
used as a signature of quark gluon plasma formation in
heavy ion collisions [1]. Melting of quarkonium states can
be rigorously studied in terms of spectral functions.
Attempts to reconstruct spectral functions from
Euclidean time quarkonium correlators calculated on the
lattice have been presented in Refs. [2–4] (for light mesons
see [5–7]). These studies seemed to indicate that charmo-
nium states may survive up to unexpectedly high tempera-
tures, 1:6Tc � 2:2Tc (Tc being the transition temperature).
However, it turns out that reconstruction of the spectral
function is difficult [8]. The only statement that can be
made with confidence is that the Euclidean time quark-
onium correlation functions do not show significant tem-
perature dependence [8].

On the lattice, color screening is usually studied in terms
of the Polyakov loop correlator related to the free energy of
a static quark-antiquark pair [9]. Unlike quarkonium cor-
relators it shows very significant temperature dependence
across the deconfinement transition. In fact, in the decon-
fined phase the free energy of a static quark-antiquark pair

shows large temperature dependence even for very small
separations between the static quark and antiquark, much
smaller than the inverse temperature [10–12]. In the per-
turbative picture this is due to the fact that in the decon-
fined phase not only do singlet quark-antiquark (Q �Q) states
contribute to the free energy, but also colored states with
Q �Q in the adjoint [octet for SUð3Þ and triplet for SUð2Þ]
representation. This observation is also supported by lattice
calculations of the correlation function of two temporal
Wilson lines in Coulomb gauge, which in perturbation
theory corresponds to the so-called singlet free energy
[13–19]. The singlet free energy is temperature indepen-
dent at short distances and coincides with the zero tem-
perature potential as expected. However, at larger
distances, e.g. distances of the order of typical quarkonium
size, it also shows significant temperature dependence.
Thus there seems to be a puzzle: heavy quarkonium corre-
lators show almost no temperature dependence, while
static mesons are largely affected by the deconfined
medium.
In the past several years quarkonium properties at finite

temperature have been studied in potential models which
use the singlet free energy as an input [20–26]. Further-
more, within potential model calculations it has been
shown that the small temperature dependence of the quark-
onium spectral function does not necessarily imply sur-
vival of quarkonium states at high temperatures [25,26].
Most quarkonium states are melted due to color screening,
as it was originally suggested by Matsui and Satz, but
threshold enhancement can compensate for the absence
of bound states [25,26].
Potential models can be justified in the effective field

theory framework, the potential nonrelativistic QCD
(pNRQCD), where both scales related to the heavy quark
mass and bound state size are integrated out [27]. This
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approach can be generalized to finite temperature, where
the thermal scales (the temperature and the Debye mass)
also have to eventually be integrated out [28]. In pNRQCD
both color singlet and color octet Q �Q states are present as
effective degrees of freedom. The problem of defining
color singlet and adjoint Q �Q states on the lattice has
been considered in Ref. [29]. It has been found that the
conventional definitions of singlet and adjoint states have
problems. Since this is very relevant for quarkonium phys-
ics at finite temperature as well as from a purely conceptual
point of view, a more detailed study is needed.

In this paper we study static meson correlators in 4
dimensional SUð2Þ gauge theory at finite temperature and
show how the problem observed in Ref. [29] can be re-
solved in the limit of small distances and/or high tempera-
tures. The rest of the paper is organized as follows. In
Sec. II we discuss static meson correlators at finite tem-
perature and their interpretation in the limit of high and low
temperatures. Section III contains our numerical results
along with some important technical details. Finally, in
Sec. IV we give our conclusions.

II. STATIC MESON CORRELATORS

Following Ref. [29] we start our discussion by consid-
ering static meson operators in color singlet and adjoint
(triplet) states,

Oðx; y; tÞ ¼ �c ðx; tÞUðx; y; tÞc ðy; tÞ; (1)

O�ðx; y; tÞ ¼ �c ðx; tÞUðx; x0; tÞT�Uðx0; y; tÞc ðy; tÞ; (2)

where T� is the group generator, �c and c are creation and
annihilation operators of static quarks, and Uðx; y; tÞ are
the spatial gauge transporters. In this section we consider
the general case of the SUðNÞ group, although the numeri-
cal calculations have been done for N ¼ 2. Next we con-
sider correlators of these static meson operators at time
t ¼ 1=T, which, after integrating out the static fields, have
the form [29]

G1ðr; TÞ ¼ 1

N
hTrLyðxÞUðx; y; 0ÞLðyÞUyðx; y; 1=TÞi; (3)

Gaðr; TÞ ¼ 1

N2 � 1
hTrLyðxÞTrLðyÞi

� 1

NðN2 � 1Þ hTrL
yðxÞUðx; y; 0ÞLðyÞ

�Uyðx; y; 1=TÞi; r ¼ jx� yj: (4)

Here LðxÞ is the temporal Wilson line, which on the lattice

is simply LðxÞ ¼ QN��1
�¼0 U0ðx; �Þ with U0ðx; �Þ being the

temporal links. The correlators depend on the choice of the
spatial transporters Uðx; y; tÞ. Typically, a straight line
connecting points x and y is used as a path in the gauge
transporters; that is, one deals with timelike rectangular
cyclic Wilson loops, i.e. Wilson loops wrapping around the

time direction. This object has been calculated at finite
temperature in hard thermal loop (HTL) perturbation the-
ory in the context of resummed perturbative calculations of
quarkonium spectral functions [30–32]. This is one of the
reasons we are interested in a nonperturbative evaluation of
it. In the special gauge, where Uðx; y; tÞ ¼ 1, the above
correlators give a standard definition of the so-called sin-
glet and adjoint free energies,

expð�F1ðr; TÞ=TÞ ¼ 1

N
hTrLyðxÞLðyÞi; (5)

expð�Faðr; TÞ=TÞ ¼ 1

N2 � 1
hTrLyðxÞTrLðyÞi

� 1

NðN2 � 1Þ hTrL
yðxÞLðyÞi: (6)

The singlet and adjoint free energies can be calculated at
high temperature in the leading order HTL approximation
[33], resulting in

F1ðr; TÞ ¼ �N2 � 1

2N

�s

r
expð�mDrÞ � ðN2 � 1Þ�smD

2N
;

(7)

Faðr; TÞ ¼ þ 1

2N

�s

r
expð�mDrÞ � ðN2 � 1Þ�smD

2N
; (8)

with mD ¼ gT
ffiffiffiffiffiffiffiffiffiffiffiffiffiðN=3Þp

being the leading order Debye
mass. At this order F1 and Fa are gauge independent or,
in other words, do not depend on the choice of the parallel
transportersUðx; y; tÞ. Note that at small distances (rmD �
1) the singlet free energy

F1ðr; TÞ ’ �N2 � 1

2N

�s

r
(9)

is temperature independent and coincides with the zero
temperature potential, while the adjoint free energy

Faðr; TÞ ’ 1

2N

�s

r
� N

2
�smD (10)

depends on the temperature.
The physical free energy of a static quark-antiquark pair,

i.e. the one related to the work that has to be done to
separate the static charges by a certain distance, is given
by the thermal average of the singlet and adjoint free
energies [9],

expð�Fðr; TÞ=TÞ ¼ 1

N2
expð�F1ðr; TÞ=TÞ þ N2 � 1

N2

� expð�Faðr; TÞ=TÞ

¼ 1

N2
hTrLðxÞTrLðyÞi � 1

N2
Gðr; TÞ:

(11)

This quantity is explicitly gauge independent. In the lead-
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ing order HTL approximation the free energy is

Fðr; TÞ ¼ � ðN2 � 1Þ
4N2

�2
s

r2T
expð�2mDrÞ: (12)

The 1=r2 behavior is due to the partial cancellation be-
tween the singlet and adjoint contributions [9,34] and has
been confirmed by lattice calculations in the intermediate
distance regime above deconfinement [12,15].

Using the transfer matrix one can show that in the
confined phase [29]

G1ðr; TÞ ¼
X1

n¼1

cnðrÞe�Enðr;TÞ=T; (13)

Gðr; TÞ ¼ X1

n¼1

e�Enðr;TÞ=T; (14)

where En are the energy levels of a static quark-antiquark
pair. The coefficients cnðrÞ depend on the choice of U
entering the static meson operator O in Eq. (1). Since the
color averaged correlator Gðr; TÞ corresponds to a measur-
able quantity (at least in principle), it does not contain cn.
The lowest energy level is the usual static quark-antiquark
potential, while the higher energy levels correspond to
hybrid potentials [35–38]. Using multipole expansion in
pNRQCD, one can show that at short distances the hybrid
potential corresponds to the adjoint potential up to non-
perturbative constants [27]. Indeed, lattice calculations of
the hybrid potentials indicate a repulsive short distance part
[35–38]. If c1 ¼ 1 the dominant contribution to Ga would
be the first excited state E2, i.e. the lowest hybrid potential
which at short distances is related to the adjoint potential.
In this sense Ga is related to static mesons with Q �Q in the
adjoint state. Numerical calculations show, however, that
c1ðrÞ � 1 and depends on the separation r. Thus Ga also
receives contributions from E1 [29]. The lattice data seem
to suggest that c1 approaches unity at short distances [29],
in accord with expectations based on perturbation theory,
where c1 ¼ 1 up to Oðg6Þ corrections [27]. Therefore, at
short distances, r � 1=T, the color singlet and color aver-
aged free energy are related, Fðr; TÞ ¼ F1ðr; TÞ þ T lnN2.
This relation is indeed confirmed by lattice calculations
[14]. In the next section we are going to study the singlet
and averaged correlators G1 and G in the confined phase,
and extract the coefficients c1.

III. NUMERICAL RESULTS

We have calculated correlation functions of static me-
sons G1ðr; TÞ and Gðr; TÞ both in the confined and decon-
fined phases of SUð2Þ gauge theory. In our calculations we
used the Lüscher-Weisz algorithm for noise reduction [39],
which makes it possible to calculate these correlators at
low values of temperature T not accessible by standard
methods. Calculations have been done for� ¼ 4=g2 ¼ 2:5

and 2.7 using lattices with spatial extentNs ¼ 24 andNs ¼
32. Gauge configurations have been generated using a
combination of heat-bath and over-relaxation algorithms.
Measurements are taken after two complete updates. A
complete update consists of one heat-bath and two over-
relaxation updates of the entire lattice, and a hundred slice
updates, in which all links inside a slice N3

s � 2 except for
the boundary are updated for all N�=2 slices with a heat
bath.
We have studied the color singlet and averaged correla-

tors given by Eqs. (3) and (11). The spatial links entering
the transporter Uðx; y; 0Þ were smeared using APE smear-
ing (a process where a link is replaced by a weighted sum
of the link and three-link paths, i.e. staples, connecting the
same points on the lattice) [40], which has been applied
iteratively. The weight of the staple in the APE smeared
link was 0.12. For � ¼ 2:5 we use spatial links with 10
steps of APE smearing and unsmeared spatial links. For
� ¼ 2:7 we used unsmeared spatial links as well as spatial
links with 10 steps and 20 steps of APE smearing. The
lattice spacing has been set using the string tension calcu-
lated in Ref. [38], a2��¼2:5 ¼ 0:0363ð3Þ and a2��¼2:7 ¼
0:0112ð2Þ. When quoting the results in terms of reduced
temperature T=Tc, we use the value Tc=

ffiffiffiffi
�

p ¼ 0:69ð2Þ
[41]. The simulation parameters, including the different
levels of APE smearing used in the present study, are
summarized in Table I.
For comparison with the study of static meson correla-

tion functions in Coulomb gauge [15], we have also per-
formed calculations on a 163 � 4 lattice at� ¼ 2:3533 and
2.4215. The two gauge couplings correspond to tempera-
tures 1:2Tc and 1:5Tc, respectively (see Ref. [15] for de-
tails). Here we used 5, 10, and 20 APE smearings. The
results from these calculations will be discussed in
Sec. III C.

A. Color averaged correlator in the confined phase

The color averaged correlator has been calculated in the
confined phase in the temperature intervals 0:32Tc–0:95Tc

for � ¼ 2:5 and 0:49Tc–0:98Tc for � ¼ 2:7. Thus we
study this correlator also at very low temperatures, where
they have not been calculated before. The numerical results
for the color averaged free energy for� ¼ 2:5 are shown in
Fig. 1. To eliminate the trivial temperature dependence due
to the color trace normalization in Fig. 1, we show the
subtracted free energy F0ðr; TÞ ¼ Fðr; TÞ � T ln4; see the
discussion in the previous section. In the figure the zero
temperature potential calculated in Ref. [38] is also shown.
The color averaged free energy does not show any tem-
perature dependence up to temperatures of about 0:76Tc.
For T ¼ 0:76Tc the color averaged free energy is below the
zero temperature potential, indicating a decrease in the
effective string tension in accordance with earlier studies
(see e.g. [10,15]). We see even larger changes closer to the
transition temperature, namely, for T � 0:95Tc.
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Since the temperature dependence for T < 0:76Tc is
relatively small, we attempted to fit the color averaged
correlator with the 1-exponential form Gðr; TÞ ¼ ca1ðrÞ�
expð�E1ðrÞ=TÞ. The ground state energy E1ðrÞ extracted
from this fit agrees well with the zero temperature potential

calculated in Ref. [38], while the coefficients ca1ðrÞ are

close to 1 as expected (see the discussion in the previous
section). The fit details are shown in the Appendix.
Although the deviations of ca1ðrÞ from unity are small,

they appear to be statistically significant. These deviations
increase with increasing r. Therefore they are likely to be
due to the contribution from excited states, as the gap
between the ground state and excited states (hybrid
potential) gets smaller with increasing separation.
Therefore, we attempted to fit the color averaged correlator
with 2-exponential form Gðr; TÞ ¼ expð�E1ðrÞ=TÞ þ
expð�E2ðrÞ=TÞ using T < 0:76Tc. The results of the fit
are given in the Appendix. We find that the value of E1

extracted from the 2-exponential fits are consistent with the
ones obtained from 1-exponential fit as well as with the
value of the zero temperature potential. For E2ðrÞ we find
values which are somewhat below the first hybrid potential.
This is presumably due to the fact that there is a small
contribution from the higher excited states.

B. Color singlet correlators in the confined phase

As mentioned above, the color singlet correlators have
been calculated using different levels of APE smearing in
the spatial gauge connection. It is well known that smear-
ing increases the overlap with the ground state by removing
the short distance fluctuation in the spatial links (see e.g.

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0  0.5  1  1.5  2

F
’(r

,T
)

r σ1/2

0.95Tc
0.76Tc
0.63Tc
0.54Tc
0.48Tc
0.42Tc

T=0

FIG. 1 (color online). The color averaged free energy defined
by Eq. (11) below the deconfinement temperature at � ¼ 2:5
calculated on 323 � N� lattices. Also shown is the T ¼ 0
potential.

TABLE I. Simulation parameters, # meas. refers to the actual number of measurements.

� ¼ 2:5 � ¼ 2:7
Ns N� T=Tc NAPE # meas. Ns N� T=Tc NAPE # meas.

32 4 1.90 0 4K 32 4 3.42 0 4K

32 4 1.90 10 1K 32 4 3.42 10, 20 1K

32 6 1.27 0 4K 32 6 2.28 0 4K

24,32 6 1.27 10 1K, 1K 32 6 2.28 10, 20 1K

24,32 8 0.95 0 16K, 4K 32 8 1.71 0 4K

24,32 8 0.95 10 1K, 1K 32 8 1.71 10, 20 1K

24,32 10 0.76 0 8K, 4K 32 10 1.37 0 8K

24,32 10 0.76 10 1K, 1K 32 10 1.37 10, 20 1K

24,32 12 0.63 0 8K, 4K 32 12 1.14 0 8K

24,32 12 0.63 10 1K, 1K 32 12 1.14 10, 20 1K

24,32 14 0.54 0 4K, 4K 32 14 0.98 0 8K

24,32 14 0.54 10 1K, 1K 32 14 0.98 10, 20 1K

24,32 16 0.48 0 4K, 4K 32 16 0.86 0 4K

24,32 16 0.48 10 1K, 1K 32 16 0.86 10, 20 1K

24,32 18 0.42 0 8K, 4K 32 18 0.76 0 8K

24,32 18 0.42 10 1K, 1K 32 18 0.76 10, 20 1K

24,32 20 0.38 0 8K, 4K 32 20 0.68 0 4K

24,32 20 0.38 10 1K, 1K 32 20 0.68 10, 20 1K

24,32 22 0.35 0 8K, 4K 32 22 0.62 0 4K

24,32 22 0.35 10 1K, 1K 32 22 0.62 10, 20 1K

32 24 0.32 0 4K 32 24 0.57 0 4K

32 24 0.32 10 1K 32 24 0.57 10, 20 1K

32 28 0.49 0 4K

32 28 0.49 10, 20 1K
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[42]). For this reason smearing also reduces the breaking of
the rotational invariance to the level expected in the free
theory. We have found that when no smearing is used the
color singlet free energy �T lnG1ðr; TÞ shows a small but
visible temperature dependence. In particular, F1ðr; TÞ is
larger than the T ¼ 0 potential for intermediate distances
0:5< r

ffiffiffiffi
�

p
< 2. A similar effect has been observed in

calculations in 3 dimensional SUð2Þ gauge theory
[29,43], as well as in 4 dimensional SUð2Þ and SUð3Þ
gauge theory calculations in Coulomb gauge [15,44]. The
temperature dependence of the singlet free energy is sig-
nificantly reduced when APE smearing is applied. In Fig. 2
we show the color singlet free energy for � ¼ 2:5 and 10
APE smearings. As one can see from the figure, the color
singlet free energy shows significantly smaller temperature
dependence as we get closer to the deconfinement tem-
perature. In particular, only for T ¼ 0:95Tc do we see
significant temperature dependence, which, however, is
much smaller than for color averaged free energy. To
understand the temperature dependence of the color singlet
correlator, we use the 1-exponential fit G1ðr; TÞ ¼ c1ðrÞ�
expð�E1ðrÞ=TÞ. In all cases considered, the value of E1ðrÞ
extracted from fits is in good agreement with the calcula-
tion of the zero temperature potential in Ref. [38]. The
value of the prefactor c1ðrÞ is shown in Fig. 3. When no
APE smearing is used, the value of c1ðrÞ strongly depends
on the separation r. At small distances it shows a tendency
of approaching unity, as one would expect in perturbation
theory. However, c1ðrÞ decreases with increasing distance
r. At large distances its value is around 0.3–0.5 (see the
Appendix for details). Similar results for c1ðrÞ have been
obtained in the study of SUð2Þ gauge theory in 3 dimen-
sions [29]. When APE smearing is applied, the r depen-
dence of the amplitude c1ðrÞ is largely reduced and its

value is close to unity both for � ¼ 2:5 and � ¼ 2:7. For
� ¼ 2:7 we also see that increasing the number of smear-
ing steps from 10 to 20 reduces the deviation of c1ðrÞ from
unity.
As discussed in Sec. II perturbation theory predicts that

the deviations of c1ðrÞ from unity is of order �3
s . Therefore,

it can be made arbitrarily small by going to sufficiently
small distances, but even for distances accessible in this
study, these deviations are expected to be small based on
perturbation theory. It is known, however, that lattice per-
turbation theory converges very poorly. The main reason
for this poor convergence is the short distance fluctuation
of link variables, which makes their mean value very
different from unity [45]. Smearing removes these short
distance fluctuations, and this is the reason why c1ðrÞ is
much closer to unity when APE smearing is applied.
From the above discussions it is clear that almost the

entire temperature dependence of the singlet free energy at

 1.5
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 3.5
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 4.5
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 5.5

 0  0.5  1  1.5  2

F
1(

r,
T
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σ1/

2

r σ1/2

0.95Tc
0.76Tc
0.63Tc
0.54Tc
0.48Tc
0.42Tc

T=0

 2

 3

 4

 0  0.5  1  1.5  2
 

 

F1(r,T)/σ1/2

r σ1/2

FIG. 2 (color online). The color singlet free energy below the
deconfinement temperature at � ¼ 2:5 calculated on 323 � N�

lattices. Also shown is the T ¼ 0 potential. The inset shows the
color singlet free energy from which the contribution from the
matrix element T lnc1 has been subtracted.
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0.4

0.6

0.8
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1.2

 0.2  0.4  0.6  0.8  1  1.2  1.4  1.6

r σ1/2

c1(r)
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Ns=32,APE10
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Ns=32, APE10
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FIG. 3 (color online). The preexponential factor of the color
singlet correlators as a function of distance r for � ¼ 2:5 (top
panel) and � ¼ 2:7 (bottom panel). Shown are results for
unsmeared spatial links and 10 and 20 steps of APE smearing.
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distances 0:5< r
ffiffiffiffi
�

p
< 2 is due to the deviation of c1 from

unity and can be largely reduced by applying APE smear-
ing to the links in the spatial gauge connections. To further
demonstrate this point, in the inset of Fig. 2 we show the
results for F1ðr; TÞ þ T lnc1ðrÞ. Clearly, no temperature
dependence can be seen in this quantity up to 0:95Tc,
where we see temperature dependence at distances r

ffiffiffiffi
�

p �
1:5 corresponding to the expected drop of the effective
string tension.

C. Color singlet free energy in the deconfined phase

In this subsection we discuss the properties of the color
singlet free energy, F1ðr; TÞ ¼ �T lnG1ðr; TÞ, above the
deconfinement temperature. It turns out that the singlet free
energy calculated from cyclic Wilson loops shares the
same qualitative features as the singlet free energy calcu-
lated in Coulomb gauge [14–18]. At short distances it is
temperature independent and coincides with the zero tem-
perature potential. At large distances it approaches a con-
stant F1ðTÞ which monotonically decreases with the
temperature. The constant F1ðTÞ is the free energy of
two isolated static quarks or, equivalently, of a quark-
antiquark pair at infinite separation. Its value is therefore
independent of the definition of the singlet correlator
G1ðr; TÞ and is related to the renormalized Polyakov loop
LrenðTÞ ¼ expð�F1ðTÞ=ð2TÞÞ [14].

At leading order F1ðr; TÞ � F1ðTÞ is of Yukawa form
[cf. Eq. (7)]. Therefore, we find it useful to show our
numerical results in terms of the screening function

Sðr; TÞ ¼ r � ðF1ðr; TÞ � F1ðTÞÞ: (15)

In Fig. 4 we show the results for the screening function at
different temperatures. At short distances (rT < 0:5) the
singlet free energy does not depend on the smearing level.
Furthermore, it is very close to the free energy calculated in
Coulomb gauge. We expect that at large distances the
screening function Sðr; TÞ will show an exponential
decay determined by a temperature dependent screening
mass m1ðTÞ, which is equal to the leading order Debye
mass up to the nonperturbative g2 corrections:m1 ¼ mD þ
Oðg2Þ [46]. From Fig. 4 we can see that indeed Sðr; TÞ
behaves exponentially with a screening mass proportional
to the temperature. We note, however, that there is some
dependence on the smearing level at larger distances. This
disappears at high temperatures and with an increase in the
smearing level. In particular, for � � 2:5 it turns out that
there is no dependence on the smearing level for five or
more smearing steps. For � ¼ 2:7 we need 10–20 steps,
depending on the temperature, to achieve stable results.
Fitting the large distance behavior of the screening func-
tion by an exponential form expð�m1ðTÞrÞ, we determine
the screening mass m1ðTÞ. Typically, we considered dis-
tances r > 1=T as well as the maximal number of smearing
steps (10 for � � 2:5 and 20 for � ¼ 2:7) in our fits. In the
inset of Fig. 4 we show the color singlet screening masses

extracted from the fits and compare them to the results
obtained in Coulomb gauge in Ref. [15]. In the inset we
also show the leading order Debye mass calculated using

2-loop gauge coupling gð� ¼ 2�TÞ in theMS scheme. We
used the value Tc=�MS ¼ 1:09 [47] to calculate the cou-

pling g. As we see from the figure the screening masses are
smaller than those calculated in Coulomb gauge and agree
well with the leading order perturbative prediction.
Leading order perturbation theory also predicts that

F2
1ðr; TÞ=Fðr; TÞ ¼ 6 for r > 1=T [cf. Eqs. (7) and (8)].

We find that at the highest temperature, T ¼ 3:42Tc, this
relation indeed holds within statistical errors.
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FIG. 4 (color online). The screening function Sðr; TÞ ¼
rðF1ðr; TÞ � F1ðTÞÞ at different temperatures calculated for
� ¼ 2:7 as a function of the distance in units of

ffiffiffiffi
�

p
(top panel)

and as a function of rT and different values of � (bottom panel).
In the lower panel we also show the results from calculations in
Coulomb gauge [15] as open symbols. In the inset the screening
masses m1 extracted from singlet free energies are shown
together with the results obtained in Coulomb gauge [15]
(open symbols). The line shows the leading order results for
the Debye mass. In the upper panel the filled symbols correspond
to 20 APE smearing steps, while the open ones correspond to 10
APE smearing steps.
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D. Color triplet free energy

We have calculated the color triplet correlator defined by
Eq. (4) for different temperatures below and above the
transition temperature. Below the deconfinement tempera-
ture we observe a moderate T dependence of the triplet
correlator. We also find that the corresponding free energy
�T lnG3ðr; TÞ is smaller than the first hybrid potential
calculated in Ref. [38], but larger than the triplet free
energy in Coulomb gauge [15].

Let us assume that only two states contribute to Eqs. (13)
and (14). Then from Eq. (4) it follows that

F3ðr; TÞ ¼ E2ðrÞ � T lnð1� c2ðrÞ þ 1
3ð1� c1ðrÞÞe�EðrÞ=TÞ;

(16)

with �EðrÞ ¼ E2ðrÞ � E1ðrÞ. We have seen in Sec. III B
that the temperature dependence of the singlet free energy
is quite small. In any case it is considerably smaller than
the temperature dependence of the averaged free energy.
Therefore the contribution of the excited states to G1ðr; TÞ
is quite small, and it is reasonable to assume that c2ðrÞ �
1. We also expect that, at small distances, c2ðrÞ �
ðr�QCDÞ4 [48]. Thus, the temperature dependence of

F3ðr; TÞ and its deviation from the hybrid state E2ðrÞ is
due to a small deviation of c1ðrÞ from unity. At low
temperatures, when �E 	 T, these small deviations are
amplified by the exponential factor. To verify this, we have

subtracted the correction T lnð1þ 1
3 ð1� c1Þe�E=TÞ from

the triplet free energy, assuming that E1ðrÞ is given by
the ground state potential and E2ðrÞ is given by the first
hybrid potential as calculated in Ref. [38]. The numerical
results are summarized in Fig. 5 which shows that, after
this correction is accounted for in the confined phase, the

triplet free energy at low temperatures agrees reasonably
well with the first hybrid potential. As temperature in-
creases, more excited states contribute. In particular, at
0:76Tc the value of the triplet free energy can be accounted
for by including the next hybrid state [38]. However, at
0:95Tc we see large temperature effects, which cannot be
explained by including the contribution from only a few
excited states.
In Fig. 5 we also show the triplet free energy above the

deconfinement temperature compared to the calculations in
Coulomb gauge [15]. It turns out to be much smaller than
in the confined phase and agrees well with Coulomb gauge
results. This means that the small deviation of the overlap
factor c1ðrÞ from unity is unimportant in this case. The
triplet free energy monotonically decreases with increasing
temperature, as expected in HTL perturbation theory
[cf. Eq. (8)]. In the limit of high temperatures and short
distances, r < 1=T, we have E2ðrÞ ¼ �s=ð4rÞ, �EðrÞ ¼
�s=r, c2ðrÞ ’ 0, and c1ðrÞ ¼ 1þOð�3

sÞ. Therefore, we
can expand the logarithm in Eq. (16) to get

F3ðr; TÞ ¼ þ 1

4

�s

r
þOð�3

sTÞ þOð�smDÞ: (17)

Thus the corrections due to c1ðrÞ � 0 are much smaller
than the expected leading order thermal effects in the
triplet free energy.
While the temperature dependence of F3ðr; TÞ and

F1ðr; TÞ is different even at short distances, their r depen-
dence is expected to be similar. In leading order perturba-
tion theory we have

dF1ðr;TÞ
dr

dF3ðr;TÞ
dr

¼ �3:

We have calculated the above ratio numerically from the
lattice data and have found that for T > 1:71Tc the devia-
tions from the expected value (� 3) are smaller than 10%.
At this point it is worth commenting about the conclu-

sions made in Ref. [29] concerning the triplet correlator
G3ðr; TÞ. It was stated that the singlet, triplet, and averaged
correlators project onto singlet states only. In the confined
phase all energy levels entering in Eqs. (5) and (6) corre-
spond to color singlet states (no colored states exist in the
confined phase). In this sense the statement made in
Ref. [29] is correct but trivial. At short distances there is,
however, a clear difference between the ground state en-
ergy of static Q �Q, i.e. the usual static potential and the
excited levels, the hybrid potentials. In terms of pNRQCD
the ground state potential corresponds to the singlet poten-
tial, while all the excited states correspond to the adjoint
potential [27]. The shape of hybrid potentials at short
distances as well as the gap between the ground state
potential and the first hybrid can be quantitatively under-
stood in the perturbative approach based on pNRQCD [49],

 3
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F
3(
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0.42Tc

T=0

FIG. 5 (color online). The triplet free energy at different
temperatures calculated at � ¼ 2:5. The filled symbols corre-
spond to calculations in Coulomb gauge. Also shown is the first
hybrid potential calculated in Ref. [38].
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demonstrating the correspondence between the hybrid po-
tentials and the octet degrees of freedom in the effective
field theory approach. In simplified terms one can think of
hybrids at short distances as states with static Q �Q in the
adjoint representation coupled to a soft gluon field to have
a color singlet object. The energy of such a state is domi-
nated by Coulomb repulsion, i.e. by the perturbative ad-
joint potential. It is also expected that the energy of such a
state will be significantly modified at the deconfinement
transition. It is possible to extend pNRQCD to finite tem-
perature [28]. The triplet potential will appear as a match-
ing coefficient of the effective theory. Thus it will have a
solid field theoretical definition. The temperature depen-
dence of this matching coefficient is reflected in the tem-
perature dependence of G3ðr; TÞ.

The authors of Ref. [29] also concluded that differences
in the color singlet, triplet, and averaged correlators are due
to overlap factors (matrix elements) which also determine
their temperature dependence. Our analysis shows that at
short distances the dominant source of the temperature
dependence of the triplet correlator is not determined by
the overlap factor but by the modification of the triplet
potential, although the former plays some role in the con-
fined phase.

IV. CONCLUSIONS

In this paper we have studied singlet and triplet static
quark-antiquark correlators in finite temperature SUð2Þ
theory expressed in terms of Polyakov loop correlators
and cyclic Wilson loops [cf. Eqs. (3) and (4)]. The study
of the latter is interesting as it has been used in resummed
perturbative calculations of quarkonium spectral functions
[30,31]. In leading order and probably next-to-leading
order of perturbation theory, the static correlators defined
by Eqs. (3) and (4) give the energies of the singlet and
triplet states, respectively; however, this separation does
not hold in the general case. Because of interactions with
ultrasoft fields, there will be a mixing of singlet and triplet
states which is proportional to �3

sð1=rÞ and ðr�Þ4, with �
being the ultrasoft scale [27]. In our case the ultrasoft scale
can be the binding energy, �s=r, �QCD or g2T. Therefore,
it is expected that mixing is quite small at sufficiently small
distances. We determined the mixing between singlet and
triplet states in terms of the overlap factor c1ðrÞ. If the
overlap factor is unity there is no mixing. Our lattice
calculations show that c1ðrÞ indeed approaches 1 at small
distances. Using iterative APE smearing the deviation of
c1ðrÞ from unity can be largely reduced. Therefore the
contribution of a singlet state to G3ðr; TÞ appears to be
small at temperatures close to the deconfinement
temperature. This contribution is also controlled by the
nonperturbative gap between the singlet and triplet states,
i.e. the gap between the static potential and the first hybrid
potential.

Our analysis shows that at short distances, rT < 1, the
singlet correlator is almost temperature independent, while
the triplet correlator is largely affected by the deconfine-
ment. The temperature dependence of the triplet correla-
tors indicates the melting of the nonperturbative gap
between the singlet and the triplet states above deconfine-
ment, which turns out to be consistent with perturbative
expectations. Because of the disappearance of the non-
perturbative gap, the small deviations of c1ðrÞ from unity
play no role in the deconfined phase. In particular, the
difference between the singlet and triplet correlators de-
fined through cyclic Wilson loops and using Coulomb
gauge turns out to be quite small. This finding is important
for the application of thermal pNRQCD discussed in
Ref. [28] to realistic quarkonia and temperatures not very
far from the deconfinement temperature.
There are obvious extensions of the work carried out in

this paper. One could do analogous calculations in SUð3Þ
gauge theory; however, this will hardly give qualitatively
different results. It would be more interesting to extend the
calculations to QCD with dynamical fermions. The first
steps in this direction are being made using an improved
staggered (p4) action [50]. It will be interesting to calculate
the correlators G1ðr; TÞ and G3ðr; TÞ in perturbation theory
beyond the HTL approximation. One practical problem in
doing these calculations is the fact that the scales T andmD

are not separated. This problem, however, could possibly
be solved by using screened perturbation theory [51–53].
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APPENDIX

In this appendix we give some details of the fits of the
overlap factors and energy levels for different lattice
volumes.
Let us first discuss the fits of the color averaged corre-

lator Gðr; TÞ. We have fitted our lattice data at low tem-
peratures with one exponential form, Gðr; TÞ ¼
ca1ðrÞ expð�E1ðrÞ=TÞ. For � ¼ 2:5 we used lattices with

temporal extents N� ¼ 12, 14, 16, 18, 20, 22, and 24. For
� ¼ 2:7 we used N� ¼ 20, 22, 24, and 28. The values of fit
parameters ca1ðrÞ and E1ðrÞ are shown in Table II for � ¼
2:5 and in Table III for � ¼ 2:7. As one can see from the
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tables, at � ¼ 2:5 the single exponential fit works reason-
ably well up to the distance r ¼ 7 forNs ¼ 32 and to r ¼ 6
for Ns ¼ 24. At � ¼ 2:7 the fits work up to the distance
r ¼ 5 only. We also performed double exponential fits
Gðr; TÞ ¼ expð�E1ðrÞ=TÞ þ expð�E2ðrÞ=TÞ to check the

reliability of the extraction of E1. The results are shown in
Tables IV and V for � ¼ 2:5 and � ¼ 2:7, respectively.
Overall, the values of E1 extracted from 2-exponential fits
are in reasonably good agreement with the corresponding
values extracted from the singlet exponential fit.

TABLE III. Single exponential fit of Gðr; TÞ at � ¼ 2:7 using Nt ¼ 20–28.

r ca1 E1
�2

dof

1 1.000 65(44) 0.285 80(2) 0.64

2 1.0084(28) 0.395 84(12) 1.21

3 1.0325(90) 0.447 27(36) 0.90

4 1.078(21) 0.479 39(80) 0.54

5 1.143(39) 0.5038(14) 0.41

TABLE IV. Double exponential fit of Gðr; TÞ at � ¼ 2:5 using N� ¼ 12–24 for two spatial sizes, Ns ¼ 24 and Ns ¼ 32.

Ns ¼ 24 Ns ¼ 32
r E1 E2

�2

dof E1 E2
�2

dof

1 0.335 204(5) 1.011(41) 0.89 0.335 199(3) 1.048(50) 0.84

2 0.483 974(18) 0.989(20) 0.56 0.483 948(9) 0.998(15) 0.47

3 0.565 022(42) 0.983(17) 0.44 0.564 946(29) 0.982(14) 0.60

4 0.622 69(12) 0.984(21) 0.55 0.622 522(88) 0.986(19) 0.80

5 0.670 88(42) 0.987(36) 1.08 0.670 46(19) 1.003(24) 0.65

6 0.7140(10) 1.004(57) 1.35 0.713 57(48) 1.023(40) 0.86

7 0.7545(24) 1.016(86) 1.69 0.7533(12) 1.07(10) 1.43

TABLE V. Double exponential fit of Gðr; TÞ at � ¼ 2:7 using N� ¼ 20–28.

r E1 E2
�2

dof

1 0.285 780(1) 0.700(11) 0.14

2 0.395 551(9) 0.6819(60) 0.15

3 0.446 179(27) 0.6657(45) 0.11

4 0.476 943(53) 0.6532(33) 0.07

5 0.499 65(12) 0.6445(37) 0.07

6 0.518 57(29) 0.6362(48) 0.11

7 0.535 45(67) 0.6297(63) 0.16

8 0.5514(14) 0.6240(79) 0.18

TABLE II. Single exponential fit of Gðr; TÞ at � ¼ 2:5 using N� ¼ 12–24 for two spatial sizes, Ns ¼ 24 and Ns ¼ 32.

Ns ¼ 24 Ns ¼ 32
r ca1 E1

�2

dof ca1 E1
�2

dof

1 1.000 77(28) 0.335 24(2) 0.50 1.000 46(28) 0.335 22(1) 1.48

2 1.0049(13) 0.484 23(8) 0.49 1.0039(12) 0.484 15(6) 0.96

3 1.0134(45) 0.565 68(24) 0.64 1.0115(32) 0.565 50(16) 0.93

4 1.027(10) 0.624 00(61) 0.73 1.0237(67) 0.623 65(35) 0.75

5 1.049(22) 0.6732(14) 1.23 1.038(14) 0.672 32(78) 0.66

6 1.067(43) 0.7171(27) 1.43 1.051(29) 0.7161(17) 1.10

7 1.087(91) 0.7582(59) 1.80 1.023(60) 0.7542(40) 1.53

8 1.05(16) 0.793(11) 2.06 0.93(11) 0.7861(83) 1.69
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We fitted the singlet correlators calculated for different
numbers of APE smearing steps with a single exponential
Ansatz G1ðr; TÞ ¼ c1ðrÞ expð�E1ðrÞ=TÞ. The results for
the fit parameters c1ðrÞ and E1ðrÞ at � ¼ 2:5 are shown

in Tables VI and VII for zero and 10 APE smearing steps,
respectively. In Tables VIII, IX, and X we show the fit
parameters for� ¼ 2:7 and zero, 10, and 20 APE smearing
steps.

TABLE VII. Single exponential fit of G1ðr; TÞ at � ¼ 2:5 calculated with 10 steps of APE smearing using N� ¼ 12–24.

Ns ¼ 24 Ns ¼ 32
r c1 E1

�2

dof c1 E1
�2

dof

1.0000 0.994 57(96) 0.33528(6) 0.71 0.992 60(50) 0.335 16(3) 0.53

1.4142 0.9926(19) 0.429 30(11) 0.81 0.9904(11) 0.429 16(6) 0.32

1.7320 0.9886(26) 0.473 22(16) 0.38 0.9864(16) 0.473 10(9) 0.33

2.0000 0.9919(30) 0.484 14(17) 0.70 0.9882(18) 0.483 89(10) 0.19

2.8284 0.9810(69) 0.558 24(42) 0.53 0.9721(40) 0.557 58(24) 0.32

3.0000 0.9835(63) 0.565 54(36) 0.50 0.9751(46) 0.564 94(27) 0.28

3.4641 0.954(10) 0.596 81(68) 0.72 0.9487(60) 0.596 43(37) 0.47

4.0000 0.972(13) 0.624 06(82) 0.33 0.9503(98) 0.622 43(60) 0.19

4.2426 0.950(16) 0.6376(11) 0.33 0.938(11) 0.636 56(70) 0.32

5.0000 0.953(26) 0.6732(17) 0.83 0.923(18) 0.6706(12) 0.40

5.1961 0.891(28) 0.6803(21) 1.47 0.870(16) 0.6787(11) 0.72

5.6568 0.897(40) 0.7015(32) 0.94 0.880(25) 0.7000(18) 0.12

6.0000 0.933(44) 0.7185(31) 0.48 0.877(35) 0.7129(26) 0.54

6.9282 0.765(66) 0.7473(61) 1.34 0.807(41) 0.7508(33) 0.88

7.0000 0.837(68) 0.7550(61) 0.62 0.874(64) 0.7563(49) 0.38

7.0711 0.902(87) 0.7643(71) 0.99 0.808(52) 0.7568(44) 0.29

8.0000 0.71(11) 0.786(11) 1.28 0.86(10) 0.7963(80) 1.78

TABLE VI. Single exponential fit of G1ðr; TÞ at different lattice separations r at � ¼ 2:5 with no APE smearing using N� ¼ 12–24.

Ns ¼ 24 Ns ¼ 32
r c1 E1

�2

dof c1 E1
�2

dof

1 0.890 76(34) 0.335 23(2) 0.36 0.890 43(28) 0.335 21(2) 1.31

2 0.682 39(89) 0.484 06(8) 0.77 0.681 91(79) 0.484 01(6) 0.70

3 0.5113(16) 0.565 49(20) 0.20 0.5095(14) 0.565 19(14) 1.11

4 0.4020(33) 0.623 53(53) 0.19 0.4035(24) 0.623 60(33) 0.58

5 0.3439(63) 0.6731(12) 0.82 0.3367(46) 0.671 23(86) 0.34

6 0.313(14) 0.7174(32) 2.24 0.312(10) 0.7173(21) 1.32

7 0.321(32) 0.7642(74) 1.93 0.261(20) 0.7496(54) 1.10

8 0.311(46) 0.803(11) 0.70 0.240(38) 0.786(11) 3.19

9 0.35(13) 0.845(29) 1.43 0.228(79) 0.822(24) 1.69

TABLE VIII. Single exponential fit of G1ðr; TÞ at � ¼ 2:7 with no APE smearing using N� ¼ 20–28.

r c1 E1
�2

dof

1 0.890 48(47) 0.285 78(2) 2.72

2 0.6898(18) 0.395 57(11) 2.30

3 0.5241(39) 0.446 28(31) 2.29

4 0.4243(73) 0.477 92(72) 1.66

5 0.371(12) 0.5019(14) 1.44

6 0.362(21) 0.5238(25) 0.83

7 0.385(33) 0.5449(36) 0.36

8 0.396(46) 0.5612(48) 1.04

9 0.497(76) 0.5838(64) 0.74

10 0.55(11) 0.5991(89) 0.59
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TABLE IX. Single exponential fit of G1ðr; TÞ at � ¼ 2:7 calculated with 10 steps of APE smearing using N� ¼ 20–28.

r c1 E1
�2

dof

1.0000 0.9962(12) 0.285 82(5) 0.02

1.4142 0.9952(25) 0.358 19(10) 1.00

1.7320 0.9927(33) 0.389 69(14) 0.59

2.0000 0.9923(42) 0.395 85(18) 0.18

2.8284 0.9798(97) 0.443 11(42) 1.74

3.0000 0.978(11) 0.446 81(45) 0.59

3.4641 0.971(14) 0.465 41(62) 1.19

4.0000 0.968(20) 0.478 54(88) 0.41

4.2426 0.949(24) 0.4852(11) 1.08

5.0000 0.944(34) 0.5018(15) 0.22

5.1961 0.949(37) 0.5073(17) 0.89

5.6568 0.921(48) 0.5151(22) 1.02

6.0000 0.920(52) 0.5211(24) 0.04

6.9282 0.939(76) 0.5398(34) 0.78

7.0000 0.894(78) 0.5381(37) 0.20

7.0711 0.894(72) 0.5399(34) 0.60

8.0000 0.849(99) 0.5522(50) 0.02

8.4853 0.86(11) 0.5614(57) 0.30

8.6603 0.89(14) 0.5661(64) 0.37

9.0000 0.78(13) 0.5640(73) 0.24

9.8995 0.80(18) 0.5793(94) 0.07

10.0000 0.75(17) 0.5767(98) 0.19

10.3923 0.74(19) 0.584(11) 0.25

TABLE X. Single exponential fit of G1ðr; TÞ at � ¼ 2:7 calculated for 20 APE smearing using N� ¼ 20–28.

r c1 E1 �2=dof

1.0000 0.9965(15) 0.285 82(6) 1.21

1.4142 0.9965(26) 0.358 09(11) 1.10

1.7320 0.9957(45) 0.389 49(19) 2.02

2.0000 0.9982(53) 0.395 73(22) 1.29

2.8284 0.993(12) 0.442 62(51) 1.05

3.0000 0.993(13) 0.446 39(55) 1.38

3.4641 0.985(21) 0.464 18(88) 3.86

4.0000 0.985(24) 0.4771(10) 2.50

4.2426 0.979(31) 0.4839(13) 0.65

5.0000 0.979(38) 0.4999(16) 2.64

5.1962 0.984(48) 0.5049(20) 3.10

5.6569 0.992(58) 0.5139(25) 0.86

6.0000 0.982(63) 0.5193(27) 2.34

6.9282 1.04(10) 0.5378(40) 2.29

7.0000 0.983(86) 0.5360(37) 2.10

7.0711 1.03(11) 0.5395(44) 0.86

8.0000 1.00(12) 0.5525(52) 2.15

8.4853 1.11(18) 0.5640(70) 1.08

9.0000 0.94(15) 0.5642(69) 1.67

10.0000 0.92(22) 0.577(10) 1.82
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